Effective splicing restoration of a deep-intronic ABCA4 variant in cone photoreceptor precursor cells by CRISPR/SpCas9 approaches
Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening...
Saved in:
Published in | Molecular therapy. Nucleic acids Vol. 29; pp. 511 - 524 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
13.09.2022
American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2162-2531 2162-2531 |
DOI | 10.1016/j.omtn.2022.07.023 |
Cover
Abstract | Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4.
[Display omitted]
A mutation localized in the intronic part of ABCA4 able to affect the correct reading frame of the gene was targeted by three CRISPR-Cas9-based approaches. Rescue of the correct reading frame was achieved in mutant cone photoreceptor precursor cells, while no detrimental secondary effect was observed in control cells. |
---|---|
AbstractList | Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the
ABCA4
gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in
ABCA4
have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing
Streptococcus pyogenes
Cas9 (single and dual guide RNA) or
Streptococcus pyogenes
Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an
ABCA4
splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in
ABCA4
.
A mutation localized in the intronic part of
ABCA4
able to affect the correct reading frame of the gene was targeted by three CRISPR-Cas9-based approaches. Rescue of the correct reading frame was achieved in mutant cone photoreceptor precursor cells, while no detrimental secondary effect was observed in control cells. Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4. Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4. [Display omitted] A mutation localized in the intronic part of ABCA4 able to affect the correct reading frame of the gene was targeted by three CRISPR-Cas9-based approaches. Rescue of the correct reading frame was achieved in mutant cone photoreceptor precursor cells, while no detrimental secondary effect was observed in control cells. Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4.Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4. |
Author | Hauser, Stefan Reuter, Peggy Schöls, Ludger Wissinger, Bernd Stingl, Katarina Kohl, Susanne De Angeli, Pietro |
Author_xml | – sequence: 1 givenname: Pietro orcidid: 0000-0002-8993-551X surname: De Angeli fullname: De Angeli, Pietro email: pietro.de-angeli@med.uni-tuebingen.de organization: Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany – sequence: 2 givenname: Peggy surname: Reuter fullname: Reuter, Peggy organization: Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany – sequence: 3 givenname: Stefan surname: Hauser fullname: Hauser, Stefan organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany – sequence: 4 givenname: Ludger surname: Schöls fullname: Schöls, Ludger organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany – sequence: 5 givenname: Katarina surname: Stingl fullname: Stingl, Katarina organization: Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany – sequence: 6 givenname: Bernd surname: Wissinger fullname: Wissinger, Bernd organization: Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany – sequence: 7 givenname: Susanne surname: Kohl fullname: Kohl, Susanne organization: Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany |
BookMark | eNp9Uk1rGzEUXEpKk6b5Az3p2IsdfaxWKygFd0kbQ6Alac9CKz3ZMmtpK60NOeafV44TaHqILu8hvRlG8-Z9dRJigKr6SPCcYNJcbuZxO4U5xZTOsZhjyt5UZ5Q0dEY5Iyf_9KfVRc4bXE6DCW3ou-qUcSkJI_yserhyDszk94DyOHjjwwolyFNMevIxoOiQRhZgnPkwpRi8QYuv3aJGe528DhPyAZmiDI3rWEBgYCwFjaXbpVw6A8OQUX-Putvl3c_by7ux01kiPY4parOG_KF66_SQ4eKpnle_v1396q5nNz--L7vFzczUsp1mzknbtBRjboWoMRbaOM0J6IYy4izrhS1F6J5oLSSRRFDSt4ZZYnsjJGPn1fLIa6PeqDH5rU73KmqvHi9iWimdJm8GUEzIHrvaNNKyGjjvGW2pdm3TurbG3BSuL0eucddvwRoo3ujhBenLl-DXahX3SjLBCT-I-fREkOKfXfFbbX0-WKUDxF1WVGDOJG9bXEbb46hJMecEThk_PS6nMPtBEawOgVDlCyUQ6hAIhYUqgShQ-h_0WeGroM9HEJRl7D0klY2HYMD6stSpuOVfg_8FBprR0A |
CitedBy_id | crossref_primary_10_1016_j_omtn_2024_102345 crossref_primary_10_1186_s12967_023_04406_x crossref_primary_10_1080_17469899_2023_2268289 crossref_primary_10_1016_j_omtm_2022_10_016 crossref_primary_10_1016_j_omtn_2023_102113 crossref_primary_10_1093_hmg_ddad129 crossref_primary_10_3389_fgene_2023_1234032 crossref_primary_10_1016_j_omtn_2023_02_032 crossref_primary_10_1038_s12276_023_01057_2 |
Cites_doi | 10.3390/genes10090654 10.1093/nar/gky786 10.1167/iovs.11-8182 10.1038/s41591-018-0049-z 10.1038/nbt.3101 10.1038/s41591-018-0327-9 10.1126/scitranslmed.aav4523 10.1021/acssynbio.5b00299 10.21769/BioProtoc.1870 10.21769/BioProtoc.3251 10.1093/hmg/10.23.2671 10.1038/nprot.2017.016 10.1126/science.1225829 10.1038/ncb1095 10.1016/j.omtn.2020.06.007 10.1038/s41586-018-0686-x 10.1111/j.1474-9726.2012.00870.x 10.1093/nar/gku936 10.1073/pnas.1912220117 10.1038/eye.2016.109 10.1038/s41467-019-11454-9 10.1101/gr.226621.117 10.1093/hmg/ddt367 10.1126/science.1231143 10.1038/s41591-018-0050-6 10.1016/j.molcel.2018.04.016 10.3390/genes10060452 10.1080/13816810.2021.1904421 10.1016/j.ymthe.2021.04.024 10.1038/s41591-021-01297-7 10.1038/s41436-018-0420-y 10.1089/ars.2020.8048 10.1083/jcb.200611086 10.1038/mt.2011.260 10.1093/hmg/ddu396 10.1016/j.molcel.2021.03.032 10.1038/s41588-021-00838-7 10.1007/s004390100493 10.1016/j.ajhg.2018.02.008 10.1076/opge.24.2.75.13996 10.1136/jmedgenet-2017-104540 10.1016/j.ophtha.2011.02.034 10.1074/jbc.TM118.000371 10.1038/s41588-020-0623-4 10.1093/nar/29.9.e45 10.1016/0014-4827(65)90211-9 10.1038/s41591-018-0295-0 10.1021/acs.biochem.8b01202 10.1038/nprot.2013.143 10.1093/hmg/7.3.355 10.1038/ng0397-236 10.1101/cshperspect.a012757 10.1038/nbt.2647 10.1016/j.omtm.2020.05.002 10.1126/science.1258096 10.1038/s41467-021-24454-5 10.1128/JVI.79.15.9933-9944.2005 10.1038/s41467-021-26788-6 10.1093/nar/gkp215 10.1016/j.compbiomed.2011.12.012 10.1186/1741-7007-7-23 10.1038/s41551-021-00788-9 10.1136/bjophthalmol-2016-308823 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.omtn.2022.07.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2162-2531 |
EndPage | 524 |
ExternalDocumentID | oai_doaj_org_article_379b0f4c69d34e55b3282af868f8405c PMC9375153 10_1016_j_omtn_2022_07_023 S2162253122001925 |
GroupedDBID | 0R~ 0SF 53G 5VS 6I. 7X7 8FE 8FH 8FI AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFKRA AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI DIK EBS FDB FYUFA GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M41 M48 M7P M~E NCXOZ O9- OK1 PIMPY PQQKQ PROAC RNTTT ROL RPM SSZ 88I 8FJ AAMRU AAYWO AAYXX ABUWG ADRAZ ADVLN ALIPV APXCP CCPQU CITATION DWQXO EJD GNUQQ HMCUK HYE IPNFZ PHGZM PHGZT RIG UKHRP 7X8 5PM |
ID | FETCH-LOGICAL-c498t-ff9d682005d774007acfa51ea6231fd3b7d1fd7ab1aa79191721b8c3d1dbc7933 |
IEDL.DBID | M48 |
ISSN | 2162-2531 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Thu Aug 21 14:10:29 EDT 2025 Fri Sep 05 07:31:05 EDT 2025 Thu Apr 24 22:59:08 EDT 2025 Tue Jul 01 02:00:41 EDT 2025 Fri Feb 23 02:41:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | genome editing deep-intronic variants inherited retinal dystrophy CRISPR-Cas9 ABCA4 Photoreceptor precursor cells MT: RNA/DNA editing Stargardt disease STGD1 splicing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-ff9d682005d774007acfa51ea6231fd3b7d1fd7ab1aa79191721b8c3d1dbc7933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8993-551X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2022.07.023 |
PMID | 35991315 |
PQID | 2705395880 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_379b0f4c69d34e55b3282af868f8405c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9375153 proquest_miscellaneous_2705395880 crossref_citationtrail_10_1016_j_omtn_2022_07_023 crossref_primary_10_1016_j_omtn_2022_07_023 elsevier_sciencedirect_doi_10_1016_j_omtn_2022_07_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-13 |
PublicationDateYYYYMMDD | 2022-09-13 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | Molecular therapy. Nucleic acids |
PublicationYear | 2022 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | Schep, Brinkman, Leemans, Vergara, van der Weide, Morris, van Schaik, Manzo, Peric-Hupkes, van den Berg (bib37) 2021; 81 Yatsenko, Shroyer, Lewis, Lupski (bib6) 2001; 108 Bansal, Acharya, Sharma, Phutela, Rauthan, Maiti, Chakraborty (bib18) 2021; 42 Vázquez-Domínguez, Garanto, Collin (bib20) 2019; 10 Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini (bib41) 2013; 339 Zernant, Lee, Collison, Fishman, Sergeev, Schuerch, Sparrow, Tsang, Allikmets (bib8) 2017; 54 Hahn, Jiramongkolchai, Stinnett, Daluvoy, Kim (bib33) 2016; 30 Grieger, Samulski (bib15) 2005; 79 Ihry, Worringer, Salick, Frias, Ho, Theriault, Kommineni, Chen, Sondey, Ye (bib48) 2018; 24 Frock, Hu, Meyers, Ho, Kii, Alt (bib57) 2014; 33 Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib23) 2013; 8 Sedelnikova, Horikawa, Zimonjic, Popescu, Bonner, Barrett (bib54) 2004; 6 Joung, Konermann, Gootenberg, Abudayyeh, Platt, Brigham, Sanjana, Zhang (bib45) 2017; 12 Durand, Cougot, Mahuteau-Betzer, Nguyen, Grierson, Bertrand, Tazi, Lejeune (bib28) 2007; 178 Erwood, Laselva, Bily, Brewer, Rutherford, Bear, Ivakine (bib38) 2020; 17 Khan, Arno, Fakin, Parfitt, Dhooge, Albert, Bax, Duijkers, Niblock, Hau (bib13) 2020; 21 Cideciyan, Jacobson, Ho, Garafalo, Roman, Sumaroka, Krishnan, Swider, Schwartz, Girach (bib30) 2021; 27 Leibowitz, Papathanasiou, Doerfler, Blaine, Sun, Yao, Zhang, Weiss, Pellman (bib51) 2021; 53 Dulla, Slijkerman, van Diepen, Albert, Dona, Beumer, Turunen, Chan, Schulkens, Vorthoren (bib27) 2021; 29 Sanz, Harrison (bib34) 2019; 9 von Zglinicki, Wan, Miwa (bib55) 2020; 34 Daer, Cutts, Brafman, Haynes (bib36) 2017; 17 Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib42) 2012; 337 Clèries, Galvez, Espino, Ribes, Nunes, de Heredia (bib65) 2012; 42 Allikmets, Singh, Sun, Shroyer, Hutchinson, Chidambaram, Gerrard, Baird, Stauffer, Peiffer (bib2) 1997; 15 Shroyer, Lewis, Yatsenko, Wensel, Lupski (bib5) 2001; 10 Zhang, Xin, Wang, Zhou, Hu, Kong, Hurst (bib14) 2009; 7 Cideciyan, Jacobson, Drack, Ho, Charng, Garafalo, Roman, Sumaroka, Han, Hochstedler (bib31) 2018; 25 Koenekoop (bib4) 2003; 24 Daer, Cutts, Brafman, Haynes (bib35) 2016; 6 Gangopadhyay, Cox, Manna, Lim, Maji, Zhou, Choudhary (bib58) 2019; 58 Sinha, Barbosa, Cheng, Leiserson, Jain, Deshpande, Wilson, Ryan, Luo, Ronai (bib52) 2021; 12 Zernant, Xie, Ayuso, Riveiro-Alvarez, Lopez-Martinez, Simonelli, Testa, Gorin, Strom, Bertelsen (bib10) 2014; 23 Brinkman, Amendola, van Steensel (bib63) 2014; 42 Bauwens, Garanto, Sangermano, Naessens, Weisschuh, De Zaeytijd, Khan, Sadler, Balikova, Van Cauwenbergh (bib21) 2019; 21 Cremers, van de Pol, van Driel, den Hollander, van Haren, Knoers, Tijmes, Bergen, Rohrschneider, Blankenagel (bib3) 1998; 7 Shah, Garg, Vander, Brown, Kaiser, Haller (bib32) 2011; 118 Allen, Crepaldi, Alsinet, Strong, Kleshchevnikov, De Angeli, Páleníková, Khodak, Kiselev, Kosicki (bib26) 2018 Maule, Casini, Montagna, Ramalho, De Boeck, Debyser, Carlon, Petris, Cereseto (bib19) 2019; 10 Albert, Garanto, Sangermano, Khan, Bax, Hoyng, Zernant, Lee, Allikmets, Collin (bib12) 2018; 102 Shen, Arbab, Hsu, Worstell, Culbertson, Krabbe, Cassa, Liu, Gifford, Sherwood (bib56) 2018; 563 Tanna, Strauss, Fujinami, Michaelides (bib1) 2017; 101 Haapaniemi, Botla, Persson, Schmierer, Taipale (bib47) 2018; 24 Enache, Rendo, Abdusamad, Lam, Davison, Pal, Currimjee, Hess, Pantel, Nag (bib50) 2020; 52 Brinkman, Chen, de Haas, Holland, Akhtar, van Steensel (bib44) 2018; 70 Doudna, Charpentier (bib22) 2014; 346 Hayflick (bib46) 1965; 37 Her, Bunting (bib25) 2018; 293 Pfaffl (bib64) 2001; 29 Sangermano, Khan, Cornelis, Richelle, Albert, Garanto, Elmelik, Qamar, Lugtenberg, van den Born (bib11) 2018; 28 Schmidt, Gupta, Bednarski, Gehrig-Giannini, Richter, Pitzler, Gamalinda, Galonska, Takeuchi, Wang (bib61) 2021; 12 Hsu, Scott, Weinstein, Ran, Konermann, Agarwala, Li, Fine, Wu, Shalem (bib43) 2013; 31 Chen, Chen, Xin, Wan, Ping (bib59) 2020; 117 Zernant, Schubert, Im, Burke, Brown, Fishman, Tsang, Gouras, Dean, Allikmets (bib7) 2011; 52 Maeder, Stefanidakis, Wilson, Baral, Barrera, Bounoutas, Bumcrot, Chao, Ciulla, DaSilva (bib17) 2019; 25 Flamier, Barabino, Gilbert (bib62) 2016; 6 Desmet, Hamroun, Lalande, Collod-Béroud, Claustres, Béroud (bib40) 2009; 37 Chiruvella, Liang, Wilson (bib24) 2013; 5 Jurk, Wang, Miwa, Maddick, Korolchuk, Tsolou, Gonos, Thrasivoulou, Saffrey, Cameron (bib53) 2021; 11 Tornabene, Trapani, Minopoli, Centrulo, Lupo, de Simone, Tiberi, Dell'Aquila, Marrocco, Iodice (bib60) 2019; 11 Lindholm, Elmén, Fisker, Hansen, Persson, Møller, Rosenbohm, Ørum, Straarup, Koch (bib29) 2021; 20 Garanto, Duijkers, Tomkiewicz, Collin (bib16) 2019; 10 Jang, Jo, Cho, Shin, Seo, Yu, Gopalappa, Kim, Cho, Kim (bib39) 2021 van den Berg, Manjón, Kielbassa, Feringa, Freire, Medema (bib49) 2018; 46 Braun, Mullins, Wagner, Andorf, Johnston, Bakall, Deluca, Fishman, Lam, Weleber (bib9) 2013; 22 Durand (10.1016/j.omtn.2022.07.023_bib28) 2007; 178 Hahn (10.1016/j.omtn.2022.07.023_bib33) 2016; 30 Sinha (10.1016/j.omtn.2022.07.023_bib52) 2021; 12 Daer (10.1016/j.omtn.2022.07.023_bib35) 2016; 6 Chen (10.1016/j.omtn.2022.07.023_bib59) 2020; 117 Shroyer (10.1016/j.omtn.2022.07.023_bib5) 2001; 10 Ihry (10.1016/j.omtn.2022.07.023_bib48) 2018; 24 Albert (10.1016/j.omtn.2022.07.023_bib12) 2018; 102 Hsu (10.1016/j.omtn.2022.07.023_bib43) 2013; 31 Maeder (10.1016/j.omtn.2022.07.023_bib17) 2019; 25 Hayflick (10.1016/j.omtn.2022.07.023_bib46) 1965; 37 Joung (10.1016/j.omtn.2022.07.023_bib45) 2017; 12 Daer (10.1016/j.omtn.2022.07.023_bib36) 2017; 17 Schmidt (10.1016/j.omtn.2022.07.023_bib61) 2021; 12 Jurk (10.1016/j.omtn.2022.07.023_bib53) 2021; 11 Shen (10.1016/j.omtn.2022.07.023_bib56) 2018; 563 von Zglinicki (10.1016/j.omtn.2022.07.023_bib55) 2020; 34 Enache (10.1016/j.omtn.2022.07.023_bib50) 2020; 52 Leibowitz (10.1016/j.omtn.2022.07.023_bib51) 2021; 53 Bansal (10.1016/j.omtn.2022.07.023_bib18) 2021; 42 Cideciyan (10.1016/j.omtn.2022.07.023_bib31) 2018; 25 Erwood (10.1016/j.omtn.2022.07.023_bib38) 2020; 17 Flamier (10.1016/j.omtn.2022.07.023_bib62) 2016; 6 Bauwens (10.1016/j.omtn.2022.07.023_bib21) 2019; 21 Allikmets (10.1016/j.omtn.2022.07.023_bib2) 1997; 15 Tornabene (10.1016/j.omtn.2022.07.023_bib60) 2019; 11 Grieger (10.1016/j.omtn.2022.07.023_bib15) 2005; 79 Lindholm (10.1016/j.omtn.2022.07.023_bib29) 2021; 20 Cideciyan (10.1016/j.omtn.2022.07.023_bib30) 2021; 27 Zernant (10.1016/j.omtn.2022.07.023_bib8) 2017; 54 Gangopadhyay (10.1016/j.omtn.2022.07.023_bib58) 2019; 58 Shah (10.1016/j.omtn.2022.07.023_bib32) 2011; 118 Her (10.1016/j.omtn.2022.07.023_bib25) 2018; 293 Allen (10.1016/j.omtn.2022.07.023_bib26) 2018 van den Berg (10.1016/j.omtn.2022.07.023_bib49) 2018; 46 Zernant (10.1016/j.omtn.2022.07.023_bib10) 2014; 23 Zernant (10.1016/j.omtn.2022.07.023_bib7) 2011; 52 Yatsenko (10.1016/j.omtn.2022.07.023_bib6) 2001; 108 Sedelnikova (10.1016/j.omtn.2022.07.023_bib54) 2004; 6 Pfaffl (10.1016/j.omtn.2022.07.023_bib64) 2001; 29 Garanto (10.1016/j.omtn.2022.07.023_bib16) 2019; 10 Desmet (10.1016/j.omtn.2022.07.023_bib40) 2009; 37 Cremers (10.1016/j.omtn.2022.07.023_bib3) 1998; 7 Jinek (10.1016/j.omtn.2022.07.023_bib42) 2012; 337 Khan (10.1016/j.omtn.2022.07.023_bib13) 2020; 21 Sanz (10.1016/j.omtn.2022.07.023_bib34) 2019; 9 Jang (10.1016/j.omtn.2022.07.023_bib39) 2021 Clèries (10.1016/j.omtn.2022.07.023_bib65) 2012; 42 Brinkman (10.1016/j.omtn.2022.07.023_bib63) 2014; 42 Vázquez-Domínguez (10.1016/j.omtn.2022.07.023_bib20) 2019; 10 Doudna (10.1016/j.omtn.2022.07.023_bib22) 2014; 346 Braun (10.1016/j.omtn.2022.07.023_bib9) 2013; 22 Schep (10.1016/j.omtn.2022.07.023_bib37) 2021; 81 Chiruvella (10.1016/j.omtn.2022.07.023_bib24) 2013; 5 Ran (10.1016/j.omtn.2022.07.023_bib23) 2013; 8 Haapaniemi (10.1016/j.omtn.2022.07.023_bib47) 2018; 24 Zhang (10.1016/j.omtn.2022.07.023_bib14) 2009; 7 Dulla (10.1016/j.omtn.2022.07.023_bib27) 2021; 29 Cong (10.1016/j.omtn.2022.07.023_bib41) 2013; 339 Tanna (10.1016/j.omtn.2022.07.023_bib1) 2017; 101 Sangermano (10.1016/j.omtn.2022.07.023_bib11) 2018; 28 Maule (10.1016/j.omtn.2022.07.023_bib19) 2019; 10 Koenekoop (10.1016/j.omtn.2022.07.023_bib4) 2003; 24 Brinkman (10.1016/j.omtn.2022.07.023_bib44) 2018; 70 Frock (10.1016/j.omtn.2022.07.023_bib57) 2014; 33 |
References_xml | – volume: 24 start-page: 75 year: 2003 end-page: 80 ident: bib4 article-title: The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review publication-title: Ophthalmic genetic – volume: 37 start-page: e67 year: 2009 ident: bib40 article-title: Human Splicing Finder: an online bioinformatics tool to predict splicing signals publication-title: Nucleic Acids Res. – volume: 42 start-page: 438 year: 2012 end-page: 445 ident: bib65 article-title: BootstRatio: a web-based statistical analysis of fold-change in qPCR and RT-qPCR data using resampling methods publication-title: Comput. Biol. Med. Apr. – volume: 29 start-page: e45 year: 2001 ident: bib64 article-title: A new mathematical model for relative quantification in real-time RT–PCR publication-title: Nucleic Acids Res. – volume: 22 start-page: 5136 year: 2013 end-page: 5145 ident: bib9 article-title: Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease publication-title: Hum. Mol. Genet. – volume: 10 start-page: 2671 year: 2001 end-page: 2678 ident: bib5 article-title: Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration publication-title: Hum. Mol. Genet. – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bib23 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 6 start-page: 428 year: 2016 end-page: 438 ident: bib35 article-title: The impact of chromatin dynamics on Cas9-mediated genome editing in human cells publication-title: ACS Synth. Biol. – volume: 7 start-page: 23 year: 2009 ident: bib14 article-title: Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay publication-title: BMC Biol. – volume: 10 start-page: 654 year: 2019 ident: bib20 article-title: Molecular therapies for inherited retinal diseases-current standing, opportunities and challenges publication-title: Genes – volume: 21 start-page: 1761 year: 2019 end-page: 1771 ident: bib21 article-title: ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants publication-title: Genet. Med. – volume: 101 start-page: 25 year: 2017 end-page: 30 ident: bib1 article-title: Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options publication-title: Br. J. Ophthalmol. – volume: 53 start-page: 895 year: 2021 end-page: 905 ident: bib51 article-title: Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing publication-title: Nat. Genet. – volume: 178 start-page: 1145 year: 2007 end-page: 1160 ident: bib28 article-title: Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies publication-title: J. Cell Biol. – volume: 24 start-page: 927 year: 2018 end-page: 930 ident: bib47 article-title: CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response publication-title: Nat. Med. – volume: 28 start-page: 100 year: 2018 end-page: 110 ident: bib11 article-title: midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease publication-title: Genome Res. – volume: 29 start-page: 2441 year: 2021 end-page: 2455 ident: bib27 article-title: Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations publication-title: Mol. Ther. – volume: 21 start-page: 412 year: 2020 end-page: 427 ident: bib13 article-title: Detailed phenotyping and therapeutic strategies for intronic ABCA4 variants in Stargardt disease publication-title: Mol. Ther. Nucleic Acids – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bib42 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 346 year: 2014 ident: bib22 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science – volume: 58 start-page: 234 year: 2019 end-page: 244 ident: bib58 article-title: Precision control of CRISPR-Cas9 using small molecules and light publication-title: Biochemistry – volume: 33 start-page: 179 year: 2014 end-page: 186 ident: bib57 article-title: Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases publication-title: Nat. Biotechnol. – volume: 31 start-page: 827 year: 2013 end-page: 832 ident: bib43 article-title: DNA targeting specificity of RNA-guided Cas9 nucleases publication-title: Nat. Biotechnol. – volume: 12 start-page: 4219 year: 2021 ident: bib61 article-title: Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases publication-title: Nat. Commun. – year: 2018 ident: bib26 article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks publication-title: Nat. Biotechnol. – volume: 27 start-page: 785 year: 2021 end-page: 789 ident: bib30 article-title: Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report publication-title: Nat. Med. – volume: 117 start-page: 2395 year: 2020 end-page: 2405 ident: bib59 article-title: Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing publication-title: Proc. Natl. Acad. Sci. USA – volume: 52 start-page: 662 year: 2020 end-page: 668 ident: bib50 article-title: Cas9 activates the p53 pathway and selects for p53-inactivating mutations publication-title: Nat. Genet. – volume: 6 start-page: 168 year: 2004 end-page: 170 ident: bib54 article-title: Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks publication-title: Nat. Cell Biol. – volume: 108 start-page: 346 year: 2001 end-page: 355 ident: bib6 article-title: Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4) publication-title: Hum. Genet. – volume: 54 start-page: 404 year: 2017 end-page: 412 ident: bib8 article-title: Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration publication-title: J. Med. Genet. – volume: 12 start-page: 6512 year: 2021 ident: bib52 article-title: A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing publication-title: Nat. Commun. – volume: 6 year: 2016 ident: bib62 article-title: Differentiation of human embryonic stem cells into cone photoreceptors publication-title: Bio Protoc – volume: 118 start-page: 2028 year: 2011 end-page: 2034 ident: bib32 article-title: Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents publication-title: Ophthalmology – volume: 10 start-page: 452 year: 2019 ident: bib16 article-title: Antisense oligonucleotide screening to optimize the rescue of the splicing defect caused by the recurrent deep-intronic publication-title: Genes – volume: 11 start-page: 996 year: 2021 end-page: 1004 ident: bib53 article-title: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response publication-title: Aging Cell – volume: 30 start-page: 1101 year: 2016 end-page: 1109 ident: bib33 article-title: Rate of intraoperative complications during cataract surgery following intravitreal injections publication-title: Eye – volume: 81 start-page: 2216 year: 2021 end-page: 2230.e10 ident: bib37 article-title: Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance publication-title: Mol. Cell. – volume: 293 start-page: 10502 year: 2018 end-page: 10511 ident: bib25 article-title: How cells ensure correct repair of DNA double-strand breaks publication-title: J. Biol. Chem. – volume: 10 start-page: 3556 year: 2019 ident: bib19 article-title: Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing publication-title: Nat. Commun. – volume: 563 start-page: 646 year: 2018 end-page: 651 ident: bib56 article-title: Predictable and precise template-free CRISPR editing of pathogenic variants publication-title: Nature – volume: 37 start-page: 614 year: 1965 end-page: 636 ident: bib46 article-title: The limited in vitro lifetime of human diploid cell strains publication-title: Exp. Cell Res. – volume: 15 start-page: 236 year: 1997 end-page: 246 ident: bib2 article-title: A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy publication-title: Nat. Genet. – volume: 12 start-page: 828 year: 2017 end-page: 863 ident: bib45 article-title: Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening publication-title: Nat. Protoc. – volume: 52 start-page: 8479 year: 2011 end-page: 8487 ident: bib7 article-title: Analysis of the ABCA4 gene by next-generation sequencing publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 46 start-page: 10132 year: 2018 end-page: 10144 ident: bib49 article-title: A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression publication-title: Nucleic Acids Res. – volume: 11 start-page: eaav4523 year: 2019 ident: bib60 article-title: Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina publication-title: Sci. Transl. Med. – volume: 79 start-page: 9933 year: 2005 end-page: 9944 ident: bib15 article-title: Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps publication-title: J. Virol. – volume: 25 start-page: 225 year: 2018 end-page: 228 ident: bib31 article-title: Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect publication-title: Nat. Med. – volume: 23 start-page: 6797 year: 2014 end-page: 6806 ident: bib10 article-title: Analysis of the ABCA4 genomic locus in Stargardt disease publication-title: Hum. Mol. Genet. – volume: 7 start-page: 355 year: 1998 end-page: 362 ident: bib3 article-title: Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR publication-title: Hum. Mol. Genet. – volume: 17 start-page: 428 year: 2017 end-page: 438 ident: bib36 article-title: The impact of chromatin dynamics on Cas9-mediated genome editing in human cells publication-title: ACS Synth. Biol. – volume: 42 start-page: 365 year: 2021 end-page: 374 ident: bib18 article-title: CRISPR Cas9 based genome editing in inherited retinal dystrophies publication-title: Ophthalmic Genet. – volume: 20 start-page: 376 year: 2021 end-page: 381 ident: bib29 article-title: PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates publication-title: Mol. Ther. – volume: 25 start-page: 229 year: 2019 end-page: 233 ident: bib17 article-title: Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10 publication-title: Nat. Med. – volume: 34 start-page: 308 year: 2020 end-page: 323 ident: bib55 article-title: Senescence in post-mitotic cells: a driver of aging? publication-title: Antioxid. Redox. Signal. – volume: 42 start-page: e168 year: 2014 ident: bib63 article-title: Easy quantitative assessment of genome editing by sequence trace decomposition publication-title: Nucleic Acids Res. – volume: 102 start-page: 517 year: 2018 end-page: 527 ident: bib12 article-title: Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying Stargardt disease publication-title: Am. J. Hum. Genet. – year: 2021 ident: bib39 article-title: Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases publication-title: Nat. Biomed. Eng. – volume: 70 start-page: 801 year: 2018 end-page: 813.e6 ident: bib44 article-title: Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks publication-title: Mol. Cell. – volume: 5 start-page: a012757 year: 2013 ident: bib24 article-title: Repair of double-strand breaks by end joining publication-title: Cold Spring Harb. Perspect Biol. – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bib41 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 9 year: 2019 ident: bib34 article-title: Minigene assay to evaluate CRISPR/Cas9-based excision of intronic mutations that cause aberrant splicing in human cells publication-title: Bio Protoc – volume: 24 start-page: 939 year: 2018 end-page: 946 ident: bib48 article-title: p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells publication-title: Nat. Med. – volume: 17 start-page: 1118 year: 2020 end-page: 1128 ident: bib38 article-title: Allele-specific prevention of nonsense-mediated decay in cystic fibrosis using homology-independent genome editing publication-title: Mol. Ther. Methods Clin. Dev. – volume: 10 start-page: 654 year: 2019 ident: 10.1016/j.omtn.2022.07.023_bib20 article-title: Molecular therapies for inherited retinal diseases-current standing, opportunities and challenges publication-title: Genes doi: 10.3390/genes10090654 – volume: 46 start-page: 10132 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib49 article-title: A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky786 – volume: 52 start-page: 8479 year: 2011 ident: 10.1016/j.omtn.2022.07.023_bib7 article-title: Analysis of the ABCA4 gene by next-generation sequencing publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.11-8182 – volume: 24 start-page: 927 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib47 article-title: CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response publication-title: Nat. Med. doi: 10.1038/s41591-018-0049-z – volume: 33 start-page: 179 year: 2014 ident: 10.1016/j.omtn.2022.07.023_bib57 article-title: Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3101 – volume: 25 start-page: 229 year: 2019 ident: 10.1016/j.omtn.2022.07.023_bib17 article-title: Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10 publication-title: Nat. Med. doi: 10.1038/s41591-018-0327-9 – year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib26 article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks publication-title: Nat. Biotechnol. – volume: 11 start-page: eaav4523 year: 2019 ident: 10.1016/j.omtn.2022.07.023_bib60 article-title: Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aav4523 – volume: 17 start-page: 428 year: 2017 ident: 10.1016/j.omtn.2022.07.023_bib36 article-title: The impact of chromatin dynamics on Cas9-mediated genome editing in human cells publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.5b00299 – volume: 6 start-page: 428 year: 2016 ident: 10.1016/j.omtn.2022.07.023_bib35 article-title: The impact of chromatin dynamics on Cas9-mediated genome editing in human cells publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.5b00299 – volume: 6 year: 2016 ident: 10.1016/j.omtn.2022.07.023_bib62 article-title: Differentiation of human embryonic stem cells into cone photoreceptors publication-title: Bio Protoc doi: 10.21769/BioProtoc.1870 – volume: 9 year: 2019 ident: 10.1016/j.omtn.2022.07.023_bib34 article-title: Minigene assay to evaluate CRISPR/Cas9-based excision of intronic mutations that cause aberrant splicing in human cells publication-title: Bio Protoc doi: 10.21769/BioProtoc.3251 – volume: 10 start-page: 2671 year: 2001 ident: 10.1016/j.omtn.2022.07.023_bib5 article-title: Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.23.2671 – volume: 12 start-page: 828 year: 2017 ident: 10.1016/j.omtn.2022.07.023_bib45 article-title: Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.016 – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.omtn.2022.07.023_bib42 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 6 start-page: 168 year: 2004 ident: 10.1016/j.omtn.2022.07.023_bib54 article-title: Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks publication-title: Nat. Cell Biol. doi: 10.1038/ncb1095 – volume: 21 start-page: 412 year: 2020 ident: 10.1016/j.omtn.2022.07.023_bib13 article-title: Detailed phenotyping and therapeutic strategies for intronic ABCA4 variants in Stargardt disease publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2020.06.007 – volume: 563 start-page: 646 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib56 article-title: Predictable and precise template-free CRISPR editing of pathogenic variants publication-title: Nature doi: 10.1038/s41586-018-0686-x – volume: 11 start-page: 996 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib53 article-title: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response publication-title: Aging Cell doi: 10.1111/j.1474-9726.2012.00870.x – volume: 42 start-page: e168 year: 2014 ident: 10.1016/j.omtn.2022.07.023_bib63 article-title: Easy quantitative assessment of genome editing by sequence trace decomposition publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku936 – volume: 117 start-page: 2395 year: 2020 ident: 10.1016/j.omtn.2022.07.023_bib59 article-title: Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1912220117 – volume: 30 start-page: 1101 year: 2016 ident: 10.1016/j.omtn.2022.07.023_bib33 article-title: Rate of intraoperative complications during cataract surgery following intravitreal injections publication-title: Eye doi: 10.1038/eye.2016.109 – volume: 10 start-page: 3556 year: 2019 ident: 10.1016/j.omtn.2022.07.023_bib19 article-title: Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing publication-title: Nat. Commun. doi: 10.1038/s41467-019-11454-9 – volume: 28 start-page: 100 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib11 article-title: ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease publication-title: Genome Res. doi: 10.1101/gr.226621.117 – volume: 22 start-page: 5136 year: 2013 ident: 10.1016/j.omtn.2022.07.023_bib9 article-title: Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt367 – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.omtn.2022.07.023_bib41 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 24 start-page: 939 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib48 article-title: p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells publication-title: Nat. Med. doi: 10.1038/s41591-018-0050-6 – volume: 70 start-page: 801 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib44 article-title: Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks publication-title: Mol. Cell. doi: 10.1016/j.molcel.2018.04.016 – volume: 10 start-page: 452 year: 2019 ident: 10.1016/j.omtn.2022.07.023_bib16 article-title: Antisense oligonucleotide screening to optimize the rescue of the splicing defect caused by the recurrent deep-intronic ABCA4 variant c.4539+2001G>A in Stargardt disease publication-title: Genes doi: 10.3390/genes10060452 – volume: 42 start-page: 365 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib18 article-title: CRISPR Cas9 based genome editing in inherited retinal dystrophies publication-title: Ophthalmic Genet. doi: 10.1080/13816810.2021.1904421 – volume: 29 start-page: 2441 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib27 article-title: Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2021.04.024 – volume: 27 start-page: 785 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib30 article-title: Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report publication-title: Nat. Med. doi: 10.1038/s41591-021-01297-7 – volume: 21 start-page: 1761 year: 2019 ident: 10.1016/j.omtn.2022.07.023_bib21 article-title: ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants publication-title: Genet. Med. doi: 10.1038/s41436-018-0420-y – volume: 34 start-page: 308 year: 2020 ident: 10.1016/j.omtn.2022.07.023_bib55 article-title: Senescence in post-mitotic cells: a driver of aging? publication-title: Antioxid. Redox. Signal. doi: 10.1089/ars.2020.8048 – volume: 178 start-page: 1145 year: 2007 ident: 10.1016/j.omtn.2022.07.023_bib28 article-title: Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies publication-title: J. Cell Biol. doi: 10.1083/jcb.200611086 – volume: 20 start-page: 376 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib29 article-title: PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates publication-title: Mol. Ther. doi: 10.1038/mt.2011.260 – volume: 23 start-page: 6797 year: 2014 ident: 10.1016/j.omtn.2022.07.023_bib10 article-title: Analysis of the ABCA4 genomic locus in Stargardt disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu396 – volume: 81 start-page: 2216 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib37 article-title: Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance publication-title: Mol. Cell. doi: 10.1016/j.molcel.2021.03.032 – volume: 53 start-page: 895 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib51 article-title: Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing publication-title: Nat. Genet. doi: 10.1038/s41588-021-00838-7 – volume: 108 start-page: 346 year: 2001 ident: 10.1016/j.omtn.2022.07.023_bib6 article-title: Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4) publication-title: Hum. Genet. doi: 10.1007/s004390100493 – volume: 102 start-page: 517 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib12 article-title: Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying Stargardt disease publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.02.008 – volume: 24 start-page: 75 year: 2003 ident: 10.1016/j.omtn.2022.07.023_bib4 article-title: The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review publication-title: Ophthalmic genetic doi: 10.1076/opge.24.2.75.13996 – volume: 54 start-page: 404 year: 2017 ident: 10.1016/j.omtn.2022.07.023_bib8 article-title: Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2017-104540 – volume: 118 start-page: 2028 year: 2011 ident: 10.1016/j.omtn.2022.07.023_bib32 article-title: Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents publication-title: Ophthalmology doi: 10.1016/j.ophtha.2011.02.034 – volume: 293 start-page: 10502 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib25 article-title: How cells ensure correct repair of DNA double-strand breaks publication-title: J. Biol. Chem. doi: 10.1074/jbc.TM118.000371 – volume: 52 start-page: 662 year: 2020 ident: 10.1016/j.omtn.2022.07.023_bib50 article-title: Cas9 activates the p53 pathway and selects for p53-inactivating mutations publication-title: Nat. Genet. doi: 10.1038/s41588-020-0623-4 – volume: 29 start-page: e45 year: 2001 ident: 10.1016/j.omtn.2022.07.023_bib64 article-title: A new mathematical model for relative quantification in real-time RT–PCR publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.9.e45 – volume: 37 start-page: 614 year: 1965 ident: 10.1016/j.omtn.2022.07.023_bib46 article-title: The limited in vitro lifetime of human diploid cell strains publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(65)90211-9 – volume: 25 start-page: 225 year: 2018 ident: 10.1016/j.omtn.2022.07.023_bib31 article-title: Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect publication-title: Nat. Med. doi: 10.1038/s41591-018-0295-0 – volume: 58 start-page: 234 year: 2019 ident: 10.1016/j.omtn.2022.07.023_bib58 article-title: Precision control of CRISPR-Cas9 using small molecules and light publication-title: Biochemistry doi: 10.1021/acs.biochem.8b01202 – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.omtn.2022.07.023_bib23 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 7 start-page: 355 year: 1998 ident: 10.1016/j.omtn.2022.07.023_bib3 article-title: Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/7.3.355 – volume: 15 start-page: 236 year: 1997 ident: 10.1016/j.omtn.2022.07.023_bib2 article-title: A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy publication-title: Nat. Genet. doi: 10.1038/ng0397-236 – volume: 5 start-page: a012757 year: 2013 ident: 10.1016/j.omtn.2022.07.023_bib24 article-title: Repair of double-strand breaks by end joining publication-title: Cold Spring Harb. Perspect Biol. doi: 10.1101/cshperspect.a012757 – volume: 31 start-page: 827 year: 2013 ident: 10.1016/j.omtn.2022.07.023_bib43 article-title: DNA targeting specificity of RNA-guided Cas9 nucleases publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2647 – volume: 17 start-page: 1118 year: 2020 ident: 10.1016/j.omtn.2022.07.023_bib38 article-title: Allele-specific prevention of nonsense-mediated decay in cystic fibrosis using homology-independent genome editing publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2020.05.002 – volume: 346 year: 2014 ident: 10.1016/j.omtn.2022.07.023_bib22 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science doi: 10.1126/science.1258096 – volume: 12 start-page: 4219 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib61 article-title: Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases publication-title: Nat. Commun. doi: 10.1038/s41467-021-24454-5 – volume: 79 start-page: 9933 year: 2005 ident: 10.1016/j.omtn.2022.07.023_bib15 article-title: Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps publication-title: J. Virol. doi: 10.1128/JVI.79.15.9933-9944.2005 – volume: 12 start-page: 6512 year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib52 article-title: A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing publication-title: Nat. Commun. doi: 10.1038/s41467-021-26788-6 – volume: 37 start-page: e67 year: 2009 ident: 10.1016/j.omtn.2022.07.023_bib40 article-title: Human Splicing Finder: an online bioinformatics tool to predict splicing signals publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp215 – volume: 42 start-page: 438 year: 2012 ident: 10.1016/j.omtn.2022.07.023_bib65 article-title: BootstRatio: a web-based statistical analysis of fold-change in qPCR and RT-qPCR data using resampling methods publication-title: Comput. Biol. Med. Apr. doi: 10.1016/j.compbiomed.2011.12.012 – volume: 7 start-page: 23 year: 2009 ident: 10.1016/j.omtn.2022.07.023_bib14 article-title: Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay publication-title: BMC Biol. doi: 10.1186/1741-7007-7-23 – year: 2021 ident: 10.1016/j.omtn.2022.07.023_bib39 article-title: Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00788-9 – volume: 101 start-page: 25 year: 2017 ident: 10.1016/j.omtn.2022.07.023_bib1 article-title: Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2016-308823 |
SSID | ssj0000601262 |
Score | 2.3411942 |
Snippet | Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding... Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 511 |
SubjectTerms | ABCA4 CRISPR-Cas9 deep-intronic variants genome editing inherited retinal dystrophy MT: RNA/DNA editing Original Photoreceptor precursor cells splicing Stargardt disease STGD1 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQUBALBRkJcUFR13ac2MftiqpwQKilUm-WHdvqIppEmy1Sj_xzZuyk2lzKBSlSonw6nvHMG2fyhpAPKlaA2jUoL7iXonRKF06FprCa1wEQgZNNyvL9Vp1dll-v5NVeqS_MCcv0wLnjjkWt3TKWTaW9KIOUTkCQYKOqVITYRDZofZd6uRdMZRsMhjdVE-Ws4gUHTRv_mMnJXd3NDslPOU_MnVzMvFIi7585pz3wOU-d3PNFp0_JkxFE0lVu_DPyKLTPyeGqhQD65o5-pCmtM82XH5I_mZ8YjBod8Fs1uCq6TeVkkkxoF6mlPoS-2LS5Hg5dnaxXJf0NUTR0O920FGLmQPvrDi4KmAbTbWm_xYn6AbZw6n-g7o6uz79cfD8_vujXdtB0IisPwwtyefr5x_qsGOsuFE2p1a6IUftK4XSTB3AIIMI20UoWLEAlFr1wtYdVbR2zttYY8HHmVCM8866B8S5ekoMWGvaK0ChYFW0UygdRWlgcEhBagXUEJWDJBWFTv5tmJCXH2hi_zJR99tOgrAzKyixrA7JakE_31_SZkuPBs09QnPdnIp122gFKZkYlM_9SsgWRkzKYEZlkxAG32jz48PeT5hgYtigQ24budjC8BuunJVjPBalnKjVr6fxIu7lOBOAAKQGGitf_49XekMfYYEyBYeKIHOy2t-Et4Kyde5eG1F9HBiWw priority: 102 providerName: Directory of Open Access Journals |
Title | Effective splicing restoration of a deep-intronic ABCA4 variant in cone photoreceptor precursor cells by CRISPR/SpCas9 approaches |
URI | https://dx.doi.org/10.1016/j.omtn.2022.07.023 https://www.proquest.com/docview/2705395880 https://pubmed.ncbi.nlm.nih.gov/PMC9375153 https://doaj.org/article/379b0f4c69d34e55b3282af868f8405c |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qBemLqFU8fxwriC8SbbLZZPdB5HpYWgWR1oO-Lbub3fakTWJyFe_R_9yZTVIvUPogBBKSbLJkZme-2Z18Q8hr4TNA7RKUF9xLlBohIyOcjbRMcgeIwHAbsny_ZoeL9PMpP90iQ7mj_gO2N4Z2WE9q0Vy8-_1z_REG_Id_uVrV5Qq5TJMkEHEm7A65G9aLMJWvh_udZQZznCX9vzM3N90h9xgH0MSwUO6GqwqM_iOPtYFIx_mUGw7q4AG53yNLOutU4SHZcuUjsjsrIaq-XNM3NOR6hkn0XfKnIy0GS0dbXMAG_0WbUGMmCIpWnmpaOFdHy7IrkkNn-_NZSn9BaA2yoMuSQiDtaH1eQSOHuTFVQ-sGZ-9bOML1gJaaNZ0fH518O35_Us91K-nAYO7ax2Rx8On7_DDqizFENpViFXkvi0zgHFQBiBGQhbZe89hpwE-xL5jJC9jl2sRa5xKjwCQ2wrIiLowFI8CekO0SOvaUUM_izGvPROFYqmEzyEqoGRYX5AAwJyQevruyPVM5Fsy4UENK2g-FYlMoNrWXKxDbhLy9blN3PB233r2P4ry-Ezm2w4mqOVP9kFUsl2bPpzaTBUsd54ZBeKq9yISHqJjbCeGDMqgernQwBB61vPXlrwbNUTCWUSC6dNVVq5IcTKLkYFInJB-p1Kin4yvl8jywggPOBGzKnv13y-dkB3uJyTAxe0G2V82VewmIa2WmEGscfZmG-YppGFJ_AatDLyI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+splicing+restoration+of+a+deep-intronic+ABCA4+variant+in+cone+photoreceptor+precursor+cells+by+CRISPR%2FSpCas9+approaches&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=De+Angeli%2C+Pietro&rft.au=Reuter%2C+Peggy&rft.au=Hauser%2C+Stefan&rft.au=Sch%C3%B6ls%2C+Ludger&rft.date=2022-09-13&rft.pub=American+Society+of+Gene+%26+Cell+Therapy&rft.eissn=2162-2531&rft.volume=29&rft.spage=511&rft.epage=524&rft_id=info:doi/10.1016%2Fj.omtn.2022.07.023&rft_id=info%3Apmid%2F35991315&rft.externalDocID=PMC9375153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon |