Effective splicing restoration of a deep-intronic ABCA4 variant in cone photoreceptor precursor cells by CRISPR/SpCas9 approaches

Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 29; pp. 511 - 524
Main Authors De Angeli, Pietro, Reuter, Peggy, Hauser, Stefan, Schöls, Ludger, Stingl, Katarina, Wissinger, Bernd, Kohl, Susanne
Format Journal Article
LanguageEnglish
Published Elsevier Inc 13.09.2022
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text
ISSN2162-2531
2162-2531
DOI10.1016/j.omtn.2022.07.023

Cover

Abstract Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4. [Display omitted] A mutation localized in the intronic part of ABCA4 able to affect the correct reading frame of the gene was targeted by three CRISPR-Cas9-based approaches. Rescue of the correct reading frame was achieved in mutant cone photoreceptor precursor cells, while no detrimental secondary effect was observed in control cells.
AbstractList Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4 . A mutation localized in the intronic part of ABCA4 able to affect the correct reading frame of the gene was targeted by three CRISPR-Cas9-based approaches. Rescue of the correct reading frame was achieved in mutant cone photoreceptor precursor cells, while no detrimental secondary effect was observed in control cells.
Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4.
Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4. [Display omitted] A mutation localized in the intronic part of ABCA4 able to affect the correct reading frame of the gene was targeted by three CRISPR-Cas9-based approaches. Rescue of the correct reading frame was achieved in mutant cone photoreceptor precursor cells, while no detrimental secondary effect was observed in control cells.
Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4.Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding cassette subfamily A member 4 (ABCA4) protein. Several deep-intronic variants in ABCA4 have been classified as disease causing. By strengthening a cryptic splice site, deep-intronic variant c.5197-557G>T induces the inclusion of a 188-bp intronic sequence in the mature mRNA, resulting in a premature termination codon. Here, we report the design and evaluation of three CRISPR-Cas9 approaches implementing Streptococcus pyogenes Cas9 (single and dual guide RNA) or Streptococcus pyogenes Cas9 nickase (dual guide RNA) for their potential to correct c.5197-557G>T-induced aberrant splicing in minigene splicing assays and patient-derived cone photoreceptor precursor cells. The different strategies were able to rescue correct splicing by up to 83% and increase the overall correctly spliced transcripts by 1.8-fold, demonstrating the successful CRISPR-Cas9-mediated rescue in patient-derived photoreceptor precursor cells of an ABCA4 splicing defect. The results provide initial evidence of possible permanent splicing correction for Stargardt disease, expanding the therapeutic toolbox to counteract deep-intronic pathogenic variants in ABCA4.
Author Hauser, Stefan
Reuter, Peggy
Schöls, Ludger
Wissinger, Bernd
Stingl, Katarina
Kohl, Susanne
De Angeli, Pietro
Author_xml – sequence: 1
  givenname: Pietro
  orcidid: 0000-0002-8993-551X
  surname: De Angeli
  fullname: De Angeli, Pietro
  email: pietro.de-angeli@med.uni-tuebingen.de
  organization: Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
– sequence: 2
  givenname: Peggy
  surname: Reuter
  fullname: Reuter, Peggy
  organization: Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
– sequence: 3
  givenname: Stefan
  surname: Hauser
  fullname: Hauser, Stefan
  organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
– sequence: 4
  givenname: Ludger
  surname: Schöls
  fullname: Schöls, Ludger
  organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
– sequence: 5
  givenname: Katarina
  surname: Stingl
  fullname: Stingl, Katarina
  organization: Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
– sequence: 6
  givenname: Bernd
  surname: Wissinger
  fullname: Wissinger, Bernd
  organization: Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
– sequence: 7
  givenname: Susanne
  surname: Kohl
  fullname: Kohl, Susanne
  organization: Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
BookMark eNp9Uk1rGzEUXEpKk6b5Az3p2IsdfaxWKygFd0kbQ6Alac9CKz3ZMmtpK60NOeafV44TaHqILu8hvRlG8-Z9dRJigKr6SPCcYNJcbuZxO4U5xZTOsZhjyt5UZ5Q0dEY5Iyf_9KfVRc4bXE6DCW3ou-qUcSkJI_yserhyDszk94DyOHjjwwolyFNMevIxoOiQRhZgnPkwpRi8QYuv3aJGe528DhPyAZmiDI3rWEBgYCwFjaXbpVw6A8OQUX-Putvl3c_by7ux01kiPY4parOG_KF66_SQ4eKpnle_v1396q5nNz--L7vFzczUsp1mzknbtBRjboWoMRbaOM0J6IYy4izrhS1F6J5oLSSRRFDSt4ZZYnsjJGPn1fLIa6PeqDH5rU73KmqvHi9iWimdJm8GUEzIHrvaNNKyGjjvGW2pdm3TurbG3BSuL0eucddvwRoo3ujhBenLl-DXahX3SjLBCT-I-fREkOKfXfFbbX0-WKUDxF1WVGDOJG9bXEbb46hJMecEThk_PS6nMPtBEawOgVDlCyUQ6hAIhYUqgShQ-h_0WeGroM9HEJRl7D0klY2HYMD6stSpuOVfg_8FBprR0A
CitedBy_id crossref_primary_10_1016_j_omtn_2024_102345
crossref_primary_10_1186_s12967_023_04406_x
crossref_primary_10_1080_17469899_2023_2268289
crossref_primary_10_1016_j_omtm_2022_10_016
crossref_primary_10_1016_j_omtn_2023_102113
crossref_primary_10_1093_hmg_ddad129
crossref_primary_10_3389_fgene_2023_1234032
crossref_primary_10_1016_j_omtn_2023_02_032
crossref_primary_10_1038_s12276_023_01057_2
Cites_doi 10.3390/genes10090654
10.1093/nar/gky786
10.1167/iovs.11-8182
10.1038/s41591-018-0049-z
10.1038/nbt.3101
10.1038/s41591-018-0327-9
10.1126/scitranslmed.aav4523
10.1021/acssynbio.5b00299
10.21769/BioProtoc.1870
10.21769/BioProtoc.3251
10.1093/hmg/10.23.2671
10.1038/nprot.2017.016
10.1126/science.1225829
10.1038/ncb1095
10.1016/j.omtn.2020.06.007
10.1038/s41586-018-0686-x
10.1111/j.1474-9726.2012.00870.x
10.1093/nar/gku936
10.1073/pnas.1912220117
10.1038/eye.2016.109
10.1038/s41467-019-11454-9
10.1101/gr.226621.117
10.1093/hmg/ddt367
10.1126/science.1231143
10.1038/s41591-018-0050-6
10.1016/j.molcel.2018.04.016
10.3390/genes10060452
10.1080/13816810.2021.1904421
10.1016/j.ymthe.2021.04.024
10.1038/s41591-021-01297-7
10.1038/s41436-018-0420-y
10.1089/ars.2020.8048
10.1083/jcb.200611086
10.1038/mt.2011.260
10.1093/hmg/ddu396
10.1016/j.molcel.2021.03.032
10.1038/s41588-021-00838-7
10.1007/s004390100493
10.1016/j.ajhg.2018.02.008
10.1076/opge.24.2.75.13996
10.1136/jmedgenet-2017-104540
10.1016/j.ophtha.2011.02.034
10.1074/jbc.TM118.000371
10.1038/s41588-020-0623-4
10.1093/nar/29.9.e45
10.1016/0014-4827(65)90211-9
10.1038/s41591-018-0295-0
10.1021/acs.biochem.8b01202
10.1038/nprot.2013.143
10.1093/hmg/7.3.355
10.1038/ng0397-236
10.1101/cshperspect.a012757
10.1038/nbt.2647
10.1016/j.omtm.2020.05.002
10.1126/science.1258096
10.1038/s41467-021-24454-5
10.1128/JVI.79.15.9933-9944.2005
10.1038/s41467-021-26788-6
10.1093/nar/gkp215
10.1016/j.compbiomed.2011.12.012
10.1186/1741-7007-7-23
10.1038/s41551-021-00788-9
10.1136/bjophthalmol-2016-308823
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.omtn.2022.07.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2162-2531
EndPage 524
ExternalDocumentID oai_doaj_org_article_379b0f4c69d34e55b3282af868f8405c
PMC9375153
10_1016_j_omtn_2022_07_023
S2162253122001925
GroupedDBID 0R~
0SF
53G
5VS
6I.
7X7
8FE
8FH
8FI
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFKRA
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
DIK
EBS
FDB
FYUFA
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M41
M48
M7P
M~E
NCXOZ
O9-
OK1
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
88I
8FJ
AAMRU
AAYWO
AAYXX
ABUWG
ADRAZ
ADVLN
ALIPV
APXCP
CCPQU
CITATION
DWQXO
EJD
GNUQQ
HMCUK
HYE
IPNFZ
PHGZM
PHGZT
RIG
UKHRP
7X8
5PM
ID FETCH-LOGICAL-c498t-ff9d682005d774007acfa51ea6231fd3b7d1fd7ab1aa79191721b8c3d1dbc7933
IEDL.DBID M48
ISSN 2162-2531
IngestDate Wed Aug 27 01:31:24 EDT 2025
Thu Aug 21 14:10:29 EDT 2025
Fri Sep 05 07:31:05 EDT 2025
Thu Apr 24 22:59:08 EDT 2025
Tue Jul 01 02:00:41 EDT 2025
Fri Feb 23 02:41:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords genome editing
deep-intronic variants
inherited retinal dystrophy
CRISPR-Cas9
ABCA4
Photoreceptor precursor cells
MT: RNA/DNA editing
Stargardt disease
STGD1
splicing
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-ff9d682005d774007acfa51ea6231fd3b7d1fd7ab1aa79191721b8c3d1dbc7933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8993-551X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2022.07.023
PMID 35991315
PQID 2705395880
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_379b0f4c69d34e55b3282af868f8405c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9375153
proquest_miscellaneous_2705395880
crossref_citationtrail_10_1016_j_omtn_2022_07_023
crossref_primary_10_1016_j_omtn_2022_07_023
elsevier_sciencedirect_doi_10_1016_j_omtn_2022_07_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-13
PublicationDateYYYYMMDD 2022-09-13
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-13
  day: 13
PublicationDecade 2020
PublicationTitle Molecular therapy. Nucleic acids
PublicationYear 2022
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Schep, Brinkman, Leemans, Vergara, van der Weide, Morris, van Schaik, Manzo, Peric-Hupkes, van den Berg (bib37) 2021; 81
Yatsenko, Shroyer, Lewis, Lupski (bib6) 2001; 108
Bansal, Acharya, Sharma, Phutela, Rauthan, Maiti, Chakraborty (bib18) 2021; 42
Vázquez-Domínguez, Garanto, Collin (bib20) 2019; 10
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini (bib41) 2013; 339
Zernant, Lee, Collison, Fishman, Sergeev, Schuerch, Sparrow, Tsang, Allikmets (bib8) 2017; 54
Hahn, Jiramongkolchai, Stinnett, Daluvoy, Kim (bib33) 2016; 30
Grieger, Samulski (bib15) 2005; 79
Ihry, Worringer, Salick, Frias, Ho, Theriault, Kommineni, Chen, Sondey, Ye (bib48) 2018; 24
Frock, Hu, Meyers, Ho, Kii, Alt (bib57) 2014; 33
Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib23) 2013; 8
Sedelnikova, Horikawa, Zimonjic, Popescu, Bonner, Barrett (bib54) 2004; 6
Joung, Konermann, Gootenberg, Abudayyeh, Platt, Brigham, Sanjana, Zhang (bib45) 2017; 12
Durand, Cougot, Mahuteau-Betzer, Nguyen, Grierson, Bertrand, Tazi, Lejeune (bib28) 2007; 178
Erwood, Laselva, Bily, Brewer, Rutherford, Bear, Ivakine (bib38) 2020; 17
Khan, Arno, Fakin, Parfitt, Dhooge, Albert, Bax, Duijkers, Niblock, Hau (bib13) 2020; 21
Cideciyan, Jacobson, Ho, Garafalo, Roman, Sumaroka, Krishnan, Swider, Schwartz, Girach (bib30) 2021; 27
Leibowitz, Papathanasiou, Doerfler, Blaine, Sun, Yao, Zhang, Weiss, Pellman (bib51) 2021; 53
Dulla, Slijkerman, van Diepen, Albert, Dona, Beumer, Turunen, Chan, Schulkens, Vorthoren (bib27) 2021; 29
Sanz, Harrison (bib34) 2019; 9
von Zglinicki, Wan, Miwa (bib55) 2020; 34
Daer, Cutts, Brafman, Haynes (bib36) 2017; 17
Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib42) 2012; 337
Clèries, Galvez, Espino, Ribes, Nunes, de Heredia (bib65) 2012; 42
Allikmets, Singh, Sun, Shroyer, Hutchinson, Chidambaram, Gerrard, Baird, Stauffer, Peiffer (bib2) 1997; 15
Shroyer, Lewis, Yatsenko, Wensel, Lupski (bib5) 2001; 10
Zhang, Xin, Wang, Zhou, Hu, Kong, Hurst (bib14) 2009; 7
Cideciyan, Jacobson, Drack, Ho, Charng, Garafalo, Roman, Sumaroka, Han, Hochstedler (bib31) 2018; 25
Koenekoop (bib4) 2003; 24
Daer, Cutts, Brafman, Haynes (bib35) 2016; 6
Gangopadhyay, Cox, Manna, Lim, Maji, Zhou, Choudhary (bib58) 2019; 58
Sinha, Barbosa, Cheng, Leiserson, Jain, Deshpande, Wilson, Ryan, Luo, Ronai (bib52) 2021; 12
Zernant, Xie, Ayuso, Riveiro-Alvarez, Lopez-Martinez, Simonelli, Testa, Gorin, Strom, Bertelsen (bib10) 2014; 23
Brinkman, Amendola, van Steensel (bib63) 2014; 42
Bauwens, Garanto, Sangermano, Naessens, Weisschuh, De Zaeytijd, Khan, Sadler, Balikova, Van Cauwenbergh (bib21) 2019; 21
Cremers, van de Pol, van Driel, den Hollander, van Haren, Knoers, Tijmes, Bergen, Rohrschneider, Blankenagel (bib3) 1998; 7
Shah, Garg, Vander, Brown, Kaiser, Haller (bib32) 2011; 118
Allen, Crepaldi, Alsinet, Strong, Kleshchevnikov, De Angeli, Páleníková, Khodak, Kiselev, Kosicki (bib26) 2018
Maule, Casini, Montagna, Ramalho, De Boeck, Debyser, Carlon, Petris, Cereseto (bib19) 2019; 10
Albert, Garanto, Sangermano, Khan, Bax, Hoyng, Zernant, Lee, Allikmets, Collin (bib12) 2018; 102
Shen, Arbab, Hsu, Worstell, Culbertson, Krabbe, Cassa, Liu, Gifford, Sherwood (bib56) 2018; 563
Tanna, Strauss, Fujinami, Michaelides (bib1) 2017; 101
Haapaniemi, Botla, Persson, Schmierer, Taipale (bib47) 2018; 24
Enache, Rendo, Abdusamad, Lam, Davison, Pal, Currimjee, Hess, Pantel, Nag (bib50) 2020; 52
Brinkman, Chen, de Haas, Holland, Akhtar, van Steensel (bib44) 2018; 70
Doudna, Charpentier (bib22) 2014; 346
Hayflick (bib46) 1965; 37
Her, Bunting (bib25) 2018; 293
Pfaffl (bib64) 2001; 29
Sangermano, Khan, Cornelis, Richelle, Albert, Garanto, Elmelik, Qamar, Lugtenberg, van den Born (bib11) 2018; 28
Schmidt, Gupta, Bednarski, Gehrig-Giannini, Richter, Pitzler, Gamalinda, Galonska, Takeuchi, Wang (bib61) 2021; 12
Hsu, Scott, Weinstein, Ran, Konermann, Agarwala, Li, Fine, Wu, Shalem (bib43) 2013; 31
Chen, Chen, Xin, Wan, Ping (bib59) 2020; 117
Zernant, Schubert, Im, Burke, Brown, Fishman, Tsang, Gouras, Dean, Allikmets (bib7) 2011; 52
Maeder, Stefanidakis, Wilson, Baral, Barrera, Bounoutas, Bumcrot, Chao, Ciulla, DaSilva (bib17) 2019; 25
Flamier, Barabino, Gilbert (bib62) 2016; 6
Desmet, Hamroun, Lalande, Collod-Béroud, Claustres, Béroud (bib40) 2009; 37
Chiruvella, Liang, Wilson (bib24) 2013; 5
Jurk, Wang, Miwa, Maddick, Korolchuk, Tsolou, Gonos, Thrasivoulou, Saffrey, Cameron (bib53) 2021; 11
Tornabene, Trapani, Minopoli, Centrulo, Lupo, de Simone, Tiberi, Dell'Aquila, Marrocco, Iodice (bib60) 2019; 11
Lindholm, Elmén, Fisker, Hansen, Persson, Møller, Rosenbohm, Ørum, Straarup, Koch (bib29) 2021; 20
Garanto, Duijkers, Tomkiewicz, Collin (bib16) 2019; 10
Jang, Jo, Cho, Shin, Seo, Yu, Gopalappa, Kim, Cho, Kim (bib39) 2021
van den Berg, Manjón, Kielbassa, Feringa, Freire, Medema (bib49) 2018; 46
Braun, Mullins, Wagner, Andorf, Johnston, Bakall, Deluca, Fishman, Lam, Weleber (bib9) 2013; 22
Durand (10.1016/j.omtn.2022.07.023_bib28) 2007; 178
Hahn (10.1016/j.omtn.2022.07.023_bib33) 2016; 30
Sinha (10.1016/j.omtn.2022.07.023_bib52) 2021; 12
Daer (10.1016/j.omtn.2022.07.023_bib35) 2016; 6
Chen (10.1016/j.omtn.2022.07.023_bib59) 2020; 117
Shroyer (10.1016/j.omtn.2022.07.023_bib5) 2001; 10
Ihry (10.1016/j.omtn.2022.07.023_bib48) 2018; 24
Albert (10.1016/j.omtn.2022.07.023_bib12) 2018; 102
Hsu (10.1016/j.omtn.2022.07.023_bib43) 2013; 31
Maeder (10.1016/j.omtn.2022.07.023_bib17) 2019; 25
Hayflick (10.1016/j.omtn.2022.07.023_bib46) 1965; 37
Joung (10.1016/j.omtn.2022.07.023_bib45) 2017; 12
Daer (10.1016/j.omtn.2022.07.023_bib36) 2017; 17
Schmidt (10.1016/j.omtn.2022.07.023_bib61) 2021; 12
Jurk (10.1016/j.omtn.2022.07.023_bib53) 2021; 11
Shen (10.1016/j.omtn.2022.07.023_bib56) 2018; 563
von Zglinicki (10.1016/j.omtn.2022.07.023_bib55) 2020; 34
Enache (10.1016/j.omtn.2022.07.023_bib50) 2020; 52
Leibowitz (10.1016/j.omtn.2022.07.023_bib51) 2021; 53
Bansal (10.1016/j.omtn.2022.07.023_bib18) 2021; 42
Cideciyan (10.1016/j.omtn.2022.07.023_bib31) 2018; 25
Erwood (10.1016/j.omtn.2022.07.023_bib38) 2020; 17
Flamier (10.1016/j.omtn.2022.07.023_bib62) 2016; 6
Bauwens (10.1016/j.omtn.2022.07.023_bib21) 2019; 21
Allikmets (10.1016/j.omtn.2022.07.023_bib2) 1997; 15
Tornabene (10.1016/j.omtn.2022.07.023_bib60) 2019; 11
Grieger (10.1016/j.omtn.2022.07.023_bib15) 2005; 79
Lindholm (10.1016/j.omtn.2022.07.023_bib29) 2021; 20
Cideciyan (10.1016/j.omtn.2022.07.023_bib30) 2021; 27
Zernant (10.1016/j.omtn.2022.07.023_bib8) 2017; 54
Gangopadhyay (10.1016/j.omtn.2022.07.023_bib58) 2019; 58
Shah (10.1016/j.omtn.2022.07.023_bib32) 2011; 118
Her (10.1016/j.omtn.2022.07.023_bib25) 2018; 293
Allen (10.1016/j.omtn.2022.07.023_bib26) 2018
van den Berg (10.1016/j.omtn.2022.07.023_bib49) 2018; 46
Zernant (10.1016/j.omtn.2022.07.023_bib10) 2014; 23
Zernant (10.1016/j.omtn.2022.07.023_bib7) 2011; 52
Yatsenko (10.1016/j.omtn.2022.07.023_bib6) 2001; 108
Sedelnikova (10.1016/j.omtn.2022.07.023_bib54) 2004; 6
Pfaffl (10.1016/j.omtn.2022.07.023_bib64) 2001; 29
Garanto (10.1016/j.omtn.2022.07.023_bib16) 2019; 10
Desmet (10.1016/j.omtn.2022.07.023_bib40) 2009; 37
Cremers (10.1016/j.omtn.2022.07.023_bib3) 1998; 7
Jinek (10.1016/j.omtn.2022.07.023_bib42) 2012; 337
Khan (10.1016/j.omtn.2022.07.023_bib13) 2020; 21
Sanz (10.1016/j.omtn.2022.07.023_bib34) 2019; 9
Jang (10.1016/j.omtn.2022.07.023_bib39) 2021
Clèries (10.1016/j.omtn.2022.07.023_bib65) 2012; 42
Brinkman (10.1016/j.omtn.2022.07.023_bib63) 2014; 42
Vázquez-Domínguez (10.1016/j.omtn.2022.07.023_bib20) 2019; 10
Doudna (10.1016/j.omtn.2022.07.023_bib22) 2014; 346
Braun (10.1016/j.omtn.2022.07.023_bib9) 2013; 22
Schep (10.1016/j.omtn.2022.07.023_bib37) 2021; 81
Chiruvella (10.1016/j.omtn.2022.07.023_bib24) 2013; 5
Ran (10.1016/j.omtn.2022.07.023_bib23) 2013; 8
Haapaniemi (10.1016/j.omtn.2022.07.023_bib47) 2018; 24
Zhang (10.1016/j.omtn.2022.07.023_bib14) 2009; 7
Dulla (10.1016/j.omtn.2022.07.023_bib27) 2021; 29
Cong (10.1016/j.omtn.2022.07.023_bib41) 2013; 339
Tanna (10.1016/j.omtn.2022.07.023_bib1) 2017; 101
Sangermano (10.1016/j.omtn.2022.07.023_bib11) 2018; 28
Maule (10.1016/j.omtn.2022.07.023_bib19) 2019; 10
Koenekoop (10.1016/j.omtn.2022.07.023_bib4) 2003; 24
Brinkman (10.1016/j.omtn.2022.07.023_bib44) 2018; 70
Frock (10.1016/j.omtn.2022.07.023_bib57) 2014; 33
References_xml – volume: 24
  start-page: 75
  year: 2003
  end-page: 80
  ident: bib4
  article-title: The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review
  publication-title: Ophthalmic genetic
– volume: 37
  start-page: e67
  year: 2009
  ident: bib40
  article-title: Human Splicing Finder: an online bioinformatics tool to predict splicing signals
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 438
  year: 2012
  end-page: 445
  ident: bib65
  article-title: BootstRatio: a web-based statistical analysis of fold-change in qPCR and RT-qPCR data using resampling methods
  publication-title: Comput. Biol. Med. Apr.
– volume: 29
  start-page: e45
  year: 2001
  ident: bib64
  article-title: A new mathematical model for relative quantification in real-time RT–PCR
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 5136
  year: 2013
  end-page: 5145
  ident: bib9
  article-title: Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease
  publication-title: Hum. Mol. Genet.
– volume: 10
  start-page: 2671
  year: 2001
  end-page: 2678
  ident: bib5
  article-title: Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration
  publication-title: Hum. Mol. Genet.
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: bib23
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
– volume: 6
  start-page: 428
  year: 2016
  end-page: 438
  ident: bib35
  article-title: The impact of chromatin dynamics on Cas9-mediated genome editing in human cells
  publication-title: ACS Synth. Biol.
– volume: 7
  start-page: 23
  year: 2009
  ident: bib14
  article-title: Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay
  publication-title: BMC Biol.
– volume: 10
  start-page: 654
  year: 2019
  ident: bib20
  article-title: Molecular therapies for inherited retinal diseases-current standing, opportunities and challenges
  publication-title: Genes
– volume: 21
  start-page: 1761
  year: 2019
  end-page: 1771
  ident: bib21
  article-title: ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants
  publication-title: Genet. Med.
– volume: 101
  start-page: 25
  year: 2017
  end-page: 30
  ident: bib1
  article-title: Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options
  publication-title: Br. J. Ophthalmol.
– volume: 53
  start-page: 895
  year: 2021
  end-page: 905
  ident: bib51
  article-title: Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing
  publication-title: Nat. Genet.
– volume: 178
  start-page: 1145
  year: 2007
  end-page: 1160
  ident: bib28
  article-title: Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies
  publication-title: J. Cell Biol.
– volume: 24
  start-page: 927
  year: 2018
  end-page: 930
  ident: bib47
  article-title: CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response
  publication-title: Nat. Med.
– volume: 28
  start-page: 100
  year: 2018
  end-page: 110
  ident: bib11
  article-title: midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease
  publication-title: Genome Res.
– volume: 29
  start-page: 2441
  year: 2021
  end-page: 2455
  ident: bib27
  article-title: Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations
  publication-title: Mol. Ther.
– volume: 21
  start-page: 412
  year: 2020
  end-page: 427
  ident: bib13
  article-title: Detailed phenotyping and therapeutic strategies for intronic ABCA4 variants in Stargardt disease
  publication-title: Mol. Ther. Nucleic Acids
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib42
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 346
  year: 2014
  ident: bib22
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
– volume: 58
  start-page: 234
  year: 2019
  end-page: 244
  ident: bib58
  article-title: Precision control of CRISPR-Cas9 using small molecules and light
  publication-title: Biochemistry
– volume: 33
  start-page: 179
  year: 2014
  end-page: 186
  ident: bib57
  article-title: Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
  publication-title: Nat. Biotechnol.
– volume: 31
  start-page: 827
  year: 2013
  end-page: 832
  ident: bib43
  article-title: DNA targeting specificity of RNA-guided Cas9 nucleases
  publication-title: Nat. Biotechnol.
– volume: 12
  start-page: 4219
  year: 2021
  ident: bib61
  article-title: Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases
  publication-title: Nat. Commun.
– year: 2018
  ident: bib26
  article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks
  publication-title: Nat. Biotechnol.
– volume: 27
  start-page: 785
  year: 2021
  end-page: 789
  ident: bib30
  article-title: Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report
  publication-title: Nat. Med.
– volume: 117
  start-page: 2395
  year: 2020
  end-page: 2405
  ident: bib59
  article-title: Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 52
  start-page: 662
  year: 2020
  end-page: 668
  ident: bib50
  article-title: Cas9 activates the p53 pathway and selects for p53-inactivating mutations
  publication-title: Nat. Genet.
– volume: 6
  start-page: 168
  year: 2004
  end-page: 170
  ident: bib54
  article-title: Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks
  publication-title: Nat. Cell Biol.
– volume: 108
  start-page: 346
  year: 2001
  end-page: 355
  ident: bib6
  article-title: Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4)
  publication-title: Hum. Genet.
– volume: 54
  start-page: 404
  year: 2017
  end-page: 412
  ident: bib8
  article-title: Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration
  publication-title: J. Med. Genet.
– volume: 12
  start-page: 6512
  year: 2021
  ident: bib52
  article-title: A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing
  publication-title: Nat. Commun.
– volume: 6
  year: 2016
  ident: bib62
  article-title: Differentiation of human embryonic stem cells into cone photoreceptors
  publication-title: Bio Protoc
– volume: 118
  start-page: 2028
  year: 2011
  end-page: 2034
  ident: bib32
  article-title: Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents
  publication-title: Ophthalmology
– volume: 10
  start-page: 452
  year: 2019
  ident: bib16
  article-title: Antisense oligonucleotide screening to optimize the rescue of the splicing defect caused by the recurrent deep-intronic
  publication-title: Genes
– volume: 11
  start-page: 996
  year: 2021
  end-page: 1004
  ident: bib53
  article-title: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response
  publication-title: Aging Cell
– volume: 30
  start-page: 1101
  year: 2016
  end-page: 1109
  ident: bib33
  article-title: Rate of intraoperative complications during cataract surgery following intravitreal injections
  publication-title: Eye
– volume: 81
  start-page: 2216
  year: 2021
  end-page: 2230.e10
  ident: bib37
  article-title: Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance
  publication-title: Mol. Cell.
– volume: 293
  start-page: 10502
  year: 2018
  end-page: 10511
  ident: bib25
  article-title: How cells ensure correct repair of DNA double-strand breaks
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 3556
  year: 2019
  ident: bib19
  article-title: Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing
  publication-title: Nat. Commun.
– volume: 563
  start-page: 646
  year: 2018
  end-page: 651
  ident: bib56
  article-title: Predictable and precise template-free CRISPR editing of pathogenic variants
  publication-title: Nature
– volume: 37
  start-page: 614
  year: 1965
  end-page: 636
  ident: bib46
  article-title: The limited in vitro lifetime of human diploid cell strains
  publication-title: Exp. Cell Res.
– volume: 15
  start-page: 236
  year: 1997
  end-page: 246
  ident: bib2
  article-title: A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy
  publication-title: Nat. Genet.
– volume: 12
  start-page: 828
  year: 2017
  end-page: 863
  ident: bib45
  article-title: Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening
  publication-title: Nat. Protoc.
– volume: 52
  start-page: 8479
  year: 2011
  end-page: 8487
  ident: bib7
  article-title: Analysis of the ABCA4 gene by next-generation sequencing
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 46
  start-page: 10132
  year: 2018
  end-page: 10144
  ident: bib49
  article-title: A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: eaav4523
  year: 2019
  ident: bib60
  article-title: Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina
  publication-title: Sci. Transl. Med.
– volume: 79
  start-page: 9933
  year: 2005
  end-page: 9944
  ident: bib15
  article-title: Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps
  publication-title: J. Virol.
– volume: 25
  start-page: 225
  year: 2018
  end-page: 228
  ident: bib31
  article-title: Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect
  publication-title: Nat. Med.
– volume: 23
  start-page: 6797
  year: 2014
  end-page: 6806
  ident: bib10
  article-title: Analysis of the ABCA4 genomic locus in Stargardt disease
  publication-title: Hum. Mol. Genet.
– volume: 7
  start-page: 355
  year: 1998
  end-page: 362
  ident: bib3
  article-title: Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR
  publication-title: Hum. Mol. Genet.
– volume: 17
  start-page: 428
  year: 2017
  end-page: 438
  ident: bib36
  article-title: The impact of chromatin dynamics on Cas9-mediated genome editing in human cells
  publication-title: ACS Synth. Biol.
– volume: 42
  start-page: 365
  year: 2021
  end-page: 374
  ident: bib18
  article-title: CRISPR Cas9 based genome editing in inherited retinal dystrophies
  publication-title: Ophthalmic Genet.
– volume: 20
  start-page: 376
  year: 2021
  end-page: 381
  ident: bib29
  article-title: PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates
  publication-title: Mol. Ther.
– volume: 25
  start-page: 229
  year: 2019
  end-page: 233
  ident: bib17
  article-title: Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10
  publication-title: Nat. Med.
– volume: 34
  start-page: 308
  year: 2020
  end-page: 323
  ident: bib55
  article-title: Senescence in post-mitotic cells: a driver of aging?
  publication-title: Antioxid. Redox. Signal.
– volume: 42
  start-page: e168
  year: 2014
  ident: bib63
  article-title: Easy quantitative assessment of genome editing by sequence trace decomposition
  publication-title: Nucleic Acids Res.
– volume: 102
  start-page: 517
  year: 2018
  end-page: 527
  ident: bib12
  article-title: Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying Stargardt disease
  publication-title: Am. J. Hum. Genet.
– year: 2021
  ident: bib39
  article-title: Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases
  publication-title: Nat. Biomed. Eng.
– volume: 70
  start-page: 801
  year: 2018
  end-page: 813.e6
  ident: bib44
  article-title: Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks
  publication-title: Mol. Cell.
– volume: 5
  start-page: a012757
  year: 2013
  ident: bib24
  article-title: Repair of double-strand breaks by end joining
  publication-title: Cold Spring Harb. Perspect Biol.
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bib41
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 9
  year: 2019
  ident: bib34
  article-title: Minigene assay to evaluate CRISPR/Cas9-based excision of intronic mutations that cause aberrant splicing in human cells
  publication-title: Bio Protoc
– volume: 24
  start-page: 939
  year: 2018
  end-page: 946
  ident: bib48
  article-title: p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells
  publication-title: Nat. Med.
– volume: 17
  start-page: 1118
  year: 2020
  end-page: 1128
  ident: bib38
  article-title: Allele-specific prevention of nonsense-mediated decay in cystic fibrosis using homology-independent genome editing
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 10
  start-page: 654
  year: 2019
  ident: 10.1016/j.omtn.2022.07.023_bib20
  article-title: Molecular therapies for inherited retinal diseases-current standing, opportunities and challenges
  publication-title: Genes
  doi: 10.3390/genes10090654
– volume: 46
  start-page: 10132
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib49
  article-title: A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky786
– volume: 52
  start-page: 8479
  year: 2011
  ident: 10.1016/j.omtn.2022.07.023_bib7
  article-title: Analysis of the ABCA4 gene by next-generation sequencing
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-8182
– volume: 24
  start-page: 927
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib47
  article-title: CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0049-z
– volume: 33
  start-page: 179
  year: 2014
  ident: 10.1016/j.omtn.2022.07.023_bib57
  article-title: Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3101
– volume: 25
  start-page: 229
  year: 2019
  ident: 10.1016/j.omtn.2022.07.023_bib17
  article-title: Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0327-9
– year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib26
  article-title: Predicting the mutations generated by repair of Cas9-induced double-strand breaks
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: eaav4523
  year: 2019
  ident: 10.1016/j.omtn.2022.07.023_bib60
  article-title: Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aav4523
– volume: 17
  start-page: 428
  year: 2017
  ident: 10.1016/j.omtn.2022.07.023_bib36
  article-title: The impact of chromatin dynamics on Cas9-mediated genome editing in human cells
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.5b00299
– volume: 6
  start-page: 428
  year: 2016
  ident: 10.1016/j.omtn.2022.07.023_bib35
  article-title: The impact of chromatin dynamics on Cas9-mediated genome editing in human cells
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.5b00299
– volume: 6
  year: 2016
  ident: 10.1016/j.omtn.2022.07.023_bib62
  article-title: Differentiation of human embryonic stem cells into cone photoreceptors
  publication-title: Bio Protoc
  doi: 10.21769/BioProtoc.1870
– volume: 9
  year: 2019
  ident: 10.1016/j.omtn.2022.07.023_bib34
  article-title: Minigene assay to evaluate CRISPR/Cas9-based excision of intronic mutations that cause aberrant splicing in human cells
  publication-title: Bio Protoc
  doi: 10.21769/BioProtoc.3251
– volume: 10
  start-page: 2671
  year: 2001
  ident: 10.1016/j.omtn.2022.07.023_bib5
  article-title: Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.23.2671
– volume: 12
  start-page: 828
  year: 2017
  ident: 10.1016/j.omtn.2022.07.023_bib45
  article-title: Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.016
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.omtn.2022.07.023_bib42
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 6
  start-page: 168
  year: 2004
  ident: 10.1016/j.omtn.2022.07.023_bib54
  article-title: Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1095
– volume: 21
  start-page: 412
  year: 2020
  ident: 10.1016/j.omtn.2022.07.023_bib13
  article-title: Detailed phenotyping and therapeutic strategies for intronic ABCA4 variants in Stargardt disease
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2020.06.007
– volume: 563
  start-page: 646
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib56
  article-title: Predictable and precise template-free CRISPR editing of pathogenic variants
  publication-title: Nature
  doi: 10.1038/s41586-018-0686-x
– volume: 11
  start-page: 996
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib53
  article-title: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2012.00870.x
– volume: 42
  start-page: e168
  year: 2014
  ident: 10.1016/j.omtn.2022.07.023_bib63
  article-title: Easy quantitative assessment of genome editing by sequence trace decomposition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku936
– volume: 117
  start-page: 2395
  year: 2020
  ident: 10.1016/j.omtn.2022.07.023_bib59
  article-title: Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1912220117
– volume: 30
  start-page: 1101
  year: 2016
  ident: 10.1016/j.omtn.2022.07.023_bib33
  article-title: Rate of intraoperative complications during cataract surgery following intravitreal injections
  publication-title: Eye
  doi: 10.1038/eye.2016.109
– volume: 10
  start-page: 3556
  year: 2019
  ident: 10.1016/j.omtn.2022.07.023_bib19
  article-title: Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11454-9
– volume: 28
  start-page: 100
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib11
  article-title: ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease
  publication-title: Genome Res.
  doi: 10.1101/gr.226621.117
– volume: 22
  start-page: 5136
  year: 2013
  ident: 10.1016/j.omtn.2022.07.023_bib9
  article-title: Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt367
– volume: 339
  start-page: 819
  year: 2013
  ident: 10.1016/j.omtn.2022.07.023_bib41
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 24
  start-page: 939
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib48
  article-title: p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0050-6
– volume: 70
  start-page: 801
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib44
  article-title: Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2018.04.016
– volume: 10
  start-page: 452
  year: 2019
  ident: 10.1016/j.omtn.2022.07.023_bib16
  article-title: Antisense oligonucleotide screening to optimize the rescue of the splicing defect caused by the recurrent deep-intronic ABCA4 variant c.4539+2001G>A in Stargardt disease
  publication-title: Genes
  doi: 10.3390/genes10060452
– volume: 42
  start-page: 365
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib18
  article-title: CRISPR Cas9 based genome editing in inherited retinal dystrophies
  publication-title: Ophthalmic Genet.
  doi: 10.1080/13816810.2021.1904421
– volume: 29
  start-page: 2441
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib27
  article-title: Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2021.04.024
– volume: 27
  start-page: 785
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib30
  article-title: Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01297-7
– volume: 21
  start-page: 1761
  year: 2019
  ident: 10.1016/j.omtn.2022.07.023_bib21
  article-title: ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants
  publication-title: Genet. Med.
  doi: 10.1038/s41436-018-0420-y
– volume: 34
  start-page: 308
  year: 2020
  ident: 10.1016/j.omtn.2022.07.023_bib55
  article-title: Senescence in post-mitotic cells: a driver of aging?
  publication-title: Antioxid. Redox. Signal.
  doi: 10.1089/ars.2020.8048
– volume: 178
  start-page: 1145
  year: 2007
  ident: 10.1016/j.omtn.2022.07.023_bib28
  article-title: Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200611086
– volume: 20
  start-page: 376
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib29
  article-title: PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2011.260
– volume: 23
  start-page: 6797
  year: 2014
  ident: 10.1016/j.omtn.2022.07.023_bib10
  article-title: Analysis of the ABCA4 genomic locus in Stargardt disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu396
– volume: 81
  start-page: 2216
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib37
  article-title: Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2021.03.032
– volume: 53
  start-page: 895
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib51
  article-title: Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00838-7
– volume: 108
  start-page: 346
  year: 2001
  ident: 10.1016/j.omtn.2022.07.023_bib6
  article-title: Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4)
  publication-title: Hum. Genet.
  doi: 10.1007/s004390100493
– volume: 102
  start-page: 517
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib12
  article-title: Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying Stargardt disease
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.02.008
– volume: 24
  start-page: 75
  year: 2003
  ident: 10.1016/j.omtn.2022.07.023_bib4
  article-title: The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review
  publication-title: Ophthalmic genetic
  doi: 10.1076/opge.24.2.75.13996
– volume: 54
  start-page: 404
  year: 2017
  ident: 10.1016/j.omtn.2022.07.023_bib8
  article-title: Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration
  publication-title: J. Med. Genet.
  doi: 10.1136/jmedgenet-2017-104540
– volume: 118
  start-page: 2028
  year: 2011
  ident: 10.1016/j.omtn.2022.07.023_bib32
  article-title: Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.02.034
– volume: 293
  start-page: 10502
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib25
  article-title: How cells ensure correct repair of DNA double-strand breaks
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.TM118.000371
– volume: 52
  start-page: 662
  year: 2020
  ident: 10.1016/j.omtn.2022.07.023_bib50
  article-title: Cas9 activates the p53 pathway and selects for p53-inactivating mutations
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0623-4
– volume: 29
  start-page: e45
  year: 2001
  ident: 10.1016/j.omtn.2022.07.023_bib64
  article-title: A new mathematical model for relative quantification in real-time RT–PCR
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.9.e45
– volume: 37
  start-page: 614
  year: 1965
  ident: 10.1016/j.omtn.2022.07.023_bib46
  article-title: The limited in vitro lifetime of human diploid cell strains
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(65)90211-9
– volume: 25
  start-page: 225
  year: 2018
  ident: 10.1016/j.omtn.2022.07.023_bib31
  article-title: Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0295-0
– volume: 58
  start-page: 234
  year: 2019
  ident: 10.1016/j.omtn.2022.07.023_bib58
  article-title: Precision control of CRISPR-Cas9 using small molecules and light
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b01202
– volume: 8
  start-page: 2281
  year: 2013
  ident: 10.1016/j.omtn.2022.07.023_bib23
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 7
  start-page: 355
  year: 1998
  ident: 10.1016/j.omtn.2022.07.023_bib3
  article-title: Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/7.3.355
– volume: 15
  start-page: 236
  year: 1997
  ident: 10.1016/j.omtn.2022.07.023_bib2
  article-title: A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy
  publication-title: Nat. Genet.
  doi: 10.1038/ng0397-236
– volume: 5
  start-page: a012757
  year: 2013
  ident: 10.1016/j.omtn.2022.07.023_bib24
  article-title: Repair of double-strand breaks by end joining
  publication-title: Cold Spring Harb. Perspect Biol.
  doi: 10.1101/cshperspect.a012757
– volume: 31
  start-page: 827
  year: 2013
  ident: 10.1016/j.omtn.2022.07.023_bib43
  article-title: DNA targeting specificity of RNA-guided Cas9 nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2647
– volume: 17
  start-page: 1118
  year: 2020
  ident: 10.1016/j.omtn.2022.07.023_bib38
  article-title: Allele-specific prevention of nonsense-mediated decay in cystic fibrosis using homology-independent genome editing
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2020.05.002
– volume: 346
  year: 2014
  ident: 10.1016/j.omtn.2022.07.023_bib22
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
  doi: 10.1126/science.1258096
– volume: 12
  start-page: 4219
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib61
  article-title: Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24454-5
– volume: 79
  start-page: 9933
  year: 2005
  ident: 10.1016/j.omtn.2022.07.023_bib15
  article-title: Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.15.9933-9944.2005
– volume: 12
  start-page: 6512
  year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib52
  article-title: A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26788-6
– volume: 37
  start-page: e67
  year: 2009
  ident: 10.1016/j.omtn.2022.07.023_bib40
  article-title: Human Splicing Finder: an online bioinformatics tool to predict splicing signals
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp215
– volume: 42
  start-page: 438
  year: 2012
  ident: 10.1016/j.omtn.2022.07.023_bib65
  article-title: BootstRatio: a web-based statistical analysis of fold-change in qPCR and RT-qPCR data using resampling methods
  publication-title: Comput. Biol. Med. Apr.
  doi: 10.1016/j.compbiomed.2011.12.012
– volume: 7
  start-page: 23
  year: 2009
  ident: 10.1016/j.omtn.2022.07.023_bib14
  article-title: Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-7-23
– year: 2021
  ident: 10.1016/j.omtn.2022.07.023_bib39
  article-title: Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00788-9
– volume: 101
  start-page: 25
  year: 2017
  ident: 10.1016/j.omtn.2022.07.023_bib1
  article-title: Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2016-308823
SSID ssj0000601262
Score 2.3411942
Snippet Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding...
Stargardt disease is an autosomal recessively inherited retinal disorder commonly caused by pathogenic variants in the ABCA4 gene encoding the ATP-binding...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 511
SubjectTerms ABCA4
CRISPR-Cas9
deep-intronic variants
genome editing
inherited retinal dystrophy
MT: RNA/DNA editing
Original
Photoreceptor precursor cells
splicing
Stargardt disease
STGD1
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQUBALBRkJcUFR13ac2MftiqpwQKilUm-WHdvqIppEmy1Sj_xzZuyk2lzKBSlSonw6nvHMG2fyhpAPKlaA2jUoL7iXonRKF06FprCa1wEQgZNNyvL9Vp1dll-v5NVeqS_MCcv0wLnjjkWt3TKWTaW9KIOUTkCQYKOqVITYRDZofZd6uRdMZRsMhjdVE-Ws4gUHTRv_mMnJXd3NDslPOU_MnVzMvFIi7585pz3wOU-d3PNFp0_JkxFE0lVu_DPyKLTPyeGqhQD65o5-pCmtM82XH5I_mZ8YjBod8Fs1uCq6TeVkkkxoF6mlPoS-2LS5Hg5dnaxXJf0NUTR0O920FGLmQPvrDi4KmAbTbWm_xYn6AbZw6n-g7o6uz79cfD8_vujXdtB0IisPwwtyefr5x_qsGOsuFE2p1a6IUftK4XSTB3AIIMI20UoWLEAlFr1wtYdVbR2zttYY8HHmVCM8866B8S5ekoMWGvaK0ChYFW0UygdRWlgcEhBagXUEJWDJBWFTv5tmJCXH2hi_zJR99tOgrAzKyixrA7JakE_31_SZkuPBs09QnPdnIp122gFKZkYlM_9SsgWRkzKYEZlkxAG32jz48PeT5hgYtigQ24budjC8BuunJVjPBalnKjVr6fxIu7lOBOAAKQGGitf_49XekMfYYEyBYeKIHOy2t-Et4Kyde5eG1F9HBiWw
  priority: 102
  providerName: Directory of Open Access Journals
Title Effective splicing restoration of a deep-intronic ABCA4 variant in cone photoreceptor precursor cells by CRISPR/SpCas9 approaches
URI https://dx.doi.org/10.1016/j.omtn.2022.07.023
https://www.proquest.com/docview/2705395880
https://pubmed.ncbi.nlm.nih.gov/PMC9375153
https://doaj.org/article/379b0f4c69d34e55b3282af868f8405c
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qBemLqFU8fxwriC8SbbLZZPdB5HpYWgWR1oO-Lbub3fakTWJyFe_R_9yZTVIvUPogBBKSbLJkZme-2Z18Q8hr4TNA7RKUF9xLlBohIyOcjbRMcgeIwHAbsny_ZoeL9PMpP90iQ7mj_gO2N4Z2WE9q0Vy8-_1z_REG_Id_uVrV5Qq5TJMkEHEm7A65G9aLMJWvh_udZQZznCX9vzM3N90h9xgH0MSwUO6GqwqM_iOPtYFIx_mUGw7q4AG53yNLOutU4SHZcuUjsjsrIaq-XNM3NOR6hkn0XfKnIy0GS0dbXMAG_0WbUGMmCIpWnmpaOFdHy7IrkkNn-_NZSn9BaA2yoMuSQiDtaH1eQSOHuTFVQ-sGZ-9bOML1gJaaNZ0fH518O35_Us91K-nAYO7ax2Rx8On7_DDqizFENpViFXkvi0zgHFQBiBGQhbZe89hpwE-xL5jJC9jl2sRa5xKjwCQ2wrIiLowFI8CekO0SOvaUUM_izGvPROFYqmEzyEqoGRYX5AAwJyQevruyPVM5Fsy4UENK2g-FYlMoNrWXKxDbhLy9blN3PB233r2P4ry-Ezm2w4mqOVP9kFUsl2bPpzaTBUsd54ZBeKq9yISHqJjbCeGDMqgernQwBB61vPXlrwbNUTCWUSC6dNVVq5IcTKLkYFInJB-p1Kin4yvl8jywggPOBGzKnv13y-dkB3uJyTAxe0G2V82VewmIa2WmEGscfZmG-YppGFJ_AatDLyI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+splicing+restoration+of+a+deep-intronic+ABCA4+variant+in+cone+photoreceptor+precursor+cells+by+CRISPR%2FSpCas9+approaches&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=De+Angeli%2C+Pietro&rft.au=Reuter%2C+Peggy&rft.au=Hauser%2C+Stefan&rft.au=Sch%C3%B6ls%2C+Ludger&rft.date=2022-09-13&rft.pub=American+Society+of+Gene+%26+Cell+Therapy&rft.eissn=2162-2531&rft.volume=29&rft.spage=511&rft.epage=524&rft_id=info:doi/10.1016%2Fj.omtn.2022.07.023&rft_id=info%3Apmid%2F35991315&rft.externalDocID=PMC9375153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon