Water flipping and the oxygen evolution reaction on Fe2O3 nanolayers
Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 3585 - 9 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-025-58842-y |
Cover
Abstract | Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol
-1
) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol
-1
. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter.
Using second harmonic amplitude and phase measurements the authors characterize the alignment of water molecules in the Stern-layer and the work associated with water flipping on hematite electrodes, suggesting a causal relationship between water flipping and the oxygen evolution reaction overpotential. |
---|---|
AbstractList | Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter. Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol -1 ) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol -1 . Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter. Using second harmonic amplitude and phase measurements the authors characterize the alignment of water molecules in the Stern-layer and the work associated with water flipping on hematite electrodes, suggesting a causal relationship between water flipping and the oxygen evolution reaction overpotential. Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter.Using second harmonic amplitude and phase measurements the authors characterize the alignment of water molecules in the Stern-layer and the work associated with water flipping on hematite electrodes, suggesting a causal relationship between water flipping and the oxygen evolution reaction overpotential. Abstract Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter. Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter.Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter. |
ArticleNumber | 3585 |
Author | Rosso, Kevin M. Martinson, Alex B. F. Boamah, Mavis D. Kupferberg, Jacob Bye, Justin Z. Zhao, Yatong Geiger, Franz M. Speelman, Raiden Marker, Ezra J. Engelhard, Mark |
Author_xml | – sequence: 1 givenname: Raiden orcidid: 0000-0002-7856-9147 surname: Speelman fullname: Speelman, Raiden organization: Department of Chemistry, Northwestern University – sequence: 2 givenname: Ezra J. surname: Marker fullname: Marker, Ezra J. organization: Department of Chemistry, Northwestern University – sequence: 3 givenname: Mavis D. orcidid: 0000-0003-4457-4594 surname: Boamah fullname: Boamah, Mavis D. organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Jacob surname: Kupferberg fullname: Kupferberg, Jacob organization: Materials Science Division, Argonne National Laboratory – sequence: 5 givenname: Justin Z. surname: Bye fullname: Bye, Justin Z. organization: Department of Chemistry, Northwestern University – sequence: 6 givenname: Mark orcidid: 0000-0002-5543-0812 surname: Engelhard fullname: Engelhard, Mark organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Yatong surname: Zhao fullname: Zhao, Yatong organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Alex B. F. orcidid: 0000-0003-3916-1672 surname: Martinson fullname: Martinson, Alex B. F. organization: Materials Science Division, Argonne National Laboratory – sequence: 9 givenname: Kevin M. orcidid: 0000-0002-8474-7720 surname: Rosso fullname: Rosso, Kevin M. organization: Pacific Northwest National Laboratory – sequence: 10 givenname: Franz M. orcidid: 0000-0001-8569-4045 surname: Geiger fullname: Geiger, Franz M. email: f-geiger@northwestern.edu organization: Department of Chemistry, Northwestern University |
BackLink | https://www.osti.gov/servlets/purl/2566047$$D View this record in Osti.gov |
BookMark | eNp9kk1v1DAQhi1UREvpH-AUwYVLwF9J7BNChX5IlXqpxNFy7NmsV1l7sZ2K_Hu8SQWUA5Zlj-xn3vFY72t04oMHhN4S_JFgJj4lTnjb1Zg2dSMEp_X8Ap1RzElNOspO_opP0UVKO1wGk0Rw_gqdckwZ56w9Q1-_6wyx2ozucHB-qLS3Vd5CFX7OA_gKHsM4ZRd8FUGbJSjzCug9q7z2YdQzxPQGvdzoMcHF036OHq6-PVze1Hf317eXX-5qw6XIteW2kUC1NVYK0zIrbc87LPu2kdQajC3F0vS8x5uWSKwJUCCiNAdMc8nZObpdZW3QO3WIbq_jrIJ2ajkIcVA6ZmdGUBqMbcsCAnecSd2TjgumAfOuJXbR-rxqHaZ-D9aAz1GPz0Sf33i3VUN4VISWj2y6o8K7VSGk7FQyLoPZmuA9mKxo07alVoE-PJWJ4ccEKau9SwbGUXsIU1Ks9CkEY-SIvv8H3YUp-vKfC8UpJ92RoitlYkgpwub3kwlWR2Oo1RiqGEMtxlBzSWJrUiqwHyD-kf5P1i9mEbq4 |
Cites_doi | 10.1016/j.bpj.2012.11.3806 10.1021/jacs.2c11344 10.1021/jacs.6b11940 10.1146/annurev-physchem-040412-110138 10.1103/PhysRevLett.116.016101 10.1021/acs.jpca.3c04434 10.1016/j.minpro.2005.03.001 10.1201/9780367800482 10.1021/acs.chemrev.2c00130 10.1021/acs.chemmater.5b03707 10.1021/acs.jpclett.9b02156 10.1063/1.363258 10.1016/j.colsurfa.2004.11.025 10.1021/acs.jpcb.0c00560 10.1021/acs.jpcc.7b05563 10.1021/acs.jpcb.9b09341 10.1080/00268970110041218 10.1016/j.optmat.2016.07.017 10.1073/pnas.1906601116 10.1021/jacs.2c01830 10.1063/1.460025 10.1021/jp052913r 10.1021/jp3122819 10.1007/s00027-009-9191-5 10.1002/anie.202101783 10.1139/v68-637 10.1038/374625a0 10.1021/acs.jpcc.0c07901 10.1021/acs.jpcc.5b12453 10.1103/PhysRevB.94.195410 10.1021/j100131a004 10.1038/s41467-017-01088-0 10.1002/cssc.201000416 10.1126/sciadv.ado8536 10.1021/jacs.1c01977 10.1021/jacs.0c01366 10.1063/5.0226128 10.1002/eng2.12387 10.1039/D1SC01876K 10.1021/jacs.3c12934 10.1021/acscatal.0c03316 10.1126/science.aat4191 10.1038/s41563-023-01474-8 10.1021/acs.nanolett.6b04868 10.1016/0927-7757(94)02908-3 10.1038/ncomms11560 10.1021/acs.jpclett.0c02364 10.1063/1.433359 10.1021/jacs.3c09128 10.1038/s41560-017-0048-1 10.1039/D2SC05628C 10.1021/jp3113057 10.1039/C9SC05669F 10.1016/j.gca.2011.01.025 10.1021/jp500543z 10.1016/j.jcat.2017.02.001 10.1016/j.jelechem.2016.12.023 10.6084/m9.figshare.28592531.v1 10.1021/acs.jpclett.1c01103 10.1039/c3cp52592a 10.1021/nn305639z 10.1016/0301-7516(92)90075-8 10.1021/acs.jpcc.9b03054 10.1038/s41563-019-0356-x 10.1038/nchem.330 10.1021/acs.jpclett.1c01479 10.1529/biophysj.108.136507 10.1016/j.aca.2019.02.053 10.1038/ncomms13587 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Nature Publishing Group 2025 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Nature Publishing Group 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-025-58842-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central - New (Subscription) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_aecd6aece807439ab17483ae04761d94 PMC12000574 2566047 10_1038_s41467_025_58842_y |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c498t-d4d59e2adcd98c63d9db4709b6592dc00d209cb4b0f6190a1e2e18884e3a4943 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:52:45 EDT 2025 Thu Aug 21 18:30:56 EDT 2025 Mon May 26 02:33:35 EDT 2025 Fri Sep 05 17:37:57 EDT 2025 Sat Aug 23 12:42:37 EDT 2025 Tue Jul 01 05:04:30 EDT 2025 Thu May 22 04:28:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c498t-d4d59e2adcd98c63d9db4709b6592dc00d209cb4b0f6190a1e2e18884e3a4943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC05-76RL01830; SC0023342; FA9550-16-1-0379; CHE-2153191 National Science Foundation (NSF) PNNL-SA-208608 USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB) US Air Force Office of Scientific Research (AFOSR) |
ORCID | 0000-0002-8474-7720 0000-0003-3916-1672 0000-0003-4457-4594 0000-0002-7856-9147 0000-0001-8569-4045 0000-0002-5543-0812 0000000255430812 0000000185694045 0000000284747720 0000000278569147 0000000339161672 0000000344574594 |
OpenAccessLink | https://www.nature.com/articles/s41467-025-58842-y |
PMID | 40234436 |
PQID | 3190424177 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aecd6aece807439ab17483ae04761d94 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12000574 osti_scitechconnect_2566047 proquest_miscellaneous_3190883317 proquest_journals_3190424177 crossref_primary_10_1038_s41467_025_58842_y springer_journals_10_1038_s41467_025_58842_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-15 |
PublicationDateYYYYMMDD | 2025-04-15 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | M Ando (58842_CR59) 1995; 374 Y Yang (58842_CR15) 2008; 95 JM Lantz (58842_CR70) 1993; 97 S Nihonyanagi (58842_CR62) 2013; 64 AS Joy (58842_CR40) 1964; 229 MR Das (58842_CR39) 2005; 254 T Hashimoto (58842_CR58) 1996; 80 E Ma (58842_CR45) 2021; 12 S Chatman (58842_CR60) 2013; 15 PE Ohno (58842_CR49) 2016; 7 P Hapala (58842_CR16) 2016; 7 JL Bañuelos (58842_CR30) 2023; 123 D Strmcnik (58842_CR6) 2009; 1 Y Liu (58842_CR8) 2019; 2 AV Gubskaya (58842_CR54) 2001; 99 58842_CR67 J Li (58842_CR7) 2021; 60 B Rehl (58842_CR31) 2022; 144 B Klahr (58842_CR36) 2014; 118 A Ge (58842_CR27) 2017; 121 DS Jordan (58842_CR33) 2013; 117 HC Nguyen (58842_CR4) 2020; 11 P Xu (58842_CR12) 2024; 146 L Dalstein (58842_CR46) 2019; 10 SA Mulenko (58842_CR57) 2016; 60 P Xu (58842_CR69) 2020; 11 Y-C Wen (58842_CR48) 2016; 116 L Fumagalli (58842_CR64) 2018; 360 58842_CR17 SM Piontek (58842_CR26) 2020; 142 58842_CR37 SA Sorensen (58842_CR25) 2017; 139 W Yuhua (58842_CR43) 2005; 77 SC Riha (58842_CR1) 2013; 7 F Li (58842_CR3) 2021; 3 R Wang (58842_CR66) 2019; 123 N Garcia Rey (58842_CR28) 2017; 800 C-Y Li (58842_CR29) 2019; 18 58842_CR72 BF Levine (58842_CR53) 1976; 65 O Zandi (58842_CR35) 2015; 28 G Maroulis (58842_CR56) 1991; 94 MR Nellist (58842_CR13) 2018; 3 G Gonella (58842_CR50) 2016; 120 C Lütgebaucks (58842_CR55) 2016; 94 MD Boamah (58842_CR71) 2019; 116 Y Wang (58842_CR18) 2019; 1074 H Chang (58842_CR52) 2023; 127 P Xu (58842_CR68) 2023; 22 S Sarkar (58842_CR22) 2020; 124 MA Voinov (58842_CR19) 2013; 104 K Sivula (58842_CR9) 2011; 4 58842_CR2 S Baldelli (58842_CR24) 2005; 109 PE Ohno (58842_CR47) 2017; 8 F Zhao (58842_CR51) 2024; 161 JG Catalano (58842_CR65) 2011; 75 KH Saeed (58842_CR32) 2023; 14 QY Song (58842_CR41) 1992; 34 C Eggleston (58842_CR5) 2009; 71 M Mattei (58842_CR14) 2017; 17 SM Ahmed (58842_CR38) 1968; 46 H Chang (58842_CR44) 2020; 124 AH Shah (58842_CR10) 2024; 146 Z Futera (58842_CR11) 2021; 12 D Bhattacharya (58842_CR20) 2021; 12 JM Troiano (58842_CR34) 2013; 117 S Sarkar (58842_CR23) 2021; 143 Y Wang (58842_CR42) 1994; 90 CM Gunathunge (58842_CR21) 2020; 10 F Wei (58842_CR61) 2023; 145 R Speelman (58842_CR63) 2025; 11 |
References_xml | – volume: 104 start-page: 106 year: 2013 ident: 58842_CR19 publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.11.3806 – volume: 145 start-page: 8833 year: 2023 ident: 58842_CR61 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11344 – volume: 139 start-page: 2369 year: 2017 ident: 58842_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11940 – volume: 64 start-page: 579 year: 2013 ident: 58842_CR62 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040412-110138 – volume: 116 year: 2016 ident: 58842_CR48 publication-title: PRL doi: 10.1103/PhysRevLett.116.016101 – volume: 127 start-page: 8404 year: 2023 ident: 58842_CR52 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.3c04434 – volume: 77 start-page: 116 year: 2005 ident: 58842_CR43 publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2005.03.001 – ident: 58842_CR67 – ident: 58842_CR37 doi: 10.1201/9780367800482 – volume: 123 start-page: 6413 year: 2023 ident: 58842_CR30 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00130 – volume: 28 start-page: 765 year: 2015 ident: 58842_CR35 publication-title: Chem. Mat. doi: 10.1021/acs.chemmater.5b03707 – volume: 229 start-page: 5 year: 1964 ident: 58842_CR40 publication-title: Trans. AIME – volume: 10 start-page: 5200 year: 2019 ident: 58842_CR46 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02156 – volume: 80 start-page: 3184 year: 1996 ident: 58842_CR58 publication-title: J. Appl. Phys. doi: 10.1063/1.363258 – volume: 254 start-page: 49 year: 2005 ident: 58842_CR39 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2004.11.025 – volume: 124 start-page: 1311 year: 2020 ident: 58842_CR22 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c00560 – volume: 121 start-page: 18674 year: 2017 ident: 58842_CR27 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b05563 – volume: 124 start-page: 641 year: 2020 ident: 58842_CR44 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b09341 – volume: 99 start-page: 1107 year: 2001 ident: 58842_CR54 publication-title: Mol. Phys. doi: 10.1080/00268970110041218 – volume: 60 start-page: 123 year: 2016 ident: 58842_CR57 publication-title: Opt. Mat. doi: 10.1016/j.optmat.2016.07.017 – volume: 116 start-page: 16210 year: 2019 ident: 58842_CR71 publication-title: PNAS doi: 10.1073/pnas.1906601116 – volume: 144 start-page: 16338 year: 2022 ident: 58842_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01830 – volume: 94 start-page: 1182 year: 1991 ident: 58842_CR56 publication-title: J. Chem. Phys. doi: 10.1063/1.460025 – volume: 109 start-page: 13049 year: 2005 ident: 58842_CR24 publication-title: J. Phys. Chem. B doi: 10.1021/jp052913r – volume: 117 start-page: 5146 year: 2013 ident: 58842_CR34 publication-title: J. Phys. Chem. C. doi: 10.1021/jp3122819 – volume: 71 start-page: 151 year: 2009 ident: 58842_CR5 publication-title: Aquat. Sci. doi: 10.1007/s00027-009-9191-5 – volume: 60 start-page: 18380 year: 2021 ident: 58842_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101783 – volume: 46 start-page: 3841 year: 1968 ident: 58842_CR38 publication-title: Can. J. Chem. doi: 10.1139/v68-637 – volume: 374 start-page: 625 year: 1995 ident: 58842_CR59 publication-title: Nature doi: 10.1038/374625a0 – ident: 58842_CR17 doi: 10.1021/acs.jpcc.0c07901 – volume: 120 start-page: 9165 year: 2016 ident: 58842_CR50 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b12453 – volume: 94 year: 2016 ident: 58842_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.195410 – volume: 97 start-page: 7392 year: 1993 ident: 58842_CR70 publication-title: J. Phys. Chem. doi: 10.1021/j100131a004 – volume: 8 year: 2017 ident: 58842_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01088-0 – volume: 4 start-page: 432 year: 2011 ident: 58842_CR9 publication-title: ChemSusChem doi: 10.1002/cssc.201000416 – volume: 11 year: 2025 ident: 58842_CR63 publication-title: Sci. Adv. doi: 10.1126/sciadv.ado8536 – volume: 143 start-page: 8381 year: 2021 ident: 58842_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01977 – volume: 142 start-page: 12096 year: 2020 ident: 58842_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01366 – volume: 161 start-page: 094703 year: 2024 ident: 58842_CR51 publication-title: J. Chem. Phys. doi: 10.1063/5.0226128 – volume: 3 start-page: e12387 year: 2021 ident: 58842_CR3 publication-title: Eng. Rep. doi: 10.1002/eng2.12387 – volume: 12 start-page: 10131 year: 2021 ident: 58842_CR20 publication-title: Chem. Sci. doi: 10.1039/D1SC01876K – volume: 146 start-page: 9623 year: 2024 ident: 58842_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c12934 – volume: 10 start-page: 11700 year: 2020 ident: 58842_CR21 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03316 – volume: 360 start-page: 1339 year: 2018 ident: 58842_CR64 publication-title: Science doi: 10.1126/science.aat4191 – volume: 22 start-page: 503 year: 2023 ident: 58842_CR68 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01474-8 – volume: 17 start-page: 590 year: 2017 ident: 58842_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04868 – volume: 90 start-page: 117 year: 1994 ident: 58842_CR42 publication-title: Colloids Surf. A doi: 10.1016/0927-7757(94)02908-3 – volume: 7 year: 2016 ident: 58842_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms11560 – volume: 11 start-page: 8216 year: 2020 ident: 58842_CR69 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02364 – volume: 2 start-page: 6825 year: 2019 ident: 58842_CR8 publication-title: ACS Appl Mater. Inter – volume: 65 start-page: 2429 year: 1976 ident: 58842_CR53 publication-title: J. Chem. Phys. doi: 10.1063/1.433359 – volume: 146 start-page: 2426 year: 2024 ident: 58842_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c09128 – volume: 3 start-page: 46 year: 2018 ident: 58842_CR13 publication-title: Nat. Energy doi: 10.1038/s41560-017-0048-1 – volume: 14 start-page: 3182 year: 2023 ident: 58842_CR32 publication-title: Chem. Sci. doi: 10.1039/D2SC05628C – volume: 117 start-page: 4040 year: 2013 ident: 58842_CR33 publication-title: J. Phys. Chem. C. doi: 10.1021/jp3113057 – volume: 11 start-page: 2464 year: 2020 ident: 58842_CR4 publication-title: Chem. Sci. doi: 10.1039/C9SC05669F – volume: 75 start-page: 2062 year: 2011 ident: 58842_CR65 publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2011.01.025 – volume: 118 start-page: 10393 year: 2014 ident: 58842_CR36 publication-title: J. Phys. Chem. C. doi: 10.1021/jp500543z – ident: 58842_CR2 doi: 10.1016/j.jcat.2017.02.001 – volume: 800 start-page: 114 year: 2017 ident: 58842_CR28 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.12.023 – ident: 58842_CR72 doi: 10.6084/m9.figshare.28592531.v1 – volume: 12 start-page: 5649 year: 2021 ident: 58842_CR45 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c01103 – volume: 15 start-page: 13911 year: 2013 ident: 58842_CR60 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52592a – volume: 7 start-page: 2396 year: 2013 ident: 58842_CR1 publication-title: ACS Nano doi: 10.1021/nn305639z – volume: 34 start-page: 219 year: 1992 ident: 58842_CR41 publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(92)90075-8 – volume: 123 start-page: 15618 year: 2019 ident: 58842_CR66 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b03054 – volume: 18 start-page: 697 year: 2019 ident: 58842_CR29 publication-title: Nat. Mat. doi: 10.1038/s41563-019-0356-x – volume: 1 start-page: 466 year: 2009 ident: 58842_CR6 publication-title: Nat. Chem. doi: 10.1038/nchem.330 – volume: 12 start-page: 6818 year: 2021 ident: 58842_CR11 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c01479 – volume: 95 start-page: 5193 year: 2008 ident: 58842_CR15 publication-title: Biophys. J. doi: 10.1529/biophysj.108.136507 – volume: 1074 start-page: 1 year: 2019 ident: 58842_CR18 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.02.053 – volume: 7 year: 2016 ident: 58842_CR49 publication-title: Nat. Commun. doi: 10.1038/ncomms13587 |
SSID | ssj0000391844 |
Score | 2.47862 |
Snippet | Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited... Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited... Abstract Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited... |
SourceID | doaj pubmedcentral osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3585 |
SubjectTerms | 140/125 639/638/161 639/638/440/94 639/638/542 Amplitudes Dipoles Electrodes Evolution Ferric oxide Hematite Humanities and Social Sciences multidisciplinary Oxidation Oxygen Oxygen atoms Oxygen evolution reactions pH effects Phase measurement Photoanodes Photoelectric effect Science Science (multidisciplinary) Water Water chemistry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ9aqRPCmi8km2yZHX0U86KWit5DXqiBb0Sr23zuT3VZXEC9C2cImsOGbPL5hMt8Qss90WThnXRa4C5nkscjAjWCZzVV0jiuvynRB9qp3cSMv74q7b6W-8E5YLQ9cA3dkow89eERUbRHaOqDQStjIJDjgQSclUKbZN2cq7cFCg-simywZJtTRq0x7AlZvxdzMPJu0TqIk2A9_I1hYLbL586rkj3hpOoYGy2Sp4Y_0uB73CpmL1SpZqCtKTtbI2S1wxxdaPiXdhXtqq0CB4tHRxwRmCo3vzUyjwBVTRgOF3yDm14JWtgI3Fxn4OhkOzoenF1lTKCHzUqtxFmQodMxt8EEr3xNBByf7TDuMmQbPWACIvJOOleAvMctjHjm4vjIKK7UUG2S-GlVxk1DFvOfMwQkWoZWX1gI9KK0HFzqX4Lt1yMEUM_Ncy2GYFMYWytQIG0DYJITNpENOENZZT5SyTi_AwKYxsPnLwB3SRaMYYAQoa-vx_o8fG6BqPejSIdtTW5lm9b0a2FYwosv70Lw3a4Z1g8EQW8XRW90HCy1z6KNaNm4Nt91SPT4kBW6OCU5FH8Z2OJ0OX1__HY-t_8CjSxZznMWoN1lsk_nxy1vcAWI0drtpDXwCrRsKWA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRP3FtlQi-aWiSze4mT-LXWXzQl4p9C_naWpDdenctvf_emWzuyhYUjj3YBDZMJslvMjO_IeQ1N33jvfMsCh-ZEqlhYEZw5qRO3gsddJ8DZL-1Rz_U15PmpFy4rUpY5XZPzBt1HAPekR-CqqCXTnTdu_M_DKtGoXe1lNC4Te4ICWctZoovvuzuWJD9XCtVcmV4rQ9XKu8MWMMVMzQl28zOo0zbD38jLK8Z5LwZMHnDa5oPo8UDcr-gSPp-mvaH5FYaHpG7U13JzWPy6ScgyCXtf2f2hVPqhkgB6NHxagP6QtNl0TcKiDHnNVD4LZL8XtPBDWDsIg5_Qo4Xn48_HrFSLoEFZfSaRRUbk6SLIRod2jqa6FXHjUfPaQycR8lN8MrzHqwm7kSSSYABrFLtlFH1U7I3jEN6RqjmIQju4RxL0Cp65wAk9C6AIS0VWHAVebOVmT2fSDFsdmbX2k4StiBhmyVsNxX5gGLd9URC6_xiXJ7asj6sSyG28EhIzlMb58FS0rVLXHWtiEZVZB8nxQIuQHLbgFFAYW0BsLXQpSIH27myZQ2u7LXGVOTVrhlWD7pE3JDGi6kPllsW0EfP5ng23HnLcPYr83ALTHNqOhjb2606XH_93_J4_v_B7pN7EvUT-SSbA7K3Xl6kFwB81v5l1u6_m8kBVQ priority: 102 providerName: ProQuest |
Title | Water flipping and the oxygen evolution reaction on Fe2O3 nanolayers |
URI | https://link.springer.com/article/10.1038/s41467-025-58842-y https://www.proquest.com/docview/3190424177 https://www.proquest.com/docview/3190883317 https://www.osti.gov/servlets/purl/2566047 https://pubmed.ncbi.nlm.nih.gov/PMC12000574 https://doaj.org/article/aecd6aece807439ab17483ae04761d94 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBL6ZNuky4q9NaaSrJsS8dNmk3YQ1ralO5N6OW0UOyy2ZTuv-9Itrc4JIeAscEaYzHSWN94Zj4BvKWqLqw1NvPM-kywUGToRtDMcBmsZdLJOiXInpdn38RiWSx3gA-1MClpP1Faps_0kB324Uokk46br8bSSp5tdmFfVrhaxgBtebz9rxIZz6UQfX0MzeUtj47WoETVj5cWTWoEM28mSd6IlKYFaP4YHvXIkcy6vj6BndA8hQfdXpKbZ_DxO6LGFal_JcaFS2IaTxDckfbvBucICX_6OUYQJaZaBoLHPPBPOWlMgw5uxN7P4WJ-cnF8lvVbJGROKLnOvPCFCtx455V0Ze6Vt6KiysZoqXeUek6Vs8LSGj0laljggaHTK0JuhBL5C9hr2ia8BCKpc4xaXLsCtrLaGAQGtXHoPHOBXtsE3g060787IgydAti51J2GNWpYJw3rzQSOolq3kpHEOt1oV5e6H1RtgvMlnkIk5MmVsegdydwEKqqSeSUmcBAHRSMWiIS2Lmb-uLVGkFaiyAQOh7HSvd1dafygxFguq7D5zbYZLSaGQUwT2utOJm6xzFBGjsZ41N1xS_PzR-LeZrG0qaiwb--H6fD_7Xfr49X9xA_gIY_zNXJKFoewt15dh9cIftZ2CrvVssKznJ9OYX82W3xd4PXo5Pzzl2myhGn6rfAPn5AFqw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxFULG2AkeIJoduwkzgNCwCgdG-OliL1ZvmUgoWS0HZAfxX_kHCfp1EnwNqlqpdpqrePv2N_JuRHylFV1bq2xqefWp5KHPAUzgqUmU8FarpyqY4DsUTH9LD8c58cb5M-YC4NhleOZGA9q3zp8Rr4LUEEvHS_LV6c_Uuwahd7VsYVGD4uD0P0Ck23xcn8P9vdZlk3ezd5O06GrQOpkpZaplz6vQma885VyhfCVt7JklUUHo3eM-YxVzkrLajAumOEhCxzsRBmEkZUU8LNXyFUphMAIQjV5v3qkg8XWlZRDag4Tanch40GELWMxITRLu7XrL3YJgI8WtHmN4V6Mz7zgpI133-QWuTmQVvq6R9ltshGaO-Ra38ayu0v2vgBhndP6eyz2cEJN4ynwStr-7gCeNPwc4E2BoMY0CgqvScg-CdqYBmxrpP33yOwy5HifbDZtE7YIVcw5zixcmwFGeW0McJLaOLDbMwkGY0KejzLTp30NDh1950LpXsIaJKyjhHWXkDco1tVMrJ8dv2jnJ3pQR22C8wW8BawFJCpjwTBTwgQmy4L7SiZkGzdFAw3BWroOg47cUgM_LGBKQnbGvdKDyi_0OUAT8mQ1DMqKHhjThPasn4PdnTnMUWt7vLbc9ZHm29dY9ptjVlVewtpejHA4__d_y-PB_xf7mFyfzj4e6sP9o4NtciNDrGIpy3yHbC7nZ-EhcK6lfRSRTom-ZM36C87OPas |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxFXLNsBI8ATRbMdJnAeEgFJtDA0ehuib5VsGEkq2tgPy0_h3nOMknToJ3iZVrVRbrXX8Hft8OTdCnrGqzq01NvXc-lTykKdAI1hqhArWcuVUHQNkj4r9L_LDLJ9tkD9jLgyGVY5nYjyofevwGfkeQAW9dFgsqR7CIj5Ppq9Pz1LsIIWe1rGdRg-Rw9D9Avq2eHUwgb1-LsT0_fG7_XToMJA6Wall6qXPqyCMd75Srsh85a0sWWXR2egdY16wyllpWQ1EgxkeRODAGWXIjKxkBj97jVwvMymxa0Q5K1ePd7DwupJySNNhmdpbyHgoYftYTA4Vabd2FcaOAfDRgmavWbuXYzUvOWzjPTi9Q24PBix90yPuLtkIzT1yo29p2d0nk69gvM5p_SMWfjihpvEUbEza_u4AqjT8HKBOwViNKRUUXtMgPmW0MQ3wbKQAD8jxVcjxIdls2iZsEaqYc5xZuEIDjPLaGLBPauOAwwsJ5DEhL0aZ6dO-HoeOfvRM6V7CGiSso4R1l5C3KNbVTKylHb9o5yd6UE1tgvMFvAWsC5RVxgJJU5kJTJYF95VMyA5uigaTBOvqOgxAcksNtmIBUxKyO-6VHtR_oS_AmpCnq2FQXPTGmCa05_0c7PTMYY5a2-O15a6PNN-_xRLgHDOs8hLW9nKEw8W__1se2_9f7BNyE3RKfzw4OtwhtwRCFata5rtkczk_D4_A_FraxxHolOgrVqy_hrVB3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+flipping+and+the+oxygen+evolution+reaction+on+Fe2O3+nanolayers&rft.jtitle=Nature+communications&rft.au=Speelman%2C+Raiden&rft.au=Marker%2C+Ezra+J.&rft.au=Boamah%2C+Mavis+D.&rft.au=Kupferberg%2C+Jacob&rft.date=2025-04-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-58842-y&rft_id=info%3Apmid%2F40234436&rft.externalDocID=PMC12000574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |