Water flipping and the oxygen evolution reaction on Fe2O3 nanolayers

Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 3585 - 9
Main Authors Speelman, Raiden, Marker, Ezra J., Boamah, Mavis D., Kupferberg, Jacob, Bye, Justin Z., Engelhard, Mark, Zhao, Yatong, Martinson, Alex B. F., Rosso, Kevin M., Geiger, Franz M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-58842-y

Cover

Abstract Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol -1 ) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol -1 . Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter. Using second harmonic amplitude and phase measurements the authors characterize the alignment of water molecules in the Stern-layer and the work associated with water flipping on hematite electrodes, suggesting a causal relationship between water flipping and the oxygen evolution reaction overpotential.
AbstractList Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter.
Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol -1 ) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol -1 . Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter. Using second harmonic amplitude and phase measurements the authors characterize the alignment of water molecules in the Stern-layer and the work associated with water flipping on hematite electrodes, suggesting a causal relationship between water flipping and the oxygen evolution reaction overpotential.
Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter.Using second harmonic amplitude and phase measurements the authors characterize the alignment of water molecules in the Stern-layer and the work associated with water flipping on hematite electrodes, suggesting a causal relationship between water flipping and the oxygen evolution reaction overpotential.
Abstract Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter.
Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter.Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited photocurrent make them economically unviable at present. The work needed to orient dipoles at an electrode surface may be an overlooked contribution to the overpotential, especially regarding dipoles of water, the electron source in the oxygen evolution reaction (OER). Here, we employ second harmonic amplitude and phase measurements to quantify the number of net-aligned Stern layer water molecules and the work associated with water flipping, on hematite, an earth abundant OER semiconductor associated with a high overpotential. At zero applied bias, the pH-dependent potentials for Stern layer water molecule flipping exhibit Nernstian behavior. At positive applied potentials and pH 13, approximately one to two monolayers of water molecules points the oxygen atoms towards the electrode, favorable for the OER. The work associated with water flipping matches the cohesive energy of liquid water (44 kJ mol-1) and the OER current density is highest. This current is negligible at pH 5, where the work approaches 100 kJ mol-1. Our findings suggest a causal relationship between the need for Stern layer water flipping and the OER overpotential, which may lead to developing strategies for decreasing the latter.
ArticleNumber 3585
Author Rosso, Kevin M.
Martinson, Alex B. F.
Boamah, Mavis D.
Kupferberg, Jacob
Bye, Justin Z.
Zhao, Yatong
Geiger, Franz M.
Speelman, Raiden
Marker, Ezra J.
Engelhard, Mark
Author_xml – sequence: 1
  givenname: Raiden
  orcidid: 0000-0002-7856-9147
  surname: Speelman
  fullname: Speelman, Raiden
  organization: Department of Chemistry, Northwestern University
– sequence: 2
  givenname: Ezra J.
  surname: Marker
  fullname: Marker, Ezra J.
  organization: Department of Chemistry, Northwestern University
– sequence: 3
  givenname: Mavis D.
  orcidid: 0000-0003-4457-4594
  surname: Boamah
  fullname: Boamah, Mavis D.
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Jacob
  surname: Kupferberg
  fullname: Kupferberg, Jacob
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 5
  givenname: Justin Z.
  surname: Bye
  fullname: Bye, Justin Z.
  organization: Department of Chemistry, Northwestern University
– sequence: 6
  givenname: Mark
  orcidid: 0000-0002-5543-0812
  surname: Engelhard
  fullname: Engelhard, Mark
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Yatong
  surname: Zhao
  fullname: Zhao, Yatong
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Alex B. F.
  orcidid: 0000-0003-3916-1672
  surname: Martinson
  fullname: Martinson, Alex B. F.
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 9
  givenname: Kevin M.
  orcidid: 0000-0002-8474-7720
  surname: Rosso
  fullname: Rosso, Kevin M.
  organization: Pacific Northwest National Laboratory
– sequence: 10
  givenname: Franz M.
  orcidid: 0000-0001-8569-4045
  surname: Geiger
  fullname: Geiger, Franz M.
  email: f-geiger@northwestern.edu
  organization: Department of Chemistry, Northwestern University
BackLink https://www.osti.gov/servlets/purl/2566047$$D View this record in Osti.gov
BookMark eNp9kk1v1DAQhi1UREvpH-AUwYVLwF9J7BNChX5IlXqpxNFy7NmsV1l7sZ2K_Hu8SQWUA5Zlj-xn3vFY72t04oMHhN4S_JFgJj4lTnjb1Zg2dSMEp_X8Ap1RzElNOspO_opP0UVKO1wGk0Rw_gqdckwZ56w9Q1-_6wyx2ozucHB-qLS3Vd5CFX7OA_gKHsM4ZRd8FUGbJSjzCug9q7z2YdQzxPQGvdzoMcHF036OHq6-PVze1Hf317eXX-5qw6XIteW2kUC1NVYK0zIrbc87LPu2kdQajC3F0vS8x5uWSKwJUCCiNAdMc8nZObpdZW3QO3WIbq_jrIJ2ajkIcVA6ZmdGUBqMbcsCAnecSd2TjgumAfOuJXbR-rxqHaZ-D9aAz1GPz0Sf33i3VUN4VISWj2y6o8K7VSGk7FQyLoPZmuA9mKxo07alVoE-PJWJ4ccEKau9SwbGUXsIU1Ks9CkEY-SIvv8H3YUp-vKfC8UpJ92RoitlYkgpwub3kwlWR2Oo1RiqGEMtxlBzSWJrUiqwHyD-kf5P1i9mEbq4
Cites_doi 10.1016/j.bpj.2012.11.3806
10.1021/jacs.2c11344
10.1021/jacs.6b11940
10.1146/annurev-physchem-040412-110138
10.1103/PhysRevLett.116.016101
10.1021/acs.jpca.3c04434
10.1016/j.minpro.2005.03.001
10.1201/9780367800482
10.1021/acs.chemrev.2c00130
10.1021/acs.chemmater.5b03707
10.1021/acs.jpclett.9b02156
10.1063/1.363258
10.1016/j.colsurfa.2004.11.025
10.1021/acs.jpcb.0c00560
10.1021/acs.jpcc.7b05563
10.1021/acs.jpcb.9b09341
10.1080/00268970110041218
10.1016/j.optmat.2016.07.017
10.1073/pnas.1906601116
10.1021/jacs.2c01830
10.1063/1.460025
10.1021/jp052913r
10.1021/jp3122819
10.1007/s00027-009-9191-5
10.1002/anie.202101783
10.1139/v68-637
10.1038/374625a0
10.1021/acs.jpcc.0c07901
10.1021/acs.jpcc.5b12453
10.1103/PhysRevB.94.195410
10.1021/j100131a004
10.1038/s41467-017-01088-0
10.1002/cssc.201000416
10.1126/sciadv.ado8536
10.1021/jacs.1c01977
10.1021/jacs.0c01366
10.1063/5.0226128
10.1002/eng2.12387
10.1039/D1SC01876K
10.1021/jacs.3c12934
10.1021/acscatal.0c03316
10.1126/science.aat4191
10.1038/s41563-023-01474-8
10.1021/acs.nanolett.6b04868
10.1016/0927-7757(94)02908-3
10.1038/ncomms11560
10.1021/acs.jpclett.0c02364
10.1063/1.433359
10.1021/jacs.3c09128
10.1038/s41560-017-0048-1
10.1039/D2SC05628C
10.1021/jp3113057
10.1039/C9SC05669F
10.1016/j.gca.2011.01.025
10.1021/jp500543z
10.1016/j.jcat.2017.02.001
10.1016/j.jelechem.2016.12.023
10.6084/m9.figshare.28592531.v1
10.1021/acs.jpclett.1c01103
10.1039/c3cp52592a
10.1021/nn305639z
10.1016/0301-7516(92)90075-8
10.1021/acs.jpcc.9b03054
10.1038/s41563-019-0356-x
10.1038/nchem.330
10.1021/acs.jpclett.1c01479
10.1529/biophysj.108.136507
10.1016/j.aca.2019.02.053
10.1038/ncomms13587
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Nature Publishing Group 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Nature Publishing Group 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-025-58842-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central - New (Subscription)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_aecd6aece807439ab17483ae04761d94
PMC12000574
2566047
10_1038_s41467_025_58842_y
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c498t-d4d59e2adcd98c63d9db4709b6592dc00d209cb4b0f6190a1e2e18884e3a4943
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 00:52:45 EDT 2025
Thu Aug 21 18:30:56 EDT 2025
Mon May 26 02:33:35 EDT 2025
Fri Sep 05 17:37:57 EDT 2025
Sat Aug 23 12:42:37 EDT 2025
Tue Jul 01 05:04:30 EDT 2025
Thu May 22 04:28:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-d4d59e2adcd98c63d9db4709b6592dc00d209cb4b0f6190a1e2e18884e3a4943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC05-76RL01830; SC0023342; FA9550-16-1-0379; CHE-2153191
National Science Foundation (NSF)
PNNL-SA-208608
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB)
US Air Force Office of Scientific Research (AFOSR)
ORCID 0000-0002-8474-7720
0000-0003-3916-1672
0000-0003-4457-4594
0000-0002-7856-9147
0000-0001-8569-4045
0000-0002-5543-0812
0000000255430812
0000000185694045
0000000284747720
0000000278569147
0000000339161672
0000000344574594
OpenAccessLink https://www.nature.com/articles/s41467-025-58842-y
PMID 40234436
PQID 3190424177
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_aecd6aece807439ab17483ae04761d94
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12000574
osti_scitechconnect_2566047
proquest_miscellaneous_3190883317
proquest_journals_3190424177
crossref_primary_10_1038_s41467_025_58842_y
springer_journals_10_1038_s41467_025_58842_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References M Ando (58842_CR59) 1995; 374
Y Yang (58842_CR15) 2008; 95
JM Lantz (58842_CR70) 1993; 97
S Nihonyanagi (58842_CR62) 2013; 64
AS Joy (58842_CR40) 1964; 229
MR Das (58842_CR39) 2005; 254
T Hashimoto (58842_CR58) 1996; 80
E Ma (58842_CR45) 2021; 12
S Chatman (58842_CR60) 2013; 15
PE Ohno (58842_CR49) 2016; 7
P Hapala (58842_CR16) 2016; 7
JL Bañuelos (58842_CR30) 2023; 123
D Strmcnik (58842_CR6) 2009; 1
Y Liu (58842_CR8) 2019; 2
AV Gubskaya (58842_CR54) 2001; 99
58842_CR67
J Li (58842_CR7) 2021; 60
B Rehl (58842_CR31) 2022; 144
B Klahr (58842_CR36) 2014; 118
A Ge (58842_CR27) 2017; 121
DS Jordan (58842_CR33) 2013; 117
HC Nguyen (58842_CR4) 2020; 11
P Xu (58842_CR12) 2024; 146
L Dalstein (58842_CR46) 2019; 10
SA Mulenko (58842_CR57) 2016; 60
P Xu (58842_CR69) 2020; 11
Y-C Wen (58842_CR48) 2016; 116
L Fumagalli (58842_CR64) 2018; 360
58842_CR17
SM Piontek (58842_CR26) 2020; 142
58842_CR37
SA Sorensen (58842_CR25) 2017; 139
W Yuhua (58842_CR43) 2005; 77
SC Riha (58842_CR1) 2013; 7
F Li (58842_CR3) 2021; 3
R Wang (58842_CR66) 2019; 123
N Garcia Rey (58842_CR28) 2017; 800
C-Y Li (58842_CR29) 2019; 18
58842_CR72
BF Levine (58842_CR53) 1976; 65
O Zandi (58842_CR35) 2015; 28
G Maroulis (58842_CR56) 1991; 94
MR Nellist (58842_CR13) 2018; 3
G Gonella (58842_CR50) 2016; 120
C Lütgebaucks (58842_CR55) 2016; 94
MD Boamah (58842_CR71) 2019; 116
Y Wang (58842_CR18) 2019; 1074
H Chang (58842_CR52) 2023; 127
P Xu (58842_CR68) 2023; 22
S Sarkar (58842_CR22) 2020; 124
MA Voinov (58842_CR19) 2013; 104
K Sivula (58842_CR9) 2011; 4
58842_CR2
S Baldelli (58842_CR24) 2005; 109
PE Ohno (58842_CR47) 2017; 8
F Zhao (58842_CR51) 2024; 161
JG Catalano (58842_CR65) 2011; 75
KH Saeed (58842_CR32) 2023; 14
QY Song (58842_CR41) 1992; 34
C Eggleston (58842_CR5) 2009; 71
M Mattei (58842_CR14) 2017; 17
SM Ahmed (58842_CR38) 1968; 46
H Chang (58842_CR44) 2020; 124
AH Shah (58842_CR10) 2024; 146
Z Futera (58842_CR11) 2021; 12
D Bhattacharya (58842_CR20) 2021; 12
JM Troiano (58842_CR34) 2013; 117
S Sarkar (58842_CR23) 2021; 143
Y Wang (58842_CR42) 1994; 90
CM Gunathunge (58842_CR21) 2020; 10
F Wei (58842_CR61) 2023; 145
R Speelman (58842_CR63) 2025; 11
References_xml – volume: 104
  start-page: 106
  year: 2013
  ident: 58842_CR19
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.11.3806
– volume: 145
  start-page: 8833
  year: 2023
  ident: 58842_CR61
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11344
– volume: 139
  start-page: 2369
  year: 2017
  ident: 58842_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11940
– volume: 64
  start-page: 579
  year: 2013
  ident: 58842_CR62
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040412-110138
– volume: 116
  year: 2016
  ident: 58842_CR48
  publication-title: PRL
  doi: 10.1103/PhysRevLett.116.016101
– volume: 127
  start-page: 8404
  year: 2023
  ident: 58842_CR52
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.3c04434
– volume: 77
  start-page: 116
  year: 2005
  ident: 58842_CR43
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2005.03.001
– ident: 58842_CR67
– ident: 58842_CR37
  doi: 10.1201/9780367800482
– volume: 123
  start-page: 6413
  year: 2023
  ident: 58842_CR30
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00130
– volume: 28
  start-page: 765
  year: 2015
  ident: 58842_CR35
  publication-title: Chem. Mat.
  doi: 10.1021/acs.chemmater.5b03707
– volume: 229
  start-page: 5
  year: 1964
  ident: 58842_CR40
  publication-title: Trans. AIME
– volume: 10
  start-page: 5200
  year: 2019
  ident: 58842_CR46
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02156
– volume: 80
  start-page: 3184
  year: 1996
  ident: 58842_CR58
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363258
– volume: 254
  start-page: 49
  year: 2005
  ident: 58842_CR39
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2004.11.025
– volume: 124
  start-page: 1311
  year: 2020
  ident: 58842_CR22
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c00560
– volume: 121
  start-page: 18674
  year: 2017
  ident: 58842_CR27
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b05563
– volume: 124
  start-page: 641
  year: 2020
  ident: 58842_CR44
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b09341
– volume: 99
  start-page: 1107
  year: 2001
  ident: 58842_CR54
  publication-title: Mol. Phys.
  doi: 10.1080/00268970110041218
– volume: 60
  start-page: 123
  year: 2016
  ident: 58842_CR57
  publication-title: Opt. Mat.
  doi: 10.1016/j.optmat.2016.07.017
– volume: 116
  start-page: 16210
  year: 2019
  ident: 58842_CR71
  publication-title: PNAS
  doi: 10.1073/pnas.1906601116
– volume: 144
  start-page: 16338
  year: 2022
  ident: 58842_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01830
– volume: 94
  start-page: 1182
  year: 1991
  ident: 58842_CR56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460025
– volume: 109
  start-page: 13049
  year: 2005
  ident: 58842_CR24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052913r
– volume: 117
  start-page: 5146
  year: 2013
  ident: 58842_CR34
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp3122819
– volume: 71
  start-page: 151
  year: 2009
  ident: 58842_CR5
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-009-9191-5
– volume: 60
  start-page: 18380
  year: 2021
  ident: 58842_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101783
– volume: 46
  start-page: 3841
  year: 1968
  ident: 58842_CR38
  publication-title: Can. J. Chem.
  doi: 10.1139/v68-637
– volume: 374
  start-page: 625
  year: 1995
  ident: 58842_CR59
  publication-title: Nature
  doi: 10.1038/374625a0
– ident: 58842_CR17
  doi: 10.1021/acs.jpcc.0c07901
– volume: 120
  start-page: 9165
  year: 2016
  ident: 58842_CR50
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b12453
– volume: 94
  year: 2016
  ident: 58842_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.195410
– volume: 97
  start-page: 7392
  year: 1993
  ident: 58842_CR70
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100131a004
– volume: 8
  year: 2017
  ident: 58842_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01088-0
– volume: 4
  start-page: 432
  year: 2011
  ident: 58842_CR9
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000416
– volume: 11
  year: 2025
  ident: 58842_CR63
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.ado8536
– volume: 143
  start-page: 8381
  year: 2021
  ident: 58842_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01977
– volume: 142
  start-page: 12096
  year: 2020
  ident: 58842_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01366
– volume: 161
  start-page: 094703
  year: 2024
  ident: 58842_CR51
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0226128
– volume: 3
  start-page: e12387
  year: 2021
  ident: 58842_CR3
  publication-title: Eng. Rep.
  doi: 10.1002/eng2.12387
– volume: 12
  start-page: 10131
  year: 2021
  ident: 58842_CR20
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC01876K
– volume: 146
  start-page: 9623
  year: 2024
  ident: 58842_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c12934
– volume: 10
  start-page: 11700
  year: 2020
  ident: 58842_CR21
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03316
– volume: 360
  start-page: 1339
  year: 2018
  ident: 58842_CR64
  publication-title: Science
  doi: 10.1126/science.aat4191
– volume: 22
  start-page: 503
  year: 2023
  ident: 58842_CR68
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01474-8
– volume: 17
  start-page: 590
  year: 2017
  ident: 58842_CR14
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04868
– volume: 90
  start-page: 117
  year: 1994
  ident: 58842_CR42
  publication-title: Colloids Surf. A
  doi: 10.1016/0927-7757(94)02908-3
– volume: 7
  year: 2016
  ident: 58842_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11560
– volume: 11
  start-page: 8216
  year: 2020
  ident: 58842_CR69
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02364
– volume: 2
  start-page: 6825
  year: 2019
  ident: 58842_CR8
  publication-title: ACS Appl Mater. Inter
– volume: 65
  start-page: 2429
  year: 1976
  ident: 58842_CR53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.433359
– volume: 146
  start-page: 2426
  year: 2024
  ident: 58842_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c09128
– volume: 3
  start-page: 46
  year: 2018
  ident: 58842_CR13
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0048-1
– volume: 14
  start-page: 3182
  year: 2023
  ident: 58842_CR32
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC05628C
– volume: 117
  start-page: 4040
  year: 2013
  ident: 58842_CR33
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp3113057
– volume: 11
  start-page: 2464
  year: 2020
  ident: 58842_CR4
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05669F
– volume: 75
  start-page: 2062
  year: 2011
  ident: 58842_CR65
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.01.025
– volume: 118
  start-page: 10393
  year: 2014
  ident: 58842_CR36
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp500543z
– ident: 58842_CR2
  doi: 10.1016/j.jcat.2017.02.001
– volume: 800
  start-page: 114
  year: 2017
  ident: 58842_CR28
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.12.023
– ident: 58842_CR72
  doi: 10.6084/m9.figshare.28592531.v1
– volume: 12
  start-page: 5649
  year: 2021
  ident: 58842_CR45
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c01103
– volume: 15
  start-page: 13911
  year: 2013
  ident: 58842_CR60
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52592a
– volume: 7
  start-page: 2396
  year: 2013
  ident: 58842_CR1
  publication-title: ACS Nano
  doi: 10.1021/nn305639z
– volume: 34
  start-page: 219
  year: 1992
  ident: 58842_CR41
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(92)90075-8
– volume: 123
  start-page: 15618
  year: 2019
  ident: 58842_CR66
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b03054
– volume: 18
  start-page: 697
  year: 2019
  ident: 58842_CR29
  publication-title: Nat. Mat.
  doi: 10.1038/s41563-019-0356-x
– volume: 1
  start-page: 466
  year: 2009
  ident: 58842_CR6
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.330
– volume: 12
  start-page: 6818
  year: 2021
  ident: 58842_CR11
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c01479
– volume: 95
  start-page: 5193
  year: 2008
  ident: 58842_CR15
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.136507
– volume: 1074
  start-page: 1
  year: 2019
  ident: 58842_CR18
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.02.053
– volume: 7
  year: 2016
  ident: 58842_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13587
SSID ssj0000391844
Score 2.47862
Snippet Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited...
Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited...
Abstract Hematite photoanodes are promising for the oxygen evolution reaction, however, their high overpotential (0.5-0.6 V) for water oxidation and limited...
SourceID doaj
pubmedcentral
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3585
SubjectTerms 140/125
639/638/161
639/638/440/94
639/638/542
Amplitudes
Dipoles
Electrodes
Evolution
Ferric oxide
Hematite
Humanities and Social Sciences
multidisciplinary
Oxidation
Oxygen
Oxygen atoms
Oxygen evolution reactions
pH effects
Phase measurement
Photoanodes
Photoelectric effect
Science
Science (multidisciplinary)
Water
Water chemistry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ9aqRPCmi8km2yZHX0U86KWit5DXqiBb0Sr23zuT3VZXEC9C2cImsOGbPL5hMt8Qss90WThnXRa4C5nkscjAjWCZzVV0jiuvynRB9qp3cSMv74q7b6W-8E5YLQ9cA3dkow89eERUbRHaOqDQStjIJDjgQSclUKbZN2cq7cFCg-simywZJtTRq0x7AlZvxdzMPJu0TqIk2A9_I1hYLbL586rkj3hpOoYGy2Sp4Y_0uB73CpmL1SpZqCtKTtbI2S1wxxdaPiXdhXtqq0CB4tHRxwRmCo3vzUyjwBVTRgOF3yDm14JWtgI3Fxn4OhkOzoenF1lTKCHzUqtxFmQodMxt8EEr3xNBByf7TDuMmQbPWACIvJOOleAvMctjHjm4vjIKK7UUG2S-GlVxk1DFvOfMwQkWoZWX1gI9KK0HFzqX4Lt1yMEUM_Ncy2GYFMYWytQIG0DYJITNpENOENZZT5SyTi_AwKYxsPnLwB3SRaMYYAQoa-vx_o8fG6BqPejSIdtTW5lm9b0a2FYwosv70Lw3a4Z1g8EQW8XRW90HCy1z6KNaNm4Nt91SPT4kBW6OCU5FH8Z2OJ0OX1__HY-t_8CjSxZznMWoN1lsk_nxy1vcAWI0drtpDXwCrRsKWA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRP3FtlQi-aWiSze4mT-LXWXzQl4p9C_naWpDdenctvf_emWzuyhYUjj3YBDZMJslvMjO_IeQ1N33jvfMsCh-ZEqlhYEZw5qRO3gsddJ8DZL-1Rz_U15PmpFy4rUpY5XZPzBt1HAPekR-CqqCXTnTdu_M_DKtGoXe1lNC4Te4ICWctZoovvuzuWJD9XCtVcmV4rQ9XKu8MWMMVMzQl28zOo0zbD38jLK8Z5LwZMHnDa5oPo8UDcr-gSPp-mvaH5FYaHpG7U13JzWPy6ScgyCXtf2f2hVPqhkgB6NHxagP6QtNl0TcKiDHnNVD4LZL8XtPBDWDsIg5_Qo4Xn48_HrFSLoEFZfSaRRUbk6SLIRod2jqa6FXHjUfPaQycR8lN8MrzHqwm7kSSSYABrFLtlFH1U7I3jEN6RqjmIQju4RxL0Cp65wAk9C6AIS0VWHAVebOVmT2fSDFsdmbX2k4StiBhmyVsNxX5gGLd9URC6_xiXJ7asj6sSyG28EhIzlMb58FS0rVLXHWtiEZVZB8nxQIuQHLbgFFAYW0BsLXQpSIH27myZQ2u7LXGVOTVrhlWD7pE3JDGi6kPllsW0EfP5ng23HnLcPYr83ALTHNqOhjb2606XH_93_J4_v_B7pN7EvUT-SSbA7K3Xl6kFwB81v5l1u6_m8kBVQ
  priority: 102
  providerName: ProQuest
Title Water flipping and the oxygen evolution reaction on Fe2O3 nanolayers
URI https://link.springer.com/article/10.1038/s41467-025-58842-y
https://www.proquest.com/docview/3190424177
https://www.proquest.com/docview/3190883317
https://www.osti.gov/servlets/purl/2566047
https://pubmed.ncbi.nlm.nih.gov/PMC12000574
https://doaj.org/article/aecd6aece807439ab17483ae04761d94
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBL6ZNuky4q9NaaSrJsS8dNmk3YQ1ralO5N6OW0UOyy2ZTuv-9Itrc4JIeAscEaYzHSWN94Zj4BvKWqLqw1NvPM-kywUGToRtDMcBmsZdLJOiXInpdn38RiWSx3gA-1MClpP1Faps_0kB324Uokk46br8bSSp5tdmFfVrhaxgBtebz9rxIZz6UQfX0MzeUtj47WoETVj5cWTWoEM28mSd6IlKYFaP4YHvXIkcy6vj6BndA8hQfdXpKbZ_DxO6LGFal_JcaFS2IaTxDckfbvBucICX_6OUYQJaZaBoLHPPBPOWlMgw5uxN7P4WJ-cnF8lvVbJGROKLnOvPCFCtx455V0Ze6Vt6KiysZoqXeUek6Vs8LSGj0laljggaHTK0JuhBL5C9hr2ia8BCKpc4xaXLsCtrLaGAQGtXHoPHOBXtsE3g060787IgydAti51J2GNWpYJw3rzQSOolq3kpHEOt1oV5e6H1RtgvMlnkIk5MmVsegdydwEKqqSeSUmcBAHRSMWiIS2Lmb-uLVGkFaiyAQOh7HSvd1dafygxFguq7D5zbYZLSaGQUwT2utOJm6xzFBGjsZ41N1xS_PzR-LeZrG0qaiwb--H6fD_7Xfr49X9xA_gIY_zNXJKFoewt15dh9cIftZ2CrvVssKznJ9OYX82W3xd4PXo5Pzzl2myhGn6rfAPn5AFqw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxFULG2AkeIJoduwkzgNCwCgdG-OliL1ZvmUgoWS0HZAfxX_kHCfp1EnwNqlqpdpqrePv2N_JuRHylFV1bq2xqefWp5KHPAUzgqUmU8FarpyqY4DsUTH9LD8c58cb5M-YC4NhleOZGA9q3zp8Rr4LUEEvHS_LV6c_Uuwahd7VsYVGD4uD0P0Ck23xcn8P9vdZlk3ezd5O06GrQOpkpZaplz6vQma885VyhfCVt7JklUUHo3eM-YxVzkrLajAumOEhCxzsRBmEkZUU8LNXyFUphMAIQjV5v3qkg8XWlZRDag4Tanch40GELWMxITRLu7XrL3YJgI8WtHmN4V6Mz7zgpI133-QWuTmQVvq6R9ltshGaO-Ra38ayu0v2vgBhndP6eyz2cEJN4ynwStr-7gCeNPwc4E2BoMY0CgqvScg-CdqYBmxrpP33yOwy5HifbDZtE7YIVcw5zixcmwFGeW0McJLaOLDbMwkGY0KejzLTp30NDh1950LpXsIaJKyjhHWXkDco1tVMrJ8dv2jnJ3pQR22C8wW8BawFJCpjwTBTwgQmy4L7SiZkGzdFAw3BWroOg47cUgM_LGBKQnbGvdKDyi_0OUAT8mQ1DMqKHhjThPasn4PdnTnMUWt7vLbc9ZHm29dY9ptjVlVewtpejHA4__d_y-PB_xf7mFyfzj4e6sP9o4NtciNDrGIpy3yHbC7nZ-EhcK6lfRSRTom-ZM36C87OPas
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxFXLNsBI8ATRbMdJnAeEgFJtDA0ehuib5VsGEkq2tgPy0_h3nOMknToJ3iZVrVRbrXX8Hft8OTdCnrGqzq01NvXc-lTykKdAI1hqhArWcuVUHQNkj4r9L_LDLJ9tkD9jLgyGVY5nYjyofevwGfkeQAW9dFgsqR7CIj5Ppq9Pz1LsIIWe1rGdRg-Rw9D9Avq2eHUwgb1-LsT0_fG7_XToMJA6Wall6qXPqyCMd75Srsh85a0sWWXR2egdY16wyllpWQ1EgxkeRODAGWXIjKxkBj97jVwvMymxa0Q5K1ePd7DwupJySNNhmdpbyHgoYftYTA4Vabd2FcaOAfDRgmavWbuXYzUvOWzjPTi9Q24PBix90yPuLtkIzT1yo29p2d0nk69gvM5p_SMWfjihpvEUbEza_u4AqjT8HKBOwViNKRUUXtMgPmW0MQ3wbKQAD8jxVcjxIdls2iZsEaqYc5xZuEIDjPLaGLBPauOAwwsJ5DEhL0aZ6dO-HoeOfvRM6V7CGiSso4R1l5C3KNbVTKylHb9o5yd6UE1tgvMFvAWsC5RVxgJJU5kJTJYF95VMyA5uigaTBOvqOgxAcksNtmIBUxKyO-6VHtR_oS_AmpCnq2FQXPTGmCa05_0c7PTMYY5a2-O15a6PNN-_xRLgHDOs8hLW9nKEw8W__1se2_9f7BNyE3RKfzw4OtwhtwRCFata5rtkczk_D4_A_FraxxHolOgrVqy_hrVB3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+flipping+and+the+oxygen+evolution+reaction+on+Fe2O3+nanolayers&rft.jtitle=Nature+communications&rft.au=Speelman%2C+Raiden&rft.au=Marker%2C+Ezra+J.&rft.au=Boamah%2C+Mavis+D.&rft.au=Kupferberg%2C+Jacob&rft.date=2025-04-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-58842-y&rft_id=info%3Apmid%2F40234436&rft.externalDocID=PMC12000574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon