Parkinson’s Disease Detection from Voice Recordings Using Associative Memories

Parkinson’s disease (PD) is a neurological condition that is chronic and worsens over time, which presents a challenging diagnosis. An accurate diagnosis is required to recognize PD patients from healthy individuals. Diagnosing PD at early stages can reduce the severity of this disorder and improve...

Full description

Saved in:
Bibliographic Details
Published inHealthcare (Basel) Vol. 11; no. 11; p. 1601
Main Authors Luna-Ortiz, Irving, Aldape-Pérez, Mario, Uriarte-Arcia, Abril Valeria, Rodríguez-Molina, Alejandro, Alarcón-Paredes, Antonio, Ventura-Molina, Elías
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.05.2023
MDPI
Subjects
Online AccessGet full text
ISSN2227-9032
2227-9032
DOI10.3390/healthcare11111601

Cover

Abstract Parkinson’s disease (PD) is a neurological condition that is chronic and worsens over time, which presents a challenging diagnosis. An accurate diagnosis is required to recognize PD patients from healthy individuals. Diagnosing PD at early stages can reduce the severity of this disorder and improve the patient’s living conditions. Algorithms based on associative memory (AM) have been applied in PD diagnosis using voice samples of patients with this health condition. Even though AM models have achieved competitive results in PD classification, they do not have any embedded component in the AM model that can identify and remove irrelevant features, which would consequently improve the classification performance. In this paper, we present an improvement to the smallest normalized difference associative memory (SNDAM) algorithm by means of a learning reinforcement phase that improves classification performance of SNDAM when it is applied to PD diagnosis. For the experimental phase, two datasets that have been widely applied for PD diagnosis were used. Both datasets were gathered from voice samples from healthy people and from patients who suffer from this condition at an early stage of PD. These datasets are publicly accessible in the UCI Machine Learning Repository. The efficiency of the ISNDAM model was contrasted with that of seventy other models implemented in the WEKA workbench and was compared to the performance of previous studies. A statistical significance analysis was performed to verify that the performance differences between the compared models were statistically significant. The experimental findings allow us to affirm that the proposed improvement in the SNDAM algorithm, called ISNDAM, effectively increases the classification performance compared against well-known algorithms. ISNDAM achieves a classification accuracy of 99.48%, followed by ANN Levenberg–Marquardt with 95.89% and SVM RBF kernel with 88.21%, using Dataset 1. ISNDAM achieves a classification accuracy of 99.66%, followed by SVM IMF1 with 96.54% and RF IMF1 with 94.89%, using Dataset 2. The experimental findings show that ISNDAM achieves competitive performance on both datasets and that statistical significance tests confirm that ISNDAM delivers classification performance equivalent to that of models published in previous studies.
AbstractList Parkinson’s disease (PD) is a neurological condition that is chronic and worsens over time, which presents a challenging diagnosis. An accurate diagnosis is required to recognize PD patients from healthy individuals. Diagnosing PD at early stages can reduce the severity of this disorder and improve the patient’s living conditions. Algorithms based on associative memory (AM) have been applied in PD diagnosis using voice samples of patients with this health condition. Even though AM models have achieved competitive results in PD classification, they do not have any embedded component in the AM model that can identify and remove irrelevant features, which would consequently improve the classification performance. In this paper, we present an improvement to the smallest normalized difference associative memory (SNDAM) algorithm by means of a learning reinforcement phase that improves classification performance of SNDAM when it is applied to PD diagnosis. For the experimental phase, two datasets that have been widely applied for PD diagnosis were used. Both datasets were gathered from voice samples from healthy people and from patients who suffer from this condition at an early stage of PD. These datasets are publicly accessible in the UCI Machine Learning Repository. The efficiency of the ISNDAM model was contrasted with that of seventy other models implemented in the WEKA workbench and was compared to the performance of previous studies. A statistical significance analysis was performed to verify that the performance differences between the compared models were statistically significant. The experimental findings allow us to affirm that the proposed improvement in the SNDAM algorithm, called ISNDAM, effectively increases the classification performance compared against well-known algorithms. ISNDAM achieves a classification accuracy of 99.48%, followed by ANN Levenberg–Marquardt with 95.89% and SVM RBF kernel with 88.21%, using Dataset 1. ISNDAM achieves a classification accuracy of 99.66%, followed by SVM IMF1 with 96.54% and RF IMF1 with 94.89%, using Dataset 2. The experimental findings show that ISNDAM achieves competitive performance on both datasets and that statistical significance tests confirm that ISNDAM delivers classification performance equivalent to that of models published in previous studies.
Parkinson's disease (PD) is a neurological condition that is chronic and worsens over time, which presents a challenging diagnosis. An accurate diagnosis is required to recognize PD patients from healthy individuals. Diagnosing PD at early stages can reduce the severity of this disorder and improve the patient's living conditions. Algorithms based on associative memory (AM) have been applied in PD diagnosis using voice samples of patients with this health condition. Even though AM models have achieved competitive results in PD classification, they do not have any embedded component in the AM model that can identify and remove irrelevant features, which would consequently improve the classification performance. In this paper, we present an improvement to the smallest normalized difference associative memory (SNDAM) algorithm by means of a learning reinforcement phase that improves classification performance of SNDAM when it is applied to PD diagnosis. For the experimental phase, two datasets that have been widely applied for PD diagnosis were used. Both datasets were gathered from voice samples from healthy people and from patients who suffer from this condition at an early stage of PD. These datasets are publicly accessible in the UCI Machine Learning Repository. The efficiency of the ISNDAM model was contrasted with that of seventy other models implemented in the WEKA workbench and was compared to the performance of previous studies. A statistical significance analysis was performed to verify that the performance differences between the compared models were statistically significant. The experimental findings allow us to affirm that the proposed improvement in the SNDAM algorithm, called ISNDAM, effectively increases the classification performance compared against well-known algorithms. ISNDAM achieves a classification accuracy of 99.48%, followed by ANN Levenberg-Marquardt with 95.89% and SVM RBF kernel with 88.21%, using Dataset 1. ISNDAM achieves a classification accuracy of 99.66%, followed by SVM IMF1 with 96.54% and RF IMF1 with 94.89%, using Dataset 2. The experimental findings show that ISNDAM achieves competitive performance on both datasets and that statistical significance tests confirm that ISNDAM delivers classification performance equivalent to that of models published in previous studies.Parkinson's disease (PD) is a neurological condition that is chronic and worsens over time, which presents a challenging diagnosis. An accurate diagnosis is required to recognize PD patients from healthy individuals. Diagnosing PD at early stages can reduce the severity of this disorder and improve the patient's living conditions. Algorithms based on associative memory (AM) have been applied in PD diagnosis using voice samples of patients with this health condition. Even though AM models have achieved competitive results in PD classification, they do not have any embedded component in the AM model that can identify and remove irrelevant features, which would consequently improve the classification performance. In this paper, we present an improvement to the smallest normalized difference associative memory (SNDAM) algorithm by means of a learning reinforcement phase that improves classification performance of SNDAM when it is applied to PD diagnosis. For the experimental phase, two datasets that have been widely applied for PD diagnosis were used. Both datasets were gathered from voice samples from healthy people and from patients who suffer from this condition at an early stage of PD. These datasets are publicly accessible in the UCI Machine Learning Repository. The efficiency of the ISNDAM model was contrasted with that of seventy other models implemented in the WEKA workbench and was compared to the performance of previous studies. A statistical significance analysis was performed to verify that the performance differences between the compared models were statistically significant. The experimental findings allow us to affirm that the proposed improvement in the SNDAM algorithm, called ISNDAM, effectively increases the classification performance compared against well-known algorithms. ISNDAM achieves a classification accuracy of 99.48%, followed by ANN Levenberg-Marquardt with 95.89% and SVM RBF kernel with 88.21%, using Dataset 1. ISNDAM achieves a classification accuracy of 99.66%, followed by SVM IMF1 with 96.54% and RF IMF1 with 94.89%, using Dataset 2. The experimental findings show that ISNDAM achieves competitive performance on both datasets and that statistical significance tests confirm that ISNDAM delivers classification performance equivalent to that of models published in previous studies.
Audience Academic
Author Ventura-Molina, Elías
Aldape-Pérez, Mario
Luna-Ortiz, Irving
Rodríguez-Molina, Alejandro
Alarcón-Paredes, Antonio
Uriarte-Arcia, Abril Valeria
AuthorAffiliation 2 Tecnológico Nacional de México/IT de Tlalnepantla, Research and Postgraduate Division, Tlalnepantla de Baz 54070, Mexico
3 Instituto Politécnico Nacional, Center for Computing Research (CIC), Computational Intelligence Laboratory (CIL), Mexico City 07700, Mexico
1 Instituto Politécnico Nacional, Center for Computing Innovation and Technological Development (CIDETEC), Computational Intelligence Laboratory (CIL), Mexico City 07700, Mexico
AuthorAffiliation_xml – name: 1 Instituto Politécnico Nacional, Center for Computing Innovation and Technological Development (CIDETEC), Computational Intelligence Laboratory (CIL), Mexico City 07700, Mexico
– name: 2 Tecnológico Nacional de México/IT de Tlalnepantla, Research and Postgraduate Division, Tlalnepantla de Baz 54070, Mexico
– name: 3 Instituto Politécnico Nacional, Center for Computing Research (CIC), Computational Intelligence Laboratory (CIL), Mexico City 07700, Mexico
Author_xml – sequence: 1
  givenname: Irving
  orcidid: 0009-0005-9110-2604
  surname: Luna-Ortiz
  fullname: Luna-Ortiz, Irving
– sequence: 2
  givenname: Mario
  orcidid: 0000-0002-1504-4714
  surname: Aldape-Pérez
  fullname: Aldape-Pérez, Mario
– sequence: 3
  givenname: Abril Valeria
  orcidid: 0000-0003-2222-303X
  surname: Uriarte-Arcia
  fullname: Uriarte-Arcia, Abril Valeria
– sequence: 4
  givenname: Alejandro
  orcidid: 0000-0002-6901-3833
  surname: Rodríguez-Molina
  fullname: Rodríguez-Molina, Alejandro
– sequence: 5
  givenname: Antonio
  orcidid: 0000-0002-9785-1252
  surname: Alarcón-Paredes
  fullname: Alarcón-Paredes, Antonio
– sequence: 6
  givenname: Elías
  orcidid: 0000-0001-6859-4309
  surname: Ventura-Molina
  fullname: Ventura-Molina, Elías
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37297740$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUtVArWqb9ARYoEhs2Uxw7ie0VGrXlIRVRVZSt5djXMy6JPdhJq-74DX6PL8HRtPQBQlwvrmWfc3zv8X2GtnzwgNDzEh9QKvDrFahuWGkVoZyiweUTtEsIYXOBKdm6t99B-yld4ByipJzWT9EOZUQwVuFddHqq4lfnU_A_v_9IxZFLoBIURzCAHlzwhY2hL74Ep6E4Ax2icX6ZivOUU7FIKWinBncJxUfoQ3SQ9tC2VV2C_Zs8Q-dvjz8fvp-ffHr34XBxMteV4MOcqwqbtrIlxbwtKyUstQ2AodQwW7XaNJi0jWlFS7GuoSW2bgWjtMJATakUnSG60R39Wl1fqa6T6-h6Fa9lieVkkfzTosx6s2Gtx7YHo8EPUd0xg3Ly4Y13K7kMl1mT1ITzSeHVjUIM30ZIg-xd0tB1ykMYkyScVI2op1pn6OUj6EUYo8-uTCgqOGaE3aGWqgPpvA35YT2JygWrScXqspm0Dv6CystA73QeDevy-QPCi_ud_m7x9uszgGwAOoaUItj_848_Imk3qGlQcjmu-xf1F3Vy2Ns
CitedBy_id crossref_primary_10_1016_j_ceh_2023_11_002
crossref_primary_10_1109_ACCESS_2024_3487001
crossref_primary_10_1109_ACCESS_2024_3520482
Cites_doi 10.1016/j.cmpb.2022.107133
10.1016/S0034-4257(97)00083-7
10.1016/j.artmed.2018.08.007
10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.patrec.2017.02.013
10.1016/j.artmed.2021.102061
10.1016/j.clineuro.2011.05.008
10.3390/healthcare9060740
10.1007/BF00290182
10.1016/j.bspc.2021.102849
10.1016/j.bbe.2022.04.002
10.1007/BF00272311
10.4103/0028-3886.226451
10.1162/089976698300017197
10.1016/j.patrec.2013.11.008
10.1038/nrdp.2017.13
10.1016/j.cmpb.2014.01.004
10.1016/j.mehy.2020.109678
10.1016/j.asoc.2018.10.022
10.1016/j.patrec.2019.04.005
10.1016/j.bspc.2022.104281
10.1016/j.chb.2014.11.091
10.1080/03772063.2018.1531730
10.1016/j.parkreldis.2021.10.016
10.1007/BF00293853
10.1007/11925231
10.1145/1656274.1656278
10.3390/electronics12040783
10.1017/CBO9780511921803
10.1007/s11063-007-9040-2
10.1016/S1474-4422(21)00030-2
10.1016/j.eswa.2022.118045
10.3389/fnagi.2021.633752
10.1016/j.patrec.2013.03.034
10.1016/j.eswa.2022.118772
10.1016/S0004-3702(97)00043-X
10.1016/j.jbi.2022.104085
10.1016/j.compbiolchem.2022.107788
10.1016/j.bbe.2020.12.009
10.1109/TBME.2008.2005954
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/healthcare11111601
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Nursing & Allied Health Database (Alumni Edition)
ProQuest Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2227-9032
ExternalDocumentID 10.3390/healthcare11111601
PMC10252881
A752475163
37297740
10_3390_healthcare11111601
Genre Journal Article
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID 53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EIHBH
FYUFA
GNUQQ
GUQSH
GX1
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
RNS
RPM
UKHRP
3V.
ALIPV
GROUPED_DOAJ
NPM
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c498t-8a40db4f1308b14a9f3f6eed33d7f4bcd602b6db9b30c5eb2f5b973340e3d1aa3
IEDL.DBID UNPAY
ISSN 2227-9032
IngestDate Sun Oct 26 04:11:41 EDT 2025
Tue Sep 30 17:13:43 EDT 2025
Fri Sep 05 12:36:14 EDT 2025
Fri Jul 25 06:34:24 EDT 2025
Mon Oct 20 23:03:55 EDT 2025
Mon Oct 20 17:17:25 EDT 2025
Thu Jan 02 22:51:24 EST 2025
Thu Oct 16 04:32:55 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Parkinson’s disease classification
decision support systems
associative memories
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-8a40db4f1308b14a9f3f6eed33d7f4bcd602b6db9b30c5eb2f5b973340e3d1aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-9110-2604
0000-0003-2222-303X
0000-0002-1504-4714
0000-0002-6901-3833
0000-0001-6859-4309
0000-0002-9785-1252
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-9032/11/11/1601/pdf?version=1685444356
PMID 37297740
PQID 2823980727
PQPubID 2032390
ParticipantIDs unpaywall_primary_10_3390_healthcare11111601
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10252881
proquest_miscellaneous_2824695973
proquest_journals_2823980727
gale_infotracmisc_A752475163
gale_infotracacademiconefile_A752475163
pubmed_primary_37297740
crossref_primary_10_3390_healthcare11111601
crossref_citationtrail_10_3390_healthcare11111601
PublicationCentury 2000
PublicationDate 2023-05-30
PublicationDateYYYYMMDD 2023-05-30
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_17) 2022; 208
ref_50
Almeida (ref_9) 2019; 125
Valle (ref_30) 2013; 34
Pahuja (ref_13) 2021; 67
Coelho (ref_23) 2023; 212
Tolosa (ref_4) 2021; 20
ref_14
Sakar (ref_12) 2019; 74
Pereira (ref_11) 2019; 95
Razali (ref_7) 2011; 113
ref_19
Steinbuch (ref_25) 1961; 1
Sheremetov (ref_31) 2014; 41
Ngo (ref_20) 2022; 226
ref_24
Madruga (ref_22) 2023; 80
Steinbuch (ref_26) 1961; 1
Polat (ref_10) 2020; 140
Poewe (ref_1) 2017; 3
Hall (ref_49) 2009; 11
(ref_32) 2015; 51
(ref_35) 2017; 48
Zhang (ref_18) 2021; 41
Radhakrishnan (ref_2) 2018; 66
ref_36
ref_34
(ref_37) 2007; 26
Li (ref_5) 2022; 130
Stehman (ref_42) 1997; 62
Pogrebnyak (ref_29) 2013; 17
Quan (ref_21) 2022; 42
Steinbuch (ref_27) 1964; 2
ref_39
Fisher (ref_38) 1936; 7
Rossi (ref_3) 2021; 92
Nilashi (ref_6) 2023; 102
Kohavi (ref_51) 1997; 97
Hariharan (ref_52) 2014; 113
ref_47
Sechidis (ref_15) 2021; 115
ref_46
ref_45
(ref_28) 2012; 28
ref_43
Dietterich (ref_44) 1998; 10
ref_40
Little (ref_41) 2009; 56
Ma (ref_16) 2021; 69
(ref_33) 2017; 93
ref_48
ref_8
References_xml – volume: 226
  start-page: 107133
  year: 2022
  ident: ref_20
  article-title: Computerized analysis of speech and voice for Parkinson’s disease: A systematic review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.107133
– volume: 62
  start-page: 77
  year: 1997
  ident: ref_42
  article-title: Selecting and interpreting measures of thematic classification accuracy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00083-7
– volume: 95
  start-page: 48
  year: 2019
  ident: ref_11
  article-title: A survey on computer-assisted Parkinson’s Disease diagnosis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.08.007
– volume: 7
  start-page: 179
  year: 1936
  ident: ref_38
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 93
  start-page: 104
  year: 2017
  ident: ref_33
  article-title: Pattern classification using smallest normalized difference associative memory
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.02.013
– volume: 115
  start-page: 102061
  year: 2021
  ident: ref_15
  article-title: A machine learning perspective on the emotional content of Parkinsonian speech
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102061
– volume: 113
  start-page: 639
  year: 2011
  ident: ref_7
  article-title: Burden of care among caregivers of patients with Parkinson’s disease: A cross-sectional study
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2011.05.008
– ident: ref_14
  doi: 10.3390/healthcare9060740
– ident: ref_39
– volume: 1
  start-page: 117
  year: 1961
  ident: ref_26
  article-title: Nichtdigitale lernmatrizen als perzeptoren
  publication-title: Kybernetik
  doi: 10.1007/BF00290182
– volume: 69
  start-page: 102849
  year: 2021
  ident: ref_16
  article-title: Deep dual-side learning ensemble model for Parkinson speech recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102849
– volume: 42
  start-page: 556
  year: 2022
  ident: ref_21
  article-title: End-to-end deep learning approach for Parkinson’s disease detection from speech signals
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2022.04.002
– ident: ref_8
– volume: 2
  start-page: 148
  year: 1964
  ident: ref_27
  article-title: Adaptive networks using learning matrices
  publication-title: Kybernetik
  doi: 10.1007/BF00272311
– volume: 66
  start-page: 26
  year: 2018
  ident: ref_2
  article-title: Parkinson’s disease: A review
  publication-title: Neurol. India
  doi: 10.4103/0028-3886.226451
– ident: ref_48
– volume: 10
  start-page: 1895
  year: 1998
  ident: ref_44
  article-title: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017197
– volume: 41
  start-page: 23
  year: 2014
  ident: ref_31
  article-title: A novel associative model for time series data mining
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.11.008
– volume: 3
  start-page: 17013
  year: 2017
  ident: ref_1
  article-title: Parkinson’s disease
  publication-title: Nat. Rev. Dis. Prim.
  doi: 10.1038/nrdp.2017.13
– volume: 113
  start-page: 904
  year: 2014
  ident: ref_52
  article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.01.004
– volume: 140
  start-page: 109678
  year: 2020
  ident: ref_10
  article-title: Parkinson’s disease classification using one against all based data sampling with the acoustic features from the speech signals
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2020.109678
– volume: 74
  start-page: 255
  year: 2019
  ident: ref_12
  article-title: A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.022
– volume: 125
  start-page: 55
  year: 2019
  ident: ref_9
  article-title: Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.04.005
– volume: 80
  start-page: 104281
  year: 2023
  ident: ref_22
  article-title: Addressing smartphone mismatch in Parkinson’s disease detection aid systems based on speech
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104281
– volume: 51
  start-page: 771
  year: 2015
  ident: ref_32
  article-title: Collaborative learning based on associative models: Application to pattern classification in medical datasets
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2014.11.091
– volume: 67
  start-page: 4
  year: 2021
  ident: ref_13
  article-title: A Comparative Study of Existing Machine Learning Approaches for Parkinson’s Disease Detection
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2018.1531730
– volume: 48
  start-page: 811
  year: 2017
  ident: ref_35
  article-title: Theoretical Foundations for the Alpha-Beta Associative Memories: 10 Years of Derived Extensions, Models, and Applications
  publication-title: Neural Process. Lett.
– ident: ref_34
– ident: ref_47
– volume: 92
  start-page: 53
  year: 2021
  ident: ref_3
  article-title: How much time is needed in clinical practice to reach a diagnosis of clinically established Parkinson’s disease?
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2021.10.016
– volume: 1
  start-page: 36
  year: 1961
  ident: ref_25
  article-title: Die Lernmatrix
  publication-title: Kybernetik
  doi: 10.1007/BF00293853
– ident: ref_36
  doi: 10.1007/11925231
– volume: 11
  start-page: 10
  year: 2009
  ident: ref_49
  article-title: The WEKA Data Mining Software: An Update
  publication-title: SIGKDD Explor.
  doi: 10.1145/1656274.1656278
– ident: ref_24
  doi: 10.3390/electronics12040783
– ident: ref_45
  doi: 10.1017/CBO9780511921803
– volume: 17
  start-page: 527
  year: 2013
  ident: ref_29
  article-title: Image Transform based on Alpha-Beta Associative Memories
  publication-title: Comput. Y Sist.
– ident: ref_40
– volume: 26
  start-page: 1
  year: 2007
  ident: ref_37
  article-title: Alpha-Beta bidirectional associative memories: Theory and applications
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-007-9040-2
– volume: 20
  start-page: 385
  year: 2021
  ident: ref_4
  article-title: Challenges in the diagnosis of Parkinson’s disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(21)00030-2
– volume: 208
  start-page: 118045
  year: 2022
  ident: ref_17
  article-title: A survey of deep learning techniques based Parkinson’s disease recognition methods employing clinical data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118045
– ident: ref_19
  doi: 10.3389/fnagi.2021.633752
– volume: 34
  start-page: 1589
  year: 2013
  ident: ref_30
  article-title: Quantale-based autoassociative memories with an application to the storage of color images
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.03.034
– ident: ref_50
– ident: ref_46
– volume: 212
  start-page: 118772
  year: 2023
  ident: ref_23
  article-title: Parkinson’s disease effective biomarkers based on Hjorth features improved by machine learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118772
– volume: 97
  start-page: 273
  year: 1997
  ident: ref_51
  article-title: Wrappers for Feature Subset Selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 130
  start-page: 104085
  year: 2022
  ident: ref_5
  article-title: Early diagnosis of Parkinson’s disease using Continuous Convolution Network: Handwriting recognition based on off-line hand drawing without template
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2022.104085
– volume: 102
  start-page: 107788
  year: 2023
  ident: ref_6
  article-title: Early diagnosis of Parkinson’s disease: A combined method using deep learning and neuro-fuzzy techniques
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2022.107788
– volume: 41
  start-page: 127
  year: 2021
  ident: ref_18
  article-title: Parkinson’s disease detection using energy direction features based on EMD from voice signal
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.12.009
– ident: ref_43
– volume: 28
  start-page: 1399
  year: 2012
  ident: ref_28
  article-title: A New Tool for Engineering Education: Hepatitis Diagnosis using Associative Memories
  publication-title: Int. J. Eng. Educ.
– volume: 56
  start-page: 1015
  year: 2009
  ident: ref_41
  article-title: Suitability of Dysphonia Measurements for Telemonitoring of Parkinson’s Disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2005954
SSID ssj0000913835
Score 2.3003027
Snippet Parkinson’s disease (PD) is a neurological condition that is chronic and worsens over time, which presents a challenging diagnosis. An accurate diagnosis is...
Parkinson's disease (PD) is a neurological condition that is chronic and worsens over time, which presents a challenging diagnosis. An accurate diagnosis is...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1601
SubjectTerms Algorithms
Brain research
Classification
Datasets
Deep learning
Identification and classification
Machine learning
Methods
Neural networks
Parkinson's disease
Patients
Signal processing
Speech
Time series
Voice recognition
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB_0fKhQSj_UbtUSodAHXdzdJHvZBylaFRE8pKj4tuRjlysce9d619I3_w3_Pf8SZ7If9SxIn5Msm2QyM7_kNzMAn2TJVeScCrWNeSji0oaaaxcWMjaJFlpaX7TvbJCeXIrTa3m9AIM2FoZola1O9IrajS3dke8iNOCZitDcfpn8CKlqFL2utiU0dFNawe35FGOLsJRQZqweLB0cDc6_dbculAUTfY46eoYj3t8ddjQrUh5x2lSHaS3UUz39yFA9JVG-mFUT_ee3Ho0eWajj1_CqcS3Zfi0Lb2ChqN7Cy_pejtXhRu_gnMKcfcTX_e3dDTus32fYYTH1nKyKUbwJuxqj_mA1NKWrdOaZBazby18FOyOKLsLsFbg8Prr4ehI2VRVCKzI1DZUWkTOiROOlTCx0VvIyRUvJueuXwliXRolJnckMj6xE4F1Kk_U5F1HBXaw1X4VeNa6K98C0QzSnLPHbuDCJNSq2xjiFIM0hTMkCiNuVzG2TcpwqX4xyhB60-vm_qx_AdjdmUifceLb3Z9qgnE4jftnqJqgA_4_yWuX7fZmIvkSnM4CNuZ54iux8c7vFeXOKb_K_MhfAVtdMI4mZVhXjme8j0gxhGX5irZaI7r_pSRTd6ygANScrXQfK7T3fUn0f-hzf6PfJRCmc4E4nVv-xHh-en8Y6LCfopHn2Q7QBvenPWbGJTtXUfGxOygPoiiWS
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxUxEB5KC1ooxXtXq0QQ-qCrySa7J3mQUqylCKdPHunbkssuFQ57anuO2n_vTPZCt7Xicy5kM5PMfJtvZgDe5LXUPASdWi9kqkTtUyttSKtcuMwqm_tYtG96UhzP1JfT_HQN-nJH3QZe_hXaUT2p2cX8_e8fV_t44D8S4kTI_uFsYErR-RcFhXNtoKUyVMph2rn78WY2AgEZsRopAjQ1XGZtHM0d02zCPXrVQg-Jj8zWzcv7mvW6yay8v2rO7dUvO59fM1tHD2C78zfZQasgD2Gtah7BVvuzjrUxSI_hhGKfYxjY3iU7bJ9s2GG1jDSthlEICvu2wCuFtWiV_q6zSDZgg3h_VmxKrF1E3k9gdvT566fjtCu0kHpl9DLVVvHgVI32TDuhrKllXaDxlDJMauV8KHjmiuCMk9zniMXr3JmJlIpXMghr5VNYbxZNtQPMBgR42hPlTSqXeaeFdy5oxG0BkYtJQPT7WPouCzkVw5iXiEZIDOVtMSTwdhhz3ubg-GfvPRJPSSqDM3vbxRng-ijVVXkwyTM1ydEPTWB31BMPlh839wIue70sEaFKozl6fQm8HpppJJHVmmqxin1UYRCp4RTPWn0Y1t3rUwJ6pClDB0r3PW5pvp_FtN_oCuaZ1viB7wal-o_9eH7nGl7AZoYuW-RC8F1YX16sqpfoYi3dq3hu_gAk_yPf
  priority: 102
  providerName: Scholars Portal
Title Parkinson’s Disease Detection from Voice Recordings Using Associative Memories
URI https://www.ncbi.nlm.nih.gov/pubmed/37297740
https://www.proquest.com/docview/2823980727
https://www.proquest.com/docview/2824695973
https://pubmed.ncbi.nlm.nih.gov/PMC10252881
https://www.mdpi.com/2227-9032/11/11/1601/pdf?version=1685444356
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 8C1
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M48
  dateStart: 20131001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_W5GGDsu-u3rqgwWAPmxvLkhz5aWT9oAwSwlhG92T0YdOy4ITV6die-m_03-tf0pPtmDiDsTHIS9BJWNbp7n7y704Ar0XGZGCt9JWhzOc0M75iyvqpoDpUXAlTXto3GkcnU_7xVJyuZfE7WiVC8fPSSLs8TT8OWNintPwheugvbPb-sj5LopEUnKPHj7agGwmMxjvQnY4nw6_uTrlV7ypXhiG67581pCpnKtx4LX-0aZXX3NImZfLuMl-onz_UbLbmj44fgFrNpKKhfNtfFnrf_Noo8vg_U30I9-tglQwr7XoEd9L8MWxXJ32kSmB6AhOXOF3mkN1cXV-Qw-qLDzlMi5LllROXwUK-zNEikQrsusN5UnIVSKMdlykZOdIvAvenMD0--nxw4tf3NPiGx7LwpeKB1TxDdyg15SrOWBah72XMDjKujY2CUEdWx5oFRiCUz4SOB4zxIGWWKsV2oJPP83QXiLKID6VxjDnGdWi0pEZrKxH2WQQ-sQd0tVqJqYuYu7s0ZgmCGbfCye8r7MHbps-iKuHxR-k3TgkSt79xZKPqNAV8PlcpKxkORMgHAsNYD_ZakrgvTbt5pUZJbRcuEgS4LJYBBo0evGqaXU_HdcvT-bKU4VGMQA-HeFZpXfPc7iMrBuyBB7Klj42AqxbebsnPz8qq4RhJilBKnOC7RnX_4n08_zfxF3AvxDCw5FcEe9Apvi_Tlxi2FboHW_KA9qD74Wg8-YT_Rlz26t16C6N2Q0k
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcugBId4EChgJxAGixrGdOAeEqi7VlnYrDi3qLfiRqEir7La7S9Ubf4M_wY_ilzCTF90iVVx6tmM54_HMfON5ALxSpdCR9zo0jotQ8tKFRhgfForb2EijXN20b7SfDA_lpyN1tAK_ulwYCqvsZGItqP3EkY98A6GByHSE6vbD9CSkrlH0utq10GjYYrc4P0PINnu_M8DzfR3H2x8PtoZh21UgdDLT81AbGXkrSxTe2nJpslKUCWoKIXxaSut8EsU28TazInIKgWepbJYKIaNCeG6MwHVvwE0p4pQEgd7ivU-HamyiRdPk5giRRRvHfRAXiSaetL1nOv13WQtcUIOXQzTXFtXUnJ-Z8fiC_tu-A7dbw5VtNpx2F1aK6h7carx-rElmug-fKYm6zif7_ePnjA2a1x82KOZ1xFfFKJuFfZmgdGIN8CVHPavjFljPKd8LNqIAYATxD-DwWqj7EFarSVU8BmY8YkXtKHpOSBs7q7mz1muEgB5BUBYA7yiZu7agOfXVGOcIbIj6-b_UD-Bt_820Kedx5ew3dEA53XVc2Zk2ZQH3R1Wz8s1UxTJVaNIGsL40E--oWx7ujjhvZcQs_8vRAbzsh-lLinurisminiOTDEEfLvGo4Yh-3_TgisZ7FIBe4pV-AlUOXx6pvh3XFcTRqlSx1viD73q2-g96PLn6N17A2vBgtJfv7ezvPiUHCEVLkgN-HVbnp4viGZpvc_u8vjMMvl73Jf0DUa1dOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgESQrwbKGAkEAeINomdxDkgVHVZtZRWPVDUW_ArKtIqu2V3qXrjb_BX-Dn8EmacB90iVVx6tmM543na38wAvEgrLiNrZahMzEMRVyZUXNnQpbFOlFCp8U37dveyrQPx4TA9XIFfXS4MwSo7negVtZ0YuiMfYGjACxmhuR1ULSxifzh6Nz0OqYMUvbR27TQaFtlxpycYvs3ebg_xrF8myej9p82tsO0wEBpRyHkolYisFhUqcqljoYqKVxlaDc5tXgltbBYlOrO60DwyKQahVaqLnHMROW5jpTiuewWu5jzLqG6_3Iz7-x2qt4neTZOnw3kRDY56QBepqThr-9B0tvC8RThjEs_DNa8v6qk6PVHj8RlbOLoNt1onlm00XHcHVlx9F242N4CsSWy6B_uUUO1zy37_-Dljw-YliA3d3KO_akaZLezzBDUVa4JgurRnHsPAeq757tgugYExoL8PB5dC3QewWk9qtwZMWYwbpSEkHRc6MVrGRmsrMRy0GBAVAcQdJUvTFjenHhvjEoMcon75L_UDeN1_M21Ke1w4-xUdUElyjysb1aYv4P6ogla5kaeJyFN0bwNYX5qJ8mqWh7sjLlt9MSv_cncAz_th-pIwcLWbLPwckRUYAOISDxuO6PdNj6_oyEcByCVe6SdQFfHlkfrrka8mjh5mmkiJP_imZ6v_oMeji3_jGVxD8Sw_bu_tPIYbCXqGHnIRrcPq_NvCPUFPbq6fepFh8OWyZfQPYpFhdQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB_0-qAg9W9ttMoKgg-aXja7m9s8yWEtRWjpgyf1KeyfhBaP3GFzLfXJr-HX6yfpTJILlxNEEfK2s0s2Ozszv81vZgFeq0LoyHsdGsdFKHnhQiOMD3PFbWykUa6-tO_wKDmYyE8n6mQli59olQjFz2ojTXmaYRqJeMh5_SB6GM598f6iPUviiVZSosdPbsNGojAaH8DG5Oh4_JXulFv2bnJlBKL74WlHqiJTQeP1_NG6VV5xS-uUyTuLcm6uLs10uuKP9u-DWc6koaF8211Udtf9WCvy-D9TfQCbbbDKxo12PYRbefkI7jUnfaxJYHoMx5Q4XeeQXf_8dc72mj8-bC-vapZXySiDhX2ZoUViDdilw3lWcxVYpx0XOTsk0i8C9ycw2f_4-cNB2N7TEDqZ6irURkbeygLdobZcmrQQRYK-Vwg_KqR1Polim3ibWhE5hVC-UDYdCSGjXHhujNiCQTkr821gxiM-1I4Yc0La2FnNnbVeI-zzCHzSAPhytTLXFjGnuzSmGYIZWuHs9xUO4G3XZ96U8Pij9BtSgoz2N47sTJumgO9HlbKy8UjFcqQwjA1gpyeJ-9L1m5dqlLV24TxDgCtSHWHQGMCrrpl6EtetzGeLWkYmKQI9HOJpo3Xde9NPVgzYowB0Tx87AaoW3m8pz07rquEYSapYa5zgu051_-J7PPs38edwN8YwsOZXRDswqL4v8hcYtlX2ZbszbwCLw0AI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+Disease+Detection+from+Voice+Recordings+Using+Associative+Memories&rft.jtitle=Healthcare+%28Basel%29&rft.au=Luna-Ortiz%2C+Irving&rft.au=Aldape-P%C3%A9rez%2C+Mario&rft.au=Uriarte-Arcia%2C+Abril+Valeria&rft.au=Rodr%C3%ADguez-Molina%2C+Alejandro&rft.date=2023-05-30&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fhealthcare11111601&rft_id=info%3Apmid%2F37297740&rft.externalDocID=37297740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon