Partitioning Histopathological Images: An Integrated Framework for Supervised Color-Texture Segmentation and Cell Splitting

For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 30; no. 9; pp. 1661 - 1677
Main Authors Hui Kong, Gurcan, M., Belkacem-Boussaid, K.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2011.2141674

Cover

Abstract For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.
AbstractList For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.
For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single non-touching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with non-uniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of Superpixel, Graph-Cut, Mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.
For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.
Author Hui Kong
Belkacem-Boussaid, K.
Gurcan, M.
Author_xml – sequence: 1
  surname: Hui Kong
  fullname: Hui Kong
  email: tom.hui.kong@gmail.com
  organization: Dept. of Biomed. Inf., Ohio State Univ., Columbus, OH, USA
– sequence: 2
  givenname: M.
  surname: Gurcan
  fullname: Gurcan, M.
  email: metin.gurcan@osumc.edu
  organization: Dept. of Biomed. Inf., Ohio State Univ., Columbus, OH, USA
– sequence: 3
  givenname: K.
  surname: Belkacem-Boussaid
  fullname: Belkacem-Boussaid, K.
  email: kamel.boussaid@osumc.edu
  organization: Dept. of Biomed. Inf., Ohio State Univ., Columbus, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21486712$$D View this record in MEDLINE/PubMed
BookMark eNqFks9rFDEUx4NU7LZ6FwQZvHiaNcnkpwehLNYuVBR2BW8hm8lMU2eSNclUxX_eLLsu2oOecnif7_e9l_c9Ayc-eAvAUwTnCEH5av1-OccQoTlGBDFOHoAZolTUmJLPJ2AGMRc1hAyfgrOUbiFEhEL5CJwWXDCO8Az8_KhjdtkF73xfXbmUw1bnmzCE3hk9VMtR9za9ri58tfTZ9lFn21aXUY_2W4hfqi7EajVtbbxzqRQWRRjrtf2ep2irle1H67Pe2Vfal7Idhmq1HVzOpd1j8LDTQ7JPDu85-HT5dr24qq8_vFsuLq5rQ6TItWi6xhjdtqQxLaHMMCw1FQJ3EHFByhqd3lCjmTa4baExkhBqiGhbLjq0Qc05eLP33U6b0bamjBT1oLbRjTr-UEE79XfFuxvVhzvVIEYhk8Xg5cEghq-TTVmNLpmyi_Y2TElJBBlDEuH_kkJwCrnkvJAv7pG3YYq-_EOBGKUSkV3j539Ofhz59_0KAPeAiSGlaLsjgqDaRUSViKhdRNQhIkXC7kmM25-o7O6Gfwmf7YXOWnvsQzlhjLDmFwoZyxc
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TCBB_2021_3138189
crossref_primary_10_1109_TMI_2020_3002244
crossref_primary_10_1016_j_compmedimag_2014_02_001
crossref_primary_10_1016_j_eswa_2017_03_051
crossref_primary_10_1007_s12652_021_02899_2
crossref_primary_10_32604_iasc_2022_022573
crossref_primary_10_1016_j_artmed_2023_102756
crossref_primary_10_3390_jpm11060515
crossref_primary_10_1016_j_cmpb_2017_05_003
crossref_primary_10_1016_j_bspc_2024_106735
crossref_primary_10_1007_s11042_019_7468_9
crossref_primary_10_1109_JBHI_2015_2492464
crossref_primary_10_1049_cit2_12351
crossref_primary_10_1111_coin_12173
crossref_primary_10_1016_j_media_2017_07_003
crossref_primary_10_1016_j_csbj_2016_11_002
crossref_primary_10_1002_cbf_4088
crossref_primary_10_1016_j_media_2013_07_007
crossref_primary_10_1166_jmihi_2021_3902
crossref_primary_10_1186_s12938_018_0518_0
crossref_primary_10_1007_s10462_019_09735_2
crossref_primary_10_1049_iet_ipr_2018_6032
crossref_primary_10_1016_j_bspc_2018_09_008
crossref_primary_10_1002_cyto_a_23175
crossref_primary_10_1007_s11760_014_0688_6
crossref_primary_10_1109_TBME_2013_2291703
crossref_primary_10_1109_TMI_2023_3263465
crossref_primary_10_1007_s11432_016_9018_7
crossref_primary_10_1002_cyto_a_22407
crossref_primary_10_1049_iet_ipr_2020_0688
crossref_primary_10_1109_ACCESS_2023_3321799
crossref_primary_10_1002_cyto_a_22929
crossref_primary_10_1111_jmi_12673
crossref_primary_10_1109_TMI_2016_2527740
crossref_primary_10_4103_2153_3539_109863
crossref_primary_10_1002_cyto_a_23683
crossref_primary_10_1016_j_media_2017_02_009
crossref_primary_10_1016_j_patcog_2016_03_030
crossref_primary_10_1109_ACCESS_2021_3080429
crossref_primary_10_1016_j_sigpro_2019_107331
crossref_primary_10_1016_j_heliyon_2023_e17647
crossref_primary_10_1016_j_media_2014_01_010
crossref_primary_10_1016_j_bbe_2016_06_005
crossref_primary_10_1109_TBME_2014_2303852
crossref_primary_10_1002_jbio_202200174
crossref_primary_10_1002_jemt_22373
crossref_primary_10_1109_TMI_2012_2231420
crossref_primary_10_1016_j_ajpath_2019_05_007
crossref_primary_10_1186_s42490_019_0026_8
crossref_primary_10_1002_cyto_a_22467
crossref_primary_10_1109_TMI_2017_2677499
crossref_primary_10_1016_j_compag_2015_05_018
crossref_primary_10_1016_j_media_2016_09_009
crossref_primary_10_1007_s11042_021_11814_y
crossref_primary_10_1109_JBHI_2017_2700518
crossref_primary_10_1109_TMI_2021_3085712
crossref_primary_10_1109_TSMCB_2012_2228639
crossref_primary_10_1007_s10462_016_9494_6
crossref_primary_10_1016_j_micron_2018_01_010
crossref_primary_10_1002_jemt_23071
crossref_primary_10_1007_s11042_025_20676_7
crossref_primary_10_1093_bioinformatics_btac219
crossref_primary_10_1007_s11517_014_1223_1
crossref_primary_10_1016_j_cmpb_2017_08_010
crossref_primary_10_1109_TMI_2013_2255309
crossref_primary_10_1002_cpe_3181
crossref_primary_10_1109_ACCESS_2020_2984522
crossref_primary_10_1109_JBHI_2016_2594239
crossref_primary_10_1109_JBHI_2016_2611615
crossref_primary_10_1016_j_patcog_2012_09_024
crossref_primary_10_1016_j_procs_2015_07_522
crossref_primary_10_1155_2022_3211793
crossref_primary_10_1016_j_bspc_2016_06_008
crossref_primary_10_1002_jbio_201800488
crossref_primary_10_1080_13682199_2022_2162663
crossref_primary_10_1186_1471_2105_14_173
crossref_primary_10_1016_j_cmpb_2018_05_034
crossref_primary_10_1109_TIP_2021_3116792
crossref_primary_10_1109_ACCESS_2022_3161575
crossref_primary_10_1109_ACCESS_2020_2989369
crossref_primary_10_1088_1742_6596_574_1_012122
crossref_primary_10_1309_AJCPTMA1F6LWYTQV
crossref_primary_10_1016_j_compbiomed_2015_02_015
crossref_primary_10_1007_s10916_017_0863_8
crossref_primary_10_1109_RBME_2013_2295804
crossref_primary_10_1200_CCI_17_00039
crossref_primary_10_1186_s13640_020_00514_6
crossref_primary_10_1016_j_neo_2023_100911
crossref_primary_10_1117_1_JMI_6_1_017501
crossref_primary_10_32604_cmc_2022_025339
crossref_primary_10_1007_s10462_024_10701_w
crossref_primary_10_1371_journal_pone_0070221
crossref_primary_10_1136_amiajnl_2012_001540
crossref_primary_10_1109_TBME_2015_2430895
crossref_primary_10_3390_curroncol28050307
crossref_primary_10_1049_iet_ipr_2013_0008
crossref_primary_10_1109_TCBB_2013_151
crossref_primary_10_1109_TMI_2015_2481436
crossref_primary_10_1109_TMI_2016_2520502
crossref_primary_10_1007_s11517_013_1034_9
crossref_primary_10_1186_1471_2342_14_7
crossref_primary_10_1186_1471_2105_15_272
crossref_primary_10_1109_TBME_2017_2649485
crossref_primary_10_1587_transinf_2017EDP7326
crossref_primary_10_1080_21655979_2020_1747834
crossref_primary_10_1016_j_asoc_2022_109279
crossref_primary_10_3390_biomimetics8040370
crossref_primary_10_1016_j_imu_2017_05_009
crossref_primary_10_1109_MSMC_2018_2794559
crossref_primary_10_1155_2022_7511905
crossref_primary_10_1109_ACCESS_2021_3049165
crossref_primary_10_1109_TMI_2019_2947628
crossref_primary_10_1109_TMI_2022_3203022
crossref_primary_10_1016_j_compbiomed_2022_105636
crossref_primary_10_1007_s13721_023_00417_2
crossref_primary_10_1109_RBME_2016_2515127
crossref_primary_10_1002_cyto_a_22424
crossref_primary_10_1111_jmi_12361
crossref_primary_10_3390_app10227982
crossref_primary_10_1038_s42003_023_04991_z
crossref_primary_10_1016_j_media_2015_10_005
crossref_primary_10_3390_electronics12030651
crossref_primary_10_1109_TMI_2016_2606380
Cites_doi 10.1023/B:VISI.0000013087.49260.fb
10.1109/ICIP.2006.312454
10.1016/S0031-3203(99)00119-3
10.1007/s11265-008-0201-y
10.1109/34.87344
10.1109/34.1000236
10.1109/ICIP.2003.1247272
10.1109/TMI.2004.824224
10.1109/TBME.2010.2055058
10.1016/j.patcog.2007.11.006
10.1109/TBME.2006.873538
10.1002/1096-9896(2000)9999:9999<::AID-PATH708>3.0.CO;2-I
10.1109/ICPR.2000.905385
10.1109/TSMC.1979.4310076
10.1109/RBME.2009.2034865
10.1109/ICCV.2001.937505
10.1109/ICIP.2002.1039125
10.1109/TBME.2009.2035102
10.1182/blood.V89.11.3909
10.1016/j.patcog.2008.10.035
10.1109/ICCV.2003.1238308
10.1109/ISBI.2008.4540988
10.1109/TITB.2005.847515
10.1109/TBME.2010.2041232
10.1109/TSMC.1973.4309314
10.1109/34.868688
10.1007/978-4-431-67044-5
10.1038/nbt1080
10.1007/11566465_109
10.1200/JCO.1985.3.1.25
10.1109/TPAMI.2003.1217601
10.1023/A:1020874308076
10.1109/TIP.2003.819858
10.1109/TC.1972.5008949
10.1007/978-3-662-03939-7
10.1109/TBME.2008.2008635
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011
Copyright (c) 2010 IEEE. 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011
– notice: Copyright (c) 2010 IEEE. 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2011.2141674
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

Technology Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1677
ExternalDocumentID PMC3165069
2439879561
21486712
10_1109_TMI_2011_2141674
5746646
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01CA134451
– fundername: NCI NIH HHS
  grantid: R01 CA134451
– fundername: National Cancer Institute : NCI
  grantid: R01 CA134451-02 || CA
– fundername: National Cancer Institute : NCI
  grantid: R01 CA134451-01A1 || CA
– fundername: National Cancer Institute : NCI
  grantid: R01 CA134451-04 || CA
– fundername: National Cancer Institute : NCI
  grantid: R01 CA134451-03 || CA
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c498t-83f3ccadd43cd456c629a5882f01784712fab5ca6ac2dd0cc9445c48dd78f1b13
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Tue Sep 30 17:00:09 EDT 2025
Thu Oct 02 10:08:49 EDT 2025
Thu Oct 02 19:54:46 EDT 2025
Sun Jun 29 16:27:43 EDT 2025
Mon Jul 21 06:04:05 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Wed Oct 01 03:55:20 EDT 2025
Tue Aug 26 17:17:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-83f3ccadd43cd456c629a5882f01784712fab5ca6ac2dd0cc9445c48dd78f1b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21486712
PQID 886559149
PQPubID 85460
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3165069
proquest_miscellaneous_910661912
crossref_citationtrail_10_1109_TMI_2011_2141674
crossref_primary_10_1109_TMI_2011_2141674
ieee_primary_5746646
pubmed_primary_21486712
proquest_miscellaneous_887507977
proquest_journals_886559149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
dick (ref4) 1987; 78
naik (ref37) 2007
ref11
ref10
ref17
(ref49) 2010
ref18
duda (ref14) 2001
ref46
(ref48) 2010
jeffe (ref2) 2001
ref47
ref42
ref41
ref43
sun (ref21) 2005
ref8
ref7
ref9
sethian (ref31) 1996
ref40
yang (ref45) 2008; 1
ref35
ref36
metter (ref3) 1985; 3
zhou (ref6) 2001
ref30
ref33
ref32
ref1
(ref50) 2010
ref39
ref38
li (ref16) 2001
keenan (ref44) 2000; 192
project (ref5) 1997; 89
paragios (ref34) 2002
ref24
ref23
ref26
ref25
ref20
ref28
ref27
wen (ref22) 2009
ref29
qureshi (ref19) 2008; 2
References_xml – year: 2001
  ident: ref2
  article-title: Tumours of haematopoietic and lymphoid tissues
  publication-title: Lyon IRAC Press
– ident: ref8
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref33
  doi: 10.1109/ICIP.2006.312454
– ident: ref46
  doi: 10.1016/S0031-3203(99)00119-3
– start-page: 3324
  year: 2005
  ident: ref21
  article-title: Segmenting and counting of wall-pasted cells based on gabor filter
  publication-title: Proc IEEE Int Conf Eng Med Biol Soc (EMBS)
– ident: ref24
  doi: 10.1007/s11265-008-0201-y
– ident: ref27
  doi: 10.1109/34.87344
– year: 2010
  ident: ref50
  publication-title: Source Code for Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images
– ident: ref11
  doi: 10.1109/34.1000236
– ident: ref35
  doi: 10.1109/ICIP.2003.1247272
– ident: ref28
  doi: 10.1109/TMI.2004.824224
– year: 2010
  ident: ref49
  publication-title: Superpixel Source Code
– ident: ref26
  doi: 10.1109/TBME.2010.2055058
– ident: ref43
  doi: 10.1016/j.patcog.2007.11.006
– ident: ref36
  doi: 10.1109/TBME.2006.873538
– volume: 192
  start-page: 351
  year: 2000
  ident: ref44
  article-title: An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN)
  publication-title: J Pathol
  doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH708>3.0.CO;2-I
– ident: ref29
  doi: 10.1109/ICPR.2000.905385
– year: 2010
  ident: ref48
  publication-title: Code for the Edge Detection and Image Segmentation System
– ident: ref39
  doi: 10.1109/TSMC.1979.4310076
– ident: ref1
  doi: 10.1109/RBME.2009.2034865
– start-page: 610
  year: 2001
  ident: ref6
  article-title: Texture feature based on local fourier transform
  publication-title: Proc IEEE Int Conf Image Process
– ident: ref10
  doi: 10.1109/ICCV.2001.937505
– ident: ref7
  doi: 10.1109/ICIP.2002.1039125
– volume: 2
  start-page: 196
  year: 2008
  ident: ref19
  article-title: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification
  publication-title: IEEE Conf Med Image Computing Computer Assist Intervent (MICCAI)
– ident: ref13
  doi: 10.1109/TBME.2009.2035102
– year: 1996
  ident: ref31
  publication-title: Level Set Methods Evolving Interfaces in Geometry Fluid Mechanics Computer Vision and Materials Sciences
– volume: 89
  start-page: 3909
  year: 1997
  ident: ref5
  article-title: A clinical evaluation of the international lymphoma study group classification of non-hodgkin lymphoma
  publication-title: Blood
  doi: 10.1182/blood.V89.11.3909
– ident: ref12
  doi: 10.1016/j.patcog.2008.10.035
– ident: ref9
  doi: 10.1109/ICCV.2003.1238308
– ident: ref38
  doi: 10.1109/ISBI.2008.4540988
– ident: ref23
  doi: 10.1109/TITB.2005.847515
– ident: ref30
  doi: 10.1109/TBME.2010.2041232
– ident: ref18
  doi: 10.1109/TSMC.1973.4309314
– ident: ref15
  doi: 10.1109/34.868688
– year: 2007
  ident: ref37
  article-title: Gland segmentation and computerized gleason grading of prostate histology by integrating low-, high-level and domain specific information
  publication-title: 2nd Int Workshop Microscopic Image Anal With Appl Biol (MIAAB)
– year: 2001
  ident: ref16
  publication-title: Markov Random Field Modeling in Computer Vision
  doi: 10.1007/978-4-431-67044-5
– ident: ref20
  doi: 10.1038/nbt1080
– ident: ref25
  doi: 10.1007/11566465_109
– volume: 3
  start-page: 25
  year: 1985
  ident: ref3
  article-title: Morphological subclassification of follicular lymphoma: Variability of diagnoses among hematopathologists, a collaborative study between the repository center and pathology panel for lymphoma clinical studies
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.1985.3.1.25
– year: 2009
  ident: ref22
  article-title: A delunay triangulation approach for segmenting clumps of nuclei
  publication-title: IEEE Int Symp Biomed Imag From Nano to Macro
– ident: ref40
  doi: 10.1109/TPAMI.2003.1217601
– ident: ref17
  doi: 10.1023/A:1020874308076
– ident: ref32
  doi: 10.1109/TIP.2003.819858
– ident: ref47
  doi: 10.1109/TC.1972.5008949
– volume: 78
  start-page: 1137
  year: 1987
  ident: ref4
  article-title: Use of the working formulation for non-hodgkin's lymphoma in epidemiological studies: Agreement between reported diagnoses and a panel of experienced pathologists
  publication-title: J Nat Cancer Inst
– ident: ref41
  doi: 10.1007/978-3-662-03939-7
– volume: 1
  start-page: 833
  year: 2008
  ident: ref45
  article-title: Automatic image analysis of histopathology specimens using concave vertex graph
  publication-title: Int Conf Med Image Comput Comput Assist Interv
– year: 2001
  ident: ref14
  publication-title: Pattern Classification
– start-page: 78
  year: 2002
  ident: ref34
  article-title: Shape priors for level set representation
  publication-title: Eur Conf Comput Vis
– ident: ref42
  doi: 10.1109/TBME.2008.2008635
SSID ssj0014509
Score 2.4659307
Snippet For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1661
SubjectTerms Algorithm design and analysis
Algorithms
Artificial Intelligence
Classification
Color
Color texture
Color-texture feature extraction
Discriminant Analysis
Feature extraction
follicular lymphoma
Fourier Analysis
Fourier transforms
histopathological image segmentation
Humans
Image color analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
local fourier transform
Lymphoma, Follicular - diagnosis
Lymphoma, Follicular - pathology
Pattern Recognition, Automated - methods
Pixel
radial-symmetry point
Reproducibility of Results
Segmentation
Sensitivity and Specificity
Splitting
Studies
supervised learning
Surface layer
touching-cell splitting
Training
Title Partitioning Histopathological Images: An Integrated Framework for Supervised Color-Texture Segmentation and Cell Splitting
URI https://ieeexplore.ieee.org/document/5746646
https://www.ncbi.nlm.nih.gov/pubmed/21486712
https://www.proquest.com/docview/886559149
https://www.proquest.com/docview/887507977
https://www.proquest.com/docview/910661912
https://pubmed.ncbi.nlm.nih.gov/PMC3165069
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEp7aNqkDydN0aGXQr2xZPnVWwhdsoUthd1AbkaW5KZ04w2760v75zsjyyYb0tCbQSNsM6PRN5qZTwAfIlPJRFkR8opOq4xAPxhbE2oM3GKDS7CW1Jw8_ZZeXMqvV8nVDnwaemGsta74zI7o0eXyzVK3dFSGwTuRoae7sJvladerNWQMZNKVcwhijI1S0acko-J0Pp10XJ2CSyq6dwTAxDTHxdZu5K5XeQhp3i-YvLMDjfdh2n97V3jya9RuqpH-fY_W8X9_7gU891CUnXW28xJ2bHMAz-4QFB7Ak6lPvR_Cn-9kZP74ljl2EbrNuPedbHKDnmn9mZ01bNJTUBg27mu_GIJjNmtvyTWtceAcJ67COW4N7cqymf1x45ugGqYaHLaLBZshQHZl2a_gcvxlfn4R-psbQi2LfIPqrmM0DWNkrA1CNJ2KQiUI5mt0ALQfilpViVap0sKYSOtCykTL3Jgsr3nF49ew1ywb-xaYUkktyG1UeS0xVlWGemtFxhObcy2rAE57DZba05rT7RqL0oU3UVGi-ktSf-nVH8DHYcZtR-nxiOwhaWqQ80oK4Lg3ktKv-XWZU49vgRFnAGwYxcVKGRjV2GVLIgjQMoTc_xZB-IaQqeAigDed0Q0v7402gGzLHAcBogrfHml-XjvK8JgjEk-Lo4d_5xiedkflVDr3DvY2q9aeINbaVO_dIvsLfzInBw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa6DtjjsEfbbV730GGXAXNqyZJj91YUC5KtLgYkBXozZEnehqVOkcSX9c-X9AtN0Q67GRAF2yBFfRTJTwCfAptLpZ3weU6nVVagHwyd9Q0GbqHFJVhIak5OT6Pxmfx2rs634EvfC-Ocq4vP3IAe61y-XZiKjsoweCcy9OgBPFRSStV0a_U5A6magg5BnLFBJLqkZJAczNJJw9YpuKSy-5oCmLjmuNjYj-oLVu7CmrdLJm_sQaPnkHZf35Se_BlU63xg_t4idvzf33sBz1owyo4a63kJW67cgac3KAp34FHaJt934eoHmVl7gMtqfhG6z7jznmxygb5pdciOSjbpSCgsG3XVXwzhMZtWl-ScVjhwjBOX_gw3h2rp2NT9vGjboEqmSxx28zmbIkSuC7P34Gz0dXY89tu7G3wjk3iNCi9CNA5rZWgsgjQTiUQrhPMFugDaEUWhc2V0pI2wNjAmQYUaGVs7jAue8_AVbJeL0r0BprUqBDmOPC4kRqvaUnetGHLlYm5k7sFBp8HMtMTmdL_GPKsDnCDJUP0ZqT9r1e_B537GZUPq8Q_ZXdJUL9cqyYP9zkiydtWvspi6fBOMOT1g_SguV8rB6NItKhJBiDZE0H2_CAI4BE0JFx68boyuf3lntB4MN8yxFyCy8M2R8vevmjQ85IjFo-Tt3b_zER6PZ-lJdjI5_b4PT5qDcyqkewfb62Xl3iPyWucf6gV3DQYaKlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partitioning+histopathological+images%3A+an+integrated+framework+for+supervised+color-texture+segmentation+and+cell+splitting&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kong%2C+Hui&rft.au=Gurcan%2C+Metin&rft.au=Belkacem-Boussaid%2C+Kamel&rft.date=2011-09-01&rft.eissn=1558-254X&rft.volume=30&rft.issue=9&rft.spage=1661&rft_id=info:doi/10.1109%2FTMI.2011.2141674&rft_id=info%3Apmid%2F21486712&rft.externalDocID=21486712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon