Partitioning Histopathological Images: An Integrated Framework for Supervised Color-Texture Segmentation and Cell Splitting
For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 30; no. 9; pp. 1661 - 1677 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.09.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2011.2141674 |
Cover
| Abstract | For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image. |
|---|---|
| AbstractList | For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image. For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single non-touching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with non-uniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of Superpixel, Graph-Cut, Mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image. For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image. |
| Author | Hui Kong Belkacem-Boussaid, K. Gurcan, M. |
| Author_xml | – sequence: 1 surname: Hui Kong fullname: Hui Kong email: tom.hui.kong@gmail.com organization: Dept. of Biomed. Inf., Ohio State Univ., Columbus, OH, USA – sequence: 2 givenname: M. surname: Gurcan fullname: Gurcan, M. email: metin.gurcan@osumc.edu organization: Dept. of Biomed. Inf., Ohio State Univ., Columbus, OH, USA – sequence: 3 givenname: K. surname: Belkacem-Boussaid fullname: Belkacem-Boussaid, K. email: kamel.boussaid@osumc.edu organization: Dept. of Biomed. Inf., Ohio State Univ., Columbus, OH, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21486712$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9rFDEUx4NU7LZ6FwQZvHiaNcnkpwehLNYuVBR2BW8hm8lMU2eSNclUxX_eLLsu2oOecnif7_e9l_c9Ayc-eAvAUwTnCEH5av1-OccQoTlGBDFOHoAZolTUmJLPJ2AGMRc1hAyfgrOUbiFEhEL5CJwWXDCO8Az8_KhjdtkF73xfXbmUw1bnmzCE3hk9VMtR9za9ri58tfTZ9lFn21aXUY_2W4hfqi7EajVtbbxzqRQWRRjrtf2ep2irle1H67Pe2Vfal7Idhmq1HVzOpd1j8LDTQ7JPDu85-HT5dr24qq8_vFsuLq5rQ6TItWi6xhjdtqQxLaHMMCw1FQJ3EHFByhqd3lCjmTa4baExkhBqiGhbLjq0Qc05eLP33U6b0bamjBT1oLbRjTr-UEE79XfFuxvVhzvVIEYhk8Xg5cEghq-TTVmNLpmyi_Y2TElJBBlDEuH_kkJwCrnkvJAv7pG3YYq-_EOBGKUSkV3j539Ofhz59_0KAPeAiSGlaLsjgqDaRUSViKhdRNQhIkXC7kmM25-o7O6Gfwmf7YXOWnvsQzlhjLDmFwoZyxc |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TCBB_2021_3138189 crossref_primary_10_1109_TMI_2020_3002244 crossref_primary_10_1016_j_compmedimag_2014_02_001 crossref_primary_10_1016_j_eswa_2017_03_051 crossref_primary_10_1007_s12652_021_02899_2 crossref_primary_10_32604_iasc_2022_022573 crossref_primary_10_1016_j_artmed_2023_102756 crossref_primary_10_3390_jpm11060515 crossref_primary_10_1016_j_cmpb_2017_05_003 crossref_primary_10_1016_j_bspc_2024_106735 crossref_primary_10_1007_s11042_019_7468_9 crossref_primary_10_1109_JBHI_2015_2492464 crossref_primary_10_1049_cit2_12351 crossref_primary_10_1111_coin_12173 crossref_primary_10_1016_j_media_2017_07_003 crossref_primary_10_1016_j_csbj_2016_11_002 crossref_primary_10_1002_cbf_4088 crossref_primary_10_1016_j_media_2013_07_007 crossref_primary_10_1166_jmihi_2021_3902 crossref_primary_10_1186_s12938_018_0518_0 crossref_primary_10_1007_s10462_019_09735_2 crossref_primary_10_1049_iet_ipr_2018_6032 crossref_primary_10_1016_j_bspc_2018_09_008 crossref_primary_10_1002_cyto_a_23175 crossref_primary_10_1007_s11760_014_0688_6 crossref_primary_10_1109_TBME_2013_2291703 crossref_primary_10_1109_TMI_2023_3263465 crossref_primary_10_1007_s11432_016_9018_7 crossref_primary_10_1002_cyto_a_22407 crossref_primary_10_1049_iet_ipr_2020_0688 crossref_primary_10_1109_ACCESS_2023_3321799 crossref_primary_10_1002_cyto_a_22929 crossref_primary_10_1111_jmi_12673 crossref_primary_10_1109_TMI_2016_2527740 crossref_primary_10_4103_2153_3539_109863 crossref_primary_10_1002_cyto_a_23683 crossref_primary_10_1016_j_media_2017_02_009 crossref_primary_10_1016_j_patcog_2016_03_030 crossref_primary_10_1109_ACCESS_2021_3080429 crossref_primary_10_1016_j_sigpro_2019_107331 crossref_primary_10_1016_j_heliyon_2023_e17647 crossref_primary_10_1016_j_media_2014_01_010 crossref_primary_10_1016_j_bbe_2016_06_005 crossref_primary_10_1109_TBME_2014_2303852 crossref_primary_10_1002_jbio_202200174 crossref_primary_10_1002_jemt_22373 crossref_primary_10_1109_TMI_2012_2231420 crossref_primary_10_1016_j_ajpath_2019_05_007 crossref_primary_10_1186_s42490_019_0026_8 crossref_primary_10_1002_cyto_a_22467 crossref_primary_10_1109_TMI_2017_2677499 crossref_primary_10_1016_j_compag_2015_05_018 crossref_primary_10_1016_j_media_2016_09_009 crossref_primary_10_1007_s11042_021_11814_y crossref_primary_10_1109_JBHI_2017_2700518 crossref_primary_10_1109_TMI_2021_3085712 crossref_primary_10_1109_TSMCB_2012_2228639 crossref_primary_10_1007_s10462_016_9494_6 crossref_primary_10_1016_j_micron_2018_01_010 crossref_primary_10_1002_jemt_23071 crossref_primary_10_1007_s11042_025_20676_7 crossref_primary_10_1093_bioinformatics_btac219 crossref_primary_10_1007_s11517_014_1223_1 crossref_primary_10_1016_j_cmpb_2017_08_010 crossref_primary_10_1109_TMI_2013_2255309 crossref_primary_10_1002_cpe_3181 crossref_primary_10_1109_ACCESS_2020_2984522 crossref_primary_10_1109_JBHI_2016_2594239 crossref_primary_10_1109_JBHI_2016_2611615 crossref_primary_10_1016_j_patcog_2012_09_024 crossref_primary_10_1016_j_procs_2015_07_522 crossref_primary_10_1155_2022_3211793 crossref_primary_10_1016_j_bspc_2016_06_008 crossref_primary_10_1002_jbio_201800488 crossref_primary_10_1080_13682199_2022_2162663 crossref_primary_10_1186_1471_2105_14_173 crossref_primary_10_1016_j_cmpb_2018_05_034 crossref_primary_10_1109_TIP_2021_3116792 crossref_primary_10_1109_ACCESS_2022_3161575 crossref_primary_10_1109_ACCESS_2020_2989369 crossref_primary_10_1088_1742_6596_574_1_012122 crossref_primary_10_1309_AJCPTMA1F6LWYTQV crossref_primary_10_1016_j_compbiomed_2015_02_015 crossref_primary_10_1007_s10916_017_0863_8 crossref_primary_10_1109_RBME_2013_2295804 crossref_primary_10_1200_CCI_17_00039 crossref_primary_10_1186_s13640_020_00514_6 crossref_primary_10_1016_j_neo_2023_100911 crossref_primary_10_1117_1_JMI_6_1_017501 crossref_primary_10_32604_cmc_2022_025339 crossref_primary_10_1007_s10462_024_10701_w crossref_primary_10_1371_journal_pone_0070221 crossref_primary_10_1136_amiajnl_2012_001540 crossref_primary_10_1109_TBME_2015_2430895 crossref_primary_10_3390_curroncol28050307 crossref_primary_10_1049_iet_ipr_2013_0008 crossref_primary_10_1109_TCBB_2013_151 crossref_primary_10_1109_TMI_2015_2481436 crossref_primary_10_1109_TMI_2016_2520502 crossref_primary_10_1007_s11517_013_1034_9 crossref_primary_10_1186_1471_2342_14_7 crossref_primary_10_1186_1471_2105_15_272 crossref_primary_10_1109_TBME_2017_2649485 crossref_primary_10_1587_transinf_2017EDP7326 crossref_primary_10_1080_21655979_2020_1747834 crossref_primary_10_1016_j_asoc_2022_109279 crossref_primary_10_3390_biomimetics8040370 crossref_primary_10_1016_j_imu_2017_05_009 crossref_primary_10_1109_MSMC_2018_2794559 crossref_primary_10_1155_2022_7511905 crossref_primary_10_1109_ACCESS_2021_3049165 crossref_primary_10_1109_TMI_2019_2947628 crossref_primary_10_1109_TMI_2022_3203022 crossref_primary_10_1016_j_compbiomed_2022_105636 crossref_primary_10_1007_s13721_023_00417_2 crossref_primary_10_1109_RBME_2016_2515127 crossref_primary_10_1002_cyto_a_22424 crossref_primary_10_1111_jmi_12361 crossref_primary_10_3390_app10227982 crossref_primary_10_1038_s42003_023_04991_z crossref_primary_10_1016_j_media_2015_10_005 crossref_primary_10_3390_electronics12030651 crossref_primary_10_1109_TMI_2016_2606380 |
| Cites_doi | 10.1023/B:VISI.0000013087.49260.fb 10.1109/ICIP.2006.312454 10.1016/S0031-3203(99)00119-3 10.1007/s11265-008-0201-y 10.1109/34.87344 10.1109/34.1000236 10.1109/ICIP.2003.1247272 10.1109/TMI.2004.824224 10.1109/TBME.2010.2055058 10.1016/j.patcog.2007.11.006 10.1109/TBME.2006.873538 10.1002/1096-9896(2000)9999:9999<::AID-PATH708>3.0.CO;2-I 10.1109/ICPR.2000.905385 10.1109/TSMC.1979.4310076 10.1109/RBME.2009.2034865 10.1109/ICCV.2001.937505 10.1109/ICIP.2002.1039125 10.1109/TBME.2009.2035102 10.1182/blood.V89.11.3909 10.1016/j.patcog.2008.10.035 10.1109/ICCV.2003.1238308 10.1109/ISBI.2008.4540988 10.1109/TITB.2005.847515 10.1109/TBME.2010.2041232 10.1109/TSMC.1973.4309314 10.1109/34.868688 10.1007/978-4-431-67044-5 10.1038/nbt1080 10.1007/11566465_109 10.1200/JCO.1985.3.1.25 10.1109/TPAMI.2003.1217601 10.1023/A:1020874308076 10.1109/TIP.2003.819858 10.1109/TC.1972.5008949 10.1007/978-3-662-03939-7 10.1109/TBME.2008.2008635 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 Copyright (c) 2010 IEEE. 2010 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 – notice: Copyright (c) 2010 IEEE. 2010 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| DOI | 10.1109/TMI.2011.2141674 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database Technology Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 1677 |
| ExternalDocumentID | PMC3165069 2439879561 21486712 10_1109_TMI_2011_2141674 5746646 |
| Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01CA134451 – fundername: NCI NIH HHS grantid: R01 CA134451 – fundername: National Cancer Institute : NCI grantid: R01 CA134451-02 || CA – fundername: National Cancer Institute : NCI grantid: R01 CA134451-01A1 || CA – fundername: National Cancer Institute : NCI grantid: R01 CA134451-04 || CA – fundername: National Cancer Institute : NCI grantid: R01 CA134451-03 || CA |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c498t-83f3ccadd43cd456c629a5882f01784712fab5ca6ac2dd0cc9445c48dd78f1b13 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Tue Sep 30 17:00:09 EDT 2025 Thu Oct 02 10:08:49 EDT 2025 Thu Oct 02 19:54:46 EDT 2025 Sun Jun 29 16:27:43 EDT 2025 Mon Jul 21 06:04:05 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Wed Oct 01 03:55:20 EDT 2025 Tue Aug 26 17:17:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c498t-83f3ccadd43cd456c629a5882f01784712fab5ca6ac2dd0cc9445c48dd78f1b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 21486712 |
| PQID | 886559149 |
| PQPubID | 85460 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3165069 proquest_miscellaneous_910661912 crossref_citationtrail_10_1109_TMI_2011_2141674 crossref_primary_10_1109_TMI_2011_2141674 ieee_primary_5746646 pubmed_primary_21486712 proquest_miscellaneous_887507977 proquest_journals_886559149 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2011 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 dick (ref4) 1987; 78 naik (ref37) 2007 ref11 ref10 ref17 (ref49) 2010 ref18 duda (ref14) 2001 ref46 (ref48) 2010 jeffe (ref2) 2001 ref47 ref42 ref41 ref43 sun (ref21) 2005 ref8 ref7 ref9 sethian (ref31) 1996 ref40 yang (ref45) 2008; 1 ref35 ref36 metter (ref3) 1985; 3 zhou (ref6) 2001 ref30 ref33 ref32 ref1 (ref50) 2010 ref39 ref38 li (ref16) 2001 keenan (ref44) 2000; 192 project (ref5) 1997; 89 paragios (ref34) 2002 ref24 ref23 ref26 ref25 ref20 ref28 ref27 wen (ref22) 2009 ref29 qureshi (ref19) 2008; 2 |
| References_xml | – year: 2001 ident: ref2 article-title: Tumours of haematopoietic and lymphoid tissues publication-title: Lyon IRAC Press – ident: ref8 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref33 doi: 10.1109/ICIP.2006.312454 – ident: ref46 doi: 10.1016/S0031-3203(99)00119-3 – start-page: 3324 year: 2005 ident: ref21 article-title: Segmenting and counting of wall-pasted cells based on gabor filter publication-title: Proc IEEE Int Conf Eng Med Biol Soc (EMBS) – ident: ref24 doi: 10.1007/s11265-008-0201-y – ident: ref27 doi: 10.1109/34.87344 – year: 2010 ident: ref50 publication-title: Source Code for Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images – ident: ref11 doi: 10.1109/34.1000236 – ident: ref35 doi: 10.1109/ICIP.2003.1247272 – ident: ref28 doi: 10.1109/TMI.2004.824224 – year: 2010 ident: ref49 publication-title: Superpixel Source Code – ident: ref26 doi: 10.1109/TBME.2010.2055058 – ident: ref43 doi: 10.1016/j.patcog.2007.11.006 – ident: ref36 doi: 10.1109/TBME.2006.873538 – volume: 192 start-page: 351 year: 2000 ident: ref44 article-title: An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN) publication-title: J Pathol doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH708>3.0.CO;2-I – ident: ref29 doi: 10.1109/ICPR.2000.905385 – year: 2010 ident: ref48 publication-title: Code for the Edge Detection and Image Segmentation System – ident: ref39 doi: 10.1109/TSMC.1979.4310076 – ident: ref1 doi: 10.1109/RBME.2009.2034865 – start-page: 610 year: 2001 ident: ref6 article-title: Texture feature based on local fourier transform publication-title: Proc IEEE Int Conf Image Process – ident: ref10 doi: 10.1109/ICCV.2001.937505 – ident: ref7 doi: 10.1109/ICIP.2002.1039125 – volume: 2 start-page: 196 year: 2008 ident: ref19 article-title: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification publication-title: IEEE Conf Med Image Computing Computer Assist Intervent (MICCAI) – ident: ref13 doi: 10.1109/TBME.2009.2035102 – year: 1996 ident: ref31 publication-title: Level Set Methods Evolving Interfaces in Geometry Fluid Mechanics Computer Vision and Materials Sciences – volume: 89 start-page: 3909 year: 1997 ident: ref5 article-title: A clinical evaluation of the international lymphoma study group classification of non-hodgkin lymphoma publication-title: Blood doi: 10.1182/blood.V89.11.3909 – ident: ref12 doi: 10.1016/j.patcog.2008.10.035 – ident: ref9 doi: 10.1109/ICCV.2003.1238308 – ident: ref38 doi: 10.1109/ISBI.2008.4540988 – ident: ref23 doi: 10.1109/TITB.2005.847515 – ident: ref30 doi: 10.1109/TBME.2010.2041232 – ident: ref18 doi: 10.1109/TSMC.1973.4309314 – ident: ref15 doi: 10.1109/34.868688 – year: 2007 ident: ref37 article-title: Gland segmentation and computerized gleason grading of prostate histology by integrating low-, high-level and domain specific information publication-title: 2nd Int Workshop Microscopic Image Anal With Appl Biol (MIAAB) – year: 2001 ident: ref16 publication-title: Markov Random Field Modeling in Computer Vision doi: 10.1007/978-4-431-67044-5 – ident: ref20 doi: 10.1038/nbt1080 – ident: ref25 doi: 10.1007/11566465_109 – volume: 3 start-page: 25 year: 1985 ident: ref3 article-title: Morphological subclassification of follicular lymphoma: Variability of diagnoses among hematopathologists, a collaborative study between the repository center and pathology panel for lymphoma clinical studies publication-title: J Clin Oncol doi: 10.1200/JCO.1985.3.1.25 – year: 2009 ident: ref22 article-title: A delunay triangulation approach for segmenting clumps of nuclei publication-title: IEEE Int Symp Biomed Imag From Nano to Macro – ident: ref40 doi: 10.1109/TPAMI.2003.1217601 – ident: ref17 doi: 10.1023/A:1020874308076 – ident: ref32 doi: 10.1109/TIP.2003.819858 – ident: ref47 doi: 10.1109/TC.1972.5008949 – volume: 78 start-page: 1137 year: 1987 ident: ref4 article-title: Use of the working formulation for non-hodgkin's lymphoma in epidemiological studies: Agreement between reported diagnoses and a panel of experienced pathologists publication-title: J Nat Cancer Inst – ident: ref41 doi: 10.1007/978-3-662-03939-7 – volume: 1 start-page: 833 year: 2008 ident: ref45 article-title: Automatic image analysis of histopathology specimens using concave vertex graph publication-title: Int Conf Med Image Comput Comput Assist Interv – year: 2001 ident: ref14 publication-title: Pattern Classification – start-page: 78 year: 2002 ident: ref34 article-title: Shape priors for level set representation publication-title: Eur Conf Comput Vis – ident: ref42 doi: 10.1109/TBME.2008.2008635 |
| SSID | ssj0014509 |
| Score | 2.4659307 |
| Snippet | For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1661 |
| SubjectTerms | Algorithm design and analysis Algorithms Artificial Intelligence Classification Color Color texture Color-texture feature extraction Discriminant Analysis Feature extraction follicular lymphoma Fourier Analysis Fourier transforms histopathological image segmentation Humans Image color analysis Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation local fourier transform Lymphoma, Follicular - diagnosis Lymphoma, Follicular - pathology Pattern Recognition, Automated - methods Pixel radial-symmetry point Reproducibility of Results Segmentation Sensitivity and Specificity Splitting Studies supervised learning Surface layer touching-cell splitting Training |
| Title | Partitioning Histopathological Images: An Integrated Framework for Supervised Color-Texture Segmentation and Cell Splitting |
| URI | https://ieeexplore.ieee.org/document/5746646 https://www.ncbi.nlm.nih.gov/pubmed/21486712 https://www.proquest.com/docview/886559149 https://www.proquest.com/docview/887507977 https://www.proquest.com/docview/910661912 https://pubmed.ncbi.nlm.nih.gov/PMC3165069 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEp7aNqkDydN0aGXQr2xZPnVWwhdsoUthd1AbkaW5KZ04w2760v75zsjyyYb0tCbQSNsM6PRN5qZTwAfIlPJRFkR8opOq4xAPxhbE2oM3GKDS7CW1Jw8_ZZeXMqvV8nVDnwaemGsta74zI7o0eXyzVK3dFSGwTuRoae7sJvladerNWQMZNKVcwhijI1S0acko-J0Pp10XJ2CSyq6dwTAxDTHxdZu5K5XeQhp3i-YvLMDjfdh2n97V3jya9RuqpH-fY_W8X9_7gU891CUnXW28xJ2bHMAz-4QFB7Ak6lPvR_Cn-9kZP74ljl2EbrNuPedbHKDnmn9mZ01bNJTUBg27mu_GIJjNmtvyTWtceAcJ67COW4N7cqymf1x45ugGqYaHLaLBZshQHZl2a_gcvxlfn4R-psbQi2LfIPqrmM0DWNkrA1CNJ2KQiUI5mt0ALQfilpViVap0sKYSOtCykTL3Jgsr3nF49ew1ywb-xaYUkktyG1UeS0xVlWGemtFxhObcy2rAE57DZba05rT7RqL0oU3UVGi-ktSf-nVH8DHYcZtR-nxiOwhaWqQ80oK4Lg3ktKv-XWZU49vgRFnAGwYxcVKGRjV2GVLIgjQMoTc_xZB-IaQqeAigDed0Q0v7402gGzLHAcBogrfHml-XjvK8JgjEk-Lo4d_5xiedkflVDr3DvY2q9aeINbaVO_dIvsLfzInBw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa6DtjjsEfbbV730GGXAXNqyZJj91YUC5KtLgYkBXozZEnehqVOkcSX9c-X9AtN0Q67GRAF2yBFfRTJTwCfAptLpZ3weU6nVVagHwyd9Q0GbqHFJVhIak5OT6Pxmfx2rs634EvfC-Ocq4vP3IAe61y-XZiKjsoweCcy9OgBPFRSStV0a_U5A6magg5BnLFBJLqkZJAczNJJw9YpuKSy-5oCmLjmuNjYj-oLVu7CmrdLJm_sQaPnkHZf35Se_BlU63xg_t4idvzf33sBz1owyo4a63kJW67cgac3KAp34FHaJt934eoHmVl7gMtqfhG6z7jznmxygb5pdciOSjbpSCgsG3XVXwzhMZtWl-ScVjhwjBOX_gw3h2rp2NT9vGjboEqmSxx28zmbIkSuC7P34Gz0dXY89tu7G3wjk3iNCi9CNA5rZWgsgjQTiUQrhPMFugDaEUWhc2V0pI2wNjAmQYUaGVs7jAue8_AVbJeL0r0BprUqBDmOPC4kRqvaUnetGHLlYm5k7sFBp8HMtMTmdL_GPKsDnCDJUP0ZqT9r1e_B537GZUPq8Q_ZXdJUL9cqyYP9zkiydtWvspi6fBOMOT1g_SguV8rB6NItKhJBiDZE0H2_CAI4BE0JFx68boyuf3lntB4MN8yxFyCy8M2R8vevmjQ85IjFo-Tt3b_zER6PZ-lJdjI5_b4PT5qDcyqkewfb62Xl3iPyWucf6gV3DQYaKlQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partitioning+histopathological+images%3A+an+integrated+framework+for+supervised+color-texture+segmentation+and+cell+splitting&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kong%2C+Hui&rft.au=Gurcan%2C+Metin&rft.au=Belkacem-Boussaid%2C+Kamel&rft.date=2011-09-01&rft.eissn=1558-254X&rft.volume=30&rft.issue=9&rft.spage=1661&rft_id=info:doi/10.1109%2FTMI.2011.2141674&rft_id=info%3Apmid%2F21486712&rft.externalDocID=21486712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |