A survey on statistical methods for health care fraud detection

Fraud and abuse have led to significant additional expense in the health care system of the United States. This paper aims to provide a comprehensive survey of the statistical methods applied to health care fraud detection, with focuses on classifying fraudulent behaviors, identifying the major sour...

Full description

Saved in:
Bibliographic Details
Published inHealth care management science Vol. 11; no. 3; pp. 275 - 287
Main Authors Li, Jing, Huang, Kuei-Ying, Jin, Jionghua, Shi, Jianjun
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.09.2008
Springer
Springer Nature B.V
SeriesHealth Care Management Science
Subjects
Online AccessGet full text
ISSN1386-9620
1572-9389
DOI10.1007/s10729-007-9045-4

Cover

Abstract Fraud and abuse have led to significant additional expense in the health care system of the United States. This paper aims to provide a comprehensive survey of the statistical methods applied to health care fraud detection, with focuses on classifying fraudulent behaviors, identifying the major sources and characteristics of the data based on which fraud detection has been conducted, discussing the key steps in data preprocessing, as well as summarizing, categorizing, and comparing statistical fraud detection methods. Based on this survey, some discussion is provided about what has been lacking or under-addressed in the existing research, with the purpose of pinpointing some future research directions.
AbstractList Fraud and abuse have led to significant additional expense in the health care system of the United States. This paper aims to provide a comprehensive survey of the statistical methods applied to health care fraud detection, with focuses on classifying fraudulent behaviors, identifying the major sources and characteristics of the data based on which fraud detection has been conducted, discussing the key steps in data preprocessing, as well as summarizing, categorizing, and comparing statistical fraud detection methods. Based on this survey, some discussion is provided about what has been lacking or under-addressed in the existing research, with the purpose of pinpointing some future research directions.
Fraud and abuse have led to significant additional expense in the health care system of the United States. This paper aims to provide a comprehensive survey of the statistical methods applied to health care fraud detection, with focuses on classifying fraudulent behaviors, identifying the major sources and characteristics of the data based on which fraud detection has been conducted, discussing the key steps in data preprocessing, as well as summarizing, categorizing, and comparing statistical fraud detection methods. Based on this survey, some discussion is provided about what has been lacking or under-addressed in the existing research, with the purpose of pinpointing some future research directions.Fraud and abuse have led to significant additional expense in the health care system of the United States. This paper aims to provide a comprehensive survey of the statistical methods applied to health care fraud detection, with focuses on classifying fraudulent behaviors, identifying the major sources and characteristics of the data based on which fraud detection has been conducted, discussing the key steps in data preprocessing, as well as summarizing, categorizing, and comparing statistical fraud detection methods. Based on this survey, some discussion is provided about what has been lacking or under-addressed in the existing research, with the purpose of pinpointing some future research directions.
Fraud and abuse have led to significant additional expense in the health care system of the United States. This paper aims to provide a comprehensive survey of the statistical methods applied to health care fraud detection, with focuses on classifying fraudulent behaviors, identifying the major sources and characteristics of the data based on which fraud detection has been conducted, discussing the key steps in data preprocessing, as well as summarizing, categorizing, and comparing statistical fraud detection methods. Based on this survey, some discussion is provided about what has been lacking or under-addressed in the existing research, with the purpose of pinpointing some future research directions. [PUBLICATION ABSTRACT]
Author Huang, Kuei-Ying
Jin, Jionghua
Shi, Jianjun
Li, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  email: jinglz@asu.edu
  organization: Department of Industrial Engineering, Arizona State University
– sequence: 2
  givenname: Kuei-Ying
  surname: Huang
  fullname: Huang, Kuei-Ying
  organization: Department of Industrial and Operations Engineering, University of Michigan
– sequence: 3
  givenname: Jionghua
  surname: Jin
  fullname: Jin, Jionghua
  organization: Department of Industrial and Operations Engineering, University of Michigan
– sequence: 4
  givenname: Jianjun
  surname: Shi
  fullname: Shi, Jianjun
  organization: Department of Industrial and Operations Engineering, University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18826005$$D View this record in MEDLINE/PubMed
http://econpapers.repec.org/article/kaphcarem/v_3a11_3ay_3a2008_3ai_3a3_3ap_3a275-287.htm$$DView record in RePEc
BookMark eNp9kctu1jAQhS1URC_wAGxQxIJdwLf4skJVVW6qxKZdW44zJilJHGyn0v_2dZRSpEp0MfbY-s7xeOYUHc1hBoTeEvyRYCw_JYIl1XVJa415U_MX6IQ0ktaaKX1UcqZErQXFx-g0pVuMcYMFeYWOiVJUlNMJ-nxepTXewaEKc5WyzUPKg7NjNUHuQ5cqH2LVgx1zXzkbofLRrl3VQQaXhzC_Ri-9HRO8edjP0M2Xy-uLb_XVz6_fL86vase1yrVijAnLuRWqFNrhxkvpZNs6xxrQlrcWbNty6i2lQjrKcSM197S1Hpzwmp2hD7vvEsOfFVI205AcjKOdIazJCC2IZrQp4Psn4G1Y41xqM5RKTRXHtEA_dijCAs4scZhsPJjfdum3T07mzjBLSFkOJSjGqmxDCVZi2a5kY6iSps9TMXv38OLaTtA9uv1tcgHkDrgYUorgjRu2Toc5RzuMhmCzjdPs4zRbuo3T8KIkT5SP5s9o6K5JhZ1_QfzXgP-L7gGRt6_G
CitedBy_id crossref_primary_10_1016_j_jhealeco_2020_102405
crossref_primary_10_1051_matecconf_201818903002
crossref_primary_10_1186_s40352_021_00149_3
crossref_primary_10_2308_JFAR_2021_015
crossref_primary_10_1016_j_protcy_2013_12_140
crossref_primary_10_1109_ACCESS_2024_3425892
crossref_primary_10_1016_j_cosrev_2021_100402
crossref_primary_10_1002_asmb_2633
crossref_primary_10_3390_healthcare9101274
crossref_primary_10_1109_TSC_2021_3051165
crossref_primary_10_1016_j_habitatint_2017_05_007
crossref_primary_10_1186_s40537_018_0138_3
crossref_primary_10_1007_s10479_019_03360_6
crossref_primary_10_1016_j_heliyon_2024_e30045
crossref_primary_10_2139_ssrn_2459343
crossref_primary_10_1016_j_asoc_2015_07_018
crossref_primary_10_1016_j_cmpb_2011_09_003
crossref_primary_10_1109_ACCESS_2022_3170888
crossref_primary_10_1007_s40200_023_01228_y
crossref_primary_10_1016_j_eswa_2019_113128
crossref_primary_10_2139_ssrn_1965735
crossref_primary_10_1002_sam_11408
crossref_primary_10_3390_healthcare11131972
crossref_primary_10_1016_j_eswa_2012_01_105
crossref_primary_10_7232_JKIIE_2013_39_4_313
crossref_primary_10_1177_1471082X16685020
crossref_primary_10_1007_s10742_017_0172_1
crossref_primary_10_1016_j_accinf_2016_04_001
crossref_primary_10_1080_02664763_2015_1034659
crossref_primary_10_1007_s41666_018_0019_8
crossref_primary_10_1016_j_dss_2010_08_006
crossref_primary_10_1080_00031305_2017_1292955
crossref_primary_10_1007_s10489_015_0685_7
crossref_primary_10_1016_j_insmatheco_2016_09_013
crossref_primary_10_1155_2019_1432597
crossref_primary_10_1007_s10729_015_9317_3
crossref_primary_10_1016_j_ress_2015_05_025
crossref_primary_10_1080_10864415_2022_2076199
crossref_primary_10_1007_s00287_021_01398_0
crossref_primary_10_1111_pme_12713
crossref_primary_10_1111_jori_12359
crossref_primary_10_15171_ijhpm_2015_196
crossref_primary_10_1007_s12652_021_03481_6
crossref_primary_10_1186_s40537_019_0225_0
crossref_primary_10_1080_10920277_2021_1895843
crossref_primary_10_1111_insr_12269
crossref_primary_10_4018_JOEUC_301271
crossref_primary_10_2174_1874944502013010718
crossref_primary_10_1016_j_jnca_2016_04_007
crossref_primary_10_3414_ME15_01_0076
crossref_primary_10_1002_mde_3117
crossref_primary_10_1080_02664763_2021_1959528
crossref_primary_10_7595_management_fon_2018_0015
crossref_primary_10_1016_j_jocs_2017_02_007
crossref_primary_10_3390_app10155144
crossref_primary_10_1016_j_jeconom_2020_05_021
crossref_primary_10_1177_2168479015620248
crossref_primary_10_3390_healthcare6020054
crossref_primary_10_1093_comjnl_bxab038
crossref_primary_10_1365_s40702_016_0278_x
crossref_primary_10_1007_s10729_013_9247_x
crossref_primary_10_1057_s41270_019_00055_6
crossref_primary_10_1186_s12874_022_01768_6
crossref_primary_10_1109_TKDE_2019_2924431
crossref_primary_10_1007_s00500_023_08296_5
crossref_primary_10_1016_j_artmed_2024_103061
crossref_primary_10_1186_s12913_017_2054_1
crossref_primary_10_1109_TVCG_2023_3261910
crossref_primary_10_37920_sasj_2020_54_2_2
Cites_doi 10.1111/1539-6975.00025
10.1016/j.compind.2003.10.006
10.1016/S0957-4174(97)00045-6
10.1007/3-540-63797-4_87
10.1109/TKDE.2004.1277822
10.1002/9781119013563
10.1080/00224065.2008.11917712
10.1016/S1088-467X(97)00008-5
10.1089/106652700750050961
10.1023/B:DAMI.0000023676.72185.7c
10.1016/j.ecolmodel.2003.08.020
10.1145/765891.765910
10.1016/j.eswa.2005.09.003
10.1109/ICSMC.1998.725092
10.20965/jaciii.2000.p0130
10.1145/279943.279962
10.1109/HICSS.2001.926570
10.1023/A:1007692713085
10.1080/07408170600899532
10.1007/978-1-4612-2748-9
10.1145/312129.312195
10.1111/j.1467-8640.1994.tb00166.x
10.1007/3-540-48912-6_26
10.1145/1007730.1007738
10.1007/978-94-011-5014-9_11
10.1097/00005110-199706000-00008
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2007
Springer Science+Business Media, LLC 2008
Copyright_xml – notice: Springer Science+Business Media, LLC 2007
– notice: Springer Science+Business Media, LLC 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DKI
X2L
3V.
7WY
7WZ
7X7
7XB
87Z
88C
88E
8AO
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
K60
K6~
K9.
L.-
L.0
M0C
M0S
M0T
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1007/s10729-007-9045-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
RePEc IDEAS
RePEc
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ABI/INFORM Professional Standard
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Business
EISSN 1572-9389
EndPage 287
ExternalDocumentID 1531672441
kaphcarem_v_3a11_3ay_3a2008_3ai_3a3_3ap_3a275_287_htm
18826005
10_1007_s10729_007_9045_4
Genre Journal Article
GroupedDBID ---
-57
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
07C
0R~
0VY
199
1N0
1SB
203
29I
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
44B
53G
5GY
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FI
8FJ
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBO
EBS
EBU
EHE
EIOEI
EJD
EMB
EMOBN
EOH
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
LAK
LLZTM
M0C
M0T
M1P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
OVD
P2P
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOS
QWB
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S27
S3B
SAP
SBE
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
ZL0
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
57
5G
86
95
AAEIZ
AAFGU
AAGJQ
AAPBV
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACDSR
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
ADTIX
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
BBAFP
BR
C
DKI
EM
HF
HZ
IPNFZ
K6
KSO
PQEST
PQUKI
PRINS
RIG
UNUBA
VR
X2L
Y2
7XB
8FK
K9.
L.-
L.0
PKEHL
Q9U
7X8
ID FETCH-LOGICAL-c498t-83336a44a68045d05f77c7bbcc35e9a4baeabb42fa2267c2405794f2bafec6f93
IEDL.DBID AGYKE
ISSN 1386-9620
IngestDate Fri Sep 05 13:00:14 EDT 2025
Mon Oct 06 16:58:13 EDT 2025
Sun Jul 17 10:24:02 EDT 2022
Thu Apr 03 07:07:16 EDT 2025
Wed Oct 01 03:46:43 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Fri Feb 21 02:36:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Health care
Fraud detection
Statistical methods
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-83336a44a68045d05f77c7bbcc35e9a4baeabb42fa2267c2405794f2bafec6f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 18826005
PQID 227928402
PQPubID 25887
PageCount 13
ParticipantIDs proquest_miscellaneous_69619325
proquest_journals_227928402
repec_primary_kaphcarem_v_3a11_3ay_3a2008_3ai_3a3_3ap_3a275_287_htm
pubmed_primary_18826005
crossref_citationtrail_10_1007_s10729_007_9045_4
crossref_primary_10_1007_s10729_007_9045_4
springer_journals_10_1007_s10729_007_9045_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Netherlands
– name: New york
PublicationSeriesTitle Health Care Management Science
PublicationTitle Health care management science
PublicationTitleAbbrev Health Care Manage Sci
PublicationTitleAlternate Health Care Manag Sci
PublicationYear 2008
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References BennettKDemirizASemi-supervised support vector machinesAdv Neural Inf Process Syst199812368374
MajorJARiedingerDREFD: A hybrid knowledge/statistical-based system for the detection of fraudThe Journal of Risk and Insurance200269330932410.1111/1539-6975.00025
Cooper C (2003) Turning information into action. Computer Associates: The Software That Manages eBusiness, Report, available at http://www.ca.com
Li J, Jin J, Shi J (2008) Causation-based T2 Decomposition for Multivariate Process Monitoring and Diagnosis. Journal of Quality Technology, to appear in January 2008.
LamWBacchusFLearning Bayesian belief networks: an approach based on the MDL principleComput Intell19931026929310.1111/j.1467-8640.1994.tb00166.x
Yang WS (2003) A Process Pattern Mining Framework for the Detection of Health Care Fraud and Abuse, Ph.D. thesis, National Sun Yat-Sen University, Taiwan
WilliamsGHuangZMining the knowledge mine: The Hot Spots methodology for mining large real world databasesLect Notes Comput Sci1997134234034810.1007/3-540-63797-4_87
Ormerod T, Morley N, Ball L, Langley C, Spenser C (2003) Using ethnography to design a Mass Detection Tool (MDT) for the early discovery of insurance fraud. In Proceedings of the ACM CHI Conference
HeHHawkinsSGracoWYaoXApplication of Genetic Algorithms and k-Nearest Neighbour method in real world medical fraud detection problemJournal of Advanced Computational Intelligence and Intelligent Informatics200042130137
NigamKMcCalumAThrunSMitchellTText classification from labeled and unlabeled documents using EMMachine Learning20003910313410.1023/A:1007692713085
YamanishiKTakeuchiJWilliamsGMilnePOn-line unsupervised outlier detection using finite mixtures with discounting learning algorithmsData Mining and Knowledge Discovery2004827530010.1023/B:DAMI.0000023676.72185.7c
Chan CL, Lan CH (2001) A data mining technique combining fuzzy sets theory and Bayesian classifier—an application of auditing the health insurance fee. In Proceedings of the International Conference on Artificial Intelligence, 402–408
WilliamsGEvolutionary Hot Spots data mining: an architecture for exploring for interesting discoveriesLect Notes Comput Sci19991574184193
PhuaCAlahakoonDLeeVMinority report in fraud detection: classification of skewed dataSIGKEE Explorations200461505910.1145/1007730.1007738
GAO (1996) Health Care Fraud: Information-Sharing Proposals to Improve Enforcement Effects. Report of United States General Accounting Office
HubickKTArtificial neural networks in Australia1992CanberraDepartment of Industry, Technology and Commerce, CPN Publications
LiJShiJKnowledge Discovery from Observational Data for Process Control using Causal Bayesian NetworksIIE Transactions200739668169010.1080/07408170600899532
Viveros MS, Nearhos JP, Rothman MJ (1996) Applying data mining techniques to a health insurance information system. In Proceedings of the 22nd VLDB Conference, Mumbai, India, 286–294
FriedmanNLinialMNachmanIPe’erDUsing Bayesian networks to analyze expression dataJ Comput Biol2000760162010.1089/106652700750050961
YangWSHwangSYA process-mining framework for the detection of healthcare fraud and abuseExpert Syst Appl200631566810.1016/j.eswa.2005.09.003
NHCAA (2005) The Problem of Health Care Fraud: A serious and costly reality for all Americans, report of National Health Care Anti-Fraud Association (NHCAA)
BorsukMEStowCAReckhowKHA Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysisEcol Model200417321923910.1016/j.ecolmodel.2003.08.020
HwangSYWeiCPYangWSDiscovery of temporal patterns from process instancesComp Ind20035334536410.1016/j.compind.2003.10.006
DashMLiuHFeature selection for classificationIDA19971131156
ShapiroAFThe merging of neural networks, fuzzy logic, and genetic algorithmsInsurance: Mathematics and Economics20023111513110.1016/S0167-6687(02)00124-5
Yang WS (2002) Process analyzer and its application on medical care. In Proceedings of 23rd International Conference on Information Systems (ICIS02), Spain
HallCIntelligent data mining at IBM: new products and applicationsIntell Softw Strateg199675111
ViaeneSDerrigRDedeneGA case study of applying boosting Naive Bayes to claim fraud diagnosisIEEE Trans Knowl Data Eng200416561262010.1109/TKDE.2004.1277822
Wei CP, Hwang SY, Yang WS (2000) Mining frequent temporal patterns in process databases. Proceedings of international workshop on information technologies and systems, Australia, 175–180
GhoshSReillyDCredit card fraud detection with a neural networkProceedings of 27th Hawaii International Conference on Systems Science19943621630
Sokol L, Garcia B, West M, Rodriguez J, Johnson K (2001) Precursory steps to mining HCFA health care claims. In Proceedings of the 34th Hawaii International Conference on System Sciences
Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In Proceedings of the 11th Annual Conference on Computational Learning Theory
HeHWangJGracoWHawkinsSApplication of neural networks to detection of medical fraudExpert Syst Appl19971332933610.1016/S0957-4174(97)00045-6
HeckermanDA tutorial on learning with Bayesian networks. In Learning in Graphical Models1998BostonKluwer Academic301354
Lin J-H, Haug PJ (2006) Data preparation framework for preprocessing clinical data in data mining, AMIA Symposium Proceedings 489–493
AbbottDWMatkovskyIPElderJFAn evaluation of high-end data mining tools for fraud detection1998Man, and Cybernetics, San Diego, CAIn Proceedings of IEEE International Conference on Systems
Ortega PA, Figueroa CJ, Ruz GA (2006) A medical claim fraud/abuse detection system based on data mining: a case study in Chile. In Proceedings of International Conference on Data Mining, Las Vegas, Nevada, USA
IresonCLCritical pathways: effectiveness in achieving patient outcomesJ Nurs Adm1997276162310.1097/00005110-199706000-00008
Dai H, Korb KB, Wallace CS, Wu X (1997) A study of casual discovery with weak links and small samples. In Proceeding of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI), San Francisco, CA, pp 1304–1309
Fawcett T, Provost F (1999) Activity monitoring: noticing interesting changes in behavior. In Proceedings of SIGKDD99, 53–62
Bonchi F, Giannotti F, Mainetto G, Pedreschi D (1999) A classification-based methodology for planning auditing strategies in fraud detection. In Proceedings of SIGKDD99, 175–184
HerbWTomMA scientific approach for detecting fraudBest’s Review19959547881
CoxEGoonatilakeSTreleavenPA fuzzy system for detecting anomalous behaviors in healthcare provider claimsIntelligent systems for finance and business1995New YorkWiley111134
LittleRJARubinDBStatistical analysis with missing data2002New YorkWiley
SpirtesPGlymourCScheinesRCausation, Prediction and Search1993New YorkSpringer
N Friedman (9045_CR12) 2000; 7
S Viaene (9045_CR37) 2004; 16
RJA Little (9045_CR26) 2002
ME Borsuk (9045_CR5) 2004; 173
K Nigam (9045_CR29) 2000; 39
C Hall (9045_CR15) 1996; 7
H He (9045_CR17) 1997; 13
K Bennett (9045_CR2) 1998; 12
H He (9045_CR16) 2000; 4
WS Yang (9045_CR43) 2006; 31
M Dash (9045_CR10) 1997; 1
9045_CR31
9045_CR11
G Williams (9045_CR41) 1997; 1342
S Ghosh (9045_CR14) 1994; 3
DW Abbott (9045_CR1) 1998
9045_CR30
9045_CR39
KT Hubick (9045_CR20) 1992
9045_CR3
9045_CR13
9045_CR35
J Li (9045_CR24) 2007; 39
9045_CR4
9045_CR38
9045_CR7
9045_CR6
9045_CR9
SY Hwang (9045_CR21) 2003; 53
K Yamanishi (9045_CR42) 2004; 8
CL Ireson (9045_CR33) 1997; 27
P Spirtes (9045_CR36) 1993
JA Major (9045_CR27) 2002; 69
D Heckerman (9045_CR18) 1998
W Herb (9045_CR19) 1995; 95
C Phua (9045_CR32) 2004; 6
9045_CR44
9045_CR23
9045_CR45
9045_CR28
W Lam (9045_CR22) 1993; 10
G Williams (9045_CR40) 1999; 1574
E Cox (9045_CR8) 1995
9045_CR25
AF Shapiro (9045_CR34) 2002; 31
9204043 - J Nurs Adm. 1997 Jun;27(6):16-23
17238389 - AMIA Annu Symp Proc. 2006;:489-93
11108481 - J Comput Biol. 2000;7(3-4):601-20
References_xml – reference: Cooper C (2003) Turning information into action. Computer Associates: The Software That Manages eBusiness, Report, available at http://www.ca.com
– reference: Lin J-H, Haug PJ (2006) Data preparation framework for preprocessing clinical data in data mining, AMIA Symposium Proceedings 489–493
– reference: Wei CP, Hwang SY, Yang WS (2000) Mining frequent temporal patterns in process databases. Proceedings of international workshop on information technologies and systems, Australia, 175–180
– reference: HeckermanDA tutorial on learning with Bayesian networks. In Learning in Graphical Models1998BostonKluwer Academic301354
– reference: NHCAA (2005) The Problem of Health Care Fraud: A serious and costly reality for all Americans, report of National Health Care Anti-Fraud Association (NHCAA)
– reference: Yang WS (2002) Process analyzer and its application on medical care. In Proceedings of 23rd International Conference on Information Systems (ICIS02), Spain
– reference: Sokol L, Garcia B, West M, Rodriguez J, Johnson K (2001) Precursory steps to mining HCFA health care claims. In Proceedings of the 34th Hawaii International Conference on System Sciences
– reference: YangWSHwangSYA process-mining framework for the detection of healthcare fraud and abuseExpert Syst Appl200631566810.1016/j.eswa.2005.09.003
– reference: Yang WS (2003) A Process Pattern Mining Framework for the Detection of Health Care Fraud and Abuse, Ph.D. thesis, National Sun Yat-Sen University, Taiwan
– reference: BorsukMEStowCAReckhowKHA Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysisEcol Model200417321923910.1016/j.ecolmodel.2003.08.020
– reference: LittleRJARubinDBStatistical analysis with missing data2002New YorkWiley
– reference: Bonchi F, Giannotti F, Mainetto G, Pedreschi D (1999) A classification-based methodology for planning auditing strategies in fraud detection. In Proceedings of SIGKDD99, 175–184
– reference: Chan CL, Lan CH (2001) A data mining technique combining fuzzy sets theory and Bayesian classifier—an application of auditing the health insurance fee. In Proceedings of the International Conference on Artificial Intelligence, 402–408
– reference: LamWBacchusFLearning Bayesian belief networks: an approach based on the MDL principleComput Intell19931026929310.1111/j.1467-8640.1994.tb00166.x
– reference: HwangSYWeiCPYangWSDiscovery of temporal patterns from process instancesComp Ind20035334536410.1016/j.compind.2003.10.006
– reference: Dai H, Korb KB, Wallace CS, Wu X (1997) A study of casual discovery with weak links and small samples. In Proceeding of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI), San Francisco, CA, pp 1304–1309
– reference: IresonCLCritical pathways: effectiveness in achieving patient outcomesJ Nurs Adm1997276162310.1097/00005110-199706000-00008
– reference: WilliamsGEvolutionary Hot Spots data mining: an architecture for exploring for interesting discoveriesLect Notes Comput Sci19991574184193
– reference: HerbWTomMA scientific approach for detecting fraudBest’s Review19959547881
– reference: ShapiroAFThe merging of neural networks, fuzzy logic, and genetic algorithmsInsurance: Mathematics and Economics20023111513110.1016/S0167-6687(02)00124-5
– reference: Li J, Jin J, Shi J (2008) Causation-based T2 Decomposition for Multivariate Process Monitoring and Diagnosis. Journal of Quality Technology, to appear in January 2008.
– reference: SpirtesPGlymourCScheinesRCausation, Prediction and Search1993New YorkSpringer
– reference: GhoshSReillyDCredit card fraud detection with a neural networkProceedings of 27th Hawaii International Conference on Systems Science19943621630
– reference: FriedmanNLinialMNachmanIPe’erDUsing Bayesian networks to analyze expression dataJ Comput Biol2000760162010.1089/106652700750050961
– reference: WilliamsGHuangZMining the knowledge mine: The Hot Spots methodology for mining large real world databasesLect Notes Comput Sci1997134234034810.1007/3-540-63797-4_87
– reference: HubickKTArtificial neural networks in Australia1992CanberraDepartment of Industry, Technology and Commerce, CPN Publications
– reference: Ormerod T, Morley N, Ball L, Langley C, Spenser C (2003) Using ethnography to design a Mass Detection Tool (MDT) for the early discovery of insurance fraud. In Proceedings of the ACM CHI Conference
– reference: CoxEGoonatilakeSTreleavenPA fuzzy system for detecting anomalous behaviors in healthcare provider claimsIntelligent systems for finance and business1995New YorkWiley111134
– reference: PhuaCAlahakoonDLeeVMinority report in fraud detection: classification of skewed dataSIGKEE Explorations200461505910.1145/1007730.1007738
– reference: ViaeneSDerrigRDedeneGA case study of applying boosting Naive Bayes to claim fraud diagnosisIEEE Trans Knowl Data Eng200416561262010.1109/TKDE.2004.1277822
– reference: YamanishiKTakeuchiJWilliamsGMilnePOn-line unsupervised outlier detection using finite mixtures with discounting learning algorithmsData Mining and Knowledge Discovery2004827530010.1023/B:DAMI.0000023676.72185.7c
– reference: HeHWangJGracoWHawkinsSApplication of neural networks to detection of medical fraudExpert Syst Appl19971332933610.1016/S0957-4174(97)00045-6
– reference: Ortega PA, Figueroa CJ, Ruz GA (2006) A medical claim fraud/abuse detection system based on data mining: a case study in Chile. In Proceedings of International Conference on Data Mining, Las Vegas, Nevada, USA
– reference: Viveros MS, Nearhos JP, Rothman MJ (1996) Applying data mining techniques to a health insurance information system. In Proceedings of the 22nd VLDB Conference, Mumbai, India, 286–294
– reference: LiJShiJKnowledge Discovery from Observational Data for Process Control using Causal Bayesian NetworksIIE Transactions200739668169010.1080/07408170600899532
– reference: Fawcett T, Provost F (1999) Activity monitoring: noticing interesting changes in behavior. In Proceedings of SIGKDD99, 53–62
– reference: BennettKDemirizASemi-supervised support vector machinesAdv Neural Inf Process Syst199812368374
– reference: NigamKMcCalumAThrunSMitchellTText classification from labeled and unlabeled documents using EMMachine Learning20003910313410.1023/A:1007692713085
– reference: HallCIntelligent data mining at IBM: new products and applicationsIntell Softw Strateg199675111
– reference: Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In Proceedings of the 11th Annual Conference on Computational Learning Theory
– reference: HeHHawkinsSGracoWYaoXApplication of Genetic Algorithms and k-Nearest Neighbour method in real world medical fraud detection problemJournal of Advanced Computational Intelligence and Intelligent Informatics200042130137
– reference: AbbottDWMatkovskyIPElderJFAn evaluation of high-end data mining tools for fraud detection1998Man, and Cybernetics, San Diego, CAIn Proceedings of IEEE International Conference on Systems
– reference: DashMLiuHFeature selection for classificationIDA19971131156
– reference: MajorJARiedingerDREFD: A hybrid knowledge/statistical-based system for the detection of fraudThe Journal of Risk and Insurance200269330932410.1111/1539-6975.00025
– reference: GAO (1996) Health Care Fraud: Information-Sharing Proposals to Improve Enforcement Effects. Report of United States General Accounting Office
– ident: 9045_CR44
– volume: 69
  start-page: 309
  issue: 3
  year: 2002
  ident: 9045_CR27
  publication-title: The Journal of Risk and Insurance
  doi: 10.1111/1539-6975.00025
– volume: 53
  start-page: 345
  year: 2003
  ident: 9045_CR21
  publication-title: Comp Ind
  doi: 10.1016/j.compind.2003.10.006
– start-page: 111
  volume-title: Intelligent systems for finance and business
  year: 1995
  ident: 9045_CR8
– volume: 95
  start-page: 78
  issue: 4
  year: 1995
  ident: 9045_CR19
  publication-title: Best’s Review
– volume: 13
  start-page: 329
  year: 1997
  ident: 9045_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(97)00045-6
– volume: 1342
  start-page: 340
  year: 1997
  ident: 9045_CR41
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/3-540-63797-4_87
– volume: 16
  start-page: 612
  issue: 5
  year: 2004
  ident: 9045_CR37
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.1277822
– volume-title: Statistical analysis with missing data
  year: 2002
  ident: 9045_CR26
  doi: 10.1002/9781119013563
– ident: 9045_CR23
  doi: 10.1080/00224065.2008.11917712
– ident: 9045_CR38
– ident: 9045_CR6
– volume: 1
  start-page: 131
  year: 1997
  ident: 9045_CR10
  publication-title: IDA
  doi: 10.1016/S1088-467X(97)00008-5
– ident: 9045_CR13
– volume: 12
  start-page: 368
  year: 1998
  ident: 9045_CR2
  publication-title: Adv Neural Inf Process Syst
– ident: 9045_CR4
– ident: 9045_CR31
– volume: 7
  start-page: 601
  year: 2000
  ident: 9045_CR12
  publication-title: J Comput Biol
  doi: 10.1089/106652700750050961
– volume: 8
  start-page: 275
  year: 2004
  ident: 9045_CR42
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/B:DAMI.0000023676.72185.7c
– volume: 173
  start-page: 219
  year: 2004
  ident: 9045_CR5
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2003.08.020
– ident: 9045_CR30
  doi: 10.1145/765891.765910
– volume: 7
  start-page: 1
  issue: 5
  year: 1996
  ident: 9045_CR15
  publication-title: Intell Softw Strateg
– volume: 31
  start-page: 115
  year: 2002
  ident: 9045_CR34
  publication-title: Insurance: Mathematics and Economics
– ident: 9045_CR28
– volume: 31
  start-page: 56
  year: 2006
  ident: 9045_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.09.003
– volume-title: An evaluation of high-end data mining tools for fraud detection
  year: 1998
  ident: 9045_CR1
  doi: 10.1109/ICSMC.1998.725092
– volume: 4
  start-page: 130
  issue: 2
  year: 2000
  ident: 9045_CR16
  publication-title: Journal of Advanced Computational Intelligence and Intelligent Informatics
  doi: 10.20965/jaciii.2000.p0130
– ident: 9045_CR45
– ident: 9045_CR3
  doi: 10.1145/279943.279962
– ident: 9045_CR35
  doi: 10.1109/HICSS.2001.926570
– volume: 39
  start-page: 103
  year: 2000
  ident: 9045_CR29
  publication-title: Machine Learning
  doi: 10.1023/A:1007692713085
– volume: 39
  start-page: 681
  issue: 6
  year: 2007
  ident: 9045_CR24
  publication-title: IIE Transactions
  doi: 10.1080/07408170600899532
– ident: 9045_CR9
– volume-title: Causation, Prediction and Search
  year: 1993
  ident: 9045_CR36
  doi: 10.1007/978-1-4612-2748-9
– ident: 9045_CR39
– volume: 3
  start-page: 621
  year: 1994
  ident: 9045_CR14
  publication-title: Proceedings of 27th Hawaii International Conference on Systems Science
– ident: 9045_CR7
– ident: 9045_CR11
  doi: 10.1145/312129.312195
– volume: 10
  start-page: 269
  year: 1993
  ident: 9045_CR22
  publication-title: Comput Intell
  doi: 10.1111/j.1467-8640.1994.tb00166.x
– volume: 1574
  start-page: 184
  year: 1999
  ident: 9045_CR40
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/3-540-48912-6_26
– volume: 6
  start-page: 50
  issue: 1
  year: 2004
  ident: 9045_CR32
  publication-title: SIGKEE Explorations
  doi: 10.1145/1007730.1007738
– start-page: 301
  volume-title: A tutorial on learning with Bayesian networks. In Learning in Graphical Models
  year: 1998
  ident: 9045_CR18
  doi: 10.1007/978-94-011-5014-9_11
– volume-title: Artificial neural networks in Australia
  year: 1992
  ident: 9045_CR20
– volume: 27
  start-page: 16
  issue: 6
  year: 1997
  ident: 9045_CR33
  publication-title: J Nurs Adm
  doi: 10.1097/00005110-199706000-00008
– ident: 9045_CR25
– reference: 9204043 - J Nurs Adm. 1997 Jun;27(6):16-23
– reference: 17238389 - AMIA Annu Symp Proc. 2006;:489-93
– reference: 11108481 - J Comput Biol. 2000;7(3-4):601-20
SSID ssj0005061
Score 2.2116394
SecondaryResourceType review_article
Snippet Fraud and abuse have led to significant additional expense in the health care system of the United States. This paper aims to provide a comprehensive survey of...
SourceID proquest
repec
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 275
SubjectTerms Business and Management
Departments
Econometrics
Fraud
Fraud - statistics & numerical data
Fraud detection
Fraud prevention
Health Administration
Health care
Health care expenditures
Health care industry
Health care policy
Health Care Sector - statistics & numerical data
Health Informatics
Health insurance
Humans
Insurance Claim Reporting - statistics & numerical data
Insurance Claim Review - statistics & numerical data
Insurance companies
Management
Medicaid fraud
Models, Statistical
Operations Research/Decision Theory
Statistical methods
Studies
Subject specialists
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxUxEB7qKYggovW2ttU8-KQEt5vLJg-l1NJShBYRC30LSTZLRbtnPWdPof_eSfZykNI-BJbN3pLMJt9kZr4B-KgKLpQTmnpWWVRQKkWdrHPq1V6ucUasWOLZPjuXpxf826W43ICzMRYmulWOc2KaqKu5j3vkXxLTHWojxUH7l8akUdG4OmbQsENmhWo_MYw9gs0iEmPNYPPr8fn3H2ufj7wnUGVKUi2LyczZx9IhzqRx504jzKH8_4XqDvpEMLsIbfB3LKhpYTp5Ds8GREkOexF4ARuh2YLHo0P7Fjztd-ZIH3D0Eg4OyXK1uAm3ZN6QGE-UqJrxCX0y6SVBGEv68EgS_cJIvbCrilShS15bzSu4ODn-eXRKhzQK1HOtOqoYY9JybqXChlW5qMvSl855z0TQljsbrHO8qC1CsdIXEcJpXhfO1sHLWrPXMGvmTXgLRHjmeNB1wRmqdYncTSHgkD6vCiZsnkE-9pnxA8d4THXxx6zZkWM3m3gYu9nwDD5Nt7Q9wcZDF2-PA2GGf21pJsnI4MNUiz9JtHzYJsxXSyO1jEBVZPCmH731q1DDQMyHNUdpOKeK37ZNznfX5sYwi1oSs7dYUtZOZn9hYVjaeKoUBvVOc9VdZ_B5FIb1993bmncPtmYbnoy-KfneDsy6xSrsIgDq3PtBrP8BGDX9iQ
  priority: 102
  providerName: ProQuest
Title A survey on statistical methods for health care fraud detection
URI https://link.springer.com/article/10.1007/s10729-007-9045-4
https://www.ncbi.nlm.nih.gov/pubmed/18826005
http://econpapers.repec.org/article/kaphcarem/v_3a11_3ay_3a2008_3ai_3a3_3ap_3a275-287.htm
https://www.proquest.com/docview/227928402
https://www.proquest.com/docview/69619325
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005061
  issn: 1386-9620
  databaseCode: AFBBN
  dateStart: 19980901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1572-9389
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0005061
  issn: 1386-9620
  databaseCode: 7X7
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1572-9389
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0005061
  issn: 1386-9620
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005061
  issn: 1386-9620
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9389
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005061
  issn: 1386-9620
  databaseCode: U2A
  dateStart: 19980901
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RrYSQEI9CIRSKD5xArtLYceITWsqWQkWFUFdaTpbtOAKVZlebpFL59YydZBcoIPXgJLITx29_Y898BniRJzzNTSqpZYVGAaXIqRFlTG2-H0scEQsWeLY_noijKf8wS2e9HXc9aLsPW5JhpP7F2A2BIPVLaxJxCOUbsBnotkawOX735Xiy1uyIO5pUlgsqRbLazPxbJL9PR1cwJkLWpVs4e2WfNEw_h3fhdEh4p3Vyttc2Zs_--IPT8Zo5uwd3ejhKxl37uQ83XLUFNwdt-C243S3rkc5a6QG8HpO6XV64SzKviDdGCjzPGEN3EnVNEAOTzraSeKUyUi51W5DCNUHlq3oI08PJ6cER7c9goJbLvKE5Y0xozrXIMWlFnJZZZjNjrGWpk5ob7bQxPCk14rjMJh7_SV4mRpfOilKybRhV88o9BpJaZriTZcIZyoSBGS5HtCJsXCQs1XEE8VAVyvYE5f6cjO9qTa3sC0r5R19QikfwcvXJomPn-N_LO0P9qr6j1ioQKKKQm0TwfBWKPcxvm-jKzdtaCSk8yk0jeNQ1ivWvUDxBwIghB6GVrALO9CJo7p2rC8U0ilhMX6ILR34y_Q0dQ7fwXlmqUGhVX5vzCF4NzWOdvn_m5sm13t6BW4OiS7z_FEbNsnXPEE01Zhc2slm22_chvL-ZnHz6jL5vj9_jdZqMfwL_hxVF
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9UwFA9jAxVEdOqsU5cHfVGCXZKmycMYc27cue0issHeYpKmKLreem_v5P5x_m-epB8XGe5tD4HStE1z8vU7yTm_g9BrSXkmbaaIY4UBBaWQxIoyJU5upwpmxIJFnu3TsRid808X2cUK-tP7wgSzyn5OjBN1MXFhj_x9ZLoDbYTu1r9ICBoVDlf7CBqmi6xQ7ESGsc6v49gvfoMGN9s5-gjN_YbSw4Oz_RHpggwQx5VsiGSMCcO5ERLQTZFmZZ673FrnWOaV4dZ4Yy2npQGgkjsaAI7iJbWm9E6UgYsJVoA1zrgC3W_tw8H485eljUnaErYyKYgSdDhWbX33ANeSsFOooGDC_10Yr6FdAM9TX3t37cQ2LoSHD9GDDsHivbbLPUIrvlpHd3oD-nV0v90JxK2D02O0u4dn8-mVX-BJhYP_UqSGhi-0watnGGAzbt0xcbBDw-XUzAtc-CZaiVVP0PmtSPQpWq0mlX-GcOaY5V6VFMTLZSSTkwBwhEsLyjKTJijtZaZdx2keQmv81Es25iBmHS6DmDVP0Nvhlbol9Ljp4c2-IXQ3tmd66IkJ2hpyYVCGkxZT-cl8poUSARhnCdpoW29ZFGg0gDEhZz8255Dxw9TR2O9SX2lmQCtjZgEpRgll5jskBqkOt_JMg56rvzWXCXrXd4bl__23Ns9vrM0Wujs6Oz3RJ0fj4010r7eLSbdfoNVmOvcvAXw19lXXxTH6etuj6i_aBTt8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIlVIqILyFQrUB7iArKa248QHVFUtq5ZCxYFKezO246gImk032aL9afw7xnaSFarorQdLq3g32dhj-4395g1CbwrKs8JkklhWanBQyoIYUaXEFnuphBmxZEFn-8uZOD7nn6bZdA39GWJhPK1ymBPDRF3OrN8j3w1Kd-CN0N2qZ0V8PZrsN1fEJ5DyB61DNo1oIadu-Ru8t_bDyRF09VtKJx-_HR6TPsEAsVwWHSkYY0JzrkUByKZMsyrPbW6MtSxzUnOjnTaG00oDSMkt9eBG8ooaXTkrKq_DBLP_vZwx6dmE-TRfsUvSKNXKCkGkoOOBaozaA0RL_B6hhMcS_u-SeAPnAmyeu8bZG2e1YQmcPESbPXbFB9HYHqE1V2-hjYE6v4UexD1AHEObHqP9A9wu5tduiWc19pFLQRQa7hDTVrcYADOOgZjYM9BwNdeLEpeuC_yw-gk6v5P2fIrW61ntniOcWWa4kxXlDBzIICNXALQRNi0py3SaoHRoM2V7NXOfVOOXWukw-2ZW_qNvZsUT9G78SROlPG778vbQEaof1a0abTBBO2MtDEd_xqJrN1u0SkjhIXGWoGex91aPAl8G0CXUHIbuHCt-6ibQ_C7VtWIa_DGml1BCflCmf0BhUBp_Kc8UeLjqortM0PvBGFb_779v8-LWt9lBGzCW1OeTs9NtdH8gxKR7L9F6N1-4V4C6OvM62DdG3-96QP0FIi05Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+statistical+methods+for+health+care+fraud+detection&rft.jtitle=Health+care+management+science&rft.au=Li%2C+Jing&rft.au=Huang%2C+Kuei-Ying&rft.au=Jin%2C+Jionghua&rft.au=Shi%2C+Jianjun&rft.date=2008-09-01&rft.issn=1386-9620&rft.eissn=1572-9389&rft.volume=11&rft.issue=3&rft.spage=275&rft.epage=287&rft_id=info:doi/10.1007%2Fs10729-007-9045-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10729_007_9045_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-9620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-9620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-9620&client=summon