A radial basis function method for noisy global optimisation

We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the deviation of the observed noisy function values from their true counterparts are available. The method is based on Gutmann’s well-established RBF met...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 211; no. 1; pp. 49 - 92
Main Authors Banholzer, Dirk, Fliege, Jörg, Werner, Ralf
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
1436-4646
DOI10.1007/s10107-024-02125-9

Cover

Abstract We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the deviation of the observed noisy function values from their true counterparts are available. The method is based on Gutmann’s well-established RBF method for minimising an expensive and deterministic objective function, which has become popular both from a theoretical and practical perspective. To construct suitable radial basis function approximants to the objective function and to determine new sample points for successive evaluation of the expensive noisy objective, the method uses a regularised least-squares criterion. In particular, new points are defined by means of a target value, analogous to the original RBF method. We provide essential convergence results, and provide a numerical illustration of the method by means of a simple test problem.
AbstractList We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the deviation of the observed noisy function values from their true counterparts are available. The method is based on Gutmann’s well-established RBF method for minimising an expensive and deterministic objective function, which has become popular both from a theoretical and practical perspective. To construct suitable radial basis function approximants to the objective function and to determine new sample points for successive evaluation of the expensive noisy objective, the method uses a regularised least-squares criterion. In particular, new points are defined by means of a target value, analogous to the original RBF method. We provide essential convergence results, and provide a numerical illustration of the method by means of a simple test problem.
We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the deviation of the observed noisy function values from their true counterparts are available. The method is based on Gutmann's well-established RBF method for minimising an expensive and deterministic objective function, which has become popular both from a theoretical and practical perspective. To construct suitable radial basis function approximants to the objective function and to determine new sample points for successive evaluation of the expensive noisy objective, the method uses a regularised least-squares criterion. In particular, new points are defined by means of a target value, analogous to the original RBF method. We provide essential convergence results, and provide a numerical illustration of the method by means of a simple test problem.We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the deviation of the observed noisy function values from their true counterparts are available. The method is based on Gutmann's well-established RBF method for minimising an expensive and deterministic objective function, which has become popular both from a theoretical and practical perspective. To construct suitable radial basis function approximants to the objective function and to determine new sample points for successive evaluation of the expensive noisy objective, the method uses a regularised least-squares criterion. In particular, new points are defined by means of a target value, analogous to the original RBF method. We provide essential convergence results, and provide a numerical illustration of the method by means of a simple test problem.
Author Fliege, Jörg
Werner, Ralf
Banholzer, Dirk
Author_xml – sequence: 1
  givenname: Dirk
  surname: Banholzer
  fullname: Banholzer, Dirk
  organization: Department of Mathematical Sciences, University of Southampton
– sequence: 2
  givenname: Jörg
  orcidid: 0000-0002-4459-5419
  surname: Fliege
  fullname: Fliege, Jörg
  email: J.Fliege@soton.ac.uk
  organization: Department of Mathematical Sciences, University of Southampton
– sequence: 3
  givenname: Ralf
  surname: Werner
  fullname: Werner, Ralf
  organization: Institut für Mathematik, Universität Augsburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40309715$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb6BfogA774MppM_kwChVKKVaHgi30ON5lkmzKbrMlMy377Zrtba30QH0Ig93fOvffkCB3EFB1CJwR_Ihj3nwvBBPct7lg9pOOteoUWhFHRMsHEAVpgXB-5IPgQHZVyizEmVMo36JBhilVP-AKdnjcZhgBjY6CE0vg52imk2KzcdJOGxqfcxBTKplmOyVQsraewCgW20Fv02sNY3Lv9fYyuL7_8vPjWXv34-v3i_Kq1TMmppWQQXEjPe28s9q4H6CwTnlIQTIIFZ8FT5bkdhOEclGFM9Yx5I70BI-kxojvfOa5hcw_jqNc5rCBvNMF6m4XeZaFrFvoxC62q6mynWs9m5Qbr4pThWZkg6JeVGG70Mt1p0mHaC0mrw8e9Q06_ZlcmXTe3bhwhujQXTYmSlEii-op--Au9TXOONRVNOy6qnyBb6v2fI_2e5ek_KtDtAJtTKdn5_1t0H0-pcFy6_Nz7H6oHXcGtKQ
Cites_doi 10.1142/9789814503754_0018
10.1007/s10898-008-9354-2
10.1016/j.jocs.2016.05.013
10.1023/A:1011255519438
10.1007/s10898-021-01019-w
10.1006/jath.2001.3579
10.1007/978-3-642-18754-4
10.1007/s10898-004-6733-1
10.1007/s10898-012-9940-1
10.1007/s10898-007-9256-8
10.1109/SSCI.2016.7850205
10.1080/0305215X.2013.765000
10.1007/s10898-005-2454-3
10.2113/gsecongeo.58.8.1246
10.1007/s10898-016-0427-3
10.1115/1.3653121
10.1007/s12532-018-0144-7
10.1137/1.9781611970920
10.1017/CBO9780511543241
10.1016/0022-247X(62)90011-2
10.1007/s10898-009-9517-9
10.1023/A:1011584207202
10.1007/3-540-50871-6
10.1016/j.ejor.2006.08.040
10.1111/itor.12292
10.1016/j.paerosci.2008.11.001
10.1287/ijoc.1060.0182
10.1109/WSC48552.2020.9384132
10.1007/s10898-015-0270-y
10.1007/s10898-006-9040-1
10.1017/S0962492906270016
10.1023/A:1012771025575
10.1007/s10898-011-9834-7
10.1007/s10898-004-0570-0
10.1007/978-3-0348-8696-3_16
10.1007/BF00941892
10.1023/A:1008306431147
10.1007/s11081-009-9087-1
10.1287/opre.2019.1966
10.1007/s00211-005-0637-y
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10107-024-02125-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

Computer and Information Systems Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 92
ExternalDocumentID 10.1007/s10107-024-02125-9
PMC12037683
40309715
10_1007_s10107_024_02125_9
Genre Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/M50662X/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID --K
--Z
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UMC
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
ADXHL
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
PUEGO
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c498t-31d6568f57fbc0fe7aa2c46f33a648acaecaf39f5cd6b55a9b449744fb8fbab83
IEDL.DBID UNPAY
ISSN 0025-5610
1436-4646
IngestDate Sun Oct 26 03:37:30 EDT 2025
Thu Aug 21 18:26:31 EDT 2025
Fri Sep 05 17:19:48 EDT 2025
Fri Oct 03 06:00:30 EDT 2025
Fri May 02 01:45:34 EDT 2025
Wed Oct 01 06:33:22 EDT 2025
Tue Apr 29 01:10:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Response surface methods
Radial basis functions
Approximation
90C30
Controlled noise
Global optimisation
Expensive noisy objective function
90C26
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-31d6568f57fbc0fe7aa2c46f33a648acaecaf39f5cd6b55a9b449744fb8fbab83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4459-5419
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s10107-024-02125-9
PMID 40309715
PQID 3256376617
PQPubID 25307
PageCount 44
ParticipantIDs unpaywall_primary_10_1007_s10107_024_02125_9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12037683
proquest_miscellaneous_3198318197
proquest_journals_3256376617
pubmed_primary_40309715
crossref_primary_10_1007_s10107_024_02125_9
springer_journals_10_1007_s10107_024_02125_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Netherlands
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationTitleAlternate Math Program
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References H Wendland (2125_CR49) 2005
RG Regis (2125_CR34) 2013; 56
R Schaback (2125_CR36) 1993
RG Regis (2125_CR29) 2016; 16
S Jakobsson (2125_CR17) 2010; 11
2125_CR18
2125_CR19
RG Regis (2125_CR33) 2007; 182
W Wang (2125_CR47) 2022; 82
D Huang (2125_CR15) 2006; 34
R Schaback (2125_CR38) 2006; 15
2125_CR13
KK Vu (2125_CR45) 2017; 24
2125_CR11
2125_CR12
K Holmström (2125_CR14) 2008; 41
B Schölkopf (2125_CR39) 2002
H Wendland (2125_CR50) 2005; 101
AIJ Forrester (2125_CR7) 2009; 45
HM Gutmann (2125_CR10) 2001; 19
DR Jones (2125_CR22) 1998; 13
RG Regis (2125_CR28) 2014; 46
P Feliot (2125_CR6) 2017; 67
RG Regis (2125_CR32) 2007; 37
J Mockus (2125_CR27) 1978
2125_CR40
2125_CR41
RG Regis (2125_CR30) 2005; 31
RB Gramacy (2125_CR9) 2011
A Žilinskas (2125_CR51) 2010; 48
J Wang (2125_CR46) 2020; 68
CT Kelley (2125_CR23) 1999
J Villemonteix (2125_CR44) 2009; 44
A Costa (2125_CR5) 2018; 10
HJ Kushner (2125_CR24) 1962; 5
T Akhtar (2125_CR1) 2016; 64
A Cassioli (2125_CR4) 2013; 57
RG Regis (2125_CR31) 2007; 19
2125_CR8
H Wendland (2125_CR48) 2005
R Schaback (2125_CR37) 1999
MD Buhmann (2125_CR3) 2003
G Matheron (2125_CR26) 1963; 58
A Iske (2125_CR16) 2004
A Sóbester (2125_CR42) 2005; 33
A Törn (2125_CR43) 1989
M Björkman (2125_CR2) 2000; 1
DR Jones (2125_CR20) 2001; 21
HJ Kushner (2125_CR25) 1964; 86
J Sacks (2125_CR35) 1989; 4
DR Jones (2125_CR21) 1993; 78
References_xml – start-page: 231
  volume-title: Topics in Multivariate Approximation and Interpolation
  year: 2005
  ident: 2125_CR48
– start-page: 293
  volume-title: Multivariate Approximation: From CAGD to Wavelets
  year: 1993
  ident: 2125_CR36
  doi: 10.1142/9789814503754_0018
– volume: 44
  start-page: 509
  issue: 4
  year: 2009
  ident: 2125_CR44
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9354-2
– volume: 16
  start-page: 140
  year: 2016
  ident: 2125_CR29
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.05.013
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: 2125_CR10
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1011255519438
– start-page: 117
  volume-title: Towards Global Optimization 2
  year: 1978
  ident: 2125_CR27
– volume: 82
  start-page: 1
  issue: 4
  year: 2022
  ident: 2125_CR47
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-021-01019-w
– ident: 2125_CR11
  doi: 10.1006/jath.2001.3579
– volume-title: Multiresolution Methods in Scattered Data Modelling
  year: 2004
  ident: 2125_CR16
  doi: 10.1007/978-3-642-18754-4
– volume: 33
  start-page: 31
  issue: 1
  year: 2005
  ident: 2125_CR42
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-6733-1
– volume: 56
  start-page: 1719
  issue: 4
  year: 2013
  ident: 2125_CR34
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9940-1
– volume: 41
  start-page: 447
  issue: 3
  year: 2008
  ident: 2125_CR14
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9256-8
– ident: 2125_CR13
  doi: 10.1109/SSCI.2016.7850205
– volume: 46
  start-page: 218
  issue: 2
  year: 2014
  ident: 2125_CR28
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.765000
– volume: 34
  start-page: 441
  issue: 3
  year: 2006
  ident: 2125_CR15
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-005-2454-3
– volume: 58
  start-page: 1246
  issue: 8
  year: 1963
  ident: 2125_CR26
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.58.8.1246
– volume: 67
  start-page: 97
  issue: 1–2
  year: 2017
  ident: 2125_CR6
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-016-0427-3
– ident: 2125_CR12
– volume: 86
  start-page: 97
  issue: 1
  year: 1964
  ident: 2125_CR25
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3653121
– volume: 10
  start-page: 597
  issue: 4
  year: 2018
  ident: 2125_CR5
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-018-0144-7
– volume-title: Iterative Methods for Optimization
  year: 1999
  ident: 2125_CR23
  doi: 10.1137/1.9781611970920
– volume-title: Radial Basis Functions: Theory and Implementations
  year: 2003
  ident: 2125_CR3
  doi: 10.1017/CBO9780511543241
– volume-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
  year: 2002
  ident: 2125_CR39
– volume: 5
  start-page: 150
  issue: 1
  year: 1962
  ident: 2125_CR24
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(62)90011-2
– volume: 48
  start-page: 173
  issue: 1
  year: 2010
  ident: 2125_CR51
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-009-9517-9
– volume: 1
  start-page: 373
  issue: 4
  year: 2000
  ident: 2125_CR2
  publication-title: Optim. Eng.
  doi: 10.1023/A:1011584207202
– volume-title: Global Optimization
  year: 1989
  ident: 2125_CR43
  doi: 10.1007/3-540-50871-6
– volume-title: Scattered Data Approximation
  year: 2005
  ident: 2125_CR49
– volume: 182
  start-page: 514
  issue: 2
  year: 2007
  ident: 2125_CR33
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.040
– volume: 24
  start-page: 393
  issue: 3
  year: 2017
  ident: 2125_CR45
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12292
– volume: 45
  start-page: 50
  issue: 1–3
  year: 2009
  ident: 2125_CR7
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 19
  start-page: 497
  issue: 4
  year: 2007
  ident: 2125_CR31
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0182
– ident: 2125_CR19
– ident: 2125_CR41
  doi: 10.1109/WSC48552.2020.9384132
– volume: 64
  start-page: 17
  year: 2016
  ident: 2125_CR1
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-015-0270-y
– volume: 37
  start-page: 113
  issue: 1
  year: 2007
  ident: 2125_CR32
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9040-1
– volume: 15
  start-page: 543
  year: 2006
  ident: 2125_CR38
  publication-title: Acta Numer.
  doi: 10.1017/S0962492906270016
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 2125_CR35
  publication-title: Stat. Sci.
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: 2125_CR20
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012771025575
– volume: 57
  start-page: 177
  issue: 1
  year: 2013
  ident: 2125_CR4
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-011-9834-7
– volume: 31
  start-page: 153
  issue: 1
  year: 2005
  ident: 2125_CR30
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-0570-0
– start-page: 255
  volume-title: New Developments in Approximation Theory
  year: 1999
  ident: 2125_CR37
  doi: 10.1007/978-3-0348-8696-3_16
– ident: 2125_CR40
– ident: 2125_CR8
– volume-title: Bayesian Statistics 9
  year: 2011
  ident: 2125_CR9
– ident: 2125_CR18
– volume: 78
  start-page: 157
  issue: 1
  year: 1993
  ident: 2125_CR21
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941892
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 2125_CR22
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 11
  start-page: 501
  issue: 4
  year: 2010
  ident: 2125_CR17
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-009-9087-1
– volume: 68
  start-page: 1850
  issue: 6
  year: 2020
  ident: 2125_CR46
  publication-title: Oper. Res.
  doi: 10.1287/opre.2019.1966
– volume: 101
  start-page: 729
  issue: 4
  year: 2005
  ident: 2125_CR50
  publication-title: Numer. Math.
  doi: 10.1007/s00211-005-0637-y
SSID ssj0001388
Score 2.4489264
Snippet We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 49
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Global optimization
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Monte Carlo simulation
Numerical Analysis
Radial basis function
Response surface methodology
Stochastic models
Theoretical
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PugexG-rUyL45gr9SNoUfBlDGcJ8UvCtJFmLg9mNfSD7771ru25zIvpYciTNXXL3Sy75BeBWUHYtDI0dyp7ABUri2dqVjm0EkW8R5DC0NdB9Djqv_OlNvJU0OXQX5lv-nq64ubSZ5nGbyMiFHW3DDgapIE_MBu3K67q-lIvnWQkTlBdkfq5jPQhtIMvNA5JVlrQOu7NspOafajBYCUSPB7BfIkjWKkx-CFtJdgT1FV5B_OpWZKyTY7hvsTExEAwYhqz-hFEoI3Ow4vVohrCVZcP-ZM4KdhA2RDfyUR7zOYHXx4eXdscuH02wDY_kFH1qDyGaTEWYauOkSaiUZ3iQ-r4KuFRGJUalfpQK0wu0ECrSnOOagqdaplpp6Z9CLRtmyTkwJ3G1o31cdHgRlxxFdY87KIkYzVecW3C30GI8Krgx4iULMuk8Rp3Huc7jyILGQtFxOU8mMVYeoItDGGXBTVWMXaS0hcqS4Qxl3Eii53EjlDkr7FI1xylDFLrCArlmsUqA2LPXS7L-e86i7XoOtix9C5oL4y7_67duNKsB8IdeX_yv9kvY82gE5ycqG1CbjmfJFaKeqb7Oh_sXxsj1fA
  priority: 102
  providerName: Springer Nature
Title A radial basis function method for noisy global optimisation
URI https://link.springer.com/article/10.1007/s10107-024-02125-9
https://www.ncbi.nlm.nih.gov/pubmed/40309715
https://www.proquest.com/docview/3256376617
https://www.proquest.com/docview/3198318197
https://pubmed.ncbi.nlm.nih.gov/PMC12037683
https://doi.org/10.1007/s10107-024-02125-9
UnpaywallVersion publishedVersion
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9B-zB42GCwLRtURtobBOXDdhxpL1HFh4ZAPKwSPEW2m4iKLkWkFYK_fndJGiggxF4iRTnZOZ9997PP_hngp6DsWhRZN1JDgROULHCNrzzXCiLfIshhaWng9EweD_jvC3HR0OTQWZhn-Xs64ubTYlrAXSIjF268DF0pEHd3oDs4O08u53eyEhCojhKF0uWSy-aEzOuFLEahF9Dy5Q7JNk26Ch9mxY2-v9Pj8ZNIdPipvtKorAgMaQPK9f5savbtwzN6x_cpuQYfG0DKkroHrcNSVnyG1Sc0hfh22nK7lhvwK2G3RGgwZhgBRyWjyEjWZfVl1AxRMCsmo_Ke1WQjbIJe6W-za2gTBocHf_rHbnMHg2t5rKboooeI-FQuotxYL88irQPLZR6GWnKlrc6szsM4F3YojRA6NpzjFIXnRuVGGxV-gU4xKbJvwLzMN54JcQ4TxFxxFDVD7qEkQr5Qc-7A7twm6U1NtZE-kipTC6XYQmnVQmnswNbcbGkz7MoUC5foMRGVObDTfkYVKQuii2wyQxk_VujI_BhlvtZWbqvjlHCKfOGAWrB_K0Bk3ItfitFVRcrtBx7WrEIH9uZd5fG_3lJjr-1O79D6-_-J_4CVgMZGtUFzCzrT21m2jSBqanrQTY4uTw56sNyXfXwOgqTXjKh_LL8RQg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH8W19RvCmhT6SNgUviyjrYz254K0k2RYX1q7YXcR_70xfu4sieiwdkmYmnfmSmXwBOBOUXQtDY4eyL3CBkni2dqVjG0HkWwQ5DG0NdB-DTo_fPYvn6lBYXle71ynJwlPPHHZzaVvN4zbRkgs7WoQlIrAixvye1278r-tLWV_USuigOirzcxvz4egbxvxeKtnkS1dheZK9qc8PNRzOhKSbdVirsCRrl8bfgIUk24TVGYZBfOo2tKz5Fly22TtxEQwZBq9BziiokWFYeY80QwDLstEg_2QlTwgboUN5rQp-tqF3c_101bGr6xNswyM5Ru_aR7AmUxGm2jhpEirlGR6kvq8CLpVRiVGpH6XC9AMthIo057i64KmWqVZa-jvQykZZsgfMSVztaB-XH17EJUdR3ecOSiJa8xXnFpzXWozfSpaMeMqHTDqPUedxofM4suCwVnRc_TF5jI0H6OwQUFlw2rzGIVICQ2XJaIIybiTRB7kRyuyWdmm645QrCl1hgZyzWCNAPNrzb7LBS8Gn7XoO9ix9Cy5q406_67dhXDQT4A-j3v9f6yew3HnqPsQPt4_3B7Di0Wwu6iwPoTV-nyRHiIXG-riY-l8ORPyM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_xITF4mAYbkI0xI_EGUfNhJ460l6pQwfgQDyDxFtlOLCqVtKKtJv773eWLVp2m8RjlZMdn5-5nn-93AMeComtxbNxYZgI3KHngal96rhFEvkWQw9DRwM1tdPHAfz2Kx7ks_vK2exOSrHIaiKWpmHbGme3MJb75dMQWcJcoyoWbrMI6R-9GNQx6Ua-1xX4oZVO0lZBCnTbz9zYWXdMS3ly-NtnGTrfgw6wYq9ffajicc0_9T_CxxpWsWy2EbVjJix3YmmMbxKeblqJ18hl-dtkL8RIMGTqywYSRg6NJYlVNaYZglhWjweSVVZwhbITG5bm-_PMFHvrn970Lty6l4BqeyCla2gyBm7Qittp4No-VCgyPbBiqiEtlVG6UDRMrTBZpIVSiOcedBrdaWq20DHdhrRgV-T4wL_e1p0PcigQJlxxFdcY9lETkFirOHThptJiOK8aM9I0bmXSeos7TUudp4sBBo-i0_nsmKTYeoeFDcOXAUfsah0jBDFXkoxnK-IlEe-QnKLNXzUvbHae4UewLB-TCjLUCxKm9-KYYPJXc2n7gYc8ydOC0mdy37_rXME7bBfAfo_76vtZ_wMbdWT-9vry9-gabAS3m8srlAaxNX2b5d4RFU31Yrvw_dAsAwQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5t5YH1AQYbEGDIk_Y2gvLDdhyJlwpRISQQD6vUPUW2m2gVJUVNK1T-eu6SNLSAEHuMfLJjn3332ef7DPBLUHQtiqwbqYHADUoauMZXnmsFkW8R5LB0NHB1LS96_LIv-jVNDuXCvIjfU4qbT4dpAXeJjFy48WdYkwJxdwvWetc3nb-LN1kJCJSpRKF0ueSyzpB5u5JVL_QKWr6-IdmESduwPsvv9fxBj0ZLnqi7WT1pVJQEhnQB5fZkNjUn9vEFvePHOvkVNmpAyjrVDNqCT2m-De0lmkL8umq4XYtvcNphEyI0GDH0gMOCkWck7bLqMWqGKJjl42ExZxXZCBujVbqrbw19h173_M_ZhVu_weBaHqspmugBIj6ViSgz1svSSOvAcpmFoZZcaatTq7MwzoQdSCOEjg3nuEXhmVGZ0UaFO9DKx3m6B8xLfeOZEPcwQcwVR1Ez4B5KIuQLNecO_F7oJLmvqDaSZ1JlGqEERygpRyiJHThcqC2pl12RYOUSLSaiMgd-NsXYRYqC6Dwdz1DGjxUaMj9Gmd1Ky01znAJOkS8cUCv6bwSIjHu1JB_-K0m5_cDDllXowPFiqjz_13vdOG6m0wd6vf9_4gfwJaC1UV7QPITWdDJLfyCImpqjevU8AftiDeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+radial+basis+function+method+for+noisy+global+optimisation&rft.jtitle=Mathematical+programming&rft.au=Banholzer%2C+Dirk&rft.au=Fliege%2C+J%C3%B6rg&rft.au=Werner%2C+Ralf&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=211&rft.issue=1&rft.spage=49&rft.epage=92&rft_id=info:doi/10.1007%2Fs10107-024-02125-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon