The efficient design of Nested Group Testing algorithms for disease identification in clustered data
Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, littl...
Saved in:
| Published in | Journal of applied statistics Vol. 50; no. 10; pp. 2228 - 2245 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Taylor & Francis
27.07.2023
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0266-4763 1360-0532 1360-0532 |
| DOI | 10.1080/02664763.2022.2071419 |
Cover
| Abstract | Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines. |
|---|---|
| AbstractList | Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines.Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines. Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines. |
| Author | Best, Ana F. Malinovsky, Yaakov Albert, Paul S. |
| Author_xml | – sequence: 1 givenname: Ana F. orcidid: 0000-0002-4467-1725 surname: Best fullname: Best, Ana F. organization: National Cancer Institute, National Institutes of Health – sequence: 2 givenname: Yaakov surname: Malinovsky fullname: Malinovsky, Yaakov organization: University of Maryland Baltimore County – sequence: 3 givenname: Paul S. surname: Albert fullname: Albert, Paul S. email: albertp@mail.nih.gov organization: National Cancer Institute, National Institutes of Health |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37434628$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhS1URKeFRwBZYsMmxbEd2xELiqq2IFWwGdaWxz8zrhx7sBOqeXuczpSfLoBNosjfd-R7bk7AUUzRAvCyRWctEugtwoxRzsgZRhjXB29p2z8Bi5Yw1KCO4COwmJlmho7BSSm3CCHRduQZOCacEsqwWACz3FhonfPa2zhCY4tfR5gc_GzLaA28zmnawmX98HENVVin7MfNUKBLGRpfrCoWelNdXzPU6FOEPkIdpqrnGmDUqJ6Dp06FYl8c3qfg69Xl8uJjc_Pl-tPFh5tG056PjaOCOq21dVisFCFUcLbCPXLc9VoYRREzve4Is5aKXrerzgmnVVdpxDXj5BSwfe4Ut2p3p0KQ2-wHlXeyRXKuTT7UJufa5KG2Kr7fi9tpNVij6zhZ_ZKT8vLPk-g3cp2-10xCMMZdTXhzSMjp21TrkoMv2oagok1TkVgQhnsh7tHXj9DbNOVYi5mpupieC1qpV79f6eddHlZXgW4P6JxKydb996zvHnnaj_eLq5P58E_7fG_7WP-AQd2lHIwc1S6k7LKK2hdJ_h7xA_e_0r4 |
| CitedBy_id | crossref_primary_10_1137_23M1595138 |
| Cites_doi | 10.1080/00401706.1966.10490408 10.1093/biomet/63.3.671 10.1111/biom.12385 10.1080/00401706.1972.10488888 10.1080/01621459.1975.10480324 10.1093/jnci/83.11.757 10.1002/9781118445112.stat08363 10.1097/QAI.0b013e3181ba37a7 10.1111/j.0006-341X.1999.00231.x 10.1097/01.olq.0000263262.00273.9c 10.1287/opre.44.4.543 10.1080/00401706.1978.10489706 10.1002/j.1538-7305.1959.tb03914.x 10.1038/nrc1951 10.1126/scitranslmed.abf2823 10.1007/s11009-017-9601-4 10.1214/aoms/1177731363 10.1016/j.jviromet.2011.04.002 10.1080/10485250903094286 10.1111/j.1541-0420.2008.01183.x 10.1080/03610928708829544 10.1002/sim.4780132205 10.1111/j.1541-0420.2011.01674.x 10.1080/01621459.1994.10476764 10.1038/s41586-020-2885-5 10.1080/02664763.2010.505953 10.1214/aoms/1177706807 10.1080/00031305.2017.1366367 10.2307/2529277 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group. 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Taylor & Francis |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group. – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Taylor & Francis |
| DBID | AAYXX CITATION NPM 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| DOI | 10.1080/02664763.2022.2071419 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| DocumentTitleAlternate | JOURNAL OF APPLIED STATISTICS |
| EISSN | 1360-0532 |
| EndPage | 2245 |
| ExternalDocumentID | oai:mdsoar.org:11603/30444 PMC10332225 37434628 10_1080_02664763_2022_2071419 2071419 |
| Genre | Research Article Journal Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBE EBO EBR EBS EBU ECR EMK EPL E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G K60 K6~ KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQBIZ QWB RIG RNANH ROSJB RPM RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TH9 TN5 TOXWX TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 07G 1TA 8C1 8FE 8FG 8G5 AAIKQ AAKBW ABJCF ABUWG ACAGQ ACGEE ADBBV ADYSH AEUMN AFKRA AGCQS AGLEN AGROQ AHMOU AI. ALCKM ALIPV AMEWO AMXXU ARAPS AZQEC BCCOT BENPR BEZIV BGLVJ BPHCQ BPLKW C06 CAG CCPQU COF CRFIH DMQIW DWIFK DWQXO EJD FRNLG FYUFA GNUQQ GUQSH HCIFZ IVXBP K6V K7- L6V M0C M2O M7S NHB NPM NUSFT P62 PHGZT PQBZA PQQKQ PRG PROAC PTHSS QCRFL TAQ TFMCV UB9 UKHRP UU8 V3K V4Q VH1 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM ACTCW ADTOC PHGZM PJZUB PPXIY PQGLB UNPAY |
| ID | FETCH-LOGICAL-c497t-f484fcccef28ba334876b290f7f9c8da406d9c536ee489c1b5f8fca528b07c673 |
| IEDL.DBID | UNPAY |
| ISSN | 0266-4763 1360-0532 |
| IngestDate | Sun Oct 26 04:03:17 EDT 2025 Tue Sep 30 17:12:56 EDT 2025 Thu Oct 02 18:11:54 EDT 2025 Wed Aug 13 11:10:55 EDT 2025 Thu Apr 03 06:55:11 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Wed Oct 01 03:06:42 EDT 2025 Mon Oct 20 23:46:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | clustered data pooled sample analysis disease identification group testing prevalence heterogeneity |
| Language | English |
| License | 2022 Informa UK Limited, trading as Taylor & Francis Group. public-domain |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c497t-f484fcccef28ba334876b290f7f9c8da406d9c536ee489c1b5f8fca528b07c673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4467-1725 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11603/30444 |
| PMID | 37434628 |
| PQID | 2834349784 |
| PQPubID | 32901 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2834349784 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10332225 crossref_primary_10_1080_02664763_2022_2071419 unpaywall_primary_10_1080_02664763_2022_2071419 proquest_miscellaneous_2836298825 informaworld_taylorfrancis_310_1080_02664763_2022_2071419 pubmed_primary_37434628 crossref_citationtrail_10_1080_02664763_2022_2071419 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-27 |
| PublicationDateYYYYMMDD | 2023-07-27 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Abingdon |
| PublicationTitle | Journal of applied statistics |
| PublicationTitleAlternate | J Appl Stat |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0031 CIT0012 CIT0011 Malinovsky Y. (CIT0020) CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0006 doi: 10.1080/00401706.1966.10490408 – ident: CIT0008 doi: 10.1093/biomet/63.3.671 – ident: CIT0009 doi: 10.1111/biom.12385 – ident: CIT0007 doi: 10.1080/00401706.1972.10488888 – ident: CIT0030 doi: 10.1080/01621459.1975.10480324 – ident: CIT0029 doi: 10.1093/jnci/83.11.757 – volume-title: Nested Group Testing Procedures for Screening ident: CIT0020 doi: 10.1002/9781118445112.stat08363 – ident: CIT0023 doi: 10.1097/QAI.0b013e3181ba37a7 – ident: CIT0012 doi: 10.1111/j.0006-341X.1999.00231.x – ident: CIT0024 doi: 10.1097/01.olq.0000263262.00273.9c – ident: CIT0010 doi: 10.1287/opre.44.4.543 – ident: CIT0018 doi: 10.1080/00401706.1978.10489706 – ident: CIT0005 doi: 10.1002/j.1538-7305.1959.tb03914.x – ident: CIT0027 doi: 10.1038/nrc1951 – ident: CIT0016 doi: 10.1126/scitranslmed.abf2823 – ident: CIT0031 doi: 10.1007/s11009-017-9601-4 – ident: CIT0001 doi: 10.1214/aoms/1177731363 – ident: CIT0025 doi: 10.1016/j.jviromet.2011.04.002 – ident: CIT0014 doi: 10.1080/10485250903094286 – ident: CIT0011 doi: 10.1111/j.1541-0420.2008.01183.x – ident: CIT0021 doi: 10.1080/03610928708829544 – ident: CIT0004 doi: 10.1002/sim.4780132205 – ident: CIT0017 doi: 10.1111/j.1541-0420.2011.01674.x – ident: CIT0022 doi: 10.1080/01621459.1994.10476764 – ident: CIT0015 doi: 10.1038/s41586-020-2885-5 – ident: CIT0013 doi: 10.1080/02664763.2010.505953 – ident: CIT0019 doi: 10.1214/aoms/1177706807 – ident: CIT0026 – ident: CIT0028 – ident: CIT0003 doi: 10.1080/00031305.2017.1366367 – ident: CIT0002 doi: 10.2307/2529277 |
| SSID | ssj0008153 |
| Score | 2.3361535 |
| Snippet | Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2228 |
| SubjectTerms | Algorithms clustered data Clustering Disease disease identification Estimates group testing Heterogeneity Medical screening pooled sample analysis prevalence heterogeneity Statistical methods |
| Title | The efficient design of Nested Group Testing algorithms for disease identification in clustered data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2022.2071419 https://www.ncbi.nlm.nih.gov/pubmed/37434628 https://www.proquest.com/docview/2834349784 https://www.proquest.com/docview/2836298825 https://pubmed.ncbi.nlm.nih.gov/PMC10332225 http://hdl.handle.net/11603/30444 |
| UnpaywallVersion | submittedVersion |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1360-0532 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0008153 issn: 0266-4763 databaseCode: AMVHM dateStart: 19940501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1360-0532 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008153 issn: 0266-4763 databaseCode: AHDZW dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1360-0532 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008153 issn: 0266-4763 databaseCode: RPM dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1360-0532 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008153 issn: 0266-4763 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH4q0wPlwFK2gVIZiWumSew49rFCVBVSRxw6UjlFtmO3I0Km6iRC8OvxcxZmKKhwjLzIjp_tz2_5HsC7XHNuZCaiUhgd-dNPY7ByGjm0wVDj0jhkazib89MF-3iRXezAkJ_wN3qBBJMgH1HkNLsHuzzzcHsCu4v5p-PPne6E--5DtrSEcjTq0nSI0kH-bF-Oxf4VmGLMVZ4wJNTZuH-22En_hDFvu0reb-tr9f2bqqqNe-jk0a9ons795MusbfTM_LhN7vj3KT6Ghz0KJced2DyBHVvvw4OzkcJ1vQ97CEM7FuenUHppIjawTfgRkjK4fZCVI_OgLiVBg0XOkbGjviSqulzdLJurr2vi5016GxBZlr1nUhAGsqyJqVrkafAdoKPqM1icfDh_fxr1-Rkiw2TeRI4J5owx1qVCKwzpzblOZexyJ40olccKpTQZ5dYyIU2iMyecUZmvHeeG5_Q5TOpVbV8CKWOnMilyoSxlZWK1dh5qcaVkmcbS2CmwYdUK05OXYw6NqkgGjtN-sQtc7KJf7CnMxmbXHXvHXQ3kpkgUTVCbuC7HSUHvaHswyE_RHwTrwqM3RjGLH5vC27HYb2G0y6jartpQh6fSP3WyKbzoxG0cLfUID8OHpyC2BHGsgPTg2yX18irQhCcxRTOa7_RolNl_-wuv_rvFa9jznxSV3ml-AJPmprVvPFpr9GFQoB32u_YnUc00Kg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe2g5UCivlAJG4pptEjuJfUSIaoHunrZSb5Ht2O2KkK26iRD8-s44D-3yUJF6tsdKJuPJ5_HMN4S8z3WWGZmKsBRGh-D9NBYrJ6HDOxhmXBL5bg2zeTY9518u0ouNWhhMq8QztOuIIryvxs2NweghJe4Ezg0Zh40Bx7sEi6nymCPz524KYB-7GLBoPnpjEXdMlCASosxQxfOvZbb-T1vspX_DoH-mUu619bX6-UNV1cZ_6vSAmOENu_SUb5O20RPz6zfyx_up4DF51MNY-qGzuyfkga0PycPZyAG7PiT7iGM7GuinpARzpNbTVcAr0NLnjdCVo3Mfb6U-BEYXSPlRX1JVXa5uls3V9zUFxdD-Eokuyz61yVsTXdbUVC0SPcACmOn6jJyfflp8nIZ9g4fQcJk3oeOCO2OMdYnQCmuC80wnMnK5k0aUCsBGKU3KMmu5kCbWqRPOqBRmR7nJcvac7NSr2r4ktIycSqXIhbKMl7HV2gFWy5SSZRJJYwPCh89amJ79HJtwVEU8kKT2Gi1Qo0Wv0YBMRrHrjv7jLgG5aTNF4-MurmuSUrA7ZI8HAyt6T7IuAP5xhm0AeUDejcPgA_BiR9V21fo5WSLhrJQG5EVnj-PTMoCIWH8cELFlqeME5BffHqmXV55nPI4Y3sPBoiejUf-fFo7uoYW3ZG-6mJ0VZ5_nX1-RfRhiGEtP8mOy09y09jWAwEa_8bv8FlltTJY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6hIkF54ChXoICReM02h-PYjwhYlaMrHlqJt8hnuyJkV91ECH49HudQl0NF6rM9VjwZj2c8M98AvCoVY1oUPDZcq9hrP4XFylnsMAaTa5cloVvD0YIdntAPX4oxm3AzpFWiD-16oIigq_Fwr40bM-IOvNvAqD8X3rvLsJaqTCkCf15nGBXDKo5kMSljnvZAlJ4kRpqxiOdfy2xdT1vgpX8zQf_MpLzZNWv547us6wvX1PwOqHGDfXbK11nXqpn--Rv245U4cBduD0Ysed1L3T24Zps9uHU0IcBu9mAXrdgeBPo-GC-MxAawCr8DYkLWCFk5sgivrSQ8gJFjBPxoTomsT1fny_bs24Z4vpAhhESWZkhsCrJElg3RdYcwD34BzHN9ACfzd8dvDuOhvUOsqSjb2FFOndbauowriRXBJVOZSFzphOZGelPDCF3kzFrKhU5V4bjTsvCzk1KzMn8IO82qsY-BmMTJQvCSS5tTk1qlnLfUmJTCZInQNgI6_tVKD9jn2IKjrtIRInXgaIUcrQaORjCbyNY9-MdlBOKiyFRteHVxfYuUKr-Edn-Ur2rQI5vKG380xyaANIKX07DXABjWkY1ddWEOy4T3lIoIHvXiOH1t7g1ErD6OgG8J6jQB0cW3R5rlWUAZT5Mco3B-0YNJpv-PC0-uwIUXcOPz23n16f3i41PY9SM5PqRn5T7stOedfeYtwFY9D2f8F_msSzo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7YFy4FFegYKMxDXbJHYc-1ghqgqpKw5dqZwi27HbVUO26iZC8OvxONmwS0GFY-SH7Hhsf57HNwDvC825kbmIK2F07E8_jcHKWezQBkONy5KQreF0xk_m7NN5fr4D6_yEv9ELpJgE-ZAip9k92OW5h9sT2J3PPh996XUn3HcfsqWllKNRl2brKB3kz_blWOxfgRnGXBUpQ0Kdjftni530Txjztqvk_a65Vt-_qbreuIeOH_2K5undT66mXaun5sdtcse_T_ExPBxQKDnqxeYJ7NhmHx6cjhSuq33YQxjaszg_hcpLE7GBbcKPkFTB7YMsHZkFdSkJGixyhowdzQVR9cXyZtFefl0RP28y2IDIoho8k4IwkEVDTN0hT4PvAB1Vn8H8-OPZh5N4yM8QGyaLNnZMMGeMsS4TWmFIb8F1JhNXOGlEpTxWqKTJKbeWCWlSnTvhjMp97aQwvKDPYdIsG_sSSJU4lUtRCGUpq1KrtfNQiyslqyyRxkbA1qtWmoG8HHNo1GW65jgdFrvExS6HxY5gOja77tk77mogN0WibIPaxPU5Tkp6R9uDtfyUw0GwKj16YxSz-LEI3o3FfgujXUY1dtmFOjyT_qmTR_CiF7dxtNQjPAwfjkBsCeJYAenBt0uaxWWgCU8TimY03-nhKLP_9hde_XeL17DnPykqvbPiACbtTWffeLTW6rfDfv0JHh8zGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+efficient+design+of+Nested+Group+Testing+algorithms+for+disease+identification+in+clustered+data&rft.jtitle=Journal+of+applied+statistics&rft.au=Best%2C+Ana+F.&rft.au=Malinovsky%2C+Yaakov&rft.au=Albert%2C+Paul+S.&rft.date=2023-07-27&rft.pub=Taylor+%26+Francis&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=50&rft.issue=10&rft.spage=2228&rft.epage=2245&rft_id=info:doi/10.1080%2F02664763.2022.2071419&rft.externalDocID=2071419 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |