The efficient design of Nested Group Testing algorithms for disease identification in clustered data

Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, littl...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 50; no. 10; pp. 2228 - 2245
Main Authors Best, Ana F., Malinovsky, Yaakov, Albert, Paul S.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 27.07.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0266-4763
1360-0532
1360-0532
DOI10.1080/02664763.2022.2071419

Cover

Abstract Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines.
AbstractList Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines.Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines.
Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with substantially fewer tests than the population size. Substantial research has identified efficient designs under this paradigm. However, little work has focused on the important problem of disease screening among clustered data, such as geographic heterogeneity in HIV prevalence. We evaluated designs where we first estimate disease prevalence and then apply efficient group testing algorithms using these estimates. Specifically, we evaluate prevalence using individual testing on a fixed-size subset of each cluster and use these prevalence estimates to choose group sizes that minimize the corresponding estimated average number of tests per subject. We compare designs where we estimate cluster-specific prevalences as well as a common prevalence across clusters, use different group testing algorithms, construct groups from individuals within and in different clusters, and consider misclassification. For diseases with low prevalence, our results suggest that accounting for clustering is unnecessary. However, for diseases with higher prevalence and sizeable between-cluster heterogeneity, accounting for clustering in study design and implementation improves efficiency. We consider the practical aspects of our design recommendations with two examples with strong clustering effects: (1) Identification of HIV carriers in the US population and (2) Laboratory screening of anti-cancer compounds using cell lines.
Author Best, Ana F.
Malinovsky, Yaakov
Albert, Paul S.
Author_xml – sequence: 1
  givenname: Ana F.
  orcidid: 0000-0002-4467-1725
  surname: Best
  fullname: Best, Ana F.
  organization: National Cancer Institute, National Institutes of Health
– sequence: 2
  givenname: Yaakov
  surname: Malinovsky
  fullname: Malinovsky, Yaakov
  organization: University of Maryland Baltimore County
– sequence: 3
  givenname: Paul S.
  surname: Albert
  fullname: Albert, Paul S.
  email: albertp@mail.nih.gov
  organization: National Cancer Institute, National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37434628$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFRwBZYsMmxbEd2xELiqq2IFWwGdaWxz8zrhx7sBOqeXuczpSfLoBNosjfd-R7bk7AUUzRAvCyRWctEugtwoxRzsgZRhjXB29p2z8Bi5Yw1KCO4COwmJlmho7BSSm3CCHRduQZOCacEsqwWACz3FhonfPa2zhCY4tfR5gc_GzLaA28zmnawmX98HENVVin7MfNUKBLGRpfrCoWelNdXzPU6FOEPkIdpqrnGmDUqJ6Dp06FYl8c3qfg69Xl8uJjc_Pl-tPFh5tG056PjaOCOq21dVisFCFUcLbCPXLc9VoYRREzve4Is5aKXrerzgmnVVdpxDXj5BSwfe4Ut2p3p0KQ2-wHlXeyRXKuTT7UJufa5KG2Kr7fi9tpNVij6zhZ_ZKT8vLPk-g3cp2-10xCMMZdTXhzSMjp21TrkoMv2oagok1TkVgQhnsh7tHXj9DbNOVYi5mpupieC1qpV79f6eddHlZXgW4P6JxKydb996zvHnnaj_eLq5P58E_7fG_7WP-AQd2lHIwc1S6k7LKK2hdJ_h7xA_e_0r4
CitedBy_id crossref_primary_10_1137_23M1595138
Cites_doi 10.1080/00401706.1966.10490408
10.1093/biomet/63.3.671
10.1111/biom.12385
10.1080/00401706.1972.10488888
10.1080/01621459.1975.10480324
10.1093/jnci/83.11.757
10.1002/9781118445112.stat08363
10.1097/QAI.0b013e3181ba37a7
10.1111/j.0006-341X.1999.00231.x
10.1097/01.olq.0000263262.00273.9c
10.1287/opre.44.4.543
10.1080/00401706.1978.10489706
10.1002/j.1538-7305.1959.tb03914.x
10.1038/nrc1951
10.1126/scitranslmed.abf2823
10.1007/s11009-017-9601-4
10.1214/aoms/1177731363
10.1016/j.jviromet.2011.04.002
10.1080/10485250903094286
10.1111/j.1541-0420.2008.01183.x
10.1080/03610928708829544
10.1002/sim.4780132205
10.1111/j.1541-0420.2011.01674.x
10.1080/01621459.1994.10476764
10.1038/s41586-020-2885-5
10.1080/02664763.2010.505953
10.1214/aoms/1177706807
10.1080/00031305.2017.1366367
10.2307/2529277
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group.
2022 Informa UK Limited, trading as Taylor & Francis Group
2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Taylor & Francis
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group.
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Taylor & Francis
DBID AAYXX
CITATION
NPM
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1080/02664763.2022.2071419
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
DocumentTitleAlternate JOURNAL OF APPLIED STATISTICS
EISSN 1360-0532
EndPage 2245
ExternalDocumentID oai:mdsoar.org:11603/30444
PMC10332225
37434628
10_1080_02664763_2022_2071419
2071419
Genre Research Article
Journal Article
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EMK
EPL
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQBIZ
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
07G
1TA
8C1
8FE
8FG
8G5
AAIKQ
AAKBW
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
ADYSH
AEUMN
AFKRA
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
ALIPV
AMEWO
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CAG
CCPQU
COF
CRFIH
DMQIW
DWIFK
DWQXO
EJD
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
IVXBP
K6V
K7-
L6V
M0C
M2O
M7S
NHB
NPM
NUSFT
P62
PHGZT
PQBZA
PQQKQ
PRG
PROAC
PTHSS
QCRFL
TAQ
TFMCV
UB9
UKHRP
UU8
V3K
V4Q
VH1
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ACTCW
ADTOC
PHGZM
PJZUB
PPXIY
PQGLB
UNPAY
ID FETCH-LOGICAL-c497t-f484fcccef28ba334876b290f7f9c8da406d9c536ee489c1b5f8fca528b07c673
IEDL.DBID UNPAY
ISSN 0266-4763
1360-0532
IngestDate Sun Oct 26 04:03:17 EDT 2025
Tue Sep 30 17:12:56 EDT 2025
Thu Oct 02 18:11:54 EDT 2025
Wed Aug 13 11:10:55 EDT 2025
Thu Apr 03 06:55:11 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Wed Oct 01 03:06:42 EDT 2025
Mon Oct 20 23:46:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords clustered data
pooled sample analysis
disease identification
group testing
prevalence heterogeneity
Language English
License 2022 Informa UK Limited, trading as Taylor & Francis Group.
public-domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-f484fcccef28ba334876b290f7f9c8da406d9c536ee489c1b5f8fca528b07c673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4467-1725
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11603/30444
PMID 37434628
PQID 2834349784
PQPubID 32901
PageCount 18
ParticipantIDs proquest_journals_2834349784
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10332225
crossref_primary_10_1080_02664763_2022_2071419
unpaywall_primary_10_1080_02664763_2022_2071419
proquest_miscellaneous_2836298825
informaworld_taylorfrancis_310_1080_02664763_2022_2071419
pubmed_primary_37434628
crossref_citationtrail_10_1080_02664763_2022_2071419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-27
PublicationDateYYYYMMDD 2023-07-27
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Journal of applied statistics
PublicationTitleAlternate J Appl Stat
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0031
CIT0012
CIT0011
Malinovsky Y. (CIT0020)
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0006
  doi: 10.1080/00401706.1966.10490408
– ident: CIT0008
  doi: 10.1093/biomet/63.3.671
– ident: CIT0009
  doi: 10.1111/biom.12385
– ident: CIT0007
  doi: 10.1080/00401706.1972.10488888
– ident: CIT0030
  doi: 10.1080/01621459.1975.10480324
– ident: CIT0029
  doi: 10.1093/jnci/83.11.757
– volume-title: Nested Group Testing Procedures for Screening
  ident: CIT0020
  doi: 10.1002/9781118445112.stat08363
– ident: CIT0023
  doi: 10.1097/QAI.0b013e3181ba37a7
– ident: CIT0012
  doi: 10.1111/j.0006-341X.1999.00231.x
– ident: CIT0024
  doi: 10.1097/01.olq.0000263262.00273.9c
– ident: CIT0010
  doi: 10.1287/opre.44.4.543
– ident: CIT0018
  doi: 10.1080/00401706.1978.10489706
– ident: CIT0005
  doi: 10.1002/j.1538-7305.1959.tb03914.x
– ident: CIT0027
  doi: 10.1038/nrc1951
– ident: CIT0016
  doi: 10.1126/scitranslmed.abf2823
– ident: CIT0031
  doi: 10.1007/s11009-017-9601-4
– ident: CIT0001
  doi: 10.1214/aoms/1177731363
– ident: CIT0025
  doi: 10.1016/j.jviromet.2011.04.002
– ident: CIT0014
  doi: 10.1080/10485250903094286
– ident: CIT0011
  doi: 10.1111/j.1541-0420.2008.01183.x
– ident: CIT0021
  doi: 10.1080/03610928708829544
– ident: CIT0004
  doi: 10.1002/sim.4780132205
– ident: CIT0017
  doi: 10.1111/j.1541-0420.2011.01674.x
– ident: CIT0022
  doi: 10.1080/01621459.1994.10476764
– ident: CIT0015
  doi: 10.1038/s41586-020-2885-5
– ident: CIT0013
  doi: 10.1080/02664763.2010.505953
– ident: CIT0019
  doi: 10.1214/aoms/1177706807
– ident: CIT0026
– ident: CIT0028
– ident: CIT0003
  doi: 10.1080/00031305.2017.1366367
– ident: CIT0002
  doi: 10.2307/2529277
SSID ssj0008153
Score 2.3361535
Snippet Group testing study designs have been used since the 1940s to reduce screening costs for uncommon diseases; for rare diseases, all cases are identifiable with...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2228
SubjectTerms Algorithms
clustered data
Clustering
Disease
disease identification
Estimates
group testing
Heterogeneity
Medical screening
pooled sample analysis
prevalence heterogeneity
Statistical methods
Title The efficient design of Nested Group Testing algorithms for disease identification in clustered data
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2022.2071419
https://www.ncbi.nlm.nih.gov/pubmed/37434628
https://www.proquest.com/docview/2834349784
https://www.proquest.com/docview/2836298825
https://pubmed.ncbi.nlm.nih.gov/PMC10332225
http://hdl.handle.net/11603/30444
UnpaywallVersion submittedVersion
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1360-0532
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0008153
  issn: 0266-4763
  databaseCode: AMVHM
  dateStart: 19940501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1360-0532
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008153
  issn: 0266-4763
  databaseCode: AHDZW
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1360-0532
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008153
  issn: 0266-4763
  databaseCode: RPM
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1360-0532
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008153
  issn: 0266-4763
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH4q0wPlwFK2gVIZiWumSew49rFCVBVSRxw6UjlFtmO3I0Km6iRC8OvxcxZmKKhwjLzIjp_tz2_5HsC7XHNuZCaiUhgd-dNPY7ByGjm0wVDj0jhkazib89MF-3iRXezAkJ_wN3qBBJMgH1HkNLsHuzzzcHsCu4v5p-PPne6E--5DtrSEcjTq0nSI0kH-bF-Oxf4VmGLMVZ4wJNTZuH-22En_hDFvu0reb-tr9f2bqqqNe-jk0a9ons795MusbfTM_LhN7vj3KT6Ghz0KJced2DyBHVvvw4OzkcJ1vQ97CEM7FuenUHppIjawTfgRkjK4fZCVI_OgLiVBg0XOkbGjviSqulzdLJurr2vi5016GxBZlr1nUhAGsqyJqVrkafAdoKPqM1icfDh_fxr1-Rkiw2TeRI4J5owx1qVCKwzpzblOZexyJ40olccKpTQZ5dYyIU2iMyecUZmvHeeG5_Q5TOpVbV8CKWOnMilyoSxlZWK1dh5qcaVkmcbS2CmwYdUK05OXYw6NqkgGjtN-sQtc7KJf7CnMxmbXHXvHXQ3kpkgUTVCbuC7HSUHvaHswyE_RHwTrwqM3RjGLH5vC27HYb2G0y6jartpQh6fSP3WyKbzoxG0cLfUID8OHpyC2BHGsgPTg2yX18irQhCcxRTOa7_RolNl_-wuv_rvFa9jznxSV3ml-AJPmprVvPFpr9GFQoB32u_YnUc00Kg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe2g5UCivlAJG4pptEjuJfUSIaoHunrZSb5Ht2O2KkK26iRD8-s44D-3yUJF6tsdKJuPJ5_HMN4S8z3WWGZmKsBRGh-D9NBYrJ6HDOxhmXBL5bg2zeTY9518u0ouNWhhMq8QztOuIIryvxs2NweghJe4Ezg0Zh40Bx7sEi6nymCPz524KYB-7GLBoPnpjEXdMlCASosxQxfOvZbb-T1vspX_DoH-mUu619bX6-UNV1cZ_6vSAmOENu_SUb5O20RPz6zfyx_up4DF51MNY-qGzuyfkga0PycPZyAG7PiT7iGM7GuinpARzpNbTVcAr0NLnjdCVo3Mfb6U-BEYXSPlRX1JVXa5uls3V9zUFxdD-Eokuyz61yVsTXdbUVC0SPcACmOn6jJyfflp8nIZ9g4fQcJk3oeOCO2OMdYnQCmuC80wnMnK5k0aUCsBGKU3KMmu5kCbWqRPOqBRmR7nJcvac7NSr2r4ktIycSqXIhbKMl7HV2gFWy5SSZRJJYwPCh89amJ79HJtwVEU8kKT2Gi1Qo0Wv0YBMRrHrjv7jLgG5aTNF4-MurmuSUrA7ZI8HAyt6T7IuAP5xhm0AeUDejcPgA_BiR9V21fo5WSLhrJQG5EVnj-PTMoCIWH8cELFlqeME5BffHqmXV55nPI4Y3sPBoiejUf-fFo7uoYW3ZG-6mJ0VZ5_nX1-RfRhiGEtP8mOy09y09jWAwEa_8bv8FlltTJY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6hIkF54ChXoICReM02h-PYjwhYlaMrHlqJt8hnuyJkV91ECH49HudQl0NF6rM9VjwZj2c8M98AvCoVY1oUPDZcq9hrP4XFylnsMAaTa5cloVvD0YIdntAPX4oxm3AzpFWiD-16oIigq_Fwr40bM-IOvNvAqD8X3rvLsJaqTCkCf15nGBXDKo5kMSljnvZAlJ4kRpqxiOdfy2xdT1vgpX8zQf_MpLzZNWv547us6wvX1PwOqHGDfXbK11nXqpn--Rv245U4cBduD0Ysed1L3T24Zps9uHU0IcBu9mAXrdgeBPo-GC-MxAawCr8DYkLWCFk5sgivrSQ8gJFjBPxoTomsT1fny_bs24Z4vpAhhESWZkhsCrJElg3RdYcwD34BzHN9ACfzd8dvDuOhvUOsqSjb2FFOndbauowriRXBJVOZSFzphOZGelPDCF3kzFrKhU5V4bjTsvCzk1KzMn8IO82qsY-BmMTJQvCSS5tTk1qlnLfUmJTCZInQNgI6_tVKD9jn2IKjrtIRInXgaIUcrQaORjCbyNY9-MdlBOKiyFRteHVxfYuUKr-Edn-Ur2rQI5vKG380xyaANIKX07DXABjWkY1ddWEOy4T3lIoIHvXiOH1t7g1ErD6OgG8J6jQB0cW3R5rlWUAZT5Mco3B-0YNJpv-PC0-uwIUXcOPz23n16f3i41PY9SM5PqRn5T7stOedfeYtwFY9D2f8F_msSzo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7YFy4FFegYKMxDXbJHYc-1ghqgqpKw5dqZwi27HbVUO26iZC8OvxONmwS0GFY-SH7Hhsf57HNwDvC825kbmIK2F07E8_jcHKWezQBkONy5KQreF0xk_m7NN5fr4D6_yEv9ELpJgE-ZAip9k92OW5h9sT2J3PPh996XUn3HcfsqWllKNRl2brKB3kz_blWOxfgRnGXBUpQ0Kdjftni530Txjztqvk_a65Vt-_qbreuIeOH_2K5undT66mXaun5sdtcse_T_ExPBxQKDnqxeYJ7NhmHx6cjhSuq33YQxjaszg_hcpLE7GBbcKPkFTB7YMsHZkFdSkJGixyhowdzQVR9cXyZtFefl0RP28y2IDIoho8k4IwkEVDTN0hT4PvAB1Vn8H8-OPZh5N4yM8QGyaLNnZMMGeMsS4TWmFIb8F1JhNXOGlEpTxWqKTJKbeWCWlSnTvhjMp97aQwvKDPYdIsG_sSSJU4lUtRCGUpq1KrtfNQiyslqyyRxkbA1qtWmoG8HHNo1GW65jgdFrvExS6HxY5gOja77tk77mogN0WibIPaxPU5Tkp6R9uDtfyUw0GwKj16YxSz-LEI3o3FfgujXUY1dtmFOjyT_qmTR_CiF7dxtNQjPAwfjkBsCeJYAenBt0uaxWWgCU8TimY03-nhKLP_9hde_XeL17DnPykqvbPiACbtTWffeLTW6rfDfv0JHh8zGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+efficient+design+of+Nested+Group+Testing+algorithms+for+disease+identification+in+clustered+data&rft.jtitle=Journal+of+applied+statistics&rft.au=Best%2C+Ana+F.&rft.au=Malinovsky%2C+Yaakov&rft.au=Albert%2C+Paul+S.&rft.date=2023-07-27&rft.pub=Taylor+%26+Francis&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=50&rft.issue=10&rft.spage=2228&rft.epage=2245&rft_id=info:doi/10.1080%2F02664763.2022.2071419&rft.externalDocID=2071419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon