Bionic 3D Path Planning for Plant Protection UAVs Based on Swarm Intelligence Algorithms and Krill Swarm Behavior
The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working...
Saved in:
| Published in | Biomimetics (Basel, Switzerland) Vol. 9; no. 6; p. 353 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
13.06.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2313-7673 2313-7673 |
| DOI | 10.3390/biomimetics9060353 |
Cover
| Abstract | The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working environments. To address issues such as poor path optimization, long operation time, and excessive iterations required by traditional swarm intelligence algorithms, this paper proposes a bionic three-dimensional path planning algorithm for plant protection UAVs. This algorithm aims to plan safe and optimal flight paths between work plots obstructed by multiple obstacle areas. Inspired by krill group behavior and based on group intelligence algorithm theory, the bionic three-dimensional path planning algorithm consists of three states: “foraging behavior”, “avoiding enemy behavior”, and “cruising behavior”. The current position information of the UAV in the working environment is used to switch between these states, and the optimal path is found after several iterations, which realizes the adaptive global and local convergence of the track planning, and improves the convergence speed and accuracy of the algorithm. The optimal flight path is obtained by smoothing using a third-order B-spline curve. Three sets of comparative simulation experiments are designed to verify the performance of this proposed algorithm. The results show that the bionic swarm intelligence algorithm based on krill swarm behavior reduces the path length by 1.1~17.5%, the operation time by 27.56~75.15%, the path energy consumption by 13.91~27.35%, and the number of iterations by 46~75% compared with the existing algorithms. The proposed algorithm can shorten the distance of the planned path more effectively, improve the real-time performance, and reduce the energy consumption. |
|---|---|
| AbstractList | The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working environments. To address issues such as poor path optimization, long operation time, and excessive iterations required by traditional swarm intelligence algorithms, this paper proposes a bionic three-dimensional path planning algorithm for plant protection UAVs. This algorithm aims to plan safe and optimal flight paths between work plots obstructed by multiple obstacle areas. Inspired by krill group behavior and based on group intelligence algorithm theory, the bionic three-dimensional path planning algorithm consists of three states: "foraging behavior", "avoiding enemy behavior", and "cruising behavior". The current position information of the UAV in the working environment is used to switch between these states, and the optimal path is found after several iterations, which realizes the adaptive global and local convergence of the track planning, and improves the convergence speed and accuracy of the algorithm. The optimal flight path is obtained by smoothing using a third-order B-spline curve. Three sets of comparative simulation experiments are designed to verify the performance of this proposed algorithm. The results show that the bionic swarm intelligence algorithm based on krill swarm behavior reduces the path length by 1.1~17.5%, the operation time by 27.56~75.15%, the path energy consumption by 13.91~27.35%, and the number of iterations by 46~75% compared with the existing algorithms. The proposed algorithm can shorten the distance of the planned path more effectively, improve the real-time performance, and reduce the energy consumption.The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working environments. To address issues such as poor path optimization, long operation time, and excessive iterations required by traditional swarm intelligence algorithms, this paper proposes a bionic three-dimensional path planning algorithm for plant protection UAVs. This algorithm aims to plan safe and optimal flight paths between work plots obstructed by multiple obstacle areas. Inspired by krill group behavior and based on group intelligence algorithm theory, the bionic three-dimensional path planning algorithm consists of three states: "foraging behavior", "avoiding enemy behavior", and "cruising behavior". The current position information of the UAV in the working environment is used to switch between these states, and the optimal path is found after several iterations, which realizes the adaptive global and local convergence of the track planning, and improves the convergence speed and accuracy of the algorithm. The optimal flight path is obtained by smoothing using a third-order B-spline curve. Three sets of comparative simulation experiments are designed to verify the performance of this proposed algorithm. The results show that the bionic swarm intelligence algorithm based on krill swarm behavior reduces the path length by 1.1~17.5%, the operation time by 27.56~75.15%, the path energy consumption by 13.91~27.35%, and the number of iterations by 46~75% compared with the existing algorithms. The proposed algorithm can shorten the distance of the planned path more effectively, improve the real-time performance, and reduce the energy consumption. The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working environments. To address issues such as poor path optimization, long operation time, and excessive iterations required by traditional swarm intelligence algorithms, this paper proposes a bionic three-dimensional path planning algorithm for plant protection UAVs. This algorithm aims to plan safe and optimal flight paths between work plots obstructed by multiple obstacle areas. Inspired by krill group behavior and based on group intelligence algorithm theory, the bionic three-dimensional path planning algorithm consists of three states: “foraging behavior”, “avoiding enemy behavior”, and “cruising behavior”. The current position information of the UAV in the working environment is used to switch between these states, and the optimal path is found after several iterations, which realizes the adaptive global and local convergence of the track planning, and improves the convergence speed and accuracy of the algorithm. The optimal flight path is obtained by smoothing using a third-order B-spline curve. Three sets of comparative simulation experiments are designed to verify the performance of this proposed algorithm. The results show that the bionic swarm intelligence algorithm based on krill swarm behavior reduces the path length by 1.1~17.5%, the operation time by 27.56~75.15%, the path energy consumption by 13.91~27.35%, and the number of iterations by 46~75% compared with the existing algorithms. The proposed algorithm can shorten the distance of the planned path more effectively, improve the real-time performance, and reduce the energy consumption. |
| Author | Xu, Nuo Sun, Jiyu Zhu, Haochen |
| AuthorAffiliation | Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; xunuo21@mail.jlu.edu.cn (N.X.); zhuhc22@mails.jlu.edu.cn (H.Z.) |
| AuthorAffiliation_xml | – name: Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; xunuo21@mail.jlu.edu.cn (N.X.); zhuhc22@mails.jlu.edu.cn (H.Z.) |
| Author_xml | – sequence: 1 givenname: Nuo surname: Xu fullname: Xu, Nuo – sequence: 2 givenname: Haochen surname: Zhu fullname: Zhu, Haochen – sequence: 3 givenname: Jiyu orcidid: 0000-0002-7056-0981 surname: Sun fullname: Sun, Jiyu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38921234$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstuGyEUhkdVqubSvEAXFVI32bjlDDNmWFV2erMaqZbadIsYYGwsBhxgEuXtgzNulKRS1RUc-P5f53ZcHDjvdFG8AfyeEIY_tMb3ptfJyMjwFJOavCiOSgJkQqeUHDy6HxanMW4wxsCmdVXhV8UhaVgJJamOiqu58c5IRD6hpUhrtLTCOeNWqPPhPkhoGXzSMmUOXc5-RzQXUSuUo583IvRo4ZK21qy0kxrN7MoHk9Z9RMIp9D0Ya_fcXK_FtfHhdfGyEzbq0_15Ulx--fzr_Nvk4sfXxfnsYiIrRtOkAw0VAyola2QnWKUaIpjsJFM1rYgiFaHQqY6Woq1b2TJBodaMSY1pC5k4KRajr_Jiw7fB9CLcci8Mv3_wYcVFyO2zmregOkmhVR3ICohqKywJ0KZpALeSlNmLjF6D24rbG2HtgyFgvpsH_3seWfVxVG2HttdKapeCsE9SefrjzJqv_DUHKDE0bOdwtncI_mrQMfHeRJnbLZz2Q-QE07JkNS535b57hm78EFzu8EjRBjPI1NvHKT3k8mchMlCOgAw-xqC7_yu0eSaSJondxuSyjP2X9A5XS-FK |
| CitedBy_id | crossref_primary_10_3389_fpls_2024_1391628 |
| Cites_doi | 10.1016/j.biosystemseng.2016.10.007 10.1016/j.dsr2.2009.10.003 10.3390/drones7030169 10.1016/j.dt.2019.04.011 10.3390/biomimetics8020182 10.1007/s42235-020-0049-9 10.3390/drones6030069 10.1002/cpe.8120 10.1007/s13198-021-01186-9 10.1016/j.biosystemseng.2018.04.010 10.1109/MCI.2006.329691 10.1007/s00521-020-05174-1 10.1016/j.biosystemseng.2020.08.007 10.3390/rs13163100 10.1016/j.eswa.2016.05.043 10.1109/ACCESS.2022.3218685 10.1007/s00227-004-1519-z 10.1139/f00-195 10.1098/rspb.2021.2361 10.1109/ISCAIE51753.2021.9431819 10.3390/machines10090773 10.1007/s11721-017-0150-9 10.3390/biomimetics9040212 10.1080/10798587.2008.10643309 10.3390/biomimetics9050270 10.1080/00207721.2014.929191 10.1109/IHMSC.2019.10119 10.1109/ICCWorkshops53468.2022.9814686 10.1038/s41598-018-37379-9 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/biomimetics9060353 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_b1dfc71bdf1c413db40c31788810bc32 10.3390/biomimetics9060353 PMC11201893 38921234 10_3390_biomimetics9060353 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31970454 – fundername: Aviation Science Foundation of China grantid: 2020Z0740R4001 |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c497t-f1e14917cc98cfa94d83a9cfc9d5743d34371fdf72ab5bcb9a715e99ce07b1743 |
| IEDL.DBID | UNPAY |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:48:08 EDT 2025 Sun Oct 26 05:57:50 EDT 2025 Tue Sep 30 17:08:43 EDT 2025 Thu Sep 04 18:41:52 EDT 2025 Fri Jul 25 11:42:24 EDT 2025 Thu Apr 03 07:08:21 EDT 2025 Thu Oct 16 04:43:57 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | plant protection UAV path planning bionic algorithm swarm intelligence algorithm |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c497t-f1e14917cc98cfa94d83a9cfc9d5743d34371fdf72ab5bcb9a715e99ce07b1743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7056-0981 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/biomimetics9060353 |
| PMID | 38921234 |
| PQID | 3072278091 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b1dfc71bdf1c413db40c31788810bc32 unpaywall_primary_10_3390_biomimetics9060353 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11201893 proquest_miscellaneous_3072295024 proquest_journals_3072278091 pubmed_primary_38921234 crossref_primary_10_3390_biomimetics9060353 crossref_citationtrail_10_3390_biomimetics9060353 |
| PublicationCentury | 2000 |
| PublicationDate | 20240613 |
| PublicationDateYYYYMMDD | 2024-06-13 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240613 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Liu (ref_2) 2022; 15 Hong (ref_16) 2016; 61 Vicari (ref_11) 2010; Volume 6404 Hamner (ref_25) 2000; 57 ref_10 ref_30 Arik (ref_33) 2020; 33 Yang (ref_17) 2022; 2022 Harrison (ref_15) 2018; 12 ref_18 Swadling (ref_29) 2005; 146 Plessen (ref_8) 2018; 171 Lin (ref_19) 2022; 10 Cox (ref_26) 2010; 57 Murphy (ref_27) 2019; 9 Chen (ref_1) 2021; 14 Mandloi (ref_12) 2021; 12 ref_24 ref_23 Yue (ref_4) 2012; 18 Edwards (ref_5) 2017; 153 ref_21 Dorigo (ref_14) 2006; 1 ref_20 Nilsson (ref_6) 2020; 198 Chen (ref_13) 2016; 47 ref_3 ref_28 Patle (ref_31) 2019; 15 ref_9 Fan (ref_32) 2020; 17 Chen (ref_22) 2024; 36 ref_7 |
| References_xml | – volume: 153 start-page: 149 year: 2017 ident: ref_5 article-title: Route planning evaluation of a prototype optimised infield route planner for neutral material flow agricultural operations publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.10.007 – volume: 57 start-page: 508 year: 2010 ident: ref_26 article-title: Three-dimensional observations of swarms of Antarctic krill (Euphausia superba) made using a multi-beam echosounder publication-title: Deep-Sea Res. Pt. I doi: 10.1016/j.dsr2.2009.10.003 – ident: ref_9 doi: 10.3390/drones7030169 – volume: 15 start-page: 582 year: 2019 ident: ref_31 article-title: A review: On path planning strategies for navigation of mobile robot publication-title: Def. Technol. doi: 10.1016/j.dt.2019.04.011 – ident: ref_24 doi: 10.3390/biomimetics8020182 – volume: 17 start-page: 611 year: 2020 ident: ref_32 article-title: Review and classification of bio-inspired algorithms and their applications publication-title: J. Bionic Eng. doi: 10.1007/s42235-020-0049-9 – volume: 14 start-page: 38 year: 2021 ident: ref_1 article-title: Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV) publication-title: Int. J. Agric. Biol. Eng. – ident: ref_23 doi: 10.3390/drones6030069 – volume: 2022 start-page: 1299434 year: 2022 ident: ref_17 article-title: Optimization of dynamic obstacle avoidance path of multirotor UAV based on ant colony algorithm publication-title: Wirel. Commun. Mob. Com. – volume: 36 start-page: e8120 year: 2024 ident: ref_22 article-title: UAV Path Planning: Integration of Grey Wolf Algorithm and Artificial Potential Field publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.8120 – volume: 15 start-page: 1 year: 2022 ident: ref_2 article-title: Development of UAV-based shot seeding device for rice planting publication-title: Int. J. Agric. Biol. Eng. – volume: 12 start-page: 990 year: 2021 ident: ref_12 article-title: Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environment publication-title: Int. J. Syst. Assur. Eng. doi: 10.1007/s13198-021-01186-9 – volume: 171 start-page: 16 year: 2018 ident: ref_8 article-title: Partial field coverage based on two path planning patterns publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.04.010 – volume: 1 start-page: 28 year: 2006 ident: ref_14 article-title: Ant colony optimization—Artificial ants as a computational intelligence technique publication-title: IEEE Comput. Intell. M. doi: 10.1109/MCI.2006.329691 – volume: 33 start-page: 3469 year: 2020 ident: ref_33 article-title: Artificial bee colony algorithm including some components of iterated greedy algorithm for permutation flow shop scheduling problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05174-1 – volume: 198 start-page: 248 year: 2020 ident: ref_6 article-title: Method and bench-marking framework for coverage path planning in arable farming publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.08.007 – ident: ref_3 doi: 10.3390/rs13163100 – volume: 61 start-page: 378 year: 2016 ident: ref_16 article-title: Linkage artificial bee colony for solving linkage problems publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2016.05.043 – volume: 10 start-page: 119269 year: 2022 ident: ref_19 article-title: Improved artificial bee colony algorithm based on multi-strategy synthesis for UAV path planning publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3218685 – volume: 146 start-page: 1169 year: 2005 ident: ref_29 article-title: Respiration rate and cost of swimming for Antarctic krill, Euphausia superba, in large groups in the laboratory publication-title: Mar. Biol. doi: 10.1007/s00227-004-1519-z – volume: 57 start-page: 192 year: 2000 ident: ref_25 article-title: Behavior of Antarctic krill (Euphausia superba): Schooling, foraging, and antipredatory behavior publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f00-195 – ident: ref_28 doi: 10.1098/rspb.2021.2361 – ident: ref_30 doi: 10.1109/ISCAIE51753.2021.9431819 – ident: ref_10 doi: 10.3390/machines10090773 – volume: Volume 6404 start-page: 213 year: 2010 ident: ref_11 article-title: A Dijkstra Algorithm for Fixed-Wing UAV Motion Planning Based on Terrain Elevation publication-title: Advances in Artificial Intelligence—SBIA 2010 – volume: 12 start-page: 187 year: 2018 ident: ref_15 article-title: Self-adaptive particle swarm optimization: A review and analysis of convergence publication-title: Swarm Intell. doi: 10.1007/s11721-017-0150-9 – ident: ref_20 doi: 10.3390/biomimetics9040212 – volume: 18 start-page: 1043 year: 2012 ident: ref_4 article-title: The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests publication-title: Intell. Autom. Soft Comput. doi: 10.1080/10798587.2008.10643309 – ident: ref_21 doi: 10.3390/biomimetics9050270 – volume: 47 start-page: 1407 year: 2016 ident: ref_13 article-title: UAV path planning using artificial potential field method updated by optimal control theory publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2014.929191 – ident: ref_7 doi: 10.1109/IHMSC.2019.10119 – ident: ref_18 doi: 10.1109/ICCWorkshops53468.2022.9814686 – volume: 9 start-page: 381 year: 2019 ident: ref_27 article-title: The three dimensional spatial structure of Antarctic krill schools in the laboratory publication-title: Sci. Rep. doi: 10.1038/s41598-018-37379-9 |
| SSID | ssj0001965440 |
| Score | 2.2953987 |
| Snippet | The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 353 |
| SubjectTerms | Algorithms bionic algorithm Convergence Efficiency Energy consumption Euphausiacea Flight Foraging behavior Intelligence Optimization algorithms path planning Planning Plant growth Plant protection plant protection UAV swarm intelligence algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQXuAFAeMjsCEjIV4gmh3bdfzYAtNAAk2Cor1F_mSd0nS0qab99zs7adRqCHjg0fFFcs7nu985vp8Req10wZ3xItey8Dk3hubKUZY77QPRlhuZisS-fB2dTPnnM3G2ddVXPBPW0QN3ijsy1AUrqXGBWnC4znBiIeZB4kaJsSx5X1KqrWTqoiN9EZyTrkqGQV5_FKvZZ_NYGLhSZESYYDuRKBH2_w5l3j4seXfdXOrrK13XW5Ho-AG630NIPO6G_hDd8c0jtD9uIH2eX-M3OB3qTLvl--jXJO63Wsw-4FPAenhzRxEGrJoaLT7tmBpADk_HP1Z4AnHNYWh9u9LLOf60xdmJx_XPxXLWns9XWDcOg4eo616uJ1pcPkbT44_f35_k_S0LueVKtnmgHrIkKq1VpQ1acVcyrWywygmAF45xJmlwQRbaCGON0pIKr5T1RJqYzzxBe82i8c8QVpbxwArvAqMcxIymXho1MkZI70uXIbrReGV7CvJ4E0ZdQSoSZ6m6PUsZeju8c9kRcPxRehIncpCM5NnpAZhU1ZtU9TeTytDBxgyqfkWvKvCFsWoY4FWGXg3dsBbjDxbd-MW6l1ECYE-GnnZWM4wEgGFECdBT7tjTzlB3e5rZeeL7BkhMKODKDL0bTO8fdPH8f-jiBbpXwPfEw3GUHaC9drn2hwDDWvMyrbgb1a01xA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvCBgfgYGMhHiBaHHs1PEDQi1sGkhUFVC0t8if26Q07dpU0_57zomTrRqaeEx8kRz77Pvd2fc7hN4JmTKjbBZLntqYKUViYQiNjbQukZop3iSJ_ZgMj2fs-0l2soMmXS6Mv1bZ7YnNRm0W2sfID0AXfdYmmLfPy4vYV43yp6tdCQ0ZSiuYTw3F2D20m3pmrAHaHR9Opj-voy5imDGWtNkzFPz9A5_lfj73CYNrkQwTmtEtC9UQ-f8Lfd6-RHl_Uy3l1aUsyxsW6ugRehigJR61uvAY7djqCdobVeBWz6_we9xc9myi6HvoYuzjsBrTr3gKGBB3tYswYNjmocbTlsEB5PBs9GeNx2DvDIanX5dyNcffbnB54lF5CmNVn83XWFYGw85RlkEuEDCunqLZ0eHvL8dxqL4QayZ4HTtiwXsiXGuRaycFMzmVQjstTAaww1BGOXHG8VSqTGklJCeZFULbhCvv5zxDg2pR2RcIC02Zo6k1jhIGYkoSy5UYKpVxa3MTIdKNeKEDNbmvkFEW4KL4WSpuz1KEPvTfLFtijjulx34ie0lPqt28WKxOi7BGC0WM09A744gG224USzTAqzzPSaI0TSO036lBEVb6urjWywi97ZthjfqDF1nZxSbIiAzgUISet1rT9wQAo0cP0JJv6dNWV7dbqvOzhgccoHJCAG9G6GOvev8xFi_v_o1X6EEKPfXX4QjdR4N6tbGvAXjV6k1YTX8BIA0zdQ priority: 102 providerName: ProQuest |
| Title | Bionic 3D Path Planning for Plant Protection UAVs Based on Swarm Intelligence Algorithms and Krill Swarm Behavior |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38921234 https://www.proquest.com/docview/3072278091 https://www.proquest.com/docview/3072295024 https://pubmed.ncbi.nlm.nih.gov/PMC11201893 https://doi.org/10.3390/biomimetics9060353 https://doaj.org/article/b1dfc71bdf1c413db40c31788810bc32 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: ABDBF dateStart: 20220601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagfYAXbuMSGJWREC-QLY6TOH5M2KqBRFUBReMp8i2sIk1Hk2oav57jJI1aBmg8RY6PI8c-tr9j-3wHoZdc-IGWJnQF840bSElcrgl1tTC5J1QgWeMk9mESncyC96fhaUeTY31hts7vKZjjh9YJfb6w_nwV9yKPhvQmGkYh4O4BGs4m0-RrEz0Ovs4iRluvmL8U3Fl5GoL-P6HKq5cjb63Lc3F5IYpia-UZ321DGFUNYaG9cPL9YF3LA_XzNzrH6_3UPXSnA6A4aTXmPrphygdoLynB-F5c4le4uRLa7LXvoR-p3a1VmB7hKSBFvIlwhAHpNokaT1ueB5DDs-RLhVNYFTWG1KcLsVrgd1uMnzgpvi1X8_psUWFRagzzS1F0ch1N4-ohmo2PP789cbsYDa4KOKvdnBiwsQhTiscqFzzQMRVc5YrrEMCJpgFlJNc584UMpZJcMBIazpXxmLTW0CM0KJeleYIwVzTIqW90TkkAYlIQwySPpAyZMbF2ENn0X6Y6AnMbR6PIwJCx7ZpdbVcHve7LnLf0Hf-UTq1a9JKWert5AZ2XdSM5k0TnCmqnc6IAAWgZeApAWBzHxJOK-g7a3yhV1s0HVQYzqfU5BnDmoBd9NoxkezwjSrNcdzI8BNDkoMetDvY1AVhpMQbkxDvauVPV3ZxyftawhQOg9gigUge96RX5Gm3x9P_En6HbPtTcXqIjdB8N6tXaPAe4VssRGibpUTqGZ3o8mX4cNdseo270_gIG1Uet |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9zBeEDA-AgOMBLxAtDh2mvhhQi3b1LKtqmBFewv-yjYpTbt-qOo_x9_GOXWyVUMTL3t0fIkc3_nud7bvDqEPXIRMSxP5Ig6Nz6QkPteE-lqYLBCKybgMEjvpNTsD9v0sOttAf6pYGHutstKJpaLWI2X3yHdBFm3UJpi3r-Mr31aNsqerVQkN4Uor6L0yxZgL7DgyywW4cNO97j7w-2MYHh6cfuv4rsqArxiPZ35GDHgJJFaKJyoTnOmECq4yxXUE5lVTRmOS6SwOhYykklzEJDKcKxPE0uJ5-O4DtMkofK2BNtsHvf6P610e3owYC1bROpTyYNdG1V8ObYDilAfNgEZ0zSKWhQP-hXZvX9rcmhdjsVyIPL9hEQ8fo0cOyuLWSvaeoA1TPEXbrQLc-OESf8Ll5dJy134bXbXtvq_CdB_3AXPiqlYSBsxcNma4v8oYAXR40Po1xW2wrxpD6-dCTIa4eyN3KG7l58Cb2cVwikWhMWiqPHd0LuHj5Bka3AsfnqNGMSrMS4S5oiyjodEZJQzIpCAmlrwpZRQbk2gPkWrGU-VSoduKHHkKLpHlUnqbSx76XL8zXiUCuZO6bRlZU9ok3uWD0eQ8dTohlURnCkanM6IAS2jJAgVwLkkSEkhFQw_tVGKQOs0yTa_XgYfe192gE-xBjyjMaO5oeATwy0MvVlJTjwQAqkUr0JOsydPaUNd7isuLMu84QPOAAL710Jda9P5jLl7d_Rvv0Fbn9OQ4Pe72jl6jhyGM2l7FI3QHNWaTuXkDoG8m37qVhdHv-17MfwG03nGV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEvCBiXwAAjAS8QNY6dJn6YUEtXrQyqCui0t-Bbtklp2vWiqn-RX8Vx4nSrhiZe9uj4JHJ8js_5bJ8LQu-4CJmWJvJFHBqfSUl8rgn1tTBZIBSTcRkk9r3fPByyryfRyRb6U8fCWLfKWieWilqPlT0jb4As2qhNMG-NzLlFDDrdz5ML31aQsjetdTkN4cos6P0y3ZgL8jgyqyVs52b7vQ7w_n0Ydg9-fTn0XcUBXzEez_2MGNgxkFgpnqhMcKYTKrjKFNcRmFpNGY1JprM4FDKSSnIRk8hwrkwQS4vt4bt30I69_AIlsdM-6A9-XJ748GbEWFBF7lDKg4aNsD8f2WDFGQ-aAY3ohnUsiwj8C_led-C8tygmYrUUeX7FOnYfogcO1uJWJYeP0JYpHqPdVgFb-tEKf8Clo2l5gr-LLtr2DFhh2sEDwJ-4rpuEAT-XjTkeVNkjgA4PW8cz3AZbqzG0fi7FdIR7V_KI4lZ-CryZn41mWBQag9bKc0fnkj9On6DhrfDhKdouxoV5jjBXlGU0NDqjhAGZFMTEkjeljGJjEu0hUs94qlxadFudI09he2S5lF7nkoc-rt-ZVElBbqRuW0auKW1C7_LBeHqaOv2QSqIzBaPTGVGAK7RkgQJolyQJCaSioYf2ajFInZaZpZdrwkNv192gH-yljyjMeOFoeARQzEPPKqlZjwTAqkUu0JNsyNPGUDd7ivOzMgc5wPSAANb10Ke16P3HXLy4-TfeoLuwqNNvvf7RS3Q_hEFbrzxC99D2fLowrwD_zeVrt7Aw-n3ba_kviat1xA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4ALr_IIFGQkxAXSxnESx8csUBUkqpVgUTlFftIV2WzZZFWVX8848Ua7FFA5Jh5Hjj22v7FnvkHoBRdxoqVJQ8FiEyZSkpBrQkMtjI2ESiTrgsQ-HmdH0-TDSXriaXJcLMzG_T0Fc_zABaHP5i6er-FRFtGUXkc7WQq4e4R2pseT4muXPQ6-zjJG-6iYv1Tc2nk6gv4_ocrLzpE3VvWZuDgXVbWx8xze7lMYNR1hoXM4-b6_auW--vkbnePVfuoOuuUBKC56jbmLrpn6HtotajC-5xf4Je5cQruz9l30Y-xOaxWmb_EEkCJeZzjCgHS7hxZPep4HkMPT4kuDx7AragxPn87Fco7fbzB-4qL6tljO2tN5g0WtMawvVeXlPE3j8j6aHr77_OYo9DkaQpVw1oaWGLCxCFOK58oKnuicCq6s4joFcKJpQhmx2rJYyFQqyQUjqeFcmYhJZw09QKN6UZtHCHNFE0tjoy0lCYhJQQyTPJMyZcbkOkBkPX6l8gTmLo9GVYIh4_q1vNyvAXo11Dnr6Tv-KT12ajFIOurt7gUMXulncimJtgpapy1RgAC0TCIFICzPcxJJReMA7a2VqvTrQVPCSupijgGcBej5UAwz2V3PiNosVl6GpwCaAvSw18GhJQArHcaAknxLO7eaul1Sz047tnAA1BEBVBqg14MiX6EvHv-f-BN0M4aWOyc6QvfQqF2uzFOAa6185ufpLxBPQ6w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bionic+3D+Path+Planning+for+Plant+Protection+UAVs+Based+on+Swarm+Intelligence+Algorithms+and+Krill+Swarm+Behavior&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Nuo&rft.au=Zhu%2C+Haochen&rft.au=Sun%2C+Jiyu&rft.date=2024-06-13&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=9&rft.issue=6&rft.spage=353&rft_id=info:doi/10.3390%2Fbiomimetics9060353&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |