Bionic 3D Path Planning for Plant Protection UAVs Based on Swarm Intelligence Algorithms and Krill Swarm Behavior

The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 9; no. 6; p. 353
Main Authors Xu, Nuo, Zhu, Haochen, Sun, Jiyu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.06.2024
MDPI
Subjects
Online AccessGet full text
ISSN2313-7673
2313-7673
DOI10.3390/biomimetics9060353

Cover

Abstract The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working environments. To address issues such as poor path optimization, long operation time, and excessive iterations required by traditional swarm intelligence algorithms, this paper proposes a bionic three-dimensional path planning algorithm for plant protection UAVs. This algorithm aims to plan safe and optimal flight paths between work plots obstructed by multiple obstacle areas. Inspired by krill group behavior and based on group intelligence algorithm theory, the bionic three-dimensional path planning algorithm consists of three states: “foraging behavior”, “avoiding enemy behavior”, and “cruising behavior”. The current position information of the UAV in the working environment is used to switch between these states, and the optimal path is found after several iterations, which realizes the adaptive global and local convergence of the track planning, and improves the convergence speed and accuracy of the algorithm. The optimal flight path is obtained by smoothing using a third-order B-spline curve. Three sets of comparative simulation experiments are designed to verify the performance of this proposed algorithm. The results show that the bionic swarm intelligence algorithm based on krill swarm behavior reduces the path length by 1.1~17.5%, the operation time by 27.56~75.15%, the path energy consumption by 13.91~27.35%, and the number of iterations by 46~75% compared with the existing algorithms. The proposed algorithm can shorten the distance of the planned path more effectively, improve the real-time performance, and reduce the energy consumption.
AbstractList The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working environments. To address issues such as poor path optimization, long operation time, and excessive iterations required by traditional swarm intelligence algorithms, this paper proposes a bionic three-dimensional path planning algorithm for plant protection UAVs. This algorithm aims to plan safe and optimal flight paths between work plots obstructed by multiple obstacle areas. Inspired by krill group behavior and based on group intelligence algorithm theory, the bionic three-dimensional path planning algorithm consists of three states: "foraging behavior", "avoiding enemy behavior", and "cruising behavior". The current position information of the UAV in the working environment is used to switch between these states, and the optimal path is found after several iterations, which realizes the adaptive global and local convergence of the track planning, and improves the convergence speed and accuracy of the algorithm. The optimal flight path is obtained by smoothing using a third-order B-spline curve. Three sets of comparative simulation experiments are designed to verify the performance of this proposed algorithm. The results show that the bionic swarm intelligence algorithm based on krill swarm behavior reduces the path length by 1.1~17.5%, the operation time by 27.56~75.15%, the path energy consumption by 13.91~27.35%, and the number of iterations by 46~75% compared with the existing algorithms. The proposed algorithm can shorten the distance of the planned path more effectively, improve the real-time performance, and reduce the energy consumption.The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working environments. To address issues such as poor path optimization, long operation time, and excessive iterations required by traditional swarm intelligence algorithms, this paper proposes a bionic three-dimensional path planning algorithm for plant protection UAVs. This algorithm aims to plan safe and optimal flight paths between work plots obstructed by multiple obstacle areas. Inspired by krill group behavior and based on group intelligence algorithm theory, the bionic three-dimensional path planning algorithm consists of three states: "foraging behavior", "avoiding enemy behavior", and "cruising behavior". The current position information of the UAV in the working environment is used to switch between these states, and the optimal path is found after several iterations, which realizes the adaptive global and local convergence of the track planning, and improves the convergence speed and accuracy of the algorithm. The optimal flight path is obtained by smoothing using a third-order B-spline curve. Three sets of comparative simulation experiments are designed to verify the performance of this proposed algorithm. The results show that the bionic swarm intelligence algorithm based on krill swarm behavior reduces the path length by 1.1~17.5%, the operation time by 27.56~75.15%, the path energy consumption by 13.91~27.35%, and the number of iterations by 46~75% compared with the existing algorithms. The proposed algorithm can shorten the distance of the planned path more effectively, improve the real-time performance, and reduce the energy consumption.
The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many narrow plots. When designing the path planning method for plant protection UAVs, it is important to consider the generality in different working environments. To address issues such as poor path optimization, long operation time, and excessive iterations required by traditional swarm intelligence algorithms, this paper proposes a bionic three-dimensional path planning algorithm for plant protection UAVs. This algorithm aims to plan safe and optimal flight paths between work plots obstructed by multiple obstacle areas. Inspired by krill group behavior and based on group intelligence algorithm theory, the bionic three-dimensional path planning algorithm consists of three states: “foraging behavior”, “avoiding enemy behavior”, and “cruising behavior”. The current position information of the UAV in the working environment is used to switch between these states, and the optimal path is found after several iterations, which realizes the adaptive global and local convergence of the track planning, and improves the convergence speed and accuracy of the algorithm. The optimal flight path is obtained by smoothing using a third-order B-spline curve. Three sets of comparative simulation experiments are designed to verify the performance of this proposed algorithm. The results show that the bionic swarm intelligence algorithm based on krill swarm behavior reduces the path length by 1.1~17.5%, the operation time by 27.56~75.15%, the path energy consumption by 13.91~27.35%, and the number of iterations by 46~75% compared with the existing algorithms. The proposed algorithm can shorten the distance of the planned path more effectively, improve the real-time performance, and reduce the energy consumption.
Author Xu, Nuo
Sun, Jiyu
Zhu, Haochen
AuthorAffiliation Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; xunuo21@mail.jlu.edu.cn (N.X.); zhuhc22@mails.jlu.edu.cn (H.Z.)
AuthorAffiliation_xml – name: Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; xunuo21@mail.jlu.edu.cn (N.X.); zhuhc22@mails.jlu.edu.cn (H.Z.)
Author_xml – sequence: 1
  givenname: Nuo
  surname: Xu
  fullname: Xu, Nuo
– sequence: 2
  givenname: Haochen
  surname: Zhu
  fullname: Zhu, Haochen
– sequence: 3
  givenname: Jiyu
  orcidid: 0000-0002-7056-0981
  surname: Sun
  fullname: Sun, Jiyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38921234$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuGyEUhkdVqubSvEAXFVI32bjlDDNmWFV2erMaqZbadIsYYGwsBhxgEuXtgzNulKRS1RUc-P5f53ZcHDjvdFG8AfyeEIY_tMb3ptfJyMjwFJOavCiOSgJkQqeUHDy6HxanMW4wxsCmdVXhV8UhaVgJJamOiqu58c5IRD6hpUhrtLTCOeNWqPPhPkhoGXzSMmUOXc5-RzQXUSuUo583IvRo4ZK21qy0kxrN7MoHk9Z9RMIp9D0Ya_fcXK_FtfHhdfGyEzbq0_15Ulx--fzr_Nvk4sfXxfnsYiIrRtOkAw0VAyola2QnWKUaIpjsJFM1rYgiFaHQqY6Woq1b2TJBodaMSY1pC5k4KRajr_Jiw7fB9CLcci8Mv3_wYcVFyO2zmregOkmhVR3ICohqKywJ0KZpALeSlNmLjF6D24rbG2HtgyFgvpsH_3seWfVxVG2HttdKapeCsE9SefrjzJqv_DUHKDE0bOdwtncI_mrQMfHeRJnbLZz2Q-QE07JkNS535b57hm78EFzu8EjRBjPI1NvHKT3k8mchMlCOgAw-xqC7_yu0eSaSJondxuSyjP2X9A5XS-FK
CitedBy_id crossref_primary_10_3389_fpls_2024_1391628
Cites_doi 10.1016/j.biosystemseng.2016.10.007
10.1016/j.dsr2.2009.10.003
10.3390/drones7030169
10.1016/j.dt.2019.04.011
10.3390/biomimetics8020182
10.1007/s42235-020-0049-9
10.3390/drones6030069
10.1002/cpe.8120
10.1007/s13198-021-01186-9
10.1016/j.biosystemseng.2018.04.010
10.1109/MCI.2006.329691
10.1007/s00521-020-05174-1
10.1016/j.biosystemseng.2020.08.007
10.3390/rs13163100
10.1016/j.eswa.2016.05.043
10.1109/ACCESS.2022.3218685
10.1007/s00227-004-1519-z
10.1139/f00-195
10.1098/rspb.2021.2361
10.1109/ISCAIE51753.2021.9431819
10.3390/machines10090773
10.1007/s11721-017-0150-9
10.3390/biomimetics9040212
10.1080/10798587.2008.10643309
10.3390/biomimetics9050270
10.1080/00207721.2014.929191
10.1109/IHMSC.2019.10119
10.1109/ICCWorkshops53468.2022.9814686
10.1038/s41598-018-37379-9
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/biomimetics9060353
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_b1dfc71bdf1c413db40c31788810bc32
10.3390/biomimetics9060353
PMC11201893
38921234
10_3390_biomimetics9060353
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31970454
– fundername: Aviation Science Foundation of China
  grantid: 2020Z0740R4001
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c497t-f1e14917cc98cfa94d83a9cfc9d5743d34371fdf72ab5bcb9a715e99ce07b1743
IEDL.DBID UNPAY
ISSN 2313-7673
IngestDate Fri Oct 03 12:48:08 EDT 2025
Sun Oct 26 05:57:50 EDT 2025
Tue Sep 30 17:08:43 EDT 2025
Thu Sep 04 18:41:52 EDT 2025
Fri Jul 25 11:42:24 EDT 2025
Thu Apr 03 07:08:21 EDT 2025
Thu Oct 16 04:43:57 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords plant protection UAV
path planning
bionic algorithm
swarm intelligence algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-f1e14917cc98cfa94d83a9cfc9d5743d34371fdf72ab5bcb9a715e99ce07b1743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7056-0981
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/biomimetics9060353
PMID 38921234
PQID 3072278091
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_b1dfc71bdf1c413db40c31788810bc32
unpaywall_primary_10_3390_biomimetics9060353
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11201893
proquest_miscellaneous_3072295024
proquest_journals_3072278091
pubmed_primary_38921234
crossref_primary_10_3390_biomimetics9060353
crossref_citationtrail_10_3390_biomimetics9060353
PublicationCentury 2000
PublicationDate 20240613
PublicationDateYYYYMMDD 2024-06-13
PublicationDate_xml – month: 6
  year: 2024
  text: 20240613
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_2) 2022; 15
Hong (ref_16) 2016; 61
Vicari (ref_11) 2010; Volume 6404
Hamner (ref_25) 2000; 57
ref_10
ref_30
Arik (ref_33) 2020; 33
Yang (ref_17) 2022; 2022
Harrison (ref_15) 2018; 12
ref_18
Swadling (ref_29) 2005; 146
Plessen (ref_8) 2018; 171
Lin (ref_19) 2022; 10
Cox (ref_26) 2010; 57
Murphy (ref_27) 2019; 9
Chen (ref_1) 2021; 14
Mandloi (ref_12) 2021; 12
ref_24
ref_23
Yue (ref_4) 2012; 18
Edwards (ref_5) 2017; 153
ref_21
Dorigo (ref_14) 2006; 1
ref_20
Nilsson (ref_6) 2020; 198
Chen (ref_13) 2016; 47
ref_3
ref_28
Patle (ref_31) 2019; 15
ref_9
Fan (ref_32) 2020; 17
Chen (ref_22) 2024; 36
ref_7
References_xml – volume: 153
  start-page: 149
  year: 2017
  ident: ref_5
  article-title: Route planning evaluation of a prototype optimised infield route planner for neutral material flow agricultural operations
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.10.007
– volume: 57
  start-page: 508
  year: 2010
  ident: ref_26
  article-title: Three-dimensional observations of swarms of Antarctic krill (Euphausia superba) made using a multi-beam echosounder
  publication-title: Deep-Sea Res. Pt. I
  doi: 10.1016/j.dsr2.2009.10.003
– ident: ref_9
  doi: 10.3390/drones7030169
– volume: 15
  start-page: 582
  year: 2019
  ident: ref_31
  article-title: A review: On path planning strategies for navigation of mobile robot
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2019.04.011
– ident: ref_24
  doi: 10.3390/biomimetics8020182
– volume: 17
  start-page: 611
  year: 2020
  ident: ref_32
  article-title: Review and classification of bio-inspired algorithms and their applications
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-020-0049-9
– volume: 14
  start-page: 38
  year: 2021
  ident: ref_1
  article-title: Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV)
  publication-title: Int. J. Agric. Biol. Eng.
– ident: ref_23
  doi: 10.3390/drones6030069
– volume: 2022
  start-page: 1299434
  year: 2022
  ident: ref_17
  article-title: Optimization of dynamic obstacle avoidance path of multirotor UAV based on ant colony algorithm
  publication-title: Wirel. Commun. Mob. Com.
– volume: 36
  start-page: e8120
  year: 2024
  ident: ref_22
  article-title: UAV Path Planning: Integration of Grey Wolf Algorithm and Artificial Potential Field
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.8120
– volume: 15
  start-page: 1
  year: 2022
  ident: ref_2
  article-title: Development of UAV-based shot seeding device for rice planting
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 12
  start-page: 990
  year: 2021
  ident: ref_12
  article-title: Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environment
  publication-title: Int. J. Syst. Assur. Eng.
  doi: 10.1007/s13198-021-01186-9
– volume: 171
  start-page: 16
  year: 2018
  ident: ref_8
  article-title: Partial field coverage based on two path planning patterns
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.04.010
– volume: 1
  start-page: 28
  year: 2006
  ident: ref_14
  article-title: Ant colony optimization—Artificial ants as a computational intelligence technique
  publication-title: IEEE Comput. Intell. M.
  doi: 10.1109/MCI.2006.329691
– volume: 33
  start-page: 3469
  year: 2020
  ident: ref_33
  article-title: Artificial bee colony algorithm including some components of iterated greedy algorithm for permutation flow shop scheduling problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05174-1
– volume: 198
  start-page: 248
  year: 2020
  ident: ref_6
  article-title: Method and bench-marking framework for coverage path planning in arable farming
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.08.007
– ident: ref_3
  doi: 10.3390/rs13163100
– volume: 61
  start-page: 378
  year: 2016
  ident: ref_16
  article-title: Linkage artificial bee colony for solving linkage problems
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2016.05.043
– volume: 10
  start-page: 119269
  year: 2022
  ident: ref_19
  article-title: Improved artificial bee colony algorithm based on multi-strategy synthesis for UAV path planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3218685
– volume: 146
  start-page: 1169
  year: 2005
  ident: ref_29
  article-title: Respiration rate and cost of swimming for Antarctic krill, Euphausia superba, in large groups in the laboratory
  publication-title: Mar. Biol.
  doi: 10.1007/s00227-004-1519-z
– volume: 57
  start-page: 192
  year: 2000
  ident: ref_25
  article-title: Behavior of Antarctic krill (Euphausia superba): Schooling, foraging, and antipredatory behavior
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f00-195
– ident: ref_28
  doi: 10.1098/rspb.2021.2361
– ident: ref_30
  doi: 10.1109/ISCAIE51753.2021.9431819
– ident: ref_10
  doi: 10.3390/machines10090773
– volume: Volume 6404
  start-page: 213
  year: 2010
  ident: ref_11
  article-title: A Dijkstra Algorithm for Fixed-Wing UAV Motion Planning Based on Terrain Elevation
  publication-title: Advances in Artificial Intelligence—SBIA 2010
– volume: 12
  start-page: 187
  year: 2018
  ident: ref_15
  article-title: Self-adaptive particle swarm optimization: A review and analysis of convergence
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-017-0150-9
– ident: ref_20
  doi: 10.3390/biomimetics9040212
– volume: 18
  start-page: 1043
  year: 2012
  ident: ref_4
  article-title: The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.1080/10798587.2008.10643309
– ident: ref_21
  doi: 10.3390/biomimetics9050270
– volume: 47
  start-page: 1407
  year: 2016
  ident: ref_13
  article-title: UAV path planning using artificial potential field method updated by optimal control theory
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2014.929191
– ident: ref_7
  doi: 10.1109/IHMSC.2019.10119
– ident: ref_18
  doi: 10.1109/ICCWorkshops53468.2022.9814686
– volume: 9
  start-page: 381
  year: 2019
  ident: ref_27
  article-title: The three dimensional spatial structure of Antarctic krill schools in the laboratory
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37379-9
SSID ssj0001965440
Score 2.2953987
Snippet The protection of plants in mountainous and hilly areas differs from that in plain areas due to the complex terrain, which divides the work plot into many...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 353
SubjectTerms Algorithms
bionic algorithm
Convergence
Efficiency
Energy consumption
Euphausiacea
Flight
Foraging behavior
Intelligence
Optimization algorithms
path planning
Planning
Plant growth
Plant protection
plant protection UAV
swarm intelligence algorithm
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQXuAFAeMjsCEjIV4gmh3bdfzYAtNAAk2Cor1F_mSd0nS0qab99zs7adRqCHjg0fFFcs7nu985vp8Req10wZ3xItey8Dk3hubKUZY77QPRlhuZisS-fB2dTPnnM3G2ddVXPBPW0QN3ijsy1AUrqXGBWnC4znBiIeZB4kaJsSx5X1KqrWTqoiN9EZyTrkqGQV5_FKvZZ_NYGLhSZESYYDuRKBH2_w5l3j4seXfdXOrrK13XW5Ho-AG630NIPO6G_hDd8c0jtD9uIH2eX-M3OB3qTLvl--jXJO63Wsw-4FPAenhzRxEGrJoaLT7tmBpADk_HP1Z4AnHNYWh9u9LLOf60xdmJx_XPxXLWns9XWDcOg4eo616uJ1pcPkbT44_f35_k_S0LueVKtnmgHrIkKq1VpQ1acVcyrWywygmAF45xJmlwQRbaCGON0pIKr5T1RJqYzzxBe82i8c8QVpbxwArvAqMcxIymXho1MkZI70uXIbrReGV7CvJ4E0ZdQSoSZ6m6PUsZeju8c9kRcPxRehIncpCM5NnpAZhU1ZtU9TeTytDBxgyqfkWvKvCFsWoY4FWGXg3dsBbjDxbd-MW6l1ECYE-GnnZWM4wEgGFECdBT7tjTzlB3e5rZeeL7BkhMKODKDL0bTO8fdPH8f-jiBbpXwPfEw3GUHaC9drn2hwDDWvMyrbgb1a01xA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvCBgfgYGMhHiBaHHs1PEDQi1sGkhUFVC0t8if26Q07dpU0_57zomTrRqaeEx8kRz77Pvd2fc7hN4JmTKjbBZLntqYKUViYQiNjbQukZop3iSJ_ZgMj2fs-0l2soMmXS6Mv1bZ7YnNRm0W2sfID0AXfdYmmLfPy4vYV43yp6tdCQ0ZSiuYTw3F2D20m3pmrAHaHR9Opj-voy5imDGWtNkzFPz9A5_lfj73CYNrkQwTmtEtC9UQ-f8Lfd6-RHl_Uy3l1aUsyxsW6ugRehigJR61uvAY7djqCdobVeBWz6_we9xc9myi6HvoYuzjsBrTr3gKGBB3tYswYNjmocbTlsEB5PBs9GeNx2DvDIanX5dyNcffbnB54lF5CmNVn83XWFYGw85RlkEuEDCunqLZ0eHvL8dxqL4QayZ4HTtiwXsiXGuRaycFMzmVQjstTAaww1BGOXHG8VSqTGklJCeZFULbhCvv5zxDg2pR2RcIC02Zo6k1jhIGYkoSy5UYKpVxa3MTIdKNeKEDNbmvkFEW4KL4WSpuz1KEPvTfLFtijjulx34ie0lPqt28WKxOi7BGC0WM09A744gG224USzTAqzzPSaI0TSO036lBEVb6urjWywi97ZthjfqDF1nZxSbIiAzgUISet1rT9wQAo0cP0JJv6dNWV7dbqvOzhgccoHJCAG9G6GOvev8xFi_v_o1X6EEKPfXX4QjdR4N6tbGvAXjV6k1YTX8BIA0zdQ
  priority: 102
  providerName: ProQuest
Title Bionic 3D Path Planning for Plant Protection UAVs Based on Swarm Intelligence Algorithms and Krill Swarm Behavior
URI https://www.ncbi.nlm.nih.gov/pubmed/38921234
https://www.proquest.com/docview/3072278091
https://www.proquest.com/docview/3072295024
https://pubmed.ncbi.nlm.nih.gov/PMC11201893
https://doi.org/10.3390/biomimetics9060353
https://doaj.org/article/b1dfc71bdf1c413db40c31788810bc32
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: ABDBF
  dateStart: 20220601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagfYAXbuMSGJWREC-QLY6TOH5M2KqBRFUBReMp8i2sIk1Hk2oav57jJI1aBmg8RY6PI8c-tr9j-3wHoZdc-IGWJnQF840bSElcrgl1tTC5J1QgWeMk9mESncyC96fhaUeTY31hts7vKZjjh9YJfb6w_nwV9yKPhvQmGkYh4O4BGs4m0-RrEz0Ovs4iRluvmL8U3Fl5GoL-P6HKq5cjb63Lc3F5IYpia-UZ321DGFUNYaG9cPL9YF3LA_XzNzrH6_3UPXSnA6A4aTXmPrphygdoLynB-F5c4le4uRLa7LXvoR-p3a1VmB7hKSBFvIlwhAHpNokaT1ueB5DDs-RLhVNYFTWG1KcLsVrgd1uMnzgpvi1X8_psUWFRagzzS1F0ch1N4-ohmo2PP789cbsYDa4KOKvdnBiwsQhTiscqFzzQMRVc5YrrEMCJpgFlJNc584UMpZJcMBIazpXxmLTW0CM0KJeleYIwVzTIqW90TkkAYlIQwySPpAyZMbF2ENn0X6Y6AnMbR6PIwJCx7ZpdbVcHve7LnLf0Hf-UTq1a9JKWert5AZ2XdSM5k0TnCmqnc6IAAWgZeApAWBzHxJOK-g7a3yhV1s0HVQYzqfU5BnDmoBd9NoxkezwjSrNcdzI8BNDkoMetDvY1AVhpMQbkxDvauVPV3ZxyftawhQOg9gigUge96RX5Gm3x9P_En6HbPtTcXqIjdB8N6tXaPAe4VssRGibpUTqGZ3o8mX4cNdseo270_gIG1Uet
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9zBeEDA-AgOMBLxAtDh2mvhhQi3b1LKtqmBFewv-yjYpTbt-qOo_x9_GOXWyVUMTL3t0fIkc3_nud7bvDqEPXIRMSxP5Ig6Nz6QkPteE-lqYLBCKybgMEjvpNTsD9v0sOttAf6pYGHutstKJpaLWI2X3yHdBFm3UJpi3r-Mr31aNsqerVQkN4Uor6L0yxZgL7DgyywW4cNO97j7w-2MYHh6cfuv4rsqArxiPZ35GDHgJJFaKJyoTnOmECq4yxXUE5lVTRmOS6SwOhYykklzEJDKcKxPE0uJ5-O4DtMkofK2BNtsHvf6P610e3owYC1bROpTyYNdG1V8ObYDilAfNgEZ0zSKWhQP-hXZvX9rcmhdjsVyIPL9hEQ8fo0cOyuLWSvaeoA1TPEXbrQLc-OESf8Ll5dJy134bXbXtvq_CdB_3AXPiqlYSBsxcNma4v8oYAXR40Po1xW2wrxpD6-dCTIa4eyN3KG7l58Cb2cVwikWhMWiqPHd0LuHj5Bka3AsfnqNGMSrMS4S5oiyjodEZJQzIpCAmlrwpZRQbk2gPkWrGU-VSoduKHHkKLpHlUnqbSx76XL8zXiUCuZO6bRlZU9ok3uWD0eQ8dTohlURnCkanM6IAS2jJAgVwLkkSEkhFQw_tVGKQOs0yTa_XgYfe192gE-xBjyjMaO5oeATwy0MvVlJTjwQAqkUr0JOsydPaUNd7isuLMu84QPOAAL710Jda9P5jLl7d_Rvv0Fbn9OQ4Pe72jl6jhyGM2l7FI3QHNWaTuXkDoG8m37qVhdHv-17MfwG03nGV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEvCBiXwAAjAS8QNY6dJn6YUEtXrQyqCui0t-Bbtklp2vWiqn-RX8Vx4nSrhiZe9uj4JHJ8js_5bJ8LQu-4CJmWJvJFHBqfSUl8rgn1tTBZIBSTcRkk9r3fPByyryfRyRb6U8fCWLfKWieWilqPlT0jb4As2qhNMG-NzLlFDDrdz5ML31aQsjetdTkN4cos6P0y3ZgL8jgyqyVs52b7vQ7w_n0Ydg9-fTn0XcUBXzEez_2MGNgxkFgpnqhMcKYTKrjKFNcRmFpNGY1JprM4FDKSSnIRk8hwrkwQS4vt4bt30I69_AIlsdM-6A9-XJ748GbEWFBF7lDKg4aNsD8f2WDFGQ-aAY3ohnUsiwj8C_led-C8tygmYrUUeX7FOnYfogcO1uJWJYeP0JYpHqPdVgFb-tEKf8Clo2l5gr-LLtr2DFhh2sEDwJ-4rpuEAT-XjTkeVNkjgA4PW8cz3AZbqzG0fi7FdIR7V_KI4lZ-CryZn41mWBQag9bKc0fnkj9On6DhrfDhKdouxoV5jjBXlGU0NDqjhAGZFMTEkjeljGJjEu0hUs94qlxadFudI09he2S5lF7nkoc-rt-ZVElBbqRuW0auKW1C7_LBeHqaOv2QSqIzBaPTGVGAK7RkgQJolyQJCaSioYf2ajFInZaZpZdrwkNv192gH-yljyjMeOFoeARQzEPPKqlZjwTAqkUu0JNsyNPGUDd7ivOzMgc5wPSAANb10Ke16P3HXLy4-TfeoLuwqNNvvf7RS3Q_hEFbrzxC99D2fLowrwD_zeVrt7Aw-n3ba_kviat1xA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4ALr_IIFGQkxAXSxnESx8csUBUkqpVgUTlFftIV2WzZZFWVX8848Ua7FFA5Jh5Hjj22v7FnvkHoBRdxoqVJQ8FiEyZSkpBrQkMtjI2ESiTrgsQ-HmdH0-TDSXriaXJcLMzG_T0Fc_zABaHP5i6er-FRFtGUXkc7WQq4e4R2pseT4muXPQ6-zjJG-6iYv1Tc2nk6gv4_ocrLzpE3VvWZuDgXVbWx8xze7lMYNR1hoXM4-b6_auW--vkbnePVfuoOuuUBKC56jbmLrpn6HtotajC-5xf4Je5cQruz9l30Y-xOaxWmb_EEkCJeZzjCgHS7hxZPep4HkMPT4kuDx7AragxPn87Fco7fbzB-4qL6tljO2tN5g0WtMawvVeXlPE3j8j6aHr77_OYo9DkaQpVw1oaWGLCxCFOK58oKnuicCq6s4joFcKJpQhmx2rJYyFQqyQUjqeFcmYhJZw09QKN6UZtHCHNFE0tjoy0lCYhJQQyTPJMyZcbkOkBkPX6l8gTmLo9GVYIh4_q1vNyvAXo11Dnr6Tv-KT12ajFIOurt7gUMXulncimJtgpapy1RgAC0TCIFICzPcxJJReMA7a2VqvTrQVPCSupijgGcBej5UAwz2V3PiNosVl6GpwCaAvSw18GhJQArHcaAknxLO7eaul1Sz047tnAA1BEBVBqg14MiX6EvHv-f-BN0M4aWOyc6QvfQqF2uzFOAa6185ufpLxBPQ6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bionic+3D+Path+Planning+for+Plant+Protection+UAVs+Based+on+Swarm+Intelligence+Algorithms+and+Krill+Swarm+Behavior&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Nuo&rft.au=Zhu%2C+Haochen&rft.au=Sun%2C+Jiyu&rft.date=2024-06-13&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=9&rft.issue=6&rft.spage=353&rft_id=info:doi/10.3390%2Fbiomimetics9060353&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon