Non-REM Sleep Marker for Wearable Monitoring: Power Concentration of Respiratory Heart Rate Fluctuation

A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high freq...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 9; p. 3336
Main Authors Hayano, Junichiro, Ueda, Norihiro, Kisohara, Masaya, Yoshida, Yutaka, Tanaka, Haruhito, Yuda, Emi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2020
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app10093336

Cover

Abstract A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high frequency (HF) HRV power into a narrow frequency range. Using this physiological feature, we developed a new HRV sleep index named Hsi to quantify the degree of HF power concentration. We analyzed 11,636 consecutive 5-min segments of electrocardiographic (ECG) signal of polysomnographic data in 141 subjects and calculated Hsi and conventional HRV indices for each segment. Hsi was greater during NREM (mean [SD], 75.1 [8.3]%) than wake (61.0 [10.3]%) and REM (62.0 [8.4]%) stages. Receiver-operating characteristic curve analysis revealed that Hsi discriminated NREM from wake and REM segments with an area under the curve of 0.86, which was greater than those of heart rate (0.642), peak HF power (0.75), low-to-high frequency ratio (0.77), and scaling exponent α (0.77). With a cutoff >70%, Hsi detected NREM segments with 77% sensitivity, 80% specificity, and a Cohen’s kappa coefficient of 0.57. Hsi may provide an accurate NREM sleep maker for ECG and pulse wave signals obtained from wearable sensors.
AbstractList A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high frequency (HF) HRV power into a narrow frequency range. Using this physiological feature, we developed a new HRV sleep index named Hsi to quantify the degree of HF power concentration. We analyzed 11,636 consecutive 5-min segments of electrocardiographic (ECG) signal of polysomnographic data in 141 subjects and calculated Hsi and conventional HRV indices for each segment. Hsi was greater during NREM (mean [SD], 75.1 [8.3]%) than wake (61.0 [10.3]%) and REM (62.0 [8.4]%) stages. Receiver-operating characteristic curve analysis revealed that Hsi discriminated NREM from wake and REM segments with an area under the curve of 0.86, which was greater than those of heart rate (0.642), peak HF power (0.75), low-to-high frequency ratio (0.77), and scaling exponent [alpha] (0.77). With a cutoff >70%, Hsi detected NREM segments with 77% sensitivity, 80% specificity, and a Cohen's kappa coefficient of 0.57. Hsi may provide an accurate NREM sleep maker for ECG and pulse wave signals obtained from wearable sensors.
A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high frequency (HF) HRV power into a narrow frequency range. Using this physiological feature, we developed a new HRV sleep index named Hsi to quantify the degree of HF power concentration. We analyzed 11,636 consecutive 5-min segments of electrocardiographic (ECG) signal of polysomnographic data in 141 subjects and calculated Hsi and conventional HRV indices for each segment. Hsi was greater during NREM (mean [SD], 75.1 [8.3]%) than wake (61.0 [10.3]%) and REM (62.0 [8.4]%) stages. Receiver-operating characteristic curve analysis revealed that Hsi discriminated NREM from wake and REM segments with an area under the curve of 0.86, which was greater than those of heart rate (0.642), peak HF power (0.75), low-to-high frequency ratio (0.77), and scaling exponent α (0.77). With a cutoff >70%, Hsi detected NREM segments with 77% sensitivity, 80% specificity, and a Cohen’s kappa coefficient of 0.57. Hsi may provide an accurate NREM sleep maker for ECG and pulse wave signals obtained from wearable sensors.
A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high frequency (HF) HRV power into a narrow frequency range. Using this physiological feature, we developed a new HRV sleep index named Hsi to quantify the degree of HF power concentration. We analyzed 11,636 consecutive 5-min segments of electrocardiographic (ECG) signal of polysomnographic data in 141 subjects and calculated Hsi and conventional HRV indices for each segment. Hsi was greater during NREM (mean [SD], 75.1 [8.3]%) than wake (61.0 [10.3]%) and REM (62.0 [8.4]%) stages. Receiver-operating characteristic curve analysis revealed that Hsi discriminated NREM from wake and REM segments with an area under the curve of 0.86, which was greater than those of heart rate (0.642), peak HF power (0.75), low-to-high frequency ratio (0.77), and scaling exponent [alpha] (0.77). With a cutoff >70%, Hsi detected NREM segments with 77% sensitivity, 80% specificity, and a Cohen's kappa coefficient of 0.57. Hsi may provide an accurate NREM sleep maker for ECG and pulse wave signals obtained from wearable sensors. Keywords: heart rate variability; sleep stage; respiration; electrocardiography; power spectrum; detrended fluctuation analysis; REM sleep
Audience Academic
Author Tanaka, Haruhito
Yuda, Emi
Ueda, Norihiro
Yoshida, Yutaka
Kisohara, Masaya
Hayano, Junichiro
Author_xml – sequence: 1
  givenname: Junichiro
  orcidid: 0000-0002-5340-6325
  surname: Hayano
  fullname: Hayano, Junichiro
– sequence: 2
  givenname: Norihiro
  surname: Ueda
  fullname: Ueda, Norihiro
– sequence: 3
  givenname: Masaya
  surname: Kisohara
  fullname: Kisohara, Masaya
– sequence: 4
  givenname: Yutaka
  surname: Yoshida
  fullname: Yoshida, Yutaka
– sequence: 5
  givenname: Haruhito
  surname: Tanaka
  fullname: Tanaka, Haruhito
– sequence: 6
  givenname: Emi
  surname: Yuda
  fullname: Yuda, Emi
BookMark eNptUVFvFCEQJqYm1ton_wCJj2brwLDL4ltzaW2TnjZXjY-EZeHCuQcruxfTf196Z7SawgMzw_d9fMy8JkcxRUfIWwZniAo-mHFkAAoRmxfkmINsKhRMHj2JX5HTadpAWYphy-CYrD-nWK0ulvRucG6kS5N_uEx9yvS7M9l0g6PLFMOccojrj_Q2_SrXixSti3M2c0iRJk9XbhpDSVO-p1eFN9OVmR29HHZ23u1Rb8hLb4bJnf4-T8i3y4uvi6vq5sun68X5TWWFknPV99B65Gi7DqDhWFtTdw64VFi3wIyvEWUNLRqGDByDhpVUCNVx6RkTeEKuD7p9Mhs95rA1-V4nE_S-kPJaF3vBDk4z0ysHzoBqawGma5F3vrPoBZe9RFW03h20xpx-7tw0603a5Vjsay4AWw6ilX9Ra1NEQ_SpNMZuw2T1eYOgRLHcFNTZM6iye7cNtgzSh1L_h_D-QLA5TVN2_s9nGOjHeesn8y5o9h_ahnnf-PJMGJ7lPADO_Ku2
CitedBy_id crossref_primary_10_1186_s40101_021_00272_y
crossref_primary_10_1587_nolta_12_464
crossref_primary_10_5057_ijae_IJAE_D_20_00011
crossref_primary_10_1109_ACCESS_2021_3078534
crossref_primary_10_3390_app12052716
crossref_primary_10_5057_ijae_IJAE_D_20_00015
crossref_primary_10_3390_app15052504
crossref_primary_10_3390_app10217436
crossref_primary_10_1089_jicm_2022_0526
Cites_doi 10.1161/01.CIR.91.7.1918
10.1093/sleep/5.S2.S191
10.1148/radiology.148.3.6878708
10.1111/j.1469-8986.1993.tb01731.x
10.1378/chest.117.2.460
10.1016/j.compbiomed.2016.09.018
10.1016/S0921-884X(96)96070-1
10.1093/sleep/15.5.461
10.1093/sleep/22.8.1067
10.1109/TBME.2003.817636
10.1161/CIRCEP.110.958009
10.1016/S1389-9457(00)00098-8
10.1016/S0140-6736(84)90062-X
10.1016/j.eswa.2011.08.022
10.1088/0967-3334/36/10/2027
10.1109/JBHI.2013.2284610
10.3390/s16050750
10.1161/01.CIR.93.5.1043
10.1103/PhysRevE.65.051908
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10093336
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_1ad9e0ea098540ab832bfbc3f427d739
A630945336
10_3390_app10093336
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c497t-dd08f323cbb006235ca5be027935801af53375083a1310e1061750449b27f1143
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:24:13 EDT 2025
Mon Jun 30 11:09:06 EDT 2025
Tue Jun 17 21:31:50 EDT 2025
Tue Jun 10 20:40:43 EDT 2025
Tue Jul 01 03:14:11 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-dd08f323cbb006235ca5be027935801af53375083a1310e1061750449b27f1143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5340-6325
OpenAccessLink https://doaj.org/article/1ad9e0ea098540ab832bfbc3f427d739
PQID 2403820487
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_1ad9e0ea098540ab832bfbc3f427d739
proquest_journals_2403820487
gale_infotracmisc_A630945336
gale_infotracacademiconefile_A630945336
crossref_primary_10_3390_app10093336
crossref_citationtrail_10_3390_app10093336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fonseca (ref_10) 2015; 36
Guilleminault (ref_5) 1984; 1
Hayano (ref_6) 2011; 4
Villa (ref_4) 2000; 117
Cole (ref_12) 1992; 15
Hanley (ref_19) 1983; 148
Kushida (ref_13) 2001; 2
Iyengar (ref_18) 1996; 271
Adane (ref_9) 2012; 39
ref_15
Bonnet (ref_1) 1997; 102
Kantelhardt (ref_7) 2002; 65
Penzel (ref_8) 2003; 50
Shannon (ref_20) 1987; 253
Singh (ref_11) 2016; 78
Coleman (ref_16) 1982; 5
Camm (ref_22) 1996; 93
Vanoli (ref_2) 1995; 91
Hayano (ref_21) 1994; 267
Elsenbruch (ref_3) 1999; 22
Berntson (ref_23) 1993; 30
Long (ref_14) 2014; 18
Peng (ref_17) 1994; 49
References_xml – volume: 91
  start-page: 1918
  year: 1995
  ident: ref_2
  article-title: Heart rate variability during specific sleep stages: A comparison of healthy subjects with patients after myocardial infarction
  publication-title: Circulation
  doi: 10.1161/01.CIR.91.7.1918
– volume: 5
  start-page: S191
  year: 1982
  ident: ref_16
  article-title: Daytime sleepiness in patients with periodic movements in sleep
  publication-title: Sleep
  doi: 10.1093/sleep/5.S2.S191
– volume: 148
  start-page: 839
  year: 1983
  ident: ref_19
  article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases
  publication-title: Radiology
  doi: 10.1148/radiology.148.3.6878708
– volume: 30
  start-page: 183
  year: 1993
  ident: ref_23
  article-title: Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1993.tb01731.x
– volume: 117
  start-page: 460
  year: 2000
  ident: ref_4
  article-title: Effects of sleep stage and age on short-term heart rate variability during sleep in healthy infants and children
  publication-title: Chest
  doi: 10.1378/chest.117.2.460
– volume: 78
  start-page: 138
  year: 2016
  ident: ref_11
  article-title: A method of REM-NREM sleep distinction using ECG signal for unobtrusive personal monitoring
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.09.018
– volume: 102
  start-page: 390
  year: 1997
  ident: ref_1
  article-title: Heart rate variability: Sleep stage, time of night, and arousal influences
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0921-884X(96)96070-1
– volume: 15
  start-page: 461
  year: 1992
  ident: ref_12
  article-title: Automatic sleep/wake identification from wrist activity
  publication-title: Sleep
  doi: 10.1093/sleep/15.5.461
– volume: 267
  start-page: H33
  year: 1994
  ident: ref_21
  article-title: Effects of respiratory interval on vagal modulation of heart rate
  publication-title: Am. J. Physiol.
– volume: 22
  start-page: 1067
  year: 1999
  ident: ref_3
  article-title: Heart rate variability during waking and sleep in healthy males and females
  publication-title: Sleep
  doi: 10.1093/sleep/22.8.1067
– volume: 50
  start-page: 1143
  year: 2003
  ident: ref_8
  article-title: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.817636
– volume: 4
  start-page: 64
  year: 2011
  ident: ref_6
  article-title: Screening for obstructive sleep apnea by cyclic variation of heart rate
  publication-title: Circ. Arrhythm Electrophysiol.
  doi: 10.1161/CIRCEP.110.958009
– volume: 49
  start-page: 1685
  year: 1994
  ident: ref_17
  article-title: Mosaic organization of DNA nucleotides
  publication-title: Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics
– volume: 271
  start-page: R1078
  year: 1996
  ident: ref_18
  article-title: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
  publication-title: Am. J. Physiol.
– volume: 2
  start-page: 389
  year: 2001
  ident: ref_13
  article-title: Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients
  publication-title: Sleep Med.
  doi: 10.1016/S1389-9457(00)00098-8
– volume: 1
  start-page: 126
  year: 1984
  ident: ref_5
  article-title: Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique
  publication-title: Lancet
  doi: 10.1016/S0140-6736(84)90062-X
– volume: 39
  start-page: 1401
  year: 2012
  ident: ref_9
  article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.022
– volume: 36
  start-page: 2027
  year: 2015
  ident: ref_10
  article-title: Sleep stage classification with ECG and respiratory effort
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/36/10/2027
– volume: 18
  start-page: 1272
  year: 2014
  ident: ref_14
  article-title: Sleep and wake classification with actigraphy and respiratory effort using dynamic warping
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2284610
– ident: ref_15
  doi: 10.3390/s16050750
– volume: 253
  start-page: H874
  year: 1987
  ident: ref_20
  article-title: Aging of modulation of heart rate
  publication-title: Am. J. Physiol.
– volume: 93
  start-page: 1043
  year: 1996
  ident: ref_22
  article-title: Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, Standards of measurement, physiological interpretation and clinical use
  publication-title: Circulation
  doi: 10.1161/01.CIR.93.5.1043
– volume: 65
  start-page: 051908
  year: 2002
  ident: ref_7
  article-title: Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.65.051908
SSID ssj0000913810
Score 2.207515
Snippet A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3336
SubjectTerms Cardiac arrhythmia
detrended fluctuation analysis
Digitization
electrocardiography
Heart rate
heart rate variability
Methods
Observations
Physiologic monitoring
Physiology
power spectrum
Respiration
Sleep
sleep stage
Statistical analysis
Time series
Wearable computers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-69GV7GG23sWxd0UNhH2BmW7ZlDcZoS0IYNJRsZX0Tkiz1JdhZmv7_vVPkpIW2r9b58z58P0n3O4DjImsMGkqZmDrnSWEkupRofJIK7wudlbXUBBTPp9Xksvh9VV7twLSvhaFtlX1MDIG66SzNkX8n3riaWGbFr8X_hLpG0epq30JDx9YKzc9AMfYCdjEkl-kAdk9H04vZZtaFWDDrLF0X6nHE-7ROnAVYH0iat7-mwOD_VJwOP5_xHryOWSM7Wat5H3ZcewCv7nEJHsB-9NIb9iVSSX99A9fTrk1mo3P2Z-7cglFhjlsyzFPZP7Rwqppia6ema_xgF9QyjZ1RJWMb6XRZ59lsuxzPJnjeis0wQ2Xj-S1Vn5DUW7gcj_6eTZLYWiGxhRSrpGnS2vOcW0Nul_PS6tI4hKhhWTTTHrNAQUzxOsP8zxFuJB74QppceIRQ_B0M2q5174FluiTKHFE5x4vU2bquKqlTJ11udOX9EL71X1XZyDtO7S_mCvEHqUDdU8EQjjfCizXdxuNip6SejQhxZIcD3fJaRZdTmW6kS51OZY1pqSaTNN5Y7otcNILLIXwm5SryZHwgq2NBAr4WcWKpk4oj9i3D7Q4fSKIH2ofDvXmoGAFu1NZePzw__BFe5oThwybKQxislrfuEyY6K3MUrfcO4uj6kQ
  priority: 102
  providerName: ProQuest
Title Non-REM Sleep Marker for Wearable Monitoring: Power Concentration of Respiratory Heart Rate Fluctuation
URI https://www.proquest.com/docview/2403820487
https://doaj.org/article/1ad9e0ea098540ab832bfbc3f427d739
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1RT9swEMdPDF62BzS6Icq6yg9IjEnRkjiJ470V1FIhtarK0Hiz7MTmpUorKN9_d44LRRrihdfkkjj2XXJ_2fczwEmW1AYdJY9MmfIoMxJDStQuioVzmU7yUmoSipNpMb7Jrm7z262tvmhNWIsHbjvuV6JraWOrY1licqHpxsaZirssFbXgvnQvlvGWmPLfYJkQuqotyOOo62k-OPHy3cOYn39BntT_2vfY_2RGn2E_ZIds0LbqAHZs04FPW8zADhyEaHxgPwIy-uwL3E2XTTQfTtj1wtoVowIce88wH2V_0ZOpOoq1wUv3-M1mtDUau6CKxSZgc9nSsfnztDsb43VrNsdMlI0Wj1RlQlZf4WY0_HMxjsIWClGVSbGO6jouHU95ZSi8Up5XOjcWpaif_ky0w2xPEBFeJ5jnWdKHxHvPpEmFQ6nED2G3WTb2CFiic0LjiMJansW2KsuikDq20qZGF8514eemV1UV-OK0zcVCoc6gIVBbQ9CFkyfjVYvV-L_ZOQ3PkwmxsP0B9BAVPES95SFdOKXBVRSx2KBKh8IDfC1iX6lBwVHj5v5xvReWGGnVy9Mb91Ah0h8U8QxLoh-L4_do7Df4mJKi90sqe7C7vn-03zHtWZs-fChHl33YOx9OZ_O-9_d_aXP_fA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEC0gAgV8KOIhrdhd78tIFWpLopQ2URVa0Zuxd-1eot2QpEL8OX4bM443aSXg1ut69uV5eGbs-QZgN4kqjYKSBrqIeZBogSqVVzYIc2sTFaWFUBQoDkfZ4Dz5cpFebMDvthaGjlW2NtEZ6qopKUf-gXDjCkKZzT9NfwTUNYp2V9sWGsq3Vqj2HMSYL-w4Nr9-Ygg33zv6jPx-Hcf93tnhIPBdBoIyEfkiqKqwsDzmpSYJjHlaqlQbjNbcDmGkLDpEOYGmqwhdIUMhFEGiJ0LHucVoguNz78BmQgmUDmwe9Ean41WWh1A3iyhcFgZyLkLal45cGsGBQq-XQtcx4F_rglvs-g_hgfdS2f5SrLZgw9TbcP8aduE2bHmrMGdvPXT1u0dwOWrqYNwbsq8TY6aMCoHMjKFfzL7hVFGVFlsaEXrGR3ZKLdrYIVVO1h6-lzWWjdfb_2yA9y3YGD1i1p9cUbULUT2G81uZ5CfQqZvaPAUWqZQgevLMGJ6EpiyKLBMqNMLEWmXWduF9O6uy9Djn1G5jIjHeIRbIayzowu6KeLqE9_g72QGxZ0VCmNzuQjO7lF7FZaQqYUKjQlGgKChSAW11yW0S51XORRfeEHMlWQ78oFL5Agj8LcLgkvsZx1g7da_buUGJGl_eHG7FQ3qLM5dr_Xj2_-FXcHdwNjyRJ0ej4-dwL6b8gTvAuQOdxezKvEAna6Ffeklm8P22lecPtB40BQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVkJwQLSASCngQxEPadXd9b6MVKE-EqWURlGgojdj79q9RLtpkgrxF_lVzDjepJWAW6_r2Zfn4Zmx5xuA3SSqNApKGugi5kGiBapUXtkgzK1NVJQWQlGgeDbI-ufJ54v0Yg1-t7UwdKyytYnOUFdNSTnyPcKNKwhlNt-z_ljE8Lj3aXIVUAcp2mlt22ko32ah2ndwY77I49T8-onh3Gz_5Bh5_yaOe91vR_3AdxwIykTk86CqwsLymJeapDHmaalSbTByc7uFkbLoHOUEoK4idIsMhVMEj54IHecWIwuOz70HGzmu-hgIbhx2B8PRMuNDCJxFFC6KBDkXIe1RRy6l4ACiV8ui6x7wrzXCLXy9x_DIe6zsYCFim7Bm6i14eAPHcAs2vYWYsXcexvr9E7gcNHUw6p6xr2NjJoyKgsyUoY_MvuNUUcUWWxgUesZHNqR2beyIqihrD-XLGstGq6MArI_3zdkIvWPWG19T5QtRPYXzO5nkZ7BeN7V5DixSKcH15JkxPAlNWRRZJlRohIm1yqztwId2VmXpMc-p9cZYYuxDLJA3WNCB3SXxZAH18XeyQ2LPkoTwud2FZnopvbrLSFXChEaFokCXWJE6aKtLbpM4r1A8OvCWmCvJiuAHlcoXQ-BvER6XPMg4xt2pe93OLUrU_vL2cCse0lufmVzpyvb_h1_DfVQi-eVkcPoCHsSUSnBnOXdgfT69Ni_R35rrV16QGfy4a935A2znOEk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-REM+Sleep+Marker+for+Wearable+Monitoring%3A+Power+Concentration+of+Respiratory+Heart+Rate+Fluctuation&rft.jtitle=Applied+sciences&rft.au=Junichiro+Hayano&rft.au=Norihiro+Ueda&rft.au=Masaya+Kisohara&rft.au=Yutaka+Yoshida&rft.date=2020-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=9&rft.spage=3336&rft_id=info:doi/10.3390%2Fapp10093336&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ad9e0ea098540ab832bfbc3f427d739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon