Non-REM Sleep Marker for Wearable Monitoring: Power Concentration of Respiratory Heart Rate Fluctuation
A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high freq...
Saved in:
Published in | Applied sciences Vol. 10; no. 9; p. 3336 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app10093336 |
Cover
Abstract | A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high frequency (HF) HRV power into a narrow frequency range. Using this physiological feature, we developed a new HRV sleep index named Hsi to quantify the degree of HF power concentration. We analyzed 11,636 consecutive 5-min segments of electrocardiographic (ECG) signal of polysomnographic data in 141 subjects and calculated Hsi and conventional HRV indices for each segment. Hsi was greater during NREM (mean [SD], 75.1 [8.3]%) than wake (61.0 [10.3]%) and REM (62.0 [8.4]%) stages. Receiver-operating characteristic curve analysis revealed that Hsi discriminated NREM from wake and REM segments with an area under the curve of 0.86, which was greater than those of heart rate (0.642), peak HF power (0.75), low-to-high frequency ratio (0.77), and scaling exponent α (0.77). With a cutoff >70%, Hsi detected NREM segments with 77% sensitivity, 80% specificity, and a Cohen’s kappa coefficient of 0.57. Hsi may provide an accurate NREM sleep maker for ECG and pulse wave signals obtained from wearable sensors. |
---|---|
AbstractList | A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high frequency (HF) HRV power into a narrow frequency range. Using this physiological feature, we developed a new HRV sleep index named Hsi to quantify the degree of HF power concentration. We analyzed 11,636 consecutive 5-min segments of electrocardiographic (ECG) signal of polysomnographic data in 141 subjects and calculated Hsi and conventional HRV indices for each segment. Hsi was greater during NREM (mean [SD], 75.1 [8.3]%) than wake (61.0 [10.3]%) and REM (62.0 [8.4]%) stages. Receiver-operating characteristic curve analysis revealed that Hsi discriminated NREM from wake and REM segments with an area under the curve of 0.86, which was greater than those of heart rate (0.642), peak HF power (0.75), low-to-high frequency ratio (0.77), and scaling exponent [alpha] (0.77). With a cutoff >70%, Hsi detected NREM segments with 77% sensitivity, 80% specificity, and a Cohen's kappa coefficient of 0.57. Hsi may provide an accurate NREM sleep maker for ECG and pulse wave signals obtained from wearable sensors. A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high frequency (HF) HRV power into a narrow frequency range. Using this physiological feature, we developed a new HRV sleep index named Hsi to quantify the degree of HF power concentration. We analyzed 11,636 consecutive 5-min segments of electrocardiographic (ECG) signal of polysomnographic data in 141 subjects and calculated Hsi and conventional HRV indices for each segment. Hsi was greater during NREM (mean [SD], 75.1 [8.3]%) than wake (61.0 [10.3]%) and REM (62.0 [8.4]%) stages. Receiver-operating characteristic curve analysis revealed that Hsi discriminated NREM from wake and REM segments with an area under the curve of 0.86, which was greater than those of heart rate (0.642), peak HF power (0.75), low-to-high frequency ratio (0.77), and scaling exponent α (0.77). With a cutoff >70%, Hsi detected NREM segments with 77% sensitivity, 80% specificity, and a Cohen’s kappa coefficient of 0.57. Hsi may provide an accurate NREM sleep maker for ECG and pulse wave signals obtained from wearable sensors. A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological basis. Non-REM (NREM) sleep is associated with increased regularity of respiratory frequency, which results in the concentration of high frequency (HF) HRV power into a narrow frequency range. Using this physiological feature, we developed a new HRV sleep index named Hsi to quantify the degree of HF power concentration. We analyzed 11,636 consecutive 5-min segments of electrocardiographic (ECG) signal of polysomnographic data in 141 subjects and calculated Hsi and conventional HRV indices for each segment. Hsi was greater during NREM (mean [SD], 75.1 [8.3]%) than wake (61.0 [10.3]%) and REM (62.0 [8.4]%) stages. Receiver-operating characteristic curve analysis revealed that Hsi discriminated NREM from wake and REM segments with an area under the curve of 0.86, which was greater than those of heart rate (0.642), peak HF power (0.75), low-to-high frequency ratio (0.77), and scaling exponent [alpha] (0.77). With a cutoff >70%, Hsi detected NREM segments with 77% sensitivity, 80% specificity, and a Cohen's kappa coefficient of 0.57. Hsi may provide an accurate NREM sleep maker for ECG and pulse wave signals obtained from wearable sensors. Keywords: heart rate variability; sleep stage; respiration; electrocardiography; power spectrum; detrended fluctuation analysis; REM sleep |
Audience | Academic |
Author | Tanaka, Haruhito Yuda, Emi Ueda, Norihiro Yoshida, Yutaka Kisohara, Masaya Hayano, Junichiro |
Author_xml | – sequence: 1 givenname: Junichiro orcidid: 0000-0002-5340-6325 surname: Hayano fullname: Hayano, Junichiro – sequence: 2 givenname: Norihiro surname: Ueda fullname: Ueda, Norihiro – sequence: 3 givenname: Masaya surname: Kisohara fullname: Kisohara, Masaya – sequence: 4 givenname: Yutaka surname: Yoshida fullname: Yoshida, Yutaka – sequence: 5 givenname: Haruhito surname: Tanaka fullname: Tanaka, Haruhito – sequence: 6 givenname: Emi surname: Yuda fullname: Yuda, Emi |
BookMark | eNptUVFvFCEQJqYm1ton_wCJj2brwLDL4ltzaW2TnjZXjY-EZeHCuQcruxfTf196Z7SawgMzw_d9fMy8JkcxRUfIWwZniAo-mHFkAAoRmxfkmINsKhRMHj2JX5HTadpAWYphy-CYrD-nWK0ulvRucG6kS5N_uEx9yvS7M9l0g6PLFMOccojrj_Q2_SrXixSti3M2c0iRJk9XbhpDSVO-p1eFN9OVmR29HHZ23u1Rb8hLb4bJnf4-T8i3y4uvi6vq5sun68X5TWWFknPV99B65Gi7DqDhWFtTdw64VFi3wIyvEWUNLRqGDByDhpVUCNVx6RkTeEKuD7p9Mhs95rA1-V4nE_S-kPJaF3vBDk4z0ysHzoBqawGma5F3vrPoBZe9RFW03h20xpx-7tw0603a5Vjsay4AWw6ilX9Ra1NEQ_SpNMZuw2T1eYOgRLHcFNTZM6iye7cNtgzSh1L_h_D-QLA5TVN2_s9nGOjHeesn8y5o9h_ahnnf-PJMGJ7lPADO_Ku2 |
CitedBy_id | crossref_primary_10_1186_s40101_021_00272_y crossref_primary_10_1587_nolta_12_464 crossref_primary_10_5057_ijae_IJAE_D_20_00011 crossref_primary_10_1109_ACCESS_2021_3078534 crossref_primary_10_3390_app12052716 crossref_primary_10_5057_ijae_IJAE_D_20_00015 crossref_primary_10_3390_app15052504 crossref_primary_10_3390_app10217436 crossref_primary_10_1089_jicm_2022_0526 |
Cites_doi | 10.1161/01.CIR.91.7.1918 10.1093/sleep/5.S2.S191 10.1148/radiology.148.3.6878708 10.1111/j.1469-8986.1993.tb01731.x 10.1378/chest.117.2.460 10.1016/j.compbiomed.2016.09.018 10.1016/S0921-884X(96)96070-1 10.1093/sleep/15.5.461 10.1093/sleep/22.8.1067 10.1109/TBME.2003.817636 10.1161/CIRCEP.110.958009 10.1016/S1389-9457(00)00098-8 10.1016/S0140-6736(84)90062-X 10.1016/j.eswa.2011.08.022 10.1088/0967-3334/36/10/2027 10.1109/JBHI.2013.2284610 10.3390/s16050750 10.1161/01.CIR.93.5.1043 10.1103/PhysRevE.65.051908 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app10093336 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_1ad9e0ea098540ab832bfbc3f427d739 A630945336 10_3390_app10093336 |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c497t-dd08f323cbb006235ca5be027935801af53375083a1310e1061750449b27f1143 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:24:13 EDT 2025 Mon Jun 30 11:09:06 EDT 2025 Tue Jun 17 21:31:50 EDT 2025 Tue Jun 10 20:40:43 EDT 2025 Tue Jul 01 03:14:11 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-dd08f323cbb006235ca5be027935801af53375083a1310e1061750449b27f1143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5340-6325 |
OpenAccessLink | https://doaj.org/article/1ad9e0ea098540ab832bfbc3f427d739 |
PQID | 2403820487 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ad9e0ea098540ab832bfbc3f427d739 proquest_journals_2403820487 gale_infotracmisc_A630945336 gale_infotracacademiconefile_A630945336 crossref_primary_10_3390_app10093336 crossref_citationtrail_10_3390_app10093336 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Fonseca (ref_10) 2015; 36 Guilleminault (ref_5) 1984; 1 Hayano (ref_6) 2011; 4 Villa (ref_4) 2000; 117 Cole (ref_12) 1992; 15 Hanley (ref_19) 1983; 148 Kushida (ref_13) 2001; 2 Iyengar (ref_18) 1996; 271 Adane (ref_9) 2012; 39 ref_15 Bonnet (ref_1) 1997; 102 Kantelhardt (ref_7) 2002; 65 Penzel (ref_8) 2003; 50 Shannon (ref_20) 1987; 253 Singh (ref_11) 2016; 78 Coleman (ref_16) 1982; 5 Camm (ref_22) 1996; 93 Vanoli (ref_2) 1995; 91 Hayano (ref_21) 1994; 267 Elsenbruch (ref_3) 1999; 22 Berntson (ref_23) 1993; 30 Long (ref_14) 2014; 18 Peng (ref_17) 1994; 49 |
References_xml | – volume: 91 start-page: 1918 year: 1995 ident: ref_2 article-title: Heart rate variability during specific sleep stages: A comparison of healthy subjects with patients after myocardial infarction publication-title: Circulation doi: 10.1161/01.CIR.91.7.1918 – volume: 5 start-page: S191 year: 1982 ident: ref_16 article-title: Daytime sleepiness in patients with periodic movements in sleep publication-title: Sleep doi: 10.1093/sleep/5.S2.S191 – volume: 148 start-page: 839 year: 1983 ident: ref_19 article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases publication-title: Radiology doi: 10.1148/radiology.148.3.6878708 – volume: 30 start-page: 183 year: 1993 ident: ref_23 article-title: Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1993.tb01731.x – volume: 117 start-page: 460 year: 2000 ident: ref_4 article-title: Effects of sleep stage and age on short-term heart rate variability during sleep in healthy infants and children publication-title: Chest doi: 10.1378/chest.117.2.460 – volume: 78 start-page: 138 year: 2016 ident: ref_11 article-title: A method of REM-NREM sleep distinction using ECG signal for unobtrusive personal monitoring publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.09.018 – volume: 102 start-page: 390 year: 1997 ident: ref_1 article-title: Heart rate variability: Sleep stage, time of night, and arousal influences publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0921-884X(96)96070-1 – volume: 15 start-page: 461 year: 1992 ident: ref_12 article-title: Automatic sleep/wake identification from wrist activity publication-title: Sleep doi: 10.1093/sleep/15.5.461 – volume: 267 start-page: H33 year: 1994 ident: ref_21 article-title: Effects of respiratory interval on vagal modulation of heart rate publication-title: Am. J. Physiol. – volume: 22 start-page: 1067 year: 1999 ident: ref_3 article-title: Heart rate variability during waking and sleep in healthy males and females publication-title: Sleep doi: 10.1093/sleep/22.8.1067 – volume: 50 start-page: 1143 year: 2003 ident: ref_8 article-title: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.817636 – volume: 4 start-page: 64 year: 2011 ident: ref_6 article-title: Screening for obstructive sleep apnea by cyclic variation of heart rate publication-title: Circ. Arrhythm Electrophysiol. doi: 10.1161/CIRCEP.110.958009 – volume: 49 start-page: 1685 year: 1994 ident: ref_17 article-title: Mosaic organization of DNA nucleotides publication-title: Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics – volume: 271 start-page: R1078 year: 1996 ident: ref_18 article-title: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics publication-title: Am. J. Physiol. – volume: 2 start-page: 389 year: 2001 ident: ref_13 article-title: Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients publication-title: Sleep Med. doi: 10.1016/S1389-9457(00)00098-8 – volume: 1 start-page: 126 year: 1984 ident: ref_5 article-title: Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique publication-title: Lancet doi: 10.1016/S0140-6736(84)90062-X – volume: 39 start-page: 1401 year: 2012 ident: ref_9 article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.022 – volume: 36 start-page: 2027 year: 2015 ident: ref_10 article-title: Sleep stage classification with ECG and respiratory effort publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/10/2027 – volume: 18 start-page: 1272 year: 2014 ident: ref_14 article-title: Sleep and wake classification with actigraphy and respiratory effort using dynamic warping publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2284610 – ident: ref_15 doi: 10.3390/s16050750 – volume: 253 start-page: H874 year: 1987 ident: ref_20 article-title: Aging of modulation of heart rate publication-title: Am. J. Physiol. – volume: 93 start-page: 1043 year: 1996 ident: ref_22 article-title: Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, Standards of measurement, physiological interpretation and clinical use publication-title: Circulation doi: 10.1161/01.CIR.93.5.1043 – volume: 65 start-page: 051908 year: 2002 ident: ref_7 article-title: Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.65.051908 |
SSID | ssj0000913810 |
Score | 2.207515 |
Snippet | A variety of heart rate variability (HRV) indices have been reported to estimate sleep stages, but the associations are modest and lacking solid physiological... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3336 |
SubjectTerms | Cardiac arrhythmia detrended fluctuation analysis Digitization electrocardiography Heart rate heart rate variability Methods Observations Physiologic monitoring Physiology power spectrum Respiration Sleep sleep stage Statistical analysis Time series Wearable computers |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-69GV7GG23sWxd0UNhH2BmW7ZlDcZoS0IYNJRsZX0Tkiz1JdhZmv7_vVPkpIW2r9b58z58P0n3O4DjImsMGkqZmDrnSWEkupRofJIK7wudlbXUBBTPp9Xksvh9VV7twLSvhaFtlX1MDIG66SzNkX8n3riaWGbFr8X_hLpG0epq30JDx9YKzc9AMfYCdjEkl-kAdk9H04vZZtaFWDDrLF0X6nHE-7ROnAVYH0iat7-mwOD_VJwOP5_xHryOWSM7Wat5H3ZcewCv7nEJHsB-9NIb9iVSSX99A9fTrk1mo3P2Z-7cglFhjlsyzFPZP7Rwqppia6ema_xgF9QyjZ1RJWMb6XRZ59lsuxzPJnjeis0wQ2Xj-S1Vn5DUW7gcj_6eTZLYWiGxhRSrpGnS2vOcW0Nul_PS6tI4hKhhWTTTHrNAQUzxOsP8zxFuJB74QppceIRQ_B0M2q5174FluiTKHFE5x4vU2bquKqlTJ11udOX9EL71X1XZyDtO7S_mCvEHqUDdU8EQjjfCizXdxuNip6SejQhxZIcD3fJaRZdTmW6kS51OZY1pqSaTNN5Y7otcNILLIXwm5SryZHwgq2NBAr4WcWKpk4oj9i3D7Q4fSKIH2ofDvXmoGAFu1NZePzw__BFe5oThwybKQxislrfuEyY6K3MUrfcO4uj6kQ priority: 102 providerName: ProQuest |
Title | Non-REM Sleep Marker for Wearable Monitoring: Power Concentration of Respiratory Heart Rate Fluctuation |
URI | https://www.proquest.com/docview/2403820487 https://doaj.org/article/1ad9e0ea098540ab832bfbc3f427d739 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1RT9swEMdPDF62BzS6Icq6yg9IjEnRkjiJ470V1FIhtarK0Hiz7MTmpUorKN9_d44LRRrihdfkkjj2XXJ_2fczwEmW1AYdJY9MmfIoMxJDStQuioVzmU7yUmoSipNpMb7Jrm7z262tvmhNWIsHbjvuV6JraWOrY1licqHpxsaZirssFbXgvnQvlvGWmPLfYJkQuqotyOOo62k-OPHy3cOYn39BntT_2vfY_2RGn2E_ZIds0LbqAHZs04FPW8zADhyEaHxgPwIy-uwL3E2XTTQfTtj1wtoVowIce88wH2V_0ZOpOoq1wUv3-M1mtDUau6CKxSZgc9nSsfnztDsb43VrNsdMlI0Wj1RlQlZf4WY0_HMxjsIWClGVSbGO6jouHU95ZSi8Up5XOjcWpaif_ky0w2xPEBFeJ5jnWdKHxHvPpEmFQ6nED2G3WTb2CFiic0LjiMJansW2KsuikDq20qZGF8514eemV1UV-OK0zcVCoc6gIVBbQ9CFkyfjVYvV-L_ZOQ3PkwmxsP0B9BAVPES95SFdOKXBVRSx2KBKh8IDfC1iX6lBwVHj5v5xvReWGGnVy9Mb91Ah0h8U8QxLoh-L4_do7Df4mJKi90sqe7C7vn-03zHtWZs-fChHl33YOx9OZ_O-9_d_aXP_fA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEC0gAgV8KOIhrdhd78tIFWpLopQ2URVa0Zuxd-1eot2QpEL8OX4bM443aSXg1ut69uV5eGbs-QZgN4kqjYKSBrqIeZBogSqVVzYIc2sTFaWFUBQoDkfZ4Dz5cpFebMDvthaGjlW2NtEZ6qopKUf-gXDjCkKZzT9NfwTUNYp2V9sWGsq3Vqj2HMSYL-w4Nr9-Ygg33zv6jPx-Hcf93tnhIPBdBoIyEfkiqKqwsDzmpSYJjHlaqlQbjNbcDmGkLDpEOYGmqwhdIUMhFEGiJ0LHucVoguNz78BmQgmUDmwe9Ean41WWh1A3iyhcFgZyLkLal45cGsGBQq-XQtcx4F_rglvs-g_hgfdS2f5SrLZgw9TbcP8aduE2bHmrMGdvPXT1u0dwOWrqYNwbsq8TY6aMCoHMjKFfzL7hVFGVFlsaEXrGR3ZKLdrYIVVO1h6-lzWWjdfb_2yA9y3YGD1i1p9cUbULUT2G81uZ5CfQqZvaPAUWqZQgevLMGJ6EpiyKLBMqNMLEWmXWduF9O6uy9Djn1G5jIjHeIRbIayzowu6KeLqE9_g72QGxZ0VCmNzuQjO7lF7FZaQqYUKjQlGgKChSAW11yW0S51XORRfeEHMlWQ78oFL5Agj8LcLgkvsZx1g7da_buUGJGl_eHG7FQ3qLM5dr_Xj2_-FXcHdwNjyRJ0ej4-dwL6b8gTvAuQOdxezKvEAna6Ffeklm8P22lecPtB40BQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVkJwQLSASCngQxEPadXd9b6MVKE-EqWURlGgojdj79q9RLtpkgrxF_lVzDjepJWAW6_r2Zfn4Zmx5xuA3SSqNApKGugi5kGiBapUXtkgzK1NVJQWQlGgeDbI-ufJ54v0Yg1-t7UwdKyytYnOUFdNSTnyPcKNKwhlNt-z_ljE8Lj3aXIVUAcp2mlt22ko32ah2ndwY77I49T8-onh3Gz_5Bh5_yaOe91vR_3AdxwIykTk86CqwsLymJeapDHmaalSbTByc7uFkbLoHOUEoK4idIsMhVMEj54IHecWIwuOz70HGzmu-hgIbhx2B8PRMuNDCJxFFC6KBDkXIe1RRy6l4ACiV8ui6x7wrzXCLXy9x_DIe6zsYCFim7Bm6i14eAPHcAs2vYWYsXcexvr9E7gcNHUw6p6xr2NjJoyKgsyUoY_MvuNUUcUWWxgUesZHNqR2beyIqihrD-XLGstGq6MArI_3zdkIvWPWG19T5QtRPYXzO5nkZ7BeN7V5DixSKcH15JkxPAlNWRRZJlRohIm1yqztwId2VmXpMc-p9cZYYuxDLJA3WNCB3SXxZAH18XeyQ2LPkoTwud2FZnopvbrLSFXChEaFokCXWJE6aKtLbpM4r1A8OvCWmCvJiuAHlcoXQ-BvER6XPMg4xt2pe93OLUrU_vL2cCse0lufmVzpyvb_h1_DfVQi-eVkcPoCHsSUSnBnOXdgfT69Ni_R35rrV16QGfy4a935A2znOEk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-REM+Sleep+Marker+for+Wearable+Monitoring%3A+Power+Concentration+of+Respiratory+Heart+Rate+Fluctuation&rft.jtitle=Applied+sciences&rft.au=Junichiro+Hayano&rft.au=Norihiro+Ueda&rft.au=Masaya+Kisohara&rft.au=Yutaka+Yoshida&rft.date=2020-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=9&rft.spage=3336&rft_id=info:doi/10.3390%2Fapp10093336&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ad9e0ea098540ab832bfbc3f427d739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |