Power analysis of single-cell RNA-sequencing experiments

All data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-5480, E-MTAB-5481, E-MTAB-5482, E-MTAB-5483, E-MTAB-5484, E-MTAB-5485, and E-MTAB-5486. Summary tables are provided as supplementary files. Single-cell RNA sequencing (scRNA-seq) has become...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 14; no. 4; pp. 381 - 387
Main Authors Svensson, Valentine, Natarajan, Kedar Nath, Ly, Lam-Ha, Miragaia, Ricardo J., Labalette, Charlotte, Macaulay, Iain C., Cvejic, Ana, Teichmann, Sarah A.
Format Journal Article
LanguageEnglish
Published New York Springer Nature 01.04.2017
Nature Publishing Group US
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1548-7091
1548-7105
1548-7105
DOI10.1038/nmeth.4220

Cover

Abstract All data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-5480, E-MTAB-5481, E-MTAB-5482, E-MTAB-5483, E-MTAB-5484, E-MTAB-5485, and E-MTAB-5486. Summary tables are provided as supplementary files. Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols. We are grateful to O. Stegle and J.K. Kim for helpful discussions and comments on the manuscript. We thank M. Lynch for support with the C1 experiments, X. Chen for discussions on spike-ins, and M. Quail for help with 10× Chromium experiments. We extend our gratitude to S. Linnarsson and A. Zeisel for invaluable support in implementing STRT-seq in our laboratory and for help with sequencing the STRT library. We also thank D. Grün for sharing smFISH molecule counts. Finally we thank R. Kirchner for many improvements to the umis tool. This study was supported by Cancer Research UK grant C45041/A14953 to A.C. and C.L.; European Research Council project 677501–ZF_Blood to A.C.; a core support grant from the Wellcome Trust and MRC to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute; ERC grant ThSWITCH to S.A.T. (grant 260507); and a Lister Institute Research Prize to S.A.T. K.N.N. was supported by the Wellcome Trust Strategic Award ‘Single cell genomics of mouse gastrulation’. We thank P. Liu (Wellcome Trust Sanger Institute) for providing cells.
AbstractList A comparison framework applied to 15 single-cell RNA-seq protocols reveals differences in accuracy and sensitivity and discusses the utility of RNA spike-in standards. Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers ( https://github.com/vals/umis/ ). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.
Single cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, revealing new cell types, and providing insights into developmental processes and transcriptional stochasticity. The array of published scRNA-seq protocols allow one to sequence transcriptomes from minute amounts of starting material. A key question is how these various protocols compare in terms of sensitivity of detection of mRNA molecules, and accuracy of quantification of expression. Here, we present an assessment of sensitivity and accuracy of many published data sets by spike-in standards with uniform data processing, including development of a flexible Unique Molecular Identifier (UMI) counting tool ( https://github.com/vals/umis ). We computationally compare 15 protocols, and experimentally assess 4 protocols on batch-matched cell populations, as well as investigating the impact of spike-in molecule degradation on two types of spike-ins. Our analysis provides an integrated framework for comparing different scRNA-seq protocols.
Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.
Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.
All data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-5480, E-MTAB-5481, E-MTAB-5482, E-MTAB-5483, E-MTAB-5484, E-MTAB-5485, and E-MTAB-5486. Summary tables are provided as supplementary files. Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols. We are grateful to O. Stegle and J.K. Kim for helpful discussions and comments on the manuscript. We thank M. Lynch for support with the C1 experiments, X. Chen for discussions on spike-ins, and M. Quail for help with 10× Chromium experiments. We extend our gratitude to S. Linnarsson and A. Zeisel for invaluable support in implementing STRT-seq in our laboratory and for help with sequencing the STRT library. We also thank D. Grün for sharing smFISH molecule counts. Finally we thank R. Kirchner for many improvements to the umis tool. This study was supported by Cancer Research UK grant C45041/A14953 to A.C. and C.L.; European Research Council project 677501–ZF_Blood to A.C.; a core support grant from the Wellcome Trust and MRC to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute; ERC grant ThSWITCH to S.A.T. (grant 260507); and a Lister Institute Research Prize to S.A.T. K.N.N. was supported by the Wellcome Trust Strategic Award ‘Single cell genomics of mouse gastrulation’. We thank P. Liu (Wellcome Trust Sanger Institute) for providing cells.
Author Teichmann, Sarah A.
Cvejic, Ana
Ly, Lam-Ha
Miragaia, Ricardo J.
Svensson, Valentine
Labalette, Charlotte
Macaulay, Iain C.
Natarajan, Kedar Nath
AuthorAffiliation 3 Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
2 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
5 Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
4 Department of Haematology, University of Cambridge, Cambridge, UK
AuthorAffiliation_xml – name: 2 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
– name: 5 Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
– name: 3 Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
– name: 1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
– name: 4 Department of Haematology, University of Cambridge, Cambridge, UK
Author_xml – sequence: 1
  fullname: Svensson, Valentine
– sequence: 2
  fullname: Natarajan, Kedar Nath
– sequence: 3
  fullname: Ly, Lam-Ha
– sequence: 4
  fullname: Miragaia, Ricardo J.
– sequence: 5
  fullname: Labalette, Charlotte
– sequence: 6
  fullname: Macaulay, Iain C.
– sequence: 7
  fullname: Cvejic, Ana
– sequence: 8
  fullname: Teichmann, Sarah A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28263961$$D View this record in MEDLINE/PubMed
BookMark eNptkVtrFTEUhYO02Iu--ANkwBepTM1lMsm8FErxBkVF9DnksnOaMic5JnOq_ffN9PRoW_qUkHx77bX3OkA7MUVA6BXBxwQz-T4uYbo47ijFz9A-4Z1sBcF8Z3vHA9lDB6VcYsxYR_lztEcl7dnQk30kv6c_kBsd9XhdQmmSb0qIixFaC-PY_Ph62hb4vYZo62sDf1eQwxLiVF6gXa_HAi_vzkP06-OHn2ef2_Nvn76cnZ63thvE1DrBnXADpthI7zExxgvDtBbCO6PBcEGNJ85yy0RvHeul8brCjoDAvevYITrZ6K7WZgnO1t5Zj2pVbeh8rZIO6uFPDBdqka4Ur4LdMFSBt3cCOdVByqSWoczD6QhpXRSRgpOOUEwr-uYRepnWua6mKIoll7iSM_X6vqN_VrZLrQDeADanUjJ4ZcOkp5Bmg2FUBKs5N3Wbm5pzqyVHj0q2qk_C7zZwqVBcQP5v80m62dDZar1SGa5CmfQ8N6WK9x0R7AbhAbQC
CitedBy_id crossref_primary_10_1038_s41467_018_07770_1
crossref_primary_10_1186_s13059_021_02584_9
crossref_primary_10_1146_annurev_immunol_110519_071134
crossref_primary_10_1016_j_ajpath_2019_03_009
crossref_primary_10_1242_dev_152561
crossref_primary_10_1016_j_jbc_2024_108150
crossref_primary_10_3390_biomedinformatics4020071
crossref_primary_10_3390_cancers15164164
crossref_primary_10_1146_annurev_genom_091416_035324
crossref_primary_10_3389_fmicb_2018_01929
crossref_primary_10_1016_j_stem_2019_09_004
crossref_primary_10_1093_bfgp_elx025
crossref_primary_10_1186_s13059_022_02601_5
crossref_primary_10_1038_ncomms16027
crossref_primary_10_1161_CIRCULATIONAHA_123_064794
crossref_primary_10_1038_s41598_017_12989_x
crossref_primary_10_1093_bfgp_elx029
crossref_primary_10_1186_s12859_019_2797_2
crossref_primary_10_7554_eLife_50901
crossref_primary_10_1038_s41588_021_00873_4
crossref_primary_10_1080_21505594_2022_2031583
crossref_primary_10_1002_jev2_12223
crossref_primary_10_1002_smtd_202100111
crossref_primary_10_1016_j_gpb_2018_07_007
crossref_primary_10_1016_j_mbs_2021_108713
crossref_primary_10_1038_nprot_2017_149
crossref_primary_10_3389_fbinf_2023_1159381
crossref_primary_10_1007_s11427_021_2007_8
crossref_primary_10_1093_bioinformatics_btz240
crossref_primary_10_1186_s12859_022_05065_3
crossref_primary_10_1016_j_isci_2022_104419
crossref_primary_10_1097_RD9_0000000000000037
crossref_primary_10_3389_fgene_2022_894597
crossref_primary_10_3389_fonc_2018_00430
crossref_primary_10_1212_NXI_0000000000200278
crossref_primary_10_12688_f1000research_15666_3
crossref_primary_10_1016_j_arr_2020_101156
crossref_primary_10_21769_BioProtoc_5096
crossref_primary_10_12688_f1000research_15666_1
crossref_primary_10_12688_f1000research_15666_2
crossref_primary_10_1371_journal_pcbi_1012386
crossref_primary_10_1016_j_cell_2019_05_031
crossref_primary_10_1186_s12864_022_09014_5
crossref_primary_10_1007_s10565_017_9404_y
crossref_primary_10_7554_eLife_54818
crossref_primary_10_1002_1873_3468_12684
crossref_primary_10_3389_fgene_2020_00295
crossref_primary_10_3389_fgene_2022_1100016
crossref_primary_10_1038_s41598_021_86087_4
crossref_primary_10_1007_s10565_019_09464_w
crossref_primary_10_1016_j_isci_2023_106531
crossref_primary_10_1177_03635465231153630
crossref_primary_10_1093_bioinformatics_btz279
crossref_primary_10_1371_journal_pbio_3002640
crossref_primary_10_1038_s44276_023_00035_5
crossref_primary_10_1016_j_crmeth_2024_100742
crossref_primary_10_1016_j_isci_2022_103777
crossref_primary_10_1093_bfgp_elx046
crossref_primary_10_1371_journal_pcbi_1011641
crossref_primary_10_1016_j_cois_2020_05_006
crossref_primary_10_7554_eLife_54129
crossref_primary_10_1038_s41598_023_28952_y
crossref_primary_10_1093_nargab_lqaa039
crossref_primary_10_1101_gr_222877_117
crossref_primary_10_1016_j_celrep_2024_114718
crossref_primary_10_1016_j_molcel_2018_10_020
crossref_primary_10_3390_ijms25031519
crossref_primary_10_1038_s41467_017_01174_3
crossref_primary_10_1038_s41467_024_51201_3
crossref_primary_10_1093_biostatistics_kxx053
crossref_primary_10_1080_08820538_2021_1889615
crossref_primary_10_1101_cshperspect_a039792
crossref_primary_10_4103_NRR_NRR_D_24_00231
crossref_primary_10_1136_annrheumdis_2019_215926
crossref_primary_10_1038_s41564_018_0346_9
crossref_primary_10_1186_s12864_017_4253_x
crossref_primary_10_3389_fgene_2020_572242
crossref_primary_10_1093_bfgp_elx035
crossref_primary_10_1093_bfgp_ely003
crossref_primary_10_1016_j_neuron_2017_05_008
crossref_primary_10_3390_genes12101629
crossref_primary_10_3389_fmars_2022_906267
crossref_primary_10_15252_msb_20188746
crossref_primary_10_3390_ijms20225773
crossref_primary_10_1002_cpmo_30
crossref_primary_10_1016_j_isci_2021_102393
crossref_primary_10_1210_en_2018_00750
crossref_primary_10_1002_JLB_5MR1019_179R
crossref_primary_10_3389_fimmu_2023_1058296
crossref_primary_10_1093_bfgp_ely009
crossref_primary_10_1016_j_celrep_2022_110440
crossref_primary_10_1186_s12864_020_07358_4
crossref_primary_10_1016_j_molcel_2022_05_022
crossref_primary_10_1016_j_jbc_2023_105121
crossref_primary_10_1016_j_joca_2021_06_010
crossref_primary_10_1126_science_aan6828
crossref_primary_10_1007_s12195_021_00676_x
crossref_primary_10_1186_s12859_024_05872_w
crossref_primary_10_1038_s41587_020_0465_8
crossref_primary_10_1093_brain_awz295
crossref_primary_10_1093_bib_bbz062
crossref_primary_10_15252_msb_20178046
crossref_primary_10_1183_13993003_03721_2020
crossref_primary_10_1371_journal_pcbi_1006361
crossref_primary_10_1093_bib_bbaa116
crossref_primary_10_1038_nrg_2017_44
crossref_primary_10_1186_s13059_021_02367_2
crossref_primary_10_1038_s41467_020_19011_5
crossref_primary_10_1038_s41467_021_22197_x
crossref_primary_10_1039_C9LC00541B
crossref_primary_10_3389_fcell_2018_00028
crossref_primary_10_1093_biolre_ioz088
crossref_primary_10_1016_j_pt_2018_04_009
crossref_primary_10_1186_s13059_018_1438_9
crossref_primary_10_1016_j_neuron_2018_12_006
crossref_primary_10_1016_j_csbj_2020_10_016
crossref_primary_10_1186_s12859_018_2519_1
crossref_primary_10_1038_s41587_021_00870_2
crossref_primary_10_1093_nar_gkz1134
crossref_primary_10_1038_s41593_024_01814_0
crossref_primary_10_3389_fgene_2017_00073
crossref_primary_10_1097_CM9_0000000000002679
crossref_primary_10_1186_s10020_025_01085_w
crossref_primary_10_1146_annurev_immunol_042617_053035
crossref_primary_10_1016_j_stem_2023_12_012
crossref_primary_10_1038_s42003_024_07445_2
crossref_primary_10_1093_bioinformatics_btz292
crossref_primary_10_3390_ijms231911065
crossref_primary_10_1016_j_yjmcc_2020_03_005
crossref_primary_10_15302_J_QB_022_0311
crossref_primary_10_1038_s41467_024_49174_4
crossref_primary_10_1038_s41592_023_01766_6
crossref_primary_10_1038_s41556_018_0236_7
crossref_primary_10_1038_s41596_020_00409_w
crossref_primary_10_1146_annurev_neuro_100119_110036
crossref_primary_10_1126_scitranslmed_aan4730
crossref_primary_10_1186_s13578_022_00886_4
crossref_primary_10_1186_s13059_019_1806_0
crossref_primary_10_1016_j_coisb_2017_12_008
crossref_primary_10_1080_02713683_2019_1697453
crossref_primary_10_3390_cells10102607
crossref_primary_10_1186_s12915_023_01553_x
crossref_primary_10_1371_journal_pone_0239711
crossref_primary_10_3389_fgene_2019_00629
crossref_primary_10_3389_fmed_2022_868508
crossref_primary_10_1186_s12864_024_10364_5
crossref_primary_10_18632_oncotarget_23760
crossref_primary_10_3389_fgene_2023_1159109
crossref_primary_10_1016_j_compbiolchem_2025_108432
crossref_primary_10_1016_j_nbd_2023_106062
crossref_primary_10_1016_j_neuropharm_2022_109376
crossref_primary_10_1038_s41385_021_00452_0
crossref_primary_10_1186_s13073_018_0528_3
crossref_primary_10_1016_j_canlet_2021_12_008
crossref_primary_10_3389_fcell_2023_1163529
crossref_primary_10_1084_jem_20230420
crossref_primary_10_1186_s12864_021_07744_6
crossref_primary_10_1186_s12864_021_07381_z
crossref_primary_10_3389_fgene_2021_679616
crossref_primary_10_1093_bib_bby076
crossref_primary_10_1186_s12859_020_03593_4
crossref_primary_10_3390_app12125790
crossref_primary_10_3390_ijms22042071
crossref_primary_10_3389_fgene_2019_01280
crossref_primary_10_1002_advs_202403788
crossref_primary_10_1038_s41467_021_21330_0
crossref_primary_10_1038_s41467_020_15765_0
crossref_primary_10_1016_j_bbagrm_2019_194441
crossref_primary_10_1038_s41592_023_01814_1
crossref_primary_10_1016_j_heliyon_2024_e37185
crossref_primary_10_1242_dev_151142
crossref_primary_10_1021_acs_jproteome_2c00317
crossref_primary_10_1073_pnas_2010738117
crossref_primary_10_1038_s41467_021_27160_4
crossref_primary_10_1038_s41587_020_00748_9
crossref_primary_10_1186_s12859_023_05424_8
crossref_primary_10_1073_pnas_1706365114
crossref_primary_10_1214_19_STS7560
crossref_primary_10_1016_j_isci_2022_104436
crossref_primary_10_1093_bib_bbaa248
crossref_primary_10_1039_C8LC01239C
crossref_primary_10_3390_ijms23073900
crossref_primary_10_1016_j_celrep_2024_113784
crossref_primary_10_1038_s41598_019_41235_9
crossref_primary_10_1371_journal_pone_0224578
crossref_primary_10_1038_s41467_018_04334_1
crossref_primary_10_1186_s12859_021_04507_8
crossref_primary_10_1186_s12864_023_09184_w
crossref_primary_10_1146_annurev_anchem_061516_045228
crossref_primary_10_1042_BCJ20220572
crossref_primary_10_1186_s13073_017_0467_4
crossref_primary_10_1016_j_molcel_2021_12_012
crossref_primary_10_1182_blood_2018_08_835355
crossref_primary_10_1038_s41467_025_56640_0
crossref_primary_10_1038_s41467_021_24543_5
crossref_primary_10_1128_mbio_03473_21
crossref_primary_10_1371_journal_pone_0207020
crossref_primary_10_1080_01621459_2021_1933495
crossref_primary_10_1016_j_jbc_2023_103029
crossref_primary_10_1038_s41467_018_08126_5
crossref_primary_10_1158_1078_0432_CCR_18_1955
crossref_primary_10_1161_CIRCRESAHA_117_310910
crossref_primary_10_3389_fcell_2021_732776
crossref_primary_10_1016_j_molimm_2018_09_020
crossref_primary_10_3389_fgene_2019_00317
crossref_primary_10_1073_pnas_1902649116
crossref_primary_10_1242_dev_198614
crossref_primary_10_1017_S003118202100041X
crossref_primary_10_21769_BioProtoc_3070
crossref_primary_10_3389_fimmu_2018_02425
crossref_primary_10_1186_s13059_019_1670_y
crossref_primary_10_1016_j_intimp_2024_111938
crossref_primary_10_3389_fcvm_2018_00167
crossref_primary_10_1038_s42255_021_00417_4
crossref_primary_10_1038_s41588_020_0642_1
crossref_primary_10_1002_sim_9430
crossref_primary_10_1038_nmeth_4662
crossref_primary_10_1038_s41467_023_41318_2
crossref_primary_10_3389_fgene_2023_1182579
crossref_primary_10_1021_acs_analchem_8b04434
crossref_primary_10_1038_s41467_022_32197_0
crossref_primary_10_1155_2020_8624963
crossref_primary_10_1038_s41592_019_0425_8
crossref_primary_10_3390_genes13122265
crossref_primary_10_1038_s41467_020_14391_0
crossref_primary_10_1186_s13059_017_1218_y
crossref_primary_10_1093_hmg_ddx219
crossref_primary_10_1093_bib_bbae148
crossref_primary_10_1111_imm_13193
crossref_primary_10_1371_journal_pcbi_1010284
crossref_primary_10_1038_nrc_2017_58
crossref_primary_10_1080_21541264_2023_2200721
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1093_gigascience_giy059
crossref_primary_10_3389_fgene_2021_739677
crossref_primary_10_1186_s12859_019_2612_0
crossref_primary_10_1186_s40169_017_0177_y
crossref_primary_10_1186_s13059_023_03025_5
crossref_primary_10_2139_ssrn_3285804
crossref_primary_10_1002_bies_201900187
crossref_primary_10_1038_s41564_018_0330_4
crossref_primary_10_1093_bioinformatics_btaa148
crossref_primary_10_1186_s13059_020_01981_w
crossref_primary_10_3389_fcell_2022_884748
crossref_primary_10_3390_cimb45020081
crossref_primary_10_1016_j_intimp_2023_111104
crossref_primary_10_3389_fimmu_2020_00216
crossref_primary_10_1161_CIRCRESAHA_119_315940
crossref_primary_10_1016_j_mam_2017_07_002
crossref_primary_10_1038_s42003_021_02810_x
crossref_primary_10_1038_s41592_018_0033_z
crossref_primary_10_1038_s41467_018_04368_5
crossref_primary_10_1007_s00441_017_2682_0
crossref_primary_10_1373_clinchem_2019_307835
crossref_primary_10_18632_oncotarget_25299
crossref_primary_10_1016_j_chembiol_2019_05_005
crossref_primary_10_1002_eji_202451234
crossref_primary_10_1007_s00216_023_05028_4
crossref_primary_10_1002_ctm2_633
crossref_primary_10_1016_j_patter_2021_100211
crossref_primary_10_1186_s12915_018_0570_z
crossref_primary_10_1186_s13059_019_1676_5
crossref_primary_10_1002_alz_13095
crossref_primary_10_1016_j_gendis_2024_101241
crossref_primary_10_3390_cells11152383
crossref_primary_10_1186_s12859_019_3167_9
crossref_primary_10_7554_eLife_27041
crossref_primary_10_1021_acs_analchem_0c01613
crossref_primary_10_3389_fimmu_2022_918223
crossref_primary_10_3389_fimmu_2023_1243797
crossref_primary_10_1016_j_molmed_2017_05_004
crossref_primary_10_1038_s41467_020_16822_4
crossref_primary_10_1038_nbt_4096
crossref_primary_10_1016_j_coisb_2017_08_003
crossref_primary_10_1038_s41596_021_00523_3
crossref_primary_10_1093_gigascience_giaa151
crossref_primary_10_1002_eji_202149216
crossref_primary_10_1093_bioinformatics_btz453
crossref_primary_10_1074_mcp_R119_001743
crossref_primary_10_1038_s41587_020_0469_4
crossref_primary_10_1371_journal_pcbi_1009118
crossref_primary_10_1038_s41467_019_12266_7
crossref_primary_10_1038_s41587_019_0379_5
crossref_primary_10_1016_j_biomaterials_2020_120189
crossref_primary_10_1016_j_cell_2019_10_003
crossref_primary_10_1186_s13059_017_1382_0
crossref_primary_10_2337_db19_0721
crossref_primary_10_34133_research_0555
crossref_primary_10_3389_fimmu_2017_01579
crossref_primary_10_1093_nar_gkae892
crossref_primary_10_1016_j_bioactmat_2021_01_022
crossref_primary_10_1038_s41423_019_0207_3
crossref_primary_10_1155_2021_6694566
crossref_primary_10_1016_j_omtm_2020_07_010
crossref_primary_10_3389_fbinf_2023_1144266
crossref_primary_10_1038_s41467_022_28445_y
crossref_primary_10_1093_bib_bby007
crossref_primary_10_1016_j_gde_2017_06_003
crossref_primary_10_1093_nargab_lqaa052
crossref_primary_10_1177_0271678X241305914
crossref_primary_10_1038_s41556_018_0105_4
crossref_primary_10_1016_j_compbiolchem_2025_108362
crossref_primary_10_1093_bfgp_elac002
crossref_primary_10_1093_burnst_tkad017
crossref_primary_10_1093_bioinformatics_btz321
crossref_primary_10_1016_j_gpb_2020_02_005
crossref_primary_10_1016_j_bbagrm_2023_194911
crossref_primary_10_1038_s41467_018_05347_6
crossref_primary_10_1096_fba_2022_00004
crossref_primary_10_1360_SSC_2022_0093
crossref_primary_10_1038_s41584_019_0220_z
crossref_primary_10_1016_j_taap_2024_116865
crossref_primary_10_1111_wrr_13218
crossref_primary_10_1038_s41467_021_26779_7
crossref_primary_10_1038_s41467_018_06282_2
crossref_primary_10_1016_j_copbio_2018_09_012
crossref_primary_10_1038_s41586_019_1629_x
crossref_primary_10_1063_1_5131795
crossref_primary_10_1080_0886022X_2024_2409348
crossref_primary_10_1186_s12864_021_08132_w
crossref_primary_10_1158_0008_5472_CAN_20_1034
crossref_primary_10_1002_pmic_201900271
crossref_primary_10_1038_s41596_018_0073_y
crossref_primary_10_1186_s13059_018_1593_z
crossref_primary_10_1016_j_intimp_2020_107071
crossref_primary_10_1007_s00018_024_05322_z
crossref_primary_10_1038_s41581_018_0021_7
crossref_primary_10_1093_bioinformatics_bty260
crossref_primary_10_3389_fgene_2021_665888
crossref_primary_10_1038_s41433_023_02539_3
crossref_primary_10_1038_s41467_018_03405_7
crossref_primary_10_1016_j_mcpro_2022_100267
crossref_primary_10_1073_pnas_1721085115
crossref_primary_10_1002_eji_202149235
crossref_primary_10_3389_fgene_2022_994069
crossref_primary_10_3390_diagnostics8020031
crossref_primary_10_1146_annurev_genet_120417_031247
crossref_primary_10_1186_s13059_021_02451_7
crossref_primary_10_3389_fnins_2018_00031
crossref_primary_10_1021_acschemneuro_8b00100
crossref_primary_10_1039_C9LC00014C
crossref_primary_10_1126_sciadv_adl1584
crossref_primary_10_7554_eLife_33105
crossref_primary_10_1093_bib_bbx143
crossref_primary_10_1101_gr_257840_119
crossref_primary_10_1002_appl_202100016
crossref_primary_10_1038_s41467_020_14482_y
crossref_primary_10_3389_fonc_2021_715552
crossref_primary_10_1371_journal_pone_0216442
crossref_primary_10_3390_nu14071333
crossref_primary_10_1016_j_celrep_2020_108078
crossref_primary_10_1007_s12195_024_00812_3
crossref_primary_10_1016_j_mce_2018_01_013
crossref_primary_10_1186_s13073_018_0608_4
crossref_primary_10_1016_j_cell_2018_02_001
crossref_primary_10_1016_j_imlet_2022_04_008
crossref_primary_10_1186_s13059_019_1874_1
crossref_primary_10_1145_3641284
crossref_primary_10_1021_acsinfecdis_8b00369
crossref_primary_10_3389_fcell_2021_833420
crossref_primary_10_1038_nrn_2017_85
Cites_doi 10.1038/ni.3246
10.1038/nbt.3519
10.1016/j.stem.2015.07.002
10.1038/nbt.2967
10.1016/j.molcel.2015.03.005
10.1371/journal.pgen.1004126
10.18637/jss.v076.i01
10.1007/s11606-010-1513-8
10.1016/j.stem.2015.04.004
10.1038/nbt.3102
10.1016/j.cell.2015.05.002
10.1016/j.ymeth.2015.06.021
10.1101/gr.171645.113
10.1016/j.celrep.2014.04.011
10.1126/science.aaa1934
10.1186/s13059-015-0706-1
10.1186/s13059-016-0991-3
10.1016/j.celrep.2012.08.003
10.1038/nmeth.2930
10.1126/science.1247651
10.1073/pnas.1402030111
10.1038/nmeth.2694
10.1038/nrg3833
10.1016/j.neuron.2014.01.001
10.1038/nmeth.3370
10.1038/ncomms6125
10.1038/nmeth.2772
10.1186/1471-2164-11-413
10.1093/nar/gkn080
10.1038/nature13173
10.1016/j.cell.2015.11.013
10.1186/s13059-016-0938-8
10.1016/j.cell.2015.04.044
10.1093/bioinformatics/btw277
10.1016/j.celrep.2015.12.050
10.1016/j.cell.2015.05.015
10.15252/msb.20156198
10.1101/gr.121095.111
10.1186/1471-2164-6-150
10.1038/nbt.2957
10.1038/nmeth.2639
10.1101/021592
ContentType Journal Article
Copyright Springer Nature America, Inc. 2017
Copyright Nature Publishing Group Apr 2017
Copyright_xml – notice: Springer Nature America, Inc. 2017
– notice: Copyright Nature Publishing Group Apr 2017
DBID RCLKO
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
5PM
DOI 10.1038/nmeth.4220
DatabaseName RCAAP open access repository
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Agricultural Science Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DissertationSchool Universidade do Minho
EISSN 1548-7105
EndPage 387
ExternalDocumentID PMC5376499
28263961
10_1038_nmeth_4220
1822_56417
Genre Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 14953
– fundername: Wellcome Trust
– fundername: European Research Council
  grantid: 677501
– fundername: European Research Council
  grantid: 260507
– fundername: Medical Research Council
  grantid: MC_PC_12009
GroupedDBID ---
-~X
0R~
123
29M
39C
4.4
53G
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAHBH
AAYZH
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ADBBV
AENEX
AEUYN
AFANA
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1I
D1J
D1K
DU5
DWQXO
EBS
EE.
EJD
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
P2P
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RCLKO
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
UKHRP
3V.
5BI
AAEEF
AARCD
AAZLF
ABAWZ
ABDBF
ACUHS
AFBBN
DB5
EMOBN
ODYON
SV3
TUS
~8M
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c497t-d75d7d9020b8ff01bbf7b3aa77fdbaeb572bf1dc5c376cd368bfa20bd1e706d43
IEDL.DBID 8FG
ISSN 1548-7091
1548-7105
IngestDate Thu Aug 21 18:24:24 EDT 2025
Fri Sep 05 12:25:36 EDT 2025
Sat Aug 23 13:09:55 EDT 2025
Mon Jul 21 06:02:38 EDT 2025
Tue Jul 01 00:44:32 EDT 2025
Thu Apr 24 23:06:44 EDT 2025
Fri Feb 21 02:37:49 EST 2025
Fri Aug 01 16:26:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-d75d7d9020b8ff01bbf7b3aa77fdbaeb572bf1dc5c376cd368bfa20bd1e706d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9217-2330
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5376499
PMID 28263961
PQID 2085807512
PQPubID 28015
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376499
proquest_miscellaneous_1875141202
proquest_journals_2085807512
pubmed_primary_28263961
crossref_citationtrail_10_1038_nmeth_4220
crossref_primary_10_1038_nmeth_4220
springer_journals_10_1038_nmeth_4220
rcaap_revistas_1822_56417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2017
Publisher Springer Nature
Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Springer Nature
– name: Nature Publishing Group US
– name: Nature Publishing Group
References Buettner (CR16) 2015; 33
Dang (CR26) 2016; 17
Islam (CR9) 2014; 11
Grün, Kester, van Oudenaarden (CR11) 2014; 11
Walker, Nowacki (CR12) 2011; 26
Bray, Pimentel, Melsted, Pachter (CR43) 2016; 34
Pollen (CR17) 2014; 32
Zeisel (CR20) 2015; 347
Scialdone (CR33) 2015; 85
CR39
Llorens-Bobadilla (CR24) 2015; 17
CR13
Mahata (CR15) 2014; 7
Macosko (CR30) 2015; 161
Wilson (CR36) 2015; 16
Fan (CR25) 2015; 16
Jiang (CR6) 2011; 21
Velten (CR27) 2015; 11
Macaulay, Voet (CR1) 2014; 10
Munro (CR7) 2014; 5
Klein (CR31) 2015; 161
Macaulay (CR32) 2015; 12
Jaitin (CR21) 2014; 343
Sansom (CR35) 2014; 24
CR4
Kapteyn, He, McDowell, Gang (CR14) 2010; 11
CR5
Treutlein (CR18) 2014; 509
Owens (CR23) 2016; 14
Paul (CR29) 2015; 163
Picelli (CR19) 2013; 10
Hashimshony (CR28) 2016; 17
Srivastava, Sarkar, Gupta, Patro (CR42) 2016; 32
Streets (CR37) 2014; 111
CR41
Ferreira (CR22) 2014; 81
Padovan-Merhar (CR34) 2015; 58
Brennecke (CR40) 2015; 16
Pedregosa (CR44) 2011; 12
Viphakone, Voisinet-Hakil, Minvielle-Sebastia (CR10) 2008; 36
Stegle, Teichmann, Marioni (CR2) 2015; 16
Wu (CR3) 2014; 11
Guo (CR38) 2015; 161
Hashimshony, Wagner, Sher, Yanai (CR8) 2012; 2
Carpenter, Gelman, Hoffman, Lee, Goodrich (CR45) 2017; 76
BFnmeth4220_CR41
AR Wu (BFnmeth4220_CR3) 2014; 11
X Fan (BFnmeth4220_CR25) 2015; 16
SN Sansom (BFnmeth4220_CR35) 2014; 24
L Velten (BFnmeth4220_CR27) 2015; 11
F Pedregosa (BFnmeth4220_CR44) 2011; 12
AA Pollen (BFnmeth4220_CR17) 2014; 32
P Brennecke (BFnmeth4220_CR40) 2015; 16
AM Klein (BFnmeth4220_CR31) 2015; 161
F Buettner (BFnmeth4220_CR16) 2015; 33
NK Wilson (BFnmeth4220_CR36) 2015; 16
E Walker (BFnmeth4220_CR12) 2011; 26
S Picelli (BFnmeth4220_CR19) 2013; 10
IC Macaulay (BFnmeth4220_CR32) 2015; 12
BFnmeth4220_CR5
BFnmeth4220_CR4
NDL Owens (BFnmeth4220_CR23) 2016; 14
B Treutlein (BFnmeth4220_CR18) 2014; 509
N Viphakone (BFnmeth4220_CR10) 2008; 36
BFnmeth4220_CR39
O Padovan-Merhar (BFnmeth4220_CR34) 2015; 58
AM Streets (BFnmeth4220_CR37) 2014; 111
B Mahata (BFnmeth4220_CR15) 2014; 7
Y Dang (BFnmeth4220_CR26) 2016; 17
F Guo (BFnmeth4220_CR38) 2015; 161
IC Macaulay (BFnmeth4220_CR1) 2014; 10
DA Jaitin (BFnmeth4220_CR21) 2014; 343
A Scialdone (BFnmeth4220_CR33) 2015; 85
A Srivastava (BFnmeth4220_CR42) 2016; 32
BFnmeth4220_CR13
A Zeisel (BFnmeth4220_CR20) 2015; 347
T Hashimshony (BFnmeth4220_CR28) 2016; 17
F Paul (BFnmeth4220_CR29) 2015; 163
S Islam (BFnmeth4220_CR9) 2014; 11
J Kapteyn (BFnmeth4220_CR14) 2010; 11
E Llorens-Bobadilla (BFnmeth4220_CR24) 2015; 17
NL Bray (BFnmeth4220_CR43) 2016; 34
T Hashimshony (BFnmeth4220_CR8) 2012; 2
D Grün (BFnmeth4220_CR11) 2014; 11
T Ferreira (BFnmeth4220_CR22) 2014; 81
SA Munro (BFnmeth4220_CR7) 2014; 5
B Carpenter (BFnmeth4220_CR45) 2017; 76
O Stegle (BFnmeth4220_CR2) 2015; 16
L Jiang (BFnmeth4220_CR6) 2011; 21
EZ Macosko (BFnmeth4220_CR30) 2015; 161
References_xml – volume: 16
  start-page: 933
  year: 2015
  end-page: 941
  ident: CR40
  article-title: Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3246
– volume: 34
  start-page: 525
  year: 2016
  end-page: 527
  ident: CR43
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3519
– volume: 17
  start-page: 329
  year: 2015
  end-page: 340
  ident: CR24
  article-title: Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.07.002
– volume: 21
  start-page: 1543
  year: 2011
  end-page: 1551
  ident: CR6
  article-title: Synthetic spike-in standards for RNA-seq experiments
  publication-title: Genome Res.
– volume: 32
  start-page: 1053
  year: 2014
  end-page: 1058
  ident: CR17
  article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2967
– volume: 58
  start-page: 339
  year: 2015
  end-page: 352
  ident: CR34
  article-title: Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.03.005
– volume: 10
  start-page: e1004126
  year: 2014
  ident: CR1
  article-title: Single cell genomics: advances and future perspectives
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004126
– ident: CR4
– ident: CR39
– volume: 76
  start-page: 1
  year: 2017
  end-page: 32
  ident: CR45
  article-title: Stan: A probabilistic programming language
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v076.i01
– volume: 26
  start-page: 192
  year: 2011
  end-page: 196
  ident: CR12
  article-title: Understanding equivalence and noninferiority testing
  publication-title: J. Gen. Intern. Med.
  doi: 10.1007/s11606-010-1513-8
– volume: 16
  start-page: 712
  year: 2015
  end-page: 724
  ident: CR36
  article-title: Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.04.004
– volume: 33
  start-page: 155
  year: 2015
  end-page: 160
  ident: CR16
  article-title: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3102
– volume: 161
  start-page: 1202
  year: 2015
  end-page: 1214
  ident: CR30
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 85
  start-page: 54
  year: 2015
  end-page: 61
  ident: CR33
  article-title: Computational assignment of cell-cycle stage from single-cell transcriptome data
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.06.021
– volume: 24
  start-page: 1918
  year: 2014
  end-page: 1931
  ident: CR35
  article-title: Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia
  publication-title: Genome Res.
  doi: 10.1101/gr.171645.113
– volume: 7
  start-page: 1130
  year: 2014
  end-page: 1142
  ident: CR15
  article-title: Single-cell RNA sequencing reveals T helper cells synthesizing steroids to contribute to immune homeostasis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.04.011
– volume: 347
  start-page: 1138
  year: 2015
  end-page: 1142
  ident: CR20
  article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 16
  start-page: 148
  year: 2015
  ident: CR25
  article-title: Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0706-1
– volume: 17
  start-page: 130
  year: 2016
  ident: CR26
  article-title: Tracing the expression of circular RNAs in human pre-implantation embryos
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0991-3
– volume: 2
  start-page: 666
  year: 2012
  end-page: 673
  ident: CR8
  article-title: CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.08.003
– volume: 11
  start-page: 637
  year: 2014
  end-page: 640
  ident: CR11
  article-title: Validation of noise models for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2930
– volume: 343
  start-page: 776
  year: 2014
  end-page: 779
  ident: CR21
  article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
  publication-title: Science
  doi: 10.1126/science.1247651
– volume: 111
  start-page: 7048
  year: 2014
  end-page: 7053
  ident: CR37
  article-title: Microfluidic single-cell whole-transcriptome sequencing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1402030111
– volume: 11
  start-page: 41
  year: 2014
  end-page: 46
  ident: CR3
  article-title: Quantitative assessment of single-cell RNA-sequencing methods
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2694
– volume: 16
  start-page: 133
  year: 2015
  end-page: 145
  ident: CR2
  article-title: Computational and analytical challenges in single-cell transcriptomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3833
– volume: 10
  start-page: 1096
  year: 2013
  end-page: 1098
  ident: CR19
  article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells
  publication-title: Nat. Methods
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR44
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 81
  start-page: 847
  year: 2014
  end-page: 859
  ident: CR22
  article-title: Silencing of odorant receptor genes by G protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.01.001
– volume: 12
  start-page: 519
  year: 2015
  end-page: 522
  ident: CR32
  article-title: G&T-seq: parallel sequencing of single-cell genomes and transcriptomes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3370
– volume: 5
  start-page: 5125
  year: 2014
  ident: CR7
  article-title: Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6125
– volume: 11
  start-page: 163
  year: 2014
  end-page: 166
  ident: CR9
  article-title: Quantitative single-cell RNA-seq with unique molecular identifiers
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2772
– ident: CR13
– volume: 11
  start-page: 413
  year: 2010
  ident: CR14
  article-title: Incorporation of non-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-413
– volume: 36
  start-page: 2418
  year: 2008
  end-page: 2433
  ident: CR10
  article-title: Molecular dissection of mRNA poly(A) tail length control in yeast
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn080
– volume: 509
  start-page: 371
  year: 2014
  end-page: 375
  ident: CR18
  article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
  publication-title: Nature
  doi: 10.1038/nature13173
– volume: 163
  start-page: 1663
  year: 2015
  end-page: 1677
  ident: CR29
  article-title: Transcriptional heterogeneity and lineage commitment in myeloid progenitors
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.013
– ident: CR5
– volume: 17
  start-page: 77
  year: 2016
  ident: CR28
  article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0938-8
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  ident: CR31
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– ident: CR41
– volume: 32
  start-page: i192
  year: 2016
  end-page: i200
  ident: CR42
  article-title: RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw277
– volume: 14
  start-page: 632
  year: 2016
  end-page: 647
  ident: CR23
  article-title: Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.050
– volume: 161
  start-page: 1437
  year: 2015
  end-page: 1452
  ident: CR38
  article-title: The transcriptome and DNA methylome landscapes of human primordial germ cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.015
– volume: 11
  start-page: 812
  year: 2015
  ident: CR27
  article-title: Single-cell polyadenylation site mapping reveals 3′ isoform choice variability
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156198
– volume: 7
  start-page: 1130
  year: 2014
  ident: BFnmeth4220_CR15
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.04.011
– volume: 32
  start-page: 1053
  year: 2014
  ident: BFnmeth4220_CR17
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2967
– ident: BFnmeth4220_CR4
– volume: 21
  start-page: 1543
  year: 2011
  ident: BFnmeth4220_CR6
  publication-title: Genome Res.
  doi: 10.1101/gr.121095.111
– volume: 2
  start-page: 666
  year: 2012
  ident: BFnmeth4220_CR8
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.08.003
– volume: 81
  start-page: 847
  year: 2014
  ident: BFnmeth4220_CR22
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.01.001
– volume: 111
  start-page: 7048
  year: 2014
  ident: BFnmeth4220_CR37
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1402030111
– volume: 12
  start-page: 2825
  year: 2011
  ident: BFnmeth4220_CR44
  publication-title: J. Mach. Learn. Res.
– ident: BFnmeth4220_CR5
  doi: 10.1186/1471-2164-6-150
– volume: 16
  start-page: 933
  year: 2015
  ident: BFnmeth4220_CR40
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3246
– volume: 32
  start-page: i192
  year: 2016
  ident: BFnmeth4220_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw277
– ident: BFnmeth4220_CR13
  doi: 10.1038/nbt.2957
– volume: 11
  start-page: 41
  year: 2014
  ident: BFnmeth4220_CR3
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2694
– volume: 163
  start-page: 1663
  year: 2015
  ident: BFnmeth4220_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.013
– volume: 347
  start-page: 1138
  year: 2015
  ident: BFnmeth4220_CR20
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 161
  start-page: 1437
  year: 2015
  ident: BFnmeth4220_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.015
– volume: 26
  start-page: 192
  year: 2011
  ident: BFnmeth4220_CR12
  publication-title: J. Gen. Intern. Med.
  doi: 10.1007/s11606-010-1513-8
– volume: 16
  start-page: 133
  year: 2015
  ident: BFnmeth4220_CR2
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3833
– volume: 10
  start-page: 1096
  year: 2013
  ident: BFnmeth4220_CR19
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2639
– ident: BFnmeth4220_CR41
  doi: 10.1101/021592
– volume: 10
  start-page: e1004126
  year: 2014
  ident: BFnmeth4220_CR1
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004126
– volume: 509
  start-page: 371
  year: 2014
  ident: BFnmeth4220_CR18
  publication-title: Nature
  doi: 10.1038/nature13173
– volume: 17
  start-page: 329
  year: 2015
  ident: BFnmeth4220_CR24
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.07.002
– volume: 33
  start-page: 155
  year: 2015
  ident: BFnmeth4220_CR16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3102
– volume: 11
  start-page: 812
  year: 2015
  ident: BFnmeth4220_CR27
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156198
– volume: 14
  start-page: 632
  year: 2016
  ident: BFnmeth4220_CR23
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.050
– volume: 16
  start-page: 712
  year: 2015
  ident: BFnmeth4220_CR36
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.04.004
– volume: 17
  start-page: 130
  year: 2016
  ident: BFnmeth4220_CR26
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0991-3
– volume: 16
  start-page: 148
  year: 2015
  ident: BFnmeth4220_CR25
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0706-1
– volume: 11
  start-page: 163
  year: 2014
  ident: BFnmeth4220_CR9
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2772
– volume: 24
  start-page: 1918
  year: 2014
  ident: BFnmeth4220_CR35
  publication-title: Genome Res.
  doi: 10.1101/gr.171645.113
– ident: BFnmeth4220_CR39
– volume: 17
  start-page: 77
  year: 2016
  ident: BFnmeth4220_CR28
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0938-8
– volume: 58
  start-page: 339
  year: 2015
  ident: BFnmeth4220_CR34
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.03.005
– volume: 11
  start-page: 413
  year: 2010
  ident: BFnmeth4220_CR14
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-413
– volume: 343
  start-page: 776
  year: 2014
  ident: BFnmeth4220_CR21
  publication-title: Science
  doi: 10.1126/science.1247651
– volume: 85
  start-page: 54
  year: 2015
  ident: BFnmeth4220_CR33
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.06.021
– volume: 34
  start-page: 525
  year: 2016
  ident: BFnmeth4220_CR43
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3519
– volume: 12
  start-page: 519
  year: 2015
  ident: BFnmeth4220_CR32
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3370
– volume: 5
  start-page: 5125
  year: 2014
  ident: BFnmeth4220_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6125
– volume: 36
  start-page: 2418
  year: 2008
  ident: BFnmeth4220_CR10
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn080
– volume: 161
  start-page: 1202
  year: 2015
  ident: BFnmeth4220_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 161
  start-page: 1187
  year: 2015
  ident: BFnmeth4220_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 76
  start-page: 1
  year: 2017
  ident: BFnmeth4220_CR45
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v076.i01
– volume: 11
  start-page: 637
  year: 2014
  ident: BFnmeth4220_CR11
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2930
SSID ssj0033425
Score 2.6620727
Snippet All data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-5480, E-MTAB-5481, E-MTAB-5482, E-MTAB-5483,...
A comparison framework applied to 15 single-cell RNA-seq protocols reveals differences in accuracy and sensitivity and discusses the utility of RNA spike-in...
Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing...
Single cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, revealing new cell...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
rcaap
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms 45/91
631/208/199
631/337/2019
631/61/514/1949
analysis
Animals
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical Engineering/Biotechnology
Data processing
Embryonic Stem Cells - physiology
Freezing
Gene expression
Gene sequencing
Life Sciences
Mice
Poly A
Proteomics
Protocol (computers)
Ribonucleic acid
RNA
RNA sequencing
RNA, Messenger
Science & Technology
Sensitivity analysis
Sensitivity and Specificity
Sequence Analysis, RNA - methods
Sequence Analysis, RNA - standards
Sequence Analysis, RNA - statistics & numerical data
Single-Cell Analysis - methods
Single-Cell Analysis - standards
Single-Cell Analysis - statistics & numerical data
Stochasticity
Transcription
Transcriptomics
Workflow
Title Power analysis of single-cell RNA-sequencing experiments
URI http://hdl.handle.net/1822/56417
https://link.springer.com/article/10.1038/nmeth.4220
https://www.ncbi.nlm.nih.gov/pubmed/28263961
https://www.proquest.com/docview/2085807512
https://www.proquest.com/docview/1875141202
https://pubmed.ncbi.nlm.nih.gov/PMC5376499
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xVUi8IL4JjCqIvfBgFttJnD6hgVYmJKppYlLfLH8KpCkta_fAf8-d67RMRbzkIT7JyZ1zvjtffj-AY2EaaSfOsroTeEExZhrMWoNpufcqRukoUfw2a8-v6q_zZp4LbqvcVjn4xOSo_cJRjfyEuCQJOJeLj8tfjFij6HQ1U2gcwIgL3GvpT_Hpl8ETS1kn0lWKypnCjXGAJ5XdSU8EzR9qQTzff29Ie1HmfrPk6MYZs9w7OU0b0vQRPMyRZHm6Mf1juBf6J3B_wy35-yl0F8R_VpoMOlIuYkllgevAqFZfXs5OWW6jxrvlDuh_9QyupmffP5-zTJPAXD1Ra-ZV45WfYNxnuxgrbm1UVhqjVPTWBNsoYSP3rnHoTJyXbWejQWHPg6paX8vncNgv-vASSktYPSK6jkeMoyI3wgVZ2aYKauKD9wW8H3SlXcYQJyqLa53OsmWnk1416bWAd1vZ5QY5459SR4PKdf56Vnpn6wLebodx3ZOCTB8WtyvNMdHiNRcVyrzYWGg7DaaRuBhaXoC6Y7utAGFq3x3pf_5I2NqEboNJYAFFsrKmXmsM02k-IXTT1lwVcDxYfvfI-2_26v9v9hoeCIoQUhPQERyub27DG4xv1nYMB2quxmkpj2H06Wx2cfkH1-r-8g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVoheEG8MLRhRDhxMvbu21zlUVQVUKW0jhFopt-0-RaXKCU0q1D_Fb2TGr7QK4tZLDvEojmd2vPN5xt8HsMV1LszAmiQrOX6gWaJzRK1eF8w5GYKwBBSPR8XwNPs2zscr8Kd7F4bGKrt7Yn2jdhNLz8i3SUuSiHMZ353-Skg1irqrnYRGsywO_fVvhGyznYMvGN8PnO9_Pfk8TFpVgcRmAzlPnMyddAMsk0wZQsqMCdIIraUMzmhvcslNYM7mFnPPOlGUJmg0dszLtHCZwN-9B2sZtRgxf-S4B3hCZLXIK6GAROJG3NGhinK7IkHoTxknXfGbG-BSVbs8nLl2abWeLnVq6w1w_xE8bCvXeK9Zao9hxVdP4H6jZXn9FMrvpLcW65bkJJ6EmB5DXPiEegPxj9Fe0o5t47fxQlhg9gxO78SBz2G1mlT-JcSGuIF4sCULWLcFprn1IjV56uXAeeci-Nj5StmWs5ykMy5U3TsXpar9qsivEbzvbacNU8c_rTY6l6s2W2dqsbYieNcfxjwjB-nKT65miiGwYxnjKdq8aCLUnwZhKxZ6BYtA3opdb0Ac3rePVOc_ay5vYtNB0BlBVEdZ0Ww3wgI6H-cqLzImI9jqIr_4y8tX9ur_V_YWHgxPjo_U0cHo8DWsc6pO6gGkDVidX175Tayt5uZNvaBjOLvrDPoLGes8Fg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VViAuiDeGAkaUAwcT78Ne54BQRYlaClGFqJTbsk9RqXLSJhXqX-PXMeNHQhXErRcf7JEfMzve-bzj7wPY4aYQduhsJiuOGzTLTIGoNZiSea9iFI6A4tdxuX8sP0-KyQb87v-FobbK_p3YvKj91NE38gFpSRJxLuOD2LVFHO2NPszOMlKQopXWXk6jHSKH4fIXwrf5-4M9jPUbzkefvn_czzqFgczJoVpkXhVe-SGWTLaKMWfWRmWFMUpFb02wheI2Mu8Kh3novCgrGw0aexZUXnop8Lw3YEsJKUk2Qk2WYE8I2Qi-EiLIFE7KPTWqqAY1iUO_k5w0xv-eDNcq3PVGza1zZ8xsbdW2mQxHd-FOV8Wmu-2wuwcbob4PN1tdy8sHUB2R9lpqOsKTdBpT-iRxGjJaJ0i_jXezroUb96YrkYH5Qzi-Fgc-gs16WocnkFriCeLRVSxiDReZ4S6I3BZ5UEMfvE_gbe8r7Tr-cpLRONXNOrqodONXTX5N4PXSdtaydvzTart3ue4yd65X4yyBV8vDmHPkIFOH6cVcMwR5TDKeo83jNkLLyyCExaKvZAmoK7FbGhCf99Uj9cnPhtebmHUQgCaQNFHW1OeNEIGux7kuSslUAjt95Fe3vP5kT___ZC_hFuaO_nIwPnwGtzkVKk0v0jZsLs4vwnMssxb2RTOeU_hx3Qn0B3CQQEk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+analysis+of+single-cell+RNA-sequencing+experiments&rft.jtitle=Nature+methods&rft.au=Svensson%2C+Valentine&rft.au=Natarajan%2C+Kedar+Nath&rft.au=Ly%2C+Lam-ha&rft.au=Miragaia%2C+Ricardo+J&rft.date=2017-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=14&rft.issue=4&rft.spage=381&rft_id=info:doi/10.1038%2Fnmeth.4220&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon