Power analysis of single-cell RNA-sequencing experiments
All data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-5480, E-MTAB-5481, E-MTAB-5482, E-MTAB-5483, E-MTAB-5484, E-MTAB-5485, and E-MTAB-5486. Summary tables are provided as supplementary files. Single-cell RNA sequencing (scRNA-seq) has become...
Saved in:
Published in | Nature methods Vol. 14; no. 4; pp. 381 - 387 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature
01.04.2017
Nature Publishing Group US Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-7091 1548-7105 1548-7105 |
DOI | 10.1038/nmeth.4220 |
Cover
Abstract | All data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-5480, E-MTAB-5481, E-MTAB-5482, E-MTAB-5483, E-MTAB-5484, E-MTAB-5485, and E-MTAB-5486. Summary tables are provided as supplementary files.
Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.
We are grateful to O. Stegle and J.K. Kim for helpful discussions and comments on the manuscript. We thank M. Lynch for support with the C1 experiments, X. Chen for discussions on spike-ins, and M. Quail for help with 10× Chromium experiments. We extend our gratitude to S. Linnarsson and A. Zeisel for invaluable support in implementing STRT-seq in our laboratory and for help with sequencing the STRT library. We also thank D. Grün for sharing smFISH molecule counts. Finally we thank R. Kirchner for many improvements to the umis tool. This study was supported by Cancer Research UK grant C45041/A14953 to A.C. and C.L.; European Research Council project 677501–ZF_Blood to A.C.; a core support grant from the Wellcome Trust and MRC to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute; ERC grant ThSWITCH to S.A.T. (grant 260507); and a Lister Institute Research Prize to S.A.T. K.N.N. was supported by the Wellcome Trust Strategic Award ‘Single cell genomics of mouse gastrulation’. We thank P. Liu (Wellcome Trust Sanger Institute) for providing cells. |
---|---|
AbstractList | A comparison framework applied to 15 single-cell RNA-seq protocols reveals differences in accuracy and sensitivity and discusses the utility of RNA spike-in standards.
Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (
https://github.com/vals/umis/
). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols. Single cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, revealing new cell types, and providing insights into developmental processes and transcriptional stochasticity. The array of published scRNA-seq protocols allow one to sequence transcriptomes from minute amounts of starting material. A key question is how these various protocols compare in terms of sensitivity of detection of mRNA molecules, and accuracy of quantification of expression. Here, we present an assessment of sensitivity and accuracy of many published data sets by spike-in standards with uniform data processing, including development of a flexible Unique Molecular Identifier (UMI) counting tool ( https://github.com/vals/umis ). We computationally compare 15 protocols, and experimentally assess 4 protocols on batch-matched cell populations, as well as investigating the impact of spike-in molecule degradation on two types of spike-ins. Our analysis provides an integrated framework for comparing different scRNA-seq protocols. Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols. Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols. All data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-5480, E-MTAB-5481, E-MTAB-5482, E-MTAB-5483, E-MTAB-5484, E-MTAB-5485, and E-MTAB-5486. Summary tables are provided as supplementary files. Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols. We are grateful to O. Stegle and J.K. Kim for helpful discussions and comments on the manuscript. We thank M. Lynch for support with the C1 experiments, X. Chen for discussions on spike-ins, and M. Quail for help with 10× Chromium experiments. We extend our gratitude to S. Linnarsson and A. Zeisel for invaluable support in implementing STRT-seq in our laboratory and for help with sequencing the STRT library. We also thank D. Grün for sharing smFISH molecule counts. Finally we thank R. Kirchner for many improvements to the umis tool. This study was supported by Cancer Research UK grant C45041/A14953 to A.C. and C.L.; European Research Council project 677501–ZF_Blood to A.C.; a core support grant from the Wellcome Trust and MRC to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute; ERC grant ThSWITCH to S.A.T. (grant 260507); and a Lister Institute Research Prize to S.A.T. K.N.N. was supported by the Wellcome Trust Strategic Award ‘Single cell genomics of mouse gastrulation’. We thank P. Liu (Wellcome Trust Sanger Institute) for providing cells. |
Author | Teichmann, Sarah A. Cvejic, Ana Ly, Lam-Ha Miragaia, Ricardo J. Svensson, Valentine Labalette, Charlotte Macaulay, Iain C. Natarajan, Kedar Nath |
AuthorAffiliation | 3 Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK 2 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 5 Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal 1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 4 Department of Haematology, University of Cambridge, Cambridge, UK |
AuthorAffiliation_xml | – name: 2 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK – name: 5 Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal – name: 3 Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK – name: 1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK – name: 4 Department of Haematology, University of Cambridge, Cambridge, UK |
Author_xml | – sequence: 1 fullname: Svensson, Valentine – sequence: 2 fullname: Natarajan, Kedar Nath – sequence: 3 fullname: Ly, Lam-Ha – sequence: 4 fullname: Miragaia, Ricardo J. – sequence: 5 fullname: Labalette, Charlotte – sequence: 6 fullname: Macaulay, Iain C. – sequence: 7 fullname: Cvejic, Ana – sequence: 8 fullname: Teichmann, Sarah A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28263961$$D View this record in MEDLINE/PubMed |
BookMark | eNptkVtrFTEUhYO02Iu--ANkwBepTM1lMsm8FErxBkVF9DnksnOaMic5JnOq_ffN9PRoW_qUkHx77bX3OkA7MUVA6BXBxwQz-T4uYbo47ijFz9A-4Z1sBcF8Z3vHA9lDB6VcYsxYR_lztEcl7dnQk30kv6c_kBsd9XhdQmmSb0qIixFaC-PY_Ph62hb4vYZo62sDf1eQwxLiVF6gXa_HAi_vzkP06-OHn2ef2_Nvn76cnZ63thvE1DrBnXADpthI7zExxgvDtBbCO6PBcEGNJ85yy0RvHeul8brCjoDAvevYITrZ6K7WZgnO1t5Zj2pVbeh8rZIO6uFPDBdqka4Ur4LdMFSBt3cCOdVByqSWoczD6QhpXRSRgpOOUEwr-uYRepnWua6mKIoll7iSM_X6vqN_VrZLrQDeADanUjJ4ZcOkp5Bmg2FUBKs5N3Wbm5pzqyVHj0q2qk_C7zZwqVBcQP5v80m62dDZar1SGa5CmfQ8N6WK9x0R7AbhAbQC |
CitedBy_id | crossref_primary_10_1038_s41467_018_07770_1 crossref_primary_10_1186_s13059_021_02584_9 crossref_primary_10_1146_annurev_immunol_110519_071134 crossref_primary_10_1016_j_ajpath_2019_03_009 crossref_primary_10_1242_dev_152561 crossref_primary_10_1016_j_jbc_2024_108150 crossref_primary_10_3390_biomedinformatics4020071 crossref_primary_10_3390_cancers15164164 crossref_primary_10_1146_annurev_genom_091416_035324 crossref_primary_10_3389_fmicb_2018_01929 crossref_primary_10_1016_j_stem_2019_09_004 crossref_primary_10_1093_bfgp_elx025 crossref_primary_10_1186_s13059_022_02601_5 crossref_primary_10_1038_ncomms16027 crossref_primary_10_1161_CIRCULATIONAHA_123_064794 crossref_primary_10_1038_s41598_017_12989_x crossref_primary_10_1093_bfgp_elx029 crossref_primary_10_1186_s12859_019_2797_2 crossref_primary_10_7554_eLife_50901 crossref_primary_10_1038_s41588_021_00873_4 crossref_primary_10_1080_21505594_2022_2031583 crossref_primary_10_1002_jev2_12223 crossref_primary_10_1002_smtd_202100111 crossref_primary_10_1016_j_gpb_2018_07_007 crossref_primary_10_1016_j_mbs_2021_108713 crossref_primary_10_1038_nprot_2017_149 crossref_primary_10_3389_fbinf_2023_1159381 crossref_primary_10_1007_s11427_021_2007_8 crossref_primary_10_1093_bioinformatics_btz240 crossref_primary_10_1186_s12859_022_05065_3 crossref_primary_10_1016_j_isci_2022_104419 crossref_primary_10_1097_RD9_0000000000000037 crossref_primary_10_3389_fgene_2022_894597 crossref_primary_10_3389_fonc_2018_00430 crossref_primary_10_1212_NXI_0000000000200278 crossref_primary_10_12688_f1000research_15666_3 crossref_primary_10_1016_j_arr_2020_101156 crossref_primary_10_21769_BioProtoc_5096 crossref_primary_10_12688_f1000research_15666_1 crossref_primary_10_12688_f1000research_15666_2 crossref_primary_10_1371_journal_pcbi_1012386 crossref_primary_10_1016_j_cell_2019_05_031 crossref_primary_10_1186_s12864_022_09014_5 crossref_primary_10_1007_s10565_017_9404_y crossref_primary_10_7554_eLife_54818 crossref_primary_10_1002_1873_3468_12684 crossref_primary_10_3389_fgene_2020_00295 crossref_primary_10_3389_fgene_2022_1100016 crossref_primary_10_1038_s41598_021_86087_4 crossref_primary_10_1007_s10565_019_09464_w crossref_primary_10_1016_j_isci_2023_106531 crossref_primary_10_1177_03635465231153630 crossref_primary_10_1093_bioinformatics_btz279 crossref_primary_10_1371_journal_pbio_3002640 crossref_primary_10_1038_s44276_023_00035_5 crossref_primary_10_1016_j_crmeth_2024_100742 crossref_primary_10_1016_j_isci_2022_103777 crossref_primary_10_1093_bfgp_elx046 crossref_primary_10_1371_journal_pcbi_1011641 crossref_primary_10_1016_j_cois_2020_05_006 crossref_primary_10_7554_eLife_54129 crossref_primary_10_1038_s41598_023_28952_y crossref_primary_10_1093_nargab_lqaa039 crossref_primary_10_1101_gr_222877_117 crossref_primary_10_1016_j_celrep_2024_114718 crossref_primary_10_1016_j_molcel_2018_10_020 crossref_primary_10_3390_ijms25031519 crossref_primary_10_1038_s41467_017_01174_3 crossref_primary_10_1038_s41467_024_51201_3 crossref_primary_10_1093_biostatistics_kxx053 crossref_primary_10_1080_08820538_2021_1889615 crossref_primary_10_1101_cshperspect_a039792 crossref_primary_10_4103_NRR_NRR_D_24_00231 crossref_primary_10_1136_annrheumdis_2019_215926 crossref_primary_10_1038_s41564_018_0346_9 crossref_primary_10_1186_s12864_017_4253_x crossref_primary_10_3389_fgene_2020_572242 crossref_primary_10_1093_bfgp_elx035 crossref_primary_10_1093_bfgp_ely003 crossref_primary_10_1016_j_neuron_2017_05_008 crossref_primary_10_3390_genes12101629 crossref_primary_10_3389_fmars_2022_906267 crossref_primary_10_15252_msb_20188746 crossref_primary_10_3390_ijms20225773 crossref_primary_10_1002_cpmo_30 crossref_primary_10_1016_j_isci_2021_102393 crossref_primary_10_1210_en_2018_00750 crossref_primary_10_1002_JLB_5MR1019_179R crossref_primary_10_3389_fimmu_2023_1058296 crossref_primary_10_1093_bfgp_ely009 crossref_primary_10_1016_j_celrep_2022_110440 crossref_primary_10_1186_s12864_020_07358_4 crossref_primary_10_1016_j_molcel_2022_05_022 crossref_primary_10_1016_j_jbc_2023_105121 crossref_primary_10_1016_j_joca_2021_06_010 crossref_primary_10_1126_science_aan6828 crossref_primary_10_1007_s12195_021_00676_x crossref_primary_10_1186_s12859_024_05872_w crossref_primary_10_1038_s41587_020_0465_8 crossref_primary_10_1093_brain_awz295 crossref_primary_10_1093_bib_bbz062 crossref_primary_10_15252_msb_20178046 crossref_primary_10_1183_13993003_03721_2020 crossref_primary_10_1371_journal_pcbi_1006361 crossref_primary_10_1093_bib_bbaa116 crossref_primary_10_1038_nrg_2017_44 crossref_primary_10_1186_s13059_021_02367_2 crossref_primary_10_1038_s41467_020_19011_5 crossref_primary_10_1038_s41467_021_22197_x crossref_primary_10_1039_C9LC00541B crossref_primary_10_3389_fcell_2018_00028 crossref_primary_10_1093_biolre_ioz088 crossref_primary_10_1016_j_pt_2018_04_009 crossref_primary_10_1186_s13059_018_1438_9 crossref_primary_10_1016_j_neuron_2018_12_006 crossref_primary_10_1016_j_csbj_2020_10_016 crossref_primary_10_1186_s12859_018_2519_1 crossref_primary_10_1038_s41587_021_00870_2 crossref_primary_10_1093_nar_gkz1134 crossref_primary_10_1038_s41593_024_01814_0 crossref_primary_10_3389_fgene_2017_00073 crossref_primary_10_1097_CM9_0000000000002679 crossref_primary_10_1186_s10020_025_01085_w crossref_primary_10_1146_annurev_immunol_042617_053035 crossref_primary_10_1016_j_stem_2023_12_012 crossref_primary_10_1038_s42003_024_07445_2 crossref_primary_10_1093_bioinformatics_btz292 crossref_primary_10_3390_ijms231911065 crossref_primary_10_1016_j_yjmcc_2020_03_005 crossref_primary_10_15302_J_QB_022_0311 crossref_primary_10_1038_s41467_024_49174_4 crossref_primary_10_1038_s41592_023_01766_6 crossref_primary_10_1038_s41556_018_0236_7 crossref_primary_10_1038_s41596_020_00409_w crossref_primary_10_1146_annurev_neuro_100119_110036 crossref_primary_10_1126_scitranslmed_aan4730 crossref_primary_10_1186_s13578_022_00886_4 crossref_primary_10_1186_s13059_019_1806_0 crossref_primary_10_1016_j_coisb_2017_12_008 crossref_primary_10_1080_02713683_2019_1697453 crossref_primary_10_3390_cells10102607 crossref_primary_10_1186_s12915_023_01553_x crossref_primary_10_1371_journal_pone_0239711 crossref_primary_10_3389_fgene_2019_00629 crossref_primary_10_3389_fmed_2022_868508 crossref_primary_10_1186_s12864_024_10364_5 crossref_primary_10_18632_oncotarget_23760 crossref_primary_10_3389_fgene_2023_1159109 crossref_primary_10_1016_j_compbiolchem_2025_108432 crossref_primary_10_1016_j_nbd_2023_106062 crossref_primary_10_1016_j_neuropharm_2022_109376 crossref_primary_10_1038_s41385_021_00452_0 crossref_primary_10_1186_s13073_018_0528_3 crossref_primary_10_1016_j_canlet_2021_12_008 crossref_primary_10_3389_fcell_2023_1163529 crossref_primary_10_1084_jem_20230420 crossref_primary_10_1186_s12864_021_07744_6 crossref_primary_10_1186_s12864_021_07381_z crossref_primary_10_3389_fgene_2021_679616 crossref_primary_10_1093_bib_bby076 crossref_primary_10_1186_s12859_020_03593_4 crossref_primary_10_3390_app12125790 crossref_primary_10_3390_ijms22042071 crossref_primary_10_3389_fgene_2019_01280 crossref_primary_10_1002_advs_202403788 crossref_primary_10_1038_s41467_021_21330_0 crossref_primary_10_1038_s41467_020_15765_0 crossref_primary_10_1016_j_bbagrm_2019_194441 crossref_primary_10_1038_s41592_023_01814_1 crossref_primary_10_1016_j_heliyon_2024_e37185 crossref_primary_10_1242_dev_151142 crossref_primary_10_1021_acs_jproteome_2c00317 crossref_primary_10_1073_pnas_2010738117 crossref_primary_10_1038_s41467_021_27160_4 crossref_primary_10_1038_s41587_020_00748_9 crossref_primary_10_1186_s12859_023_05424_8 crossref_primary_10_1073_pnas_1706365114 crossref_primary_10_1214_19_STS7560 crossref_primary_10_1016_j_isci_2022_104436 crossref_primary_10_1093_bib_bbaa248 crossref_primary_10_1039_C8LC01239C crossref_primary_10_3390_ijms23073900 crossref_primary_10_1016_j_celrep_2024_113784 crossref_primary_10_1038_s41598_019_41235_9 crossref_primary_10_1371_journal_pone_0224578 crossref_primary_10_1038_s41467_018_04334_1 crossref_primary_10_1186_s12859_021_04507_8 crossref_primary_10_1186_s12864_023_09184_w crossref_primary_10_1146_annurev_anchem_061516_045228 crossref_primary_10_1042_BCJ20220572 crossref_primary_10_1186_s13073_017_0467_4 crossref_primary_10_1016_j_molcel_2021_12_012 crossref_primary_10_1182_blood_2018_08_835355 crossref_primary_10_1038_s41467_025_56640_0 crossref_primary_10_1038_s41467_021_24543_5 crossref_primary_10_1128_mbio_03473_21 crossref_primary_10_1371_journal_pone_0207020 crossref_primary_10_1080_01621459_2021_1933495 crossref_primary_10_1016_j_jbc_2023_103029 crossref_primary_10_1038_s41467_018_08126_5 crossref_primary_10_1158_1078_0432_CCR_18_1955 crossref_primary_10_1161_CIRCRESAHA_117_310910 crossref_primary_10_3389_fcell_2021_732776 crossref_primary_10_1016_j_molimm_2018_09_020 crossref_primary_10_3389_fgene_2019_00317 crossref_primary_10_1073_pnas_1902649116 crossref_primary_10_1242_dev_198614 crossref_primary_10_1017_S003118202100041X crossref_primary_10_21769_BioProtoc_3070 crossref_primary_10_3389_fimmu_2018_02425 crossref_primary_10_1186_s13059_019_1670_y crossref_primary_10_1016_j_intimp_2024_111938 crossref_primary_10_3389_fcvm_2018_00167 crossref_primary_10_1038_s42255_021_00417_4 crossref_primary_10_1038_s41588_020_0642_1 crossref_primary_10_1002_sim_9430 crossref_primary_10_1038_nmeth_4662 crossref_primary_10_1038_s41467_023_41318_2 crossref_primary_10_3389_fgene_2023_1182579 crossref_primary_10_1021_acs_analchem_8b04434 crossref_primary_10_1038_s41467_022_32197_0 crossref_primary_10_1155_2020_8624963 crossref_primary_10_1038_s41592_019_0425_8 crossref_primary_10_3390_genes13122265 crossref_primary_10_1038_s41467_020_14391_0 crossref_primary_10_1186_s13059_017_1218_y crossref_primary_10_1093_hmg_ddx219 crossref_primary_10_1093_bib_bbae148 crossref_primary_10_1111_imm_13193 crossref_primary_10_1371_journal_pcbi_1010284 crossref_primary_10_1038_nrc_2017_58 crossref_primary_10_1080_21541264_2023_2200721 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1093_gigascience_giy059 crossref_primary_10_3389_fgene_2021_739677 crossref_primary_10_1186_s12859_019_2612_0 crossref_primary_10_1186_s40169_017_0177_y crossref_primary_10_1186_s13059_023_03025_5 crossref_primary_10_2139_ssrn_3285804 crossref_primary_10_1002_bies_201900187 crossref_primary_10_1038_s41564_018_0330_4 crossref_primary_10_1093_bioinformatics_btaa148 crossref_primary_10_1186_s13059_020_01981_w crossref_primary_10_3389_fcell_2022_884748 crossref_primary_10_3390_cimb45020081 crossref_primary_10_1016_j_intimp_2023_111104 crossref_primary_10_3389_fimmu_2020_00216 crossref_primary_10_1161_CIRCRESAHA_119_315940 crossref_primary_10_1016_j_mam_2017_07_002 crossref_primary_10_1038_s42003_021_02810_x crossref_primary_10_1038_s41592_018_0033_z crossref_primary_10_1038_s41467_018_04368_5 crossref_primary_10_1007_s00441_017_2682_0 crossref_primary_10_1373_clinchem_2019_307835 crossref_primary_10_18632_oncotarget_25299 crossref_primary_10_1016_j_chembiol_2019_05_005 crossref_primary_10_1002_eji_202451234 crossref_primary_10_1007_s00216_023_05028_4 crossref_primary_10_1002_ctm2_633 crossref_primary_10_1016_j_patter_2021_100211 crossref_primary_10_1186_s12915_018_0570_z crossref_primary_10_1186_s13059_019_1676_5 crossref_primary_10_1002_alz_13095 crossref_primary_10_1016_j_gendis_2024_101241 crossref_primary_10_3390_cells11152383 crossref_primary_10_1186_s12859_019_3167_9 crossref_primary_10_7554_eLife_27041 crossref_primary_10_1021_acs_analchem_0c01613 crossref_primary_10_3389_fimmu_2022_918223 crossref_primary_10_3389_fimmu_2023_1243797 crossref_primary_10_1016_j_molmed_2017_05_004 crossref_primary_10_1038_s41467_020_16822_4 crossref_primary_10_1038_nbt_4096 crossref_primary_10_1016_j_coisb_2017_08_003 crossref_primary_10_1038_s41596_021_00523_3 crossref_primary_10_1093_gigascience_giaa151 crossref_primary_10_1002_eji_202149216 crossref_primary_10_1093_bioinformatics_btz453 crossref_primary_10_1074_mcp_R119_001743 crossref_primary_10_1038_s41587_020_0469_4 crossref_primary_10_1371_journal_pcbi_1009118 crossref_primary_10_1038_s41467_019_12266_7 crossref_primary_10_1038_s41587_019_0379_5 crossref_primary_10_1016_j_biomaterials_2020_120189 crossref_primary_10_1016_j_cell_2019_10_003 crossref_primary_10_1186_s13059_017_1382_0 crossref_primary_10_2337_db19_0721 crossref_primary_10_34133_research_0555 crossref_primary_10_3389_fimmu_2017_01579 crossref_primary_10_1093_nar_gkae892 crossref_primary_10_1016_j_bioactmat_2021_01_022 crossref_primary_10_1038_s41423_019_0207_3 crossref_primary_10_1155_2021_6694566 crossref_primary_10_1016_j_omtm_2020_07_010 crossref_primary_10_3389_fbinf_2023_1144266 crossref_primary_10_1038_s41467_022_28445_y crossref_primary_10_1093_bib_bby007 crossref_primary_10_1016_j_gde_2017_06_003 crossref_primary_10_1093_nargab_lqaa052 crossref_primary_10_1177_0271678X241305914 crossref_primary_10_1038_s41556_018_0105_4 crossref_primary_10_1016_j_compbiolchem_2025_108362 crossref_primary_10_1093_bfgp_elac002 crossref_primary_10_1093_burnst_tkad017 crossref_primary_10_1093_bioinformatics_btz321 crossref_primary_10_1016_j_gpb_2020_02_005 crossref_primary_10_1016_j_bbagrm_2023_194911 crossref_primary_10_1038_s41467_018_05347_6 crossref_primary_10_1096_fba_2022_00004 crossref_primary_10_1360_SSC_2022_0093 crossref_primary_10_1038_s41584_019_0220_z crossref_primary_10_1016_j_taap_2024_116865 crossref_primary_10_1111_wrr_13218 crossref_primary_10_1038_s41467_021_26779_7 crossref_primary_10_1038_s41467_018_06282_2 crossref_primary_10_1016_j_copbio_2018_09_012 crossref_primary_10_1038_s41586_019_1629_x crossref_primary_10_1063_1_5131795 crossref_primary_10_1080_0886022X_2024_2409348 crossref_primary_10_1186_s12864_021_08132_w crossref_primary_10_1158_0008_5472_CAN_20_1034 crossref_primary_10_1002_pmic_201900271 crossref_primary_10_1038_s41596_018_0073_y crossref_primary_10_1186_s13059_018_1593_z crossref_primary_10_1016_j_intimp_2020_107071 crossref_primary_10_1007_s00018_024_05322_z crossref_primary_10_1038_s41581_018_0021_7 crossref_primary_10_1093_bioinformatics_bty260 crossref_primary_10_3389_fgene_2021_665888 crossref_primary_10_1038_s41433_023_02539_3 crossref_primary_10_1038_s41467_018_03405_7 crossref_primary_10_1016_j_mcpro_2022_100267 crossref_primary_10_1073_pnas_1721085115 crossref_primary_10_1002_eji_202149235 crossref_primary_10_3389_fgene_2022_994069 crossref_primary_10_3390_diagnostics8020031 crossref_primary_10_1146_annurev_genet_120417_031247 crossref_primary_10_1186_s13059_021_02451_7 crossref_primary_10_3389_fnins_2018_00031 crossref_primary_10_1021_acschemneuro_8b00100 crossref_primary_10_1039_C9LC00014C crossref_primary_10_1126_sciadv_adl1584 crossref_primary_10_7554_eLife_33105 crossref_primary_10_1093_bib_bbx143 crossref_primary_10_1101_gr_257840_119 crossref_primary_10_1002_appl_202100016 crossref_primary_10_1038_s41467_020_14482_y crossref_primary_10_3389_fonc_2021_715552 crossref_primary_10_1371_journal_pone_0216442 crossref_primary_10_3390_nu14071333 crossref_primary_10_1016_j_celrep_2020_108078 crossref_primary_10_1007_s12195_024_00812_3 crossref_primary_10_1016_j_mce_2018_01_013 crossref_primary_10_1186_s13073_018_0608_4 crossref_primary_10_1016_j_cell_2018_02_001 crossref_primary_10_1016_j_imlet_2022_04_008 crossref_primary_10_1186_s13059_019_1874_1 crossref_primary_10_1145_3641284 crossref_primary_10_1021_acsinfecdis_8b00369 crossref_primary_10_3389_fcell_2021_833420 crossref_primary_10_1038_nrn_2017_85 |
Cites_doi | 10.1038/ni.3246 10.1038/nbt.3519 10.1016/j.stem.2015.07.002 10.1038/nbt.2967 10.1016/j.molcel.2015.03.005 10.1371/journal.pgen.1004126 10.18637/jss.v076.i01 10.1007/s11606-010-1513-8 10.1016/j.stem.2015.04.004 10.1038/nbt.3102 10.1016/j.cell.2015.05.002 10.1016/j.ymeth.2015.06.021 10.1101/gr.171645.113 10.1016/j.celrep.2014.04.011 10.1126/science.aaa1934 10.1186/s13059-015-0706-1 10.1186/s13059-016-0991-3 10.1016/j.celrep.2012.08.003 10.1038/nmeth.2930 10.1126/science.1247651 10.1073/pnas.1402030111 10.1038/nmeth.2694 10.1038/nrg3833 10.1016/j.neuron.2014.01.001 10.1038/nmeth.3370 10.1038/ncomms6125 10.1038/nmeth.2772 10.1186/1471-2164-11-413 10.1093/nar/gkn080 10.1038/nature13173 10.1016/j.cell.2015.11.013 10.1186/s13059-016-0938-8 10.1016/j.cell.2015.04.044 10.1093/bioinformatics/btw277 10.1016/j.celrep.2015.12.050 10.1016/j.cell.2015.05.015 10.15252/msb.20156198 10.1101/gr.121095.111 10.1186/1471-2164-6-150 10.1038/nbt.2957 10.1038/nmeth.2639 10.1101/021592 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2017 Copyright Nature Publishing Group Apr 2017 |
Copyright_xml | – notice: Springer Nature America, Inc. 2017 – notice: Copyright Nature Publishing Group Apr 2017 |
DBID | RCLKO AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 5PM |
DOI | 10.1038/nmeth.4220 |
DatabaseName | RCAAP open access repository CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DissertationSchool | Universidade do Minho |
EISSN | 1548-7105 |
EndPage | 387 |
ExternalDocumentID | PMC5376499 28263961 10_1038_nmeth_4220 1822_56417 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 14953 – fundername: Wellcome Trust – fundername: European Research Council grantid: 677501 – fundername: European Research Council grantid: 260507 – fundername: Medical Research Council grantid: MC_PC_12009 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 4.4 53G 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAHBH AAYZH ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ADBBV AENEX AEUYN AFANA AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS ATHPR AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DU5 DWQXO EBS EE. EJD ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- P2P P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RCLKO RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG UKHRP 3V. 5BI AAEEF AARCD AAZLF ABAWZ ABDBF ACUHS AFBBN DB5 EMOBN ODYON SV3 TUS ~8M AAYXX CITATION CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c497t-d75d7d9020b8ff01bbf7b3aa77fdbaeb572bf1dc5c376cd368bfa20bd1e706d43 |
IEDL.DBID | 8FG |
ISSN | 1548-7091 1548-7105 |
IngestDate | Thu Aug 21 18:24:24 EDT 2025 Fri Sep 05 12:25:36 EDT 2025 Sat Aug 23 13:09:55 EDT 2025 Mon Jul 21 06:02:38 EDT 2025 Tue Jul 01 00:44:32 EDT 2025 Thu Apr 24 23:06:44 EDT 2025 Fri Feb 21 02:37:49 EST 2025 Fri Aug 01 16:26:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-d75d7d9020b8ff01bbf7b3aa77fdbaeb572bf1dc5c376cd368bfa20bd1e706d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9217-2330 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5376499 |
PMID | 28263961 |
PQID | 2085807512 |
PQPubID | 28015 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376499 proquest_miscellaneous_1875141202 proquest_journals_2085807512 pubmed_primary_28263961 crossref_citationtrail_10_1038_nmeth_4220 crossref_primary_10_1038_nmeth_4220 springer_journals_10_1038_nmeth_4220 rcaap_revistas_1822_56417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2017 |
Publisher | Springer Nature Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Springer Nature – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Buettner (CR16) 2015; 33 Dang (CR26) 2016; 17 Islam (CR9) 2014; 11 Grün, Kester, van Oudenaarden (CR11) 2014; 11 Walker, Nowacki (CR12) 2011; 26 Bray, Pimentel, Melsted, Pachter (CR43) 2016; 34 Pollen (CR17) 2014; 32 Zeisel (CR20) 2015; 347 Scialdone (CR33) 2015; 85 CR39 Llorens-Bobadilla (CR24) 2015; 17 CR13 Mahata (CR15) 2014; 7 Macosko (CR30) 2015; 161 Wilson (CR36) 2015; 16 Fan (CR25) 2015; 16 Jiang (CR6) 2011; 21 Velten (CR27) 2015; 11 Macaulay, Voet (CR1) 2014; 10 Munro (CR7) 2014; 5 Klein (CR31) 2015; 161 Macaulay (CR32) 2015; 12 Jaitin (CR21) 2014; 343 Sansom (CR35) 2014; 24 CR4 Kapteyn, He, McDowell, Gang (CR14) 2010; 11 CR5 Treutlein (CR18) 2014; 509 Owens (CR23) 2016; 14 Paul (CR29) 2015; 163 Picelli (CR19) 2013; 10 Hashimshony (CR28) 2016; 17 Srivastava, Sarkar, Gupta, Patro (CR42) 2016; 32 Streets (CR37) 2014; 111 CR41 Ferreira (CR22) 2014; 81 Padovan-Merhar (CR34) 2015; 58 Brennecke (CR40) 2015; 16 Pedregosa (CR44) 2011; 12 Viphakone, Voisinet-Hakil, Minvielle-Sebastia (CR10) 2008; 36 Stegle, Teichmann, Marioni (CR2) 2015; 16 Wu (CR3) 2014; 11 Guo (CR38) 2015; 161 Hashimshony, Wagner, Sher, Yanai (CR8) 2012; 2 Carpenter, Gelman, Hoffman, Lee, Goodrich (CR45) 2017; 76 BFnmeth4220_CR41 AR Wu (BFnmeth4220_CR3) 2014; 11 X Fan (BFnmeth4220_CR25) 2015; 16 SN Sansom (BFnmeth4220_CR35) 2014; 24 L Velten (BFnmeth4220_CR27) 2015; 11 F Pedregosa (BFnmeth4220_CR44) 2011; 12 AA Pollen (BFnmeth4220_CR17) 2014; 32 P Brennecke (BFnmeth4220_CR40) 2015; 16 AM Klein (BFnmeth4220_CR31) 2015; 161 F Buettner (BFnmeth4220_CR16) 2015; 33 NK Wilson (BFnmeth4220_CR36) 2015; 16 E Walker (BFnmeth4220_CR12) 2011; 26 S Picelli (BFnmeth4220_CR19) 2013; 10 IC Macaulay (BFnmeth4220_CR32) 2015; 12 BFnmeth4220_CR5 BFnmeth4220_CR4 NDL Owens (BFnmeth4220_CR23) 2016; 14 B Treutlein (BFnmeth4220_CR18) 2014; 509 N Viphakone (BFnmeth4220_CR10) 2008; 36 BFnmeth4220_CR39 O Padovan-Merhar (BFnmeth4220_CR34) 2015; 58 AM Streets (BFnmeth4220_CR37) 2014; 111 B Mahata (BFnmeth4220_CR15) 2014; 7 Y Dang (BFnmeth4220_CR26) 2016; 17 F Guo (BFnmeth4220_CR38) 2015; 161 IC Macaulay (BFnmeth4220_CR1) 2014; 10 DA Jaitin (BFnmeth4220_CR21) 2014; 343 A Scialdone (BFnmeth4220_CR33) 2015; 85 A Srivastava (BFnmeth4220_CR42) 2016; 32 BFnmeth4220_CR13 A Zeisel (BFnmeth4220_CR20) 2015; 347 T Hashimshony (BFnmeth4220_CR28) 2016; 17 F Paul (BFnmeth4220_CR29) 2015; 163 S Islam (BFnmeth4220_CR9) 2014; 11 J Kapteyn (BFnmeth4220_CR14) 2010; 11 E Llorens-Bobadilla (BFnmeth4220_CR24) 2015; 17 NL Bray (BFnmeth4220_CR43) 2016; 34 T Hashimshony (BFnmeth4220_CR8) 2012; 2 D Grün (BFnmeth4220_CR11) 2014; 11 T Ferreira (BFnmeth4220_CR22) 2014; 81 SA Munro (BFnmeth4220_CR7) 2014; 5 B Carpenter (BFnmeth4220_CR45) 2017; 76 O Stegle (BFnmeth4220_CR2) 2015; 16 L Jiang (BFnmeth4220_CR6) 2011; 21 EZ Macosko (BFnmeth4220_CR30) 2015; 161 |
References_xml | – volume: 16 start-page: 933 year: 2015 end-page: 941 ident: CR40 article-title: Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells publication-title: Nat. Immunol. doi: 10.1038/ni.3246 – volume: 34 start-page: 525 year: 2016 end-page: 527 ident: CR43 article-title: Near-optimal probabilistic RNA-seq quantification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3519 – volume: 17 start-page: 329 year: 2015 end-page: 340 ident: CR24 article-title: Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.07.002 – volume: 21 start-page: 1543 year: 2011 end-page: 1551 ident: CR6 article-title: Synthetic spike-in standards for RNA-seq experiments publication-title: Genome Res. – volume: 32 start-page: 1053 year: 2014 end-page: 1058 ident: CR17 article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2967 – volume: 58 start-page: 339 year: 2015 end-page: 352 ident: CR34 article-title: Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.03.005 – volume: 10 start-page: e1004126 year: 2014 ident: CR1 article-title: Single cell genomics: advances and future perspectives publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004126 – ident: CR4 – ident: CR39 – volume: 76 start-page: 1 year: 2017 end-page: 32 ident: CR45 article-title: Stan: A probabilistic programming language publication-title: J. Stat. Softw. doi: 10.18637/jss.v076.i01 – volume: 26 start-page: 192 year: 2011 end-page: 196 ident: CR12 article-title: Understanding equivalence and noninferiority testing publication-title: J. Gen. Intern. Med. doi: 10.1007/s11606-010-1513-8 – volume: 16 start-page: 712 year: 2015 end-page: 724 ident: CR36 article-title: Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.04.004 – volume: 33 start-page: 155 year: 2015 end-page: 160 ident: CR16 article-title: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3102 – volume: 161 start-page: 1202 year: 2015 end-page: 1214 ident: CR30 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 85 start-page: 54 year: 2015 end-page: 61 ident: CR33 article-title: Computational assignment of cell-cycle stage from single-cell transcriptome data publication-title: Methods doi: 10.1016/j.ymeth.2015.06.021 – volume: 24 start-page: 1918 year: 2014 end-page: 1931 ident: CR35 article-title: Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia publication-title: Genome Res. doi: 10.1101/gr.171645.113 – volume: 7 start-page: 1130 year: 2014 end-page: 1142 ident: CR15 article-title: Single-cell RNA sequencing reveals T helper cells synthesizing steroids to contribute to immune homeostasis publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.04.011 – volume: 347 start-page: 1138 year: 2015 end-page: 1142 ident: CR20 article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 16 start-page: 148 year: 2015 ident: CR25 article-title: Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos publication-title: Genome Biol. doi: 10.1186/s13059-015-0706-1 – volume: 17 start-page: 130 year: 2016 ident: CR26 article-title: Tracing the expression of circular RNAs in human pre-implantation embryos publication-title: Genome Biol. doi: 10.1186/s13059-016-0991-3 – volume: 2 start-page: 666 year: 2012 end-page: 673 ident: CR8 article-title: CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.08.003 – volume: 11 start-page: 637 year: 2014 end-page: 640 ident: CR11 article-title: Validation of noise models for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/nmeth.2930 – volume: 343 start-page: 776 year: 2014 end-page: 779 ident: CR21 article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types publication-title: Science doi: 10.1126/science.1247651 – volume: 111 start-page: 7048 year: 2014 end-page: 7053 ident: CR37 article-title: Microfluidic single-cell whole-transcriptome sequencing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1402030111 – volume: 11 start-page: 41 year: 2014 end-page: 46 ident: CR3 article-title: Quantitative assessment of single-cell RNA-sequencing methods publication-title: Nat. Methods doi: 10.1038/nmeth.2694 – volume: 16 start-page: 133 year: 2015 end-page: 145 ident: CR2 article-title: Computational and analytical challenges in single-cell transcriptomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3833 – volume: 10 start-page: 1096 year: 2013 end-page: 1098 ident: CR19 article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells publication-title: Nat. Methods – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR44 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 81 start-page: 847 year: 2014 end-page: 859 ident: CR22 article-title: Silencing of odorant receptor genes by G protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron publication-title: Neuron doi: 10.1016/j.neuron.2014.01.001 – volume: 12 start-page: 519 year: 2015 end-page: 522 ident: CR32 article-title: G&T-seq: parallel sequencing of single-cell genomes and transcriptomes publication-title: Nat. Methods doi: 10.1038/nmeth.3370 – volume: 5 start-page: 5125 year: 2014 ident: CR7 article-title: Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures publication-title: Nat. Commun. doi: 10.1038/ncomms6125 – volume: 11 start-page: 163 year: 2014 end-page: 166 ident: CR9 article-title: Quantitative single-cell RNA-seq with unique molecular identifiers publication-title: Nat. Methods doi: 10.1038/nmeth.2772 – ident: CR13 – volume: 11 start-page: 413 year: 2010 ident: CR14 article-title: Incorporation of non-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples publication-title: BMC Genomics doi: 10.1186/1471-2164-11-413 – volume: 36 start-page: 2418 year: 2008 end-page: 2433 ident: CR10 article-title: Molecular dissection of mRNA poly(A) tail length control in yeast publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn080 – volume: 509 start-page: 371 year: 2014 end-page: 375 ident: CR18 article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq publication-title: Nature doi: 10.1038/nature13173 – volume: 163 start-page: 1663 year: 2015 end-page: 1677 ident: CR29 article-title: Transcriptional heterogeneity and lineage commitment in myeloid progenitors publication-title: Cell doi: 10.1016/j.cell.2015.11.013 – ident: CR5 – volume: 17 start-page: 77 year: 2016 ident: CR28 article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq publication-title: Genome Biol. doi: 10.1186/s13059-016-0938-8 – volume: 161 start-page: 1187 year: 2015 end-page: 1201 ident: CR31 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – ident: CR41 – volume: 32 start-page: i192 year: 2016 end-page: i200 ident: CR42 article-title: RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw277 – volume: 14 start-page: 632 year: 2016 end-page: 647 ident: CR23 article-title: Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.12.050 – volume: 161 start-page: 1437 year: 2015 end-page: 1452 ident: CR38 article-title: The transcriptome and DNA methylome landscapes of human primordial germ cells publication-title: Cell doi: 10.1016/j.cell.2015.05.015 – volume: 11 start-page: 812 year: 2015 ident: CR27 article-title: Single-cell polyadenylation site mapping reveals 3′ isoform choice variability publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156198 – volume: 7 start-page: 1130 year: 2014 ident: BFnmeth4220_CR15 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.04.011 – volume: 32 start-page: 1053 year: 2014 ident: BFnmeth4220_CR17 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2967 – ident: BFnmeth4220_CR4 – volume: 21 start-page: 1543 year: 2011 ident: BFnmeth4220_CR6 publication-title: Genome Res. doi: 10.1101/gr.121095.111 – volume: 2 start-page: 666 year: 2012 ident: BFnmeth4220_CR8 publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.08.003 – volume: 81 start-page: 847 year: 2014 ident: BFnmeth4220_CR22 publication-title: Neuron doi: 10.1016/j.neuron.2014.01.001 – volume: 111 start-page: 7048 year: 2014 ident: BFnmeth4220_CR37 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1402030111 – volume: 12 start-page: 2825 year: 2011 ident: BFnmeth4220_CR44 publication-title: J. Mach. Learn. Res. – ident: BFnmeth4220_CR5 doi: 10.1186/1471-2164-6-150 – volume: 16 start-page: 933 year: 2015 ident: BFnmeth4220_CR40 publication-title: Nat. Immunol. doi: 10.1038/ni.3246 – volume: 32 start-page: i192 year: 2016 ident: BFnmeth4220_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw277 – ident: BFnmeth4220_CR13 doi: 10.1038/nbt.2957 – volume: 11 start-page: 41 year: 2014 ident: BFnmeth4220_CR3 publication-title: Nat. Methods doi: 10.1038/nmeth.2694 – volume: 163 start-page: 1663 year: 2015 ident: BFnmeth4220_CR29 publication-title: Cell doi: 10.1016/j.cell.2015.11.013 – volume: 347 start-page: 1138 year: 2015 ident: BFnmeth4220_CR20 publication-title: Science doi: 10.1126/science.aaa1934 – volume: 161 start-page: 1437 year: 2015 ident: BFnmeth4220_CR38 publication-title: Cell doi: 10.1016/j.cell.2015.05.015 – volume: 26 start-page: 192 year: 2011 ident: BFnmeth4220_CR12 publication-title: J. Gen. Intern. Med. doi: 10.1007/s11606-010-1513-8 – volume: 16 start-page: 133 year: 2015 ident: BFnmeth4220_CR2 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3833 – volume: 10 start-page: 1096 year: 2013 ident: BFnmeth4220_CR19 publication-title: Nat. Methods doi: 10.1038/nmeth.2639 – ident: BFnmeth4220_CR41 doi: 10.1101/021592 – volume: 10 start-page: e1004126 year: 2014 ident: BFnmeth4220_CR1 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004126 – volume: 509 start-page: 371 year: 2014 ident: BFnmeth4220_CR18 publication-title: Nature doi: 10.1038/nature13173 – volume: 17 start-page: 329 year: 2015 ident: BFnmeth4220_CR24 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.07.002 – volume: 33 start-page: 155 year: 2015 ident: BFnmeth4220_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3102 – volume: 11 start-page: 812 year: 2015 ident: BFnmeth4220_CR27 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156198 – volume: 14 start-page: 632 year: 2016 ident: BFnmeth4220_CR23 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.12.050 – volume: 16 start-page: 712 year: 2015 ident: BFnmeth4220_CR36 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.04.004 – volume: 17 start-page: 130 year: 2016 ident: BFnmeth4220_CR26 publication-title: Genome Biol. doi: 10.1186/s13059-016-0991-3 – volume: 16 start-page: 148 year: 2015 ident: BFnmeth4220_CR25 publication-title: Genome Biol. doi: 10.1186/s13059-015-0706-1 – volume: 11 start-page: 163 year: 2014 ident: BFnmeth4220_CR9 publication-title: Nat. Methods doi: 10.1038/nmeth.2772 – volume: 24 start-page: 1918 year: 2014 ident: BFnmeth4220_CR35 publication-title: Genome Res. doi: 10.1101/gr.171645.113 – ident: BFnmeth4220_CR39 – volume: 17 start-page: 77 year: 2016 ident: BFnmeth4220_CR28 publication-title: Genome Biol. doi: 10.1186/s13059-016-0938-8 – volume: 58 start-page: 339 year: 2015 ident: BFnmeth4220_CR34 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.03.005 – volume: 11 start-page: 413 year: 2010 ident: BFnmeth4220_CR14 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-413 – volume: 343 start-page: 776 year: 2014 ident: BFnmeth4220_CR21 publication-title: Science doi: 10.1126/science.1247651 – volume: 85 start-page: 54 year: 2015 ident: BFnmeth4220_CR33 publication-title: Methods doi: 10.1016/j.ymeth.2015.06.021 – volume: 34 start-page: 525 year: 2016 ident: BFnmeth4220_CR43 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3519 – volume: 12 start-page: 519 year: 2015 ident: BFnmeth4220_CR32 publication-title: Nat. Methods doi: 10.1038/nmeth.3370 – volume: 5 start-page: 5125 year: 2014 ident: BFnmeth4220_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms6125 – volume: 36 start-page: 2418 year: 2008 ident: BFnmeth4220_CR10 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn080 – volume: 161 start-page: 1202 year: 2015 ident: BFnmeth4220_CR30 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 161 start-page: 1187 year: 2015 ident: BFnmeth4220_CR31 publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 76 start-page: 1 year: 2017 ident: BFnmeth4220_CR45 publication-title: J. Stat. Softw. doi: 10.18637/jss.v076.i01 – volume: 11 start-page: 637 year: 2014 ident: BFnmeth4220_CR11 publication-title: Nat. Methods doi: 10.1038/nmeth.2930 |
SSID | ssj0033425 |
Score | 2.6620727 |
Snippet | All data generated in this study have been deposited in the ArrayExpress database under accession codes E-MTAB-5480, E-MTAB-5481, E-MTAB-5482, E-MTAB-5483,... A comparison framework applied to 15 single-cell RNA-seq protocols reveals differences in accuracy and sensitivity and discusses the utility of RNA spike-in... Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing... Single cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, revealing new cell... |
SourceID | pubmedcentral proquest pubmed crossref springer rcaap |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 381 |
SubjectTerms | 45/91 631/208/199 631/337/2019 631/61/514/1949 analysis Animals Bioinformatics Biological Microscopy Biological Techniques Biomedical Engineering/Biotechnology Data processing Embryonic Stem Cells - physiology Freezing Gene expression Gene sequencing Life Sciences Mice Poly A Proteomics Protocol (computers) Ribonucleic acid RNA RNA sequencing RNA, Messenger Science & Technology Sensitivity analysis Sensitivity and Specificity Sequence Analysis, RNA - methods Sequence Analysis, RNA - standards Sequence Analysis, RNA - statistics & numerical data Single-Cell Analysis - methods Single-Cell Analysis - standards Single-Cell Analysis - statistics & numerical data Stochasticity Transcription Transcriptomics Workflow |
Title | Power analysis of single-cell RNA-sequencing experiments |
URI | http://hdl.handle.net/1822/56417 https://link.springer.com/article/10.1038/nmeth.4220 https://www.ncbi.nlm.nih.gov/pubmed/28263961 https://www.proquest.com/docview/2085807512 https://www.proquest.com/docview/1875141202 https://pubmed.ncbi.nlm.nih.gov/PMC5376499 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xVUi8IL4JjCqIvfBgFttJnD6hgVYmJKppYlLfLH8KpCkta_fAf8-d67RMRbzkIT7JyZ1zvjtffj-AY2EaaSfOsroTeEExZhrMWoNpufcqRukoUfw2a8-v6q_zZp4LbqvcVjn4xOSo_cJRjfyEuCQJOJeLj8tfjFij6HQ1U2gcwIgL3GvpT_Hpl8ETS1kn0lWKypnCjXGAJ5XdSU8EzR9qQTzff29Ie1HmfrPk6MYZs9w7OU0b0vQRPMyRZHm6Mf1juBf6J3B_wy35-yl0F8R_VpoMOlIuYkllgevAqFZfXs5OWW6jxrvlDuh_9QyupmffP5-zTJPAXD1Ra-ZV45WfYNxnuxgrbm1UVhqjVPTWBNsoYSP3rnHoTJyXbWejQWHPg6paX8vncNgv-vASSktYPSK6jkeMoyI3wgVZ2aYKauKD9wW8H3SlXcYQJyqLa53OsmWnk1416bWAd1vZ5QY5459SR4PKdf56Vnpn6wLebodx3ZOCTB8WtyvNMdHiNRcVyrzYWGg7DaaRuBhaXoC6Y7utAGFq3x3pf_5I2NqEboNJYAFFsrKmXmsM02k-IXTT1lwVcDxYfvfI-2_26v9v9hoeCIoQUhPQERyub27DG4xv1nYMB2quxmkpj2H06Wx2cfkH1-r-8g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVoheEG8MLRhRDhxMvbu21zlUVQVUKW0jhFopt-0-RaXKCU0q1D_Fb2TGr7QK4tZLDvEojmd2vPN5xt8HsMV1LszAmiQrOX6gWaJzRK1eF8w5GYKwBBSPR8XwNPs2zscr8Kd7F4bGKrt7Yn2jdhNLz8i3SUuSiHMZ353-Skg1irqrnYRGsywO_fVvhGyznYMvGN8PnO9_Pfk8TFpVgcRmAzlPnMyddAMsk0wZQsqMCdIIraUMzmhvcslNYM7mFnPPOlGUJmg0dszLtHCZwN-9B2sZtRgxf-S4B3hCZLXIK6GAROJG3NGhinK7IkHoTxknXfGbG-BSVbs8nLl2abWeLnVq6w1w_xE8bCvXeK9Zao9hxVdP4H6jZXn9FMrvpLcW65bkJJ6EmB5DXPiEegPxj9Fe0o5t47fxQlhg9gxO78SBz2G1mlT-JcSGuIF4sCULWLcFprn1IjV56uXAeeci-Nj5StmWs5ykMy5U3TsXpar9qsivEbzvbacNU8c_rTY6l6s2W2dqsbYieNcfxjwjB-nKT65miiGwYxnjKdq8aCLUnwZhKxZ6BYtA3opdb0Ac3rePVOc_ay5vYtNB0BlBVEdZ0Ww3wgI6H-cqLzImI9jqIr_4y8tX9ur_V_YWHgxPjo_U0cHo8DWsc6pO6gGkDVidX175Tayt5uZNvaBjOLvrDPoLGes8Fg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VViAuiDeGAkaUAwcT78Ne54BQRYlaClGFqJTbsk9RqXLSJhXqX-PXMeNHQhXErRcf7JEfMzve-bzj7wPY4aYQduhsJiuOGzTLTIGoNZiSea9iFI6A4tdxuX8sP0-KyQb87v-FobbK_p3YvKj91NE38gFpSRJxLuOD2LVFHO2NPszOMlKQopXWXk6jHSKH4fIXwrf5-4M9jPUbzkefvn_czzqFgczJoVpkXhVe-SGWTLaKMWfWRmWFMUpFb02wheI2Mu8Kh3novCgrGw0aexZUXnop8Lw3YEsJKUk2Qk2WYE8I2Qi-EiLIFE7KPTWqqAY1iUO_k5w0xv-eDNcq3PVGza1zZ8xsbdW2mQxHd-FOV8Wmu-2wuwcbob4PN1tdy8sHUB2R9lpqOsKTdBpT-iRxGjJaJ0i_jXezroUb96YrkYH5Qzi-Fgc-gs16WocnkFriCeLRVSxiDReZ4S6I3BZ5UEMfvE_gbe8r7Tr-cpLRONXNOrqodONXTX5N4PXSdtaydvzTart3ue4yd65X4yyBV8vDmHPkIFOH6cVcMwR5TDKeo83jNkLLyyCExaKvZAmoK7FbGhCf99Uj9cnPhtebmHUQgCaQNFHW1OeNEIGux7kuSslUAjt95Fe3vP5kT___ZC_hFuaO_nIwPnwGtzkVKk0v0jZsLs4vwnMssxb2RTOeU_hx3Qn0B3CQQEk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+analysis+of+single-cell+RNA-sequencing+experiments&rft.jtitle=Nature+methods&rft.au=Svensson%2C+Valentine&rft.au=Natarajan%2C+Kedar+Nath&rft.au=Ly%2C+Lam-ha&rft.au=Miragaia%2C+Ricardo+J&rft.date=2017-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=14&rft.issue=4&rft.spage=381&rft_id=info:doi/10.1038%2Fnmeth.4220&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |