Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin
The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bg...
Saved in:
Published in | Matrix biology Vol. 52-54; pp. 141 - 150 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2016
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0945-053X 1569-1802 |
DOI | 10.1016/j.matbio.2016.03.008 |
Cover
Abstract | The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin.
•Biglycan deficient mice have reduced angiogenesis during fracture healing.•Biglycan co-localizes with endostatin at sites of new bone formation.•Endostatin mRNA and protein are up-regulated in the Bgn-deficient callus.•Bgn counteracts the anti-angiogenic effects of endostatin in vessel growth. |
---|---|
AbstractList | The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin. The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin. Published by Elsevier B.V. The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing (1). By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14 days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1 molar ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin. The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin. •Biglycan deficient mice have reduced angiogenesis during fracture healing.•Biglycan co-localizes with endostatin at sites of new bone formation.•Endostatin mRNA and protein are up-regulated in the Bgn-deficient callus.•Bgn counteracts the anti-angiogenic effects of endostatin in vessel growth. |
Author | Kirby, David J. Myren, Maja Young, Marian F. Kilts, Tina M. Ricard-Blum, Sylvie Noonan, Megan L. Kram, Vardit Maeda, Azusa Owens, Rick T. |
AuthorAffiliation | 3 University of Lyon, UMR 5246 CNRS - University Lyon 1, ICBMS, 69622 Villeurbanne, France 1 Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda MD 20892 2 Life Cell Corporation, Branchburg, NJ 08876 |
AuthorAffiliation_xml | – name: 1 Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda MD 20892 – name: 3 University of Lyon, UMR 5246 CNRS - University Lyon 1, ICBMS, 69622 Villeurbanne, France – name: 2 Life Cell Corporation, Branchburg, NJ 08876 |
Author_xml | – sequence: 1 givenname: Maja surname: Myren fullname: Myren, Maja organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States – sequence: 2 givenname: David J. surname: Kirby fullname: Kirby, David J. organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States – sequence: 3 givenname: Megan L. surname: Noonan fullname: Noonan, Megan L. organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States – sequence: 4 givenname: Azusa surname: Maeda fullname: Maeda, Azusa organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States – sequence: 5 givenname: Rick T. surname: Owens fullname: Owens, Rick T. organization: Life Cell Corporation, Branchburg, NJ 08876, United States – sequence: 6 givenname: Sylvie surname: Ricard-Blum fullname: Ricard-Blum, Sylvie organization: University of Lyon, UMR 5246 CNRS - University Lyon 1, ICBMS, 69622 Villeurbanne, France – sequence: 7 givenname: Vardit surname: Kram fullname: Kram, Vardit organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States – sequence: 8 givenname: Tina M. surname: Kilts fullname: Kilts, Tina M. organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States – sequence: 9 givenname: Marian F. surname: Young fullname: Young, Marian F. email: Myoung@dir.nidcr.nih.gov organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27072616$$D View this record in MEDLINE/PubMed https://hal.science/hal-01406723$$DView record in HAL |
BookMark | eNqFkUFv1DAQhS1URLeFf4BQjnBIGDtOnHBAKlVLkVbiAhI3y3EmqVdZe7GdFfvvcdilgh7gZI3nvTcefxfkzDqLhLykUFCg9dtNsVWxM65gqSqgLACaJ2RFq7rNaQPsjKyg5VUOVfntnFyEsAEAzkXzjJwzAYLVtF6R-MGM00Erm-1cRBuNmqZD5nGcJxUxZMqOxo1oMZiQ9bM3dswGr3ScPSbZThmfdYdMTRF_9fDHzmMIxtlk7bNhtjouhRsytL0LUUVjn5Ong5oCvjidl-Tr7c2X67t8_fnjp-urda55K2LeVaUCXpWMIhM91kJzRtuhazRtGR96xhvGQFU9x6HiJRM1AwG1AMVFi2VbXpL3x9zd3G2x12k_rya582ar_EE6ZeTfHWvu5ej2kjeiahqWAt4cA-4f2e6u1nK5A8rTQFbuadK-Pg3z7vuMIcqtCRqnSVl0c5BUtFDTqhVNkr76810Pyb-xJAE_CrR3IXgcHiQU5EJfbuSRvlzoSyhlop9s7x7ZtFk-3C3bmel_5tNnYSKyN-hl0Aatxt541FH2zvw74Cdy4s9u |
CitedBy_id | crossref_primary_10_1007_s10529_020_02818_z crossref_primary_10_1007_s11010_021_04216_z crossref_primary_10_1016_j_mad_2025_112041 crossref_primary_10_1039_D2LC00570K crossref_primary_10_3389_fendo_2020_527592 crossref_primary_10_1016_j_matbio_2017_04_001 crossref_primary_10_1186_s12864_017_3548_2 crossref_primary_10_1042_BST20190653 crossref_primary_10_3389_fphys_2023_1119368 crossref_primary_10_1016_j_matbio_2016_09_003 crossref_primary_10_1016_j_semcancer_2019_05_003 crossref_primary_10_1016_j_bbrc_2020_04_020 crossref_primary_10_1111_febs_13963 crossref_primary_10_1016_j_biomaterials_2020_120247 crossref_primary_10_1016_j_matbio_2021_04_001 crossref_primary_10_1002_adhm_201800700 crossref_primary_10_3390_ijms17111822 crossref_primary_10_1096_fj_202401903R crossref_primary_10_1369_0022155420930303 crossref_primary_10_1016_j_matbio_2019_08_002 crossref_primary_10_1186_s12860_022_00443_4 crossref_primary_10_4137_BTRI_S38670 crossref_primary_10_1002_pgr2_11 crossref_primary_10_1007_s11684_019_0693_9 crossref_primary_10_3390_ijms23052591 crossref_primary_10_1016_j_tranon_2018_10_002 crossref_primary_10_3389_fphar_2019_01649 crossref_primary_10_1016_j_matbio_2017_11_005 crossref_primary_10_1369_0022155418811645 crossref_primary_10_1016_j_matbio_2016_09_009 crossref_primary_10_1007_s10528_023_10633_0 crossref_primary_10_1155_2022_2656480 crossref_primary_10_3389_fcell_2020_00011 |
Cites_doi | 10.1016/j.matbio.2013.12.011 10.1359/jbmr.2002.17.7.1180 10.1038/bjc.2012.59 10.1136/jech.2006.056622 10.1016/S1097-2765(04)00102-9 10.1016/j.bone.2014.07.002 10.1136/jech.44.3.241 10.1021/acs.biochem.5b00653 10.1016/S0014-5793(00)02249-3 10.1194/jlr.M500241-JLR200 10.1073/pnas.1110629108 10.1042/BJ20091594 10.1016/j.matbio.2014.01.010 10.1172/JCI23755 10.1016/S0304-3835(03)00267-2 10.1359/jbmr.1999.14.7.1167 10.1111/j.1742-4658.2010.07797.x 10.1007/s11033-011-0713-6 10.1016/j.matbio.2015.02.003 10.1016/j.matbio.2013.12.004 10.1359/jbmr.2002.17.2.331 10.1038/nrrheum.2012.1 10.1007/s00223-009-9287-x 10.18632/oncotarget.1871 10.1073/pnas.98.3.1024 10.1007/s00223-005-0026-7 10.1016/j.lfs.2015.06.017 10.1016/S0020-1383(15)30049-8 10.1038/1746 10.1016/j.bbagen.2015.09.007 |
ContentType | Journal Article |
Copyright | 2016 Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 – notice: Published by Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1016/j.matbio.2016.03.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1569-1802 |
EndPage | 150 |
ExternalDocumentID | PMC4875882 oai_HAL_hal_01406723v1 27072616 10_1016_j_matbio_2016_03_008 S0945053X16300324 |
Genre | Journal Article Research Support, N.I.H., Intramural Review |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 DE000379 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UNMZH WUQ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c497t-b53a045321e27de67c4219fb8c1924fd248220a5d4ef5432762070670a479e393 |
IEDL.DBID | .~1 |
ISSN | 0945-053X |
IngestDate | Tue Sep 30 16:37:37 EDT 2025 Fri Sep 12 12:42:42 EDT 2025 Sat Sep 27 18:53:58 EDT 2025 Mon Jul 21 05:51:17 EDT 2025 Wed Oct 01 03:48:06 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Fri Feb 23 02:35:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Angiogenesis Biglycan Fracture healing Endostatin |
Language | English |
License | Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-b53a045321e27de67c4219fb8c1924fd248220a5d4ef5432762070670a479e393 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 PMCID: PMC4875882 Maja Myren, David J. Kirby, (Co-first authors) |
OpenAccessLink | https://hal.science/hal-01406723 |
PMID | 27072616 |
PQID | 1790615978 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4875882 hal_primary_oai_HAL_hal_01406723v1 proquest_miscellaneous_1790615978 pubmed_primary_27072616 crossref_primary_10_1016_j_matbio_2016_03_008 crossref_citationtrail_10_1016_j_matbio_2016_03_008 elsevier_sciencedirect_doi_10_1016_j_matbio_2016_03_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Matrix biology |
PublicationTitleAlternate | Matrix Biol |
PublicationYear | 2016 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Abdollahi, Hahnfeldt, Maercker, Grone, Debus, Ansorge, Folkman, Hlatky, Huber (bb0105) 2004; 13 Santolini, West, Giannoudis (bb0025) 2015; 46 Moreth, Frey, Hubo, Zeng-Brouwers, Nastase, Hsieh, Haceni, Pfeilschifter, Iozzo, Schaefer (bb0160) 2014; 35 Berendsen, Pinnow, Maeda, Brown, McCartney-Francis, Kram, Owens, Robey, Holmbeck, de Castro, Kilts, Young (bb0005) 2014; 35 Donaldson, Cook, Thomson (bb0010) 1990; 44 Iozzo, Schaefer (bb0030) 2015; 42 Goldberg, Septier, Rapoport, Iozzo, Young, Ameye (bb0055) 2005; 77 Hildebrand, Laib, Muller, Dequeker, Ruegsegger (bb0180) 1999; 14 Zeng, Chen, Miller, Javaherian, Moulton (bb0075) 2005; 46 Yamamoto, Ohga, Hida, Maishi, Kawamoto, Kitayama, Akiyama, Osawa, Kondoh, Matsuda, Onodera, Fujie, Kaga, Hirano, Shinohara, Shindoh, Hida (bb0100) 2012; 106 Faye, Inforzato, Bignon, Hartmann, Muller, Ballut, Olsen, Day, Ricard-Blum (bb0185) 2010; 427 Moucha, Einhorn (bb0020) 2005 Donaldson, Reckless, Scholes, Mindell, Shelton (bb0015) 2008; 62 Parris (bb0090) 2015; 13 Neill, Schaefer, Iozzo (bb0130) 2015; 54 Yuasa, Mignemi, Barnett, Cates, Nyman, Okawa, Yoshii, Schwartz, Stutz, Schoenecker (bb0145) 2014; 67 Poluzzi, Iozzo, Schaefer (bb0155) 2015 Ferreras, Felbor, Lenhard, Olsen, Delaisse (bb0115) 2000; 486 Chen, Shi, Xu, Robey, Young (bb0040) 2002; 17 Goyal, Neill, Owens, Schaefer, Iozzo (bb0150) 2014; 34 Claes, Recknagel, Ignatius (bb0165) 2012; 8 Walia, Yang, Huang, Rosenblatt, Chang, Azar (bb0070) 2015; 1850 Neill, Schaefer, Iozzo (bb0125) 2015 Corsi, Xu, Chen, Boyde, Liang, Mankani, Sommer, Iozzo, Eichstetter, Robey, Bianco, Young (bb0045) 2002; 17 Berendsen, Fisher, Kilts, Owens, Robey, Gutkind, Young (bb0065) 2011; 108 Sipola, Seppinen, Pihlajaniemi, Tuukkanen (bb0120) 2009; 85 Xu, Bianco, Fisher, Longenecker, Smith, Goldstein, Bonadio, Boskey, Heegaard, Sommer, Satomura, Dominguez, Zhao, Kulkarni, Robey, Young (bb0035) 1998; 20 Ameye, Aria, Jepsen, Oldberg, Xu, Young (bb0050) 2002; 16 Behl, Kotwani (bb0140) 2015; 135 Zhang, Ge, Hu, Zhang, Li, Xu, He, Zhao, Zhang, Jie, Chen, Zheng (bb0080) 2012; 39 Iozzo, Schaefer (bb0135) 2010; 277 Muller, Koller, Hildebrand, Laib, Gianolini, Ruegsegger (bb0175) 1996; 4 Schaefer, Babelova, Kiss, Hausser, Baliova, Krzyzankova, Marsche, Young, Mihalik, Gotte, Malle, Schaefer, Grone (bb0170) 2005; 115 Dixelius, Cross, Matsumoto, Claesson-Welsh (bb0085) 2003; 196 Hu, Duan, Li, Su, Yan, Zhu, Liu, Yang (bb0095) 2014; 5 Chen, Fisher, Robey, Young (bb0060) 2004; 18 Rehn, Veikkola, Kukk-Valdre, Nakamura, Ilmonen, Lombardo, Pihlajaniemi, Alitalo, Vuori (bb0110) 2001; 98 Corsi (10.1016/j.matbio.2016.03.008_bb0045) 2002; 17 Santolini (10.1016/j.matbio.2016.03.008_bb0025) 2015; 46 Sipola (10.1016/j.matbio.2016.03.008_bb0120) 2009; 85 Behl (10.1016/j.matbio.2016.03.008_bb0140) 2015; 135 Neill (10.1016/j.matbio.2016.03.008_bb0130) 2015; 54 Dixelius (10.1016/j.matbio.2016.03.008_bb0085) 2003; 196 Muller (10.1016/j.matbio.2016.03.008_bb0175) 1996; 4 Donaldson (10.1016/j.matbio.2016.03.008_bb0015) 2008; 62 Zeng (10.1016/j.matbio.2016.03.008_bb0075) 2005; 46 Faye (10.1016/j.matbio.2016.03.008_bb0185) 2010; 427 Iozzo (10.1016/j.matbio.2016.03.008_bb0135) 2010; 277 Yuasa (10.1016/j.matbio.2016.03.008_bb0145) 2014; 67 Rehn (10.1016/j.matbio.2016.03.008_bb0110) 2001; 98 Yamamoto (10.1016/j.matbio.2016.03.008_bb0100) 2012; 106 Chen (10.1016/j.matbio.2016.03.008_bb0040) 2002; 17 Berendsen (10.1016/j.matbio.2016.03.008_bb0005) 2014; 35 Chen (10.1016/j.matbio.2016.03.008_bb0060) 2004; 18 Claes (10.1016/j.matbio.2016.03.008_bb0165) 2012; 8 Hildebrand (10.1016/j.matbio.2016.03.008_bb0180) 1999; 14 Walia (10.1016/j.matbio.2016.03.008_bb0070) 2015; 1850 Xu (10.1016/j.matbio.2016.03.008_bb0035) 1998; 20 Hu (10.1016/j.matbio.2016.03.008_bb0095) 2014; 5 Moreth (10.1016/j.matbio.2016.03.008_bb0160) 2014; 35 Ferreras (10.1016/j.matbio.2016.03.008_bb0115) 2000; 486 Ameye (10.1016/j.matbio.2016.03.008_bb0050) 2002; 16 Schaefer (10.1016/j.matbio.2016.03.008_bb0170) 2005; 115 Parris (10.1016/j.matbio.2016.03.008_bb0090) 2015; 13 Goyal (10.1016/j.matbio.2016.03.008_bb0150) 2014; 34 Poluzzi (10.1016/j.matbio.2016.03.008_bb0155) 2015 Donaldson (10.1016/j.matbio.2016.03.008_bb0010) 1990; 44 Iozzo (10.1016/j.matbio.2016.03.008_bb0030) 2015; 42 Goldberg (10.1016/j.matbio.2016.03.008_bb0055) 2005; 77 Neill (10.1016/j.matbio.2016.03.008_bb0125) 2015 Berendsen (10.1016/j.matbio.2016.03.008_bb0065) 2011; 108 Moucha (10.1016/j.matbio.2016.03.008_bb0020) 2005 Zhang (10.1016/j.matbio.2016.03.008_bb0080) 2012; 39 Abdollahi (10.1016/j.matbio.2016.03.008_bb0105) 2004; 13 |
References_xml | – volume: 42 start-page: 11 year: 2015 end-page: 55 ident: bb0030 article-title: Proteoglycan form and function: a comprehensive nomenclature of proteoglycans publication-title: Matrix Biol. J. Int. Soc. Matrix Biol. – volume: 54 start-page: 4583 year: 2015 end-page: 4598 ident: bb0130 article-title: Decoding the matrix: Instructive roles of proteoglycan receptors publication-title: Biochemistry – volume: 39 start-page: 89 year: 2012 end-page: 95 ident: bb0080 article-title: Endostar down-regulates HIF-1 and VEGF expression and enhances the radioresponse to human lung adenocarcinoma cancer cells publication-title: Mol. Biol. Rep. – volume: 35 start-page: 223 year: 2014 end-page: 231 ident: bb0005 article-title: Biglycan modulates angiogenesis and bone formation during fracture healing publication-title: Matrix Biol. J. Int. Soc. Matrix Biol. – volume: 17 start-page: 331 year: 2002 end-page: 340 ident: bb0040 article-title: Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. – volume: 115 start-page: 2223 year: 2005 end-page: 2233 ident: bb0170 article-title: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages publication-title: J. Clin. Invest. – year: 2015 ident: bb0125 article-title: Decorin as a multivalent therapeutic agent against cancer publication-title: Adv. Drug Deliv. Rev. – start-page: 169 year: 2005 ident: bb0020 article-title: Bone Morphogenetic proteins and other growth factors to enhance fracture healing and treatment of nonunions publication-title: Bone Regeneration and Repair: Biology and Clinical Applications – volume: 13 start-page: 649 year: 2004 end-page: 663 ident: bb0105 article-title: Endostatin's antiangiogenic signaling network publication-title: Mol. Cell – volume: 18 start-page: 948 year: 2004 end-page: 958 ident: bb0060 article-title: The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. – volume: 34 start-page: 46 year: 2014 end-page: 54 ident: bb0150 article-title: Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells publication-title: Matrix Biol. J. Int. Soc. Matrix Biol. – volume: 17 start-page: 1180 year: 2002 end-page: 1189 ident: bb0045 article-title: Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers–Danlos-like changes in bone and other connective tissues publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. – volume: 16 start-page: 673 year: 2002 end-page: 680 ident: bb0050 article-title: Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. – volume: 135 start-page: 131 year: 2015 end-page: 137 ident: bb0140 article-title: Possible role of endostatin in the antiangiogenic therapy of diabetic retinopathy publication-title: Life Sci. – year: 2015 ident: bb0155 article-title: Endostatin and Endorepellin: A Common Route of Action for Similar Angiostatic Cancer Avengers – volume: 46 start-page: S8 year: 2015 end-page: S19 ident: bb0025 article-title: Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence publication-title: Injury – volume: 77 start-page: 297 year: 2005 end-page: 310 ident: bb0055 article-title: Targeted disruption of two small leucine-rich proteoglycans, biglycan and decorin, excerpts divergent effects on enamel and dentin formation publication-title: Calcif. Tissue Int. – volume: 14 start-page: 1167 year: 1999 end-page: 1174 ident: bb0180 article-title: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. – volume: 277 start-page: 3864 year: 2010 end-page: 3875 ident: bb0135 article-title: Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans publication-title: FEBS J. – volume: 20 start-page: 78 year: 1998 end-page: 82 ident: bb0035 article-title: Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice publication-title: Nat. Genet. – volume: 44 start-page: 241 year: 1990 end-page: 245 ident: bb0010 article-title: Incidence of fractures in a geographically defined population publication-title: J. Epidemiol. Community Health – volume: 1850 start-page: 2422 year: 2015 end-page: 2438 ident: bb0070 article-title: Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications publication-title: Biochim. Biophys. Acta – volume: 13 year: 2015 ident: bb0090 article-title: A hypothesis concerning the biphasic dose-response of tumors to angiostatin and endostatin publication-title: Dose–Response Publ. Int. Hormesis Soc. – volume: 35 start-page: 143 year: 2014 end-page: 151 ident: bb0160 article-title: Biglycan-triggered TLR-2- and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury publication-title: Matrix Biol. J. Int. Soc. Matrix Biol. – volume: 196 start-page: 1 year: 2003 end-page: 12 ident: bb0085 article-title: Endostatin action and intracellular signaling: beta-catenin as a potential target? publication-title: Cancer Lett. – volume: 486 start-page: 247 year: 2000 end-page: 251 ident: bb0115 article-title: Generation and degradation of human endostatin proteins by various proteinases publication-title: FEBS Lett. – volume: 427 start-page: 467 year: 2010 end-page: 475 ident: bb0185 article-title: Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells publication-title: Biochem. J. – volume: 85 start-page: 412 year: 2009 end-page: 420 ident: bb0120 article-title: Endostatin affects osteoblast behavior in vitro, but collagen XVIII/endostatin is not essential for skeletal development in vivo publication-title: Calcif. Tissue Int. – volume: 4 start-page: 113 year: 1996 end-page: 119 ident: bb0175 article-title: Resolution dependency of microstructural properties of cancellous bone based on three-dimensional mu-tomography publication-title: Technology Health Care Off. J. Eur. Soc. Eng. Med. – volume: 108 start-page: 17022 year: 2011 end-page: 17027 ident: bb0065 article-title: Modulation of canonical Wnt signaling by the extracellular matrix component biglycan publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 98 start-page: 1024 year: 2001 end-page: 1029 ident: bb0110 article-title: Interaction of endostatin with integrins implicated in angiogenesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 62 start-page: 174 year: 2008 end-page: 180 ident: bb0015 article-title: The epidemiology of fractures in England publication-title: J. Epidemiol. Community Health – volume: 46 start-page: 1849 year: 2005 end-page: 1859 ident: bb0075 article-title: Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis publication-title: J. Lipid Res. – volume: 5 start-page: 1885 year: 2014 end-page: 1896 ident: bb0095 article-title: Biglycan enhances gastric cancer invasion by activating FAK signaling pathway publication-title: Oncotarget – volume: 106 start-page: 1214 year: 2012 end-page: 1223 ident: bb0100 article-title: Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells publication-title: Br. J. Cancer – volume: 8 start-page: 133 year: 2012 end-page: 143 ident: bb0165 article-title: Fracture healing under healthy and inflammatory conditions publication-title: Nat. Rev. Rheumatol. – volume: 67 start-page: 208 year: 2014 end-page: 221 ident: bb0145 article-title: The temporal and spatial development of vascularity in a healing displaced fracture publication-title: Bone – volume: 13 year: 2015 ident: 10.1016/j.matbio.2016.03.008_bb0090 article-title: A hypothesis concerning the biphasic dose-response of tumors to angiostatin and endostatin publication-title: Dose–Response Publ. Int. Hormesis Soc. – volume: 34 start-page: 46 year: 2014 ident: 10.1016/j.matbio.2016.03.008_bb0150 article-title: Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells publication-title: Matrix Biol. J. Int. Soc. Matrix Biol. doi: 10.1016/j.matbio.2013.12.011 – volume: 17 start-page: 1180 year: 2002 ident: 10.1016/j.matbio.2016.03.008_bb0045 article-title: Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers–Danlos-like changes in bone and other connective tissues publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1359/jbmr.2002.17.7.1180 – volume: 106 start-page: 1214 year: 2012 ident: 10.1016/j.matbio.2016.03.008_bb0100 article-title: Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells publication-title: Br. J. Cancer doi: 10.1038/bjc.2012.59 – volume: 62 start-page: 174 year: 2008 ident: 10.1016/j.matbio.2016.03.008_bb0015 article-title: The epidemiology of fractures in England publication-title: J. Epidemiol. Community Health doi: 10.1136/jech.2006.056622 – volume: 13 start-page: 649 year: 2004 ident: 10.1016/j.matbio.2016.03.008_bb0105 article-title: Endostatin's antiangiogenic signaling network publication-title: Mol. Cell doi: 10.1016/S1097-2765(04)00102-9 – volume: 67 start-page: 208 year: 2014 ident: 10.1016/j.matbio.2016.03.008_bb0145 article-title: The temporal and spatial development of vascularity in a healing displaced fracture publication-title: Bone doi: 10.1016/j.bone.2014.07.002 – volume: 44 start-page: 241 year: 1990 ident: 10.1016/j.matbio.2016.03.008_bb0010 article-title: Incidence of fractures in a geographically defined population publication-title: J. Epidemiol. Community Health doi: 10.1136/jech.44.3.241 – volume: 54 start-page: 4583 year: 2015 ident: 10.1016/j.matbio.2016.03.008_bb0130 article-title: Decoding the matrix: Instructive roles of proteoglycan receptors publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00653 – volume: 486 start-page: 247 year: 2000 ident: 10.1016/j.matbio.2016.03.008_bb0115 article-title: Generation and degradation of human endostatin proteins by various proteinases publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)02249-3 – volume: 18 start-page: 948 year: 2004 ident: 10.1016/j.matbio.2016.03.008_bb0060 article-title: The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. – volume: 46 start-page: 1849 year: 2005 ident: 10.1016/j.matbio.2016.03.008_bb0075 article-title: Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis publication-title: J. Lipid Res. doi: 10.1194/jlr.M500241-JLR200 – volume: 108 start-page: 17022 year: 2011 ident: 10.1016/j.matbio.2016.03.008_bb0065 article-title: Modulation of canonical Wnt signaling by the extracellular matrix component biglycan publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1110629108 – year: 2015 ident: 10.1016/j.matbio.2016.03.008_bb0155 – volume: 427 start-page: 467 year: 2010 ident: 10.1016/j.matbio.2016.03.008_bb0185 article-title: Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells publication-title: Biochem. J. doi: 10.1042/BJ20091594 – volume: 35 start-page: 143 year: 2014 ident: 10.1016/j.matbio.2016.03.008_bb0160 article-title: Biglycan-triggered TLR-2- and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury publication-title: Matrix Biol. J. Int. Soc. Matrix Biol. doi: 10.1016/j.matbio.2014.01.010 – volume: 115 start-page: 2223 year: 2005 ident: 10.1016/j.matbio.2016.03.008_bb0170 article-title: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages publication-title: J. Clin. Invest. doi: 10.1172/JCI23755 – volume: 196 start-page: 1 year: 2003 ident: 10.1016/j.matbio.2016.03.008_bb0085 article-title: Endostatin action and intracellular signaling: beta-catenin as a potential target? publication-title: Cancer Lett. doi: 10.1016/S0304-3835(03)00267-2 – volume: 14 start-page: 1167 year: 1999 ident: 10.1016/j.matbio.2016.03.008_bb0180 article-title: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1359/jbmr.1999.14.7.1167 – volume: 277 start-page: 3864 year: 2010 ident: 10.1016/j.matbio.2016.03.008_bb0135 article-title: Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07797.x – volume: 39 start-page: 89 year: 2012 ident: 10.1016/j.matbio.2016.03.008_bb0080 article-title: Endostar down-regulates HIF-1 and VEGF expression and enhances the radioresponse to human lung adenocarcinoma cancer cells publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-011-0713-6 – volume: 42 start-page: 11 year: 2015 ident: 10.1016/j.matbio.2016.03.008_bb0030 article-title: Proteoglycan form and function: a comprehensive nomenclature of proteoglycans publication-title: Matrix Biol. J. Int. Soc. Matrix Biol. doi: 10.1016/j.matbio.2015.02.003 – volume: 35 start-page: 223 year: 2014 ident: 10.1016/j.matbio.2016.03.008_bb0005 article-title: Biglycan modulates angiogenesis and bone formation during fracture healing publication-title: Matrix Biol. J. Int. Soc. Matrix Biol. doi: 10.1016/j.matbio.2013.12.004 – volume: 17 start-page: 331 year: 2002 ident: 10.1016/j.matbio.2016.03.008_bb0040 article-title: Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1359/jbmr.2002.17.2.331 – volume: 8 start-page: 133 year: 2012 ident: 10.1016/j.matbio.2016.03.008_bb0165 article-title: Fracture healing under healthy and inflammatory conditions publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2012.1 – volume: 85 start-page: 412 year: 2009 ident: 10.1016/j.matbio.2016.03.008_bb0120 article-title: Endostatin affects osteoblast behavior in vitro, but collagen XVIII/endostatin is not essential for skeletal development in vivo publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-009-9287-x – volume: 5 start-page: 1885 year: 2014 ident: 10.1016/j.matbio.2016.03.008_bb0095 article-title: Biglycan enhances gastric cancer invasion by activating FAK signaling pathway publication-title: Oncotarget doi: 10.18632/oncotarget.1871 – volume: 98 start-page: 1024 year: 2001 ident: 10.1016/j.matbio.2016.03.008_bb0110 article-title: Interaction of endostatin with integrins implicated in angiogenesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.98.3.1024 – volume: 4 start-page: 113 year: 1996 ident: 10.1016/j.matbio.2016.03.008_bb0175 article-title: Resolution dependency of microstructural properties of cancellous bone based on three-dimensional mu-tomography publication-title: Technology Health Care Off. J. Eur. Soc. Eng. Med. – volume: 77 start-page: 297 year: 2005 ident: 10.1016/j.matbio.2016.03.008_bb0055 article-title: Targeted disruption of two small leucine-rich proteoglycans, biglycan and decorin, excerpts divergent effects on enamel and dentin formation publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-005-0026-7 – start-page: 169 year: 2005 ident: 10.1016/j.matbio.2016.03.008_bb0020 article-title: Bone Morphogenetic proteins and other growth factors to enhance fracture healing and treatment of nonunions – volume: 135 start-page: 131 year: 2015 ident: 10.1016/j.matbio.2016.03.008_bb0140 article-title: Possible role of endostatin in the antiangiogenic therapy of diabetic retinopathy publication-title: Life Sci. doi: 10.1016/j.lfs.2015.06.017 – volume: 46 start-page: S8 issue: Suppl. 8 year: 2015 ident: 10.1016/j.matbio.2016.03.008_bb0025 article-title: Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence publication-title: Injury doi: 10.1016/S0020-1383(15)30049-8 – volume: 20 start-page: 78 year: 1998 ident: 10.1016/j.matbio.2016.03.008_bb0035 article-title: Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice publication-title: Nat. Genet. doi: 10.1038/1746 – volume: 1850 start-page: 2422 year: 2015 ident: 10.1016/j.matbio.2016.03.008_bb0070 article-title: Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2015.09.007 – year: 2015 ident: 10.1016/j.matbio.2016.03.008_bb0125 article-title: Decorin as a multivalent therapeutic agent against cancer publication-title: Adv. Drug Deliv. Rev. – volume: 16 start-page: 673 year: 2002 ident: 10.1016/j.matbio.2016.03.008_bb0050 article-title: Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. |
SSID | ssj0004478 |
Score | 2.3314183 |
SecondaryResourceType | review_article |
Snippet | The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141 |
SubjectTerms | Angiogenesis Animals Biglycan Biglycan - genetics Biglycan - metabolism Biochemistry Biochemistry, Molecular Biology Computed Tomography Angiography Down-Regulation Endostatin Endostatins - metabolism Endothelial Cells - cytology Endothelial Cells - metabolism Fracture Healing Gene Knockout Techniques Life Sciences Mice Neovascularization, Physiologic X-Ray Microtomography |
Title | Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin |
URI | https://dx.doi.org/10.1016/j.matbio.2016.03.008 https://www.ncbi.nlm.nih.gov/pubmed/27072616 https://www.proquest.com/docview/1790615978 https://hal.science/hal-01406723 https://pubmed.ncbi.nlm.nih.gov/PMC4875882 |
Volume | 52-54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1569-1802 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004478 issn: 0945-053X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1569-1802 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004478 issn: 0945-053X databaseCode: ACRLP dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1569-1802 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004478 issn: 0945-053X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1569-1802 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004478 issn: 0945-053X databaseCode: AIKHN dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1569-1802 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004478 issn: 0945-053X databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBAviG18FNhkEOLNNI4dJ30s06bytReY1DfLTpwuU3GqNkX0hb-du8QpKwhN4jGJnTi-y9394t-dCXmdSClt5gzjKpJM8rhklpuI5UYpG2UFLs0g2-JCTS7lh2ky3SOnfS4M0iqD7e9semutw5lhmM3hoqqGXwCYgPsWU45VoyAuwAx2qZDW9_bnb5qHlJ01hsYMW_fpcy3HC4JCW2EKIFeh1Om_3NOdK-RJ_h2E_smlvOGczh-SByGqpONu4Adkz_lDcjT2gKi_begb2vI82x_oh-Te57CcfkSad9VsvoHJpYu6QdqQmc83dNltT-9W1PhZVc_QGlYr2iU00hLTqtZLB80WplpSu6Htijtecz8CrdZD14Kiz0S507qkzhc1Ji9V_hG5PD_7ejphYRsGlstR2jCbCAOBn4i5i9PCqTSXYOZKm-UI3soilhBkRCYppCsTKWIwr2BHVBoZmY6cGInHZN_X3j0l1EkH8IqXuZVCGl7YjAuTlQZgaFwqmw-I6Gdf56FGOW6VMdc9Ge1adzLTKDMdCQ0yGxC27bXoanTc0j7tBat3dE2DG7ml5yvQg-1DsDT3ZPxJ4zlEqiqNxXc-IC97NdHwreICjPGuXq80VkODCBKA-4A86dRme684jVJAswoGt6NQOw_bveKrq7YeOGJOAErP_vu1npP7eNTxOF-Q_Wa5dscQazX2pP2YTsjd8fuPk4tfJ_Aq_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TgJeEGwwyqdBiLeocew46WOZmDrW9YVN6ptlJ04XVJyqTRH977lLnEJBaBKv_siH73J3v_h3Z0Lex0IIk1odMBmKQLCoCAzTYZBpKU2Y5rg1g2yLqRzfiM-zeHZAzrpcGKRVetvf2vTGWvuWgV_NwbIsB18AmID75jOGVaMgLjgkRyIGm9wjR6OLy_H0V3qkaA0yjA9wQpdB19C8IC40JWYBMumrnf7LQx3eIlXy7zj0Tzrlb_7p_BF56ANLOmqf_TE5sO6YnIwcgOpvW_qBNlTP5h_6Mbl35XfUT0j9sZwvtrC-dFnVyBzSi8WWrtoT6u2aajcvqzkaxHJN25xGWmBm1WZlYdhSlytqtrTZdMc--8Mzax1MzSm6TRQ9rQpqXV5h_lLpnpCb80_XZ-PAn8QQZGKY1IGJuYbYj0fMRkluZZIJsHSFSTPEb0UeCYgzQh3nwhax4BFYWDAlMgm1SIaWD_lT0nOVs88ItcICwmJFZgQXmuUmZVynhQYkGhXSZH3Cu9VXmS9TjqdlLFTHR_uqWpkplJkKuQKZ9Umwm7Vsy3TcMT7pBKv21E2BJ7lj5jvQg91NsDr3eDRR2IZgVSYR_8765G2nJgo-V9yD0c5Wm7XCgmgQRAJ275PTVm1214qSMAFAK-Hh9hRq72b7Pa68bUqCI-wErPT8v1_rDbk_vr6aqMnF9PIFeYA9La3zJenVq419BaFXbV77T-snMxQtqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biglycan+potentially+regulates+angiogenesis+during+fracture+repair+by+altering+expression+and+function+of+endostatin&rft.jtitle=Matrix+biology&rft.au=Myren%2C+Maja&rft.au=Kirby%2C+David+J&rft.au=Noonan%2C+Megan+L&rft.au=Maeda%2C+Azusa&rft.date=2016-05-01&rft.eissn=1569-1802&rft.volume=52-54&rft.spage=141&rft_id=info:doi/10.1016%2Fj.matbio.2016.03.008&rft_id=info%3Apmid%2F27072616&rft.externalDocID=27072616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0945-053X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0945-053X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0945-053X&client=summon |