Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin

The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bg...

Full description

Saved in:
Bibliographic Details
Published inMatrix biology Vol. 52-54; pp. 141 - 150
Main Authors Myren, Maja, Kirby, David J., Noonan, Megan L., Maeda, Azusa, Owens, Rick T., Ricard-Blum, Sylvie, Kram, Vardit, Kilts, Tina M., Young, Marian F.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2016
Elsevier
Subjects
Online AccessGet full text
ISSN0945-053X
1569-1802
DOI10.1016/j.matbio.2016.03.008

Cover

Abstract The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin. •Biglycan deficient mice have reduced angiogenesis during fracture healing.•Biglycan co-localizes with endostatin at sites of new bone formation.•Endostatin mRNA and protein are up-regulated in the Bgn-deficient callus.•Bgn counteracts the anti-angiogenic effects of endostatin in vessel growth.
AbstractList The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin.
The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin. Published by Elsevier B.V.
The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing (1). By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14 days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1 molar ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin.
The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin. •Biglycan deficient mice have reduced angiogenesis during fracture healing.•Biglycan co-localizes with endostatin at sites of new bone formation.•Endostatin mRNA and protein are up-regulated in the Bgn-deficient callus.•Bgn counteracts the anti-angiogenic effects of endostatin in vessel growth.
Author Kirby, David J.
Myren, Maja
Young, Marian F.
Kilts, Tina M.
Ricard-Blum, Sylvie
Noonan, Megan L.
Kram, Vardit
Maeda, Azusa
Owens, Rick T.
AuthorAffiliation 3 University of Lyon, UMR 5246 CNRS - University Lyon 1, ICBMS, 69622 Villeurbanne, France
1 Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda MD 20892
2 Life Cell Corporation, Branchburg, NJ 08876
AuthorAffiliation_xml – name: 1 Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda MD 20892
– name: 3 University of Lyon, UMR 5246 CNRS - University Lyon 1, ICBMS, 69622 Villeurbanne, France
– name: 2 Life Cell Corporation, Branchburg, NJ 08876
Author_xml – sequence: 1
  givenname: Maja
  surname: Myren
  fullname: Myren, Maja
  organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
– sequence: 2
  givenname: David J.
  surname: Kirby
  fullname: Kirby, David J.
  organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
– sequence: 3
  givenname: Megan L.
  surname: Noonan
  fullname: Noonan, Megan L.
  organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
– sequence: 4
  givenname: Azusa
  surname: Maeda
  fullname: Maeda, Azusa
  organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
– sequence: 5
  givenname: Rick T.
  surname: Owens
  fullname: Owens, Rick T.
  organization: Life Cell Corporation, Branchburg, NJ 08876, United States
– sequence: 6
  givenname: Sylvie
  surname: Ricard-Blum
  fullname: Ricard-Blum, Sylvie
  organization: University of Lyon, UMR 5246 CNRS - University Lyon 1, ICBMS, 69622 Villeurbanne, France
– sequence: 7
  givenname: Vardit
  surname: Kram
  fullname: Kram, Vardit
  organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
– sequence: 8
  givenname: Tina M.
  surname: Kilts
  fullname: Kilts, Tina M.
  organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
– sequence: 9
  givenname: Marian F.
  surname: Young
  fullname: Young, Marian F.
  email: Myoung@dir.nidcr.nih.gov
  organization: Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27072616$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01406723$$DView record in HAL
BookMark eNqFkUFv1DAQhS1URLeFf4BQjnBIGDtOnHBAKlVLkVbiAhI3y3EmqVdZe7GdFfvvcdilgh7gZI3nvTcefxfkzDqLhLykUFCg9dtNsVWxM65gqSqgLACaJ2RFq7rNaQPsjKyg5VUOVfntnFyEsAEAzkXzjJwzAYLVtF6R-MGM00Erm-1cRBuNmqZD5nGcJxUxZMqOxo1oMZiQ9bM3dswGr3ScPSbZThmfdYdMTRF_9fDHzmMIxtlk7bNhtjouhRsytL0LUUVjn5Ong5oCvjidl-Tr7c2X67t8_fnjp-urda55K2LeVaUCXpWMIhM91kJzRtuhazRtGR96xhvGQFU9x6HiJRM1AwG1AMVFi2VbXpL3x9zd3G2x12k_rya582ar_EE6ZeTfHWvu5ej2kjeiahqWAt4cA-4f2e6u1nK5A8rTQFbuadK-Pg3z7vuMIcqtCRqnSVl0c5BUtFDTqhVNkr76810Pyb-xJAE_CrR3IXgcHiQU5EJfbuSRvlzoSyhlop9s7x7ZtFk-3C3bmel_5tNnYSKyN-hl0Aatxt541FH2zvw74Cdy4s9u
CitedBy_id crossref_primary_10_1007_s10529_020_02818_z
crossref_primary_10_1007_s11010_021_04216_z
crossref_primary_10_1016_j_mad_2025_112041
crossref_primary_10_1039_D2LC00570K
crossref_primary_10_3389_fendo_2020_527592
crossref_primary_10_1016_j_matbio_2017_04_001
crossref_primary_10_1186_s12864_017_3548_2
crossref_primary_10_1042_BST20190653
crossref_primary_10_3389_fphys_2023_1119368
crossref_primary_10_1016_j_matbio_2016_09_003
crossref_primary_10_1016_j_semcancer_2019_05_003
crossref_primary_10_1016_j_bbrc_2020_04_020
crossref_primary_10_1111_febs_13963
crossref_primary_10_1016_j_biomaterials_2020_120247
crossref_primary_10_1016_j_matbio_2021_04_001
crossref_primary_10_1002_adhm_201800700
crossref_primary_10_3390_ijms17111822
crossref_primary_10_1096_fj_202401903R
crossref_primary_10_1369_0022155420930303
crossref_primary_10_1016_j_matbio_2019_08_002
crossref_primary_10_1186_s12860_022_00443_4
crossref_primary_10_4137_BTRI_S38670
crossref_primary_10_1002_pgr2_11
crossref_primary_10_1007_s11684_019_0693_9
crossref_primary_10_3390_ijms23052591
crossref_primary_10_1016_j_tranon_2018_10_002
crossref_primary_10_3389_fphar_2019_01649
crossref_primary_10_1016_j_matbio_2017_11_005
crossref_primary_10_1369_0022155418811645
crossref_primary_10_1016_j_matbio_2016_09_009
crossref_primary_10_1007_s10528_023_10633_0
crossref_primary_10_1155_2022_2656480
crossref_primary_10_3389_fcell_2020_00011
Cites_doi 10.1016/j.matbio.2013.12.011
10.1359/jbmr.2002.17.7.1180
10.1038/bjc.2012.59
10.1136/jech.2006.056622
10.1016/S1097-2765(04)00102-9
10.1016/j.bone.2014.07.002
10.1136/jech.44.3.241
10.1021/acs.biochem.5b00653
10.1016/S0014-5793(00)02249-3
10.1194/jlr.M500241-JLR200
10.1073/pnas.1110629108
10.1042/BJ20091594
10.1016/j.matbio.2014.01.010
10.1172/JCI23755
10.1016/S0304-3835(03)00267-2
10.1359/jbmr.1999.14.7.1167
10.1111/j.1742-4658.2010.07797.x
10.1007/s11033-011-0713-6
10.1016/j.matbio.2015.02.003
10.1016/j.matbio.2013.12.004
10.1359/jbmr.2002.17.2.331
10.1038/nrrheum.2012.1
10.1007/s00223-009-9287-x
10.18632/oncotarget.1871
10.1073/pnas.98.3.1024
10.1007/s00223-005-0026-7
10.1016/j.lfs.2015.06.017
10.1016/S0020-1383(15)30049-8
10.1038/1746
10.1016/j.bbagen.2015.09.007
ContentType Journal Article
Copyright 2016
Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016
– notice: Published by Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1016/j.matbio.2016.03.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1569-1802
EndPage 150
ExternalDocumentID PMC4875882
oai_HAL_hal_01406723v1
27072616
10_1016_j_matbio_2016_03_008
S0945053X16300324
Genre Journal Article
Research Support, N.I.H., Intramural
Review
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 DE000379
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UNMZH
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c497t-b53a045321e27de67c4219fb8c1924fd248220a5d4ef5432762070670a479e393
IEDL.DBID .~1
ISSN 0945-053X
IngestDate Tue Sep 30 16:37:37 EDT 2025
Fri Sep 12 12:42:42 EDT 2025
Sat Sep 27 18:53:58 EDT 2025
Mon Jul 21 05:51:17 EDT 2025
Wed Oct 01 03:48:06 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Fri Feb 23 02:35:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Angiogenesis
Biglycan
Fracture healing
Endostatin
Language English
License Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-b53a045321e27de67c4219fb8c1924fd248220a5d4ef5432762070670a479e393
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMCID: PMC4875882
Maja Myren, David J. Kirby, (Co-first authors)
OpenAccessLink https://hal.science/hal-01406723
PMID 27072616
PQID 1790615978
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4875882
hal_primary_oai_HAL_hal_01406723v1
proquest_miscellaneous_1790615978
pubmed_primary_27072616
crossref_primary_10_1016_j_matbio_2016_03_008
crossref_citationtrail_10_1016_j_matbio_2016_03_008
elsevier_sciencedirect_doi_10_1016_j_matbio_2016_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Matrix biology
PublicationTitleAlternate Matrix Biol
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Abdollahi, Hahnfeldt, Maercker, Grone, Debus, Ansorge, Folkman, Hlatky, Huber (bb0105) 2004; 13
Santolini, West, Giannoudis (bb0025) 2015; 46
Moreth, Frey, Hubo, Zeng-Brouwers, Nastase, Hsieh, Haceni, Pfeilschifter, Iozzo, Schaefer (bb0160) 2014; 35
Berendsen, Pinnow, Maeda, Brown, McCartney-Francis, Kram, Owens, Robey, Holmbeck, de Castro, Kilts, Young (bb0005) 2014; 35
Donaldson, Cook, Thomson (bb0010) 1990; 44
Iozzo, Schaefer (bb0030) 2015; 42
Goldberg, Septier, Rapoport, Iozzo, Young, Ameye (bb0055) 2005; 77
Hildebrand, Laib, Muller, Dequeker, Ruegsegger (bb0180) 1999; 14
Zeng, Chen, Miller, Javaherian, Moulton (bb0075) 2005; 46
Yamamoto, Ohga, Hida, Maishi, Kawamoto, Kitayama, Akiyama, Osawa, Kondoh, Matsuda, Onodera, Fujie, Kaga, Hirano, Shinohara, Shindoh, Hida (bb0100) 2012; 106
Faye, Inforzato, Bignon, Hartmann, Muller, Ballut, Olsen, Day, Ricard-Blum (bb0185) 2010; 427
Moucha, Einhorn (bb0020) 2005
Donaldson, Reckless, Scholes, Mindell, Shelton (bb0015) 2008; 62
Parris (bb0090) 2015; 13
Neill, Schaefer, Iozzo (bb0130) 2015; 54
Yuasa, Mignemi, Barnett, Cates, Nyman, Okawa, Yoshii, Schwartz, Stutz, Schoenecker (bb0145) 2014; 67
Poluzzi, Iozzo, Schaefer (bb0155) 2015
Ferreras, Felbor, Lenhard, Olsen, Delaisse (bb0115) 2000; 486
Chen, Shi, Xu, Robey, Young (bb0040) 2002; 17
Goyal, Neill, Owens, Schaefer, Iozzo (bb0150) 2014; 34
Claes, Recknagel, Ignatius (bb0165) 2012; 8
Walia, Yang, Huang, Rosenblatt, Chang, Azar (bb0070) 2015; 1850
Neill, Schaefer, Iozzo (bb0125) 2015
Corsi, Xu, Chen, Boyde, Liang, Mankani, Sommer, Iozzo, Eichstetter, Robey, Bianco, Young (bb0045) 2002; 17
Berendsen, Fisher, Kilts, Owens, Robey, Gutkind, Young (bb0065) 2011; 108
Sipola, Seppinen, Pihlajaniemi, Tuukkanen (bb0120) 2009; 85
Xu, Bianco, Fisher, Longenecker, Smith, Goldstein, Bonadio, Boskey, Heegaard, Sommer, Satomura, Dominguez, Zhao, Kulkarni, Robey, Young (bb0035) 1998; 20
Ameye, Aria, Jepsen, Oldberg, Xu, Young (bb0050) 2002; 16
Behl, Kotwani (bb0140) 2015; 135
Zhang, Ge, Hu, Zhang, Li, Xu, He, Zhao, Zhang, Jie, Chen, Zheng (bb0080) 2012; 39
Iozzo, Schaefer (bb0135) 2010; 277
Muller, Koller, Hildebrand, Laib, Gianolini, Ruegsegger (bb0175) 1996; 4
Schaefer, Babelova, Kiss, Hausser, Baliova, Krzyzankova, Marsche, Young, Mihalik, Gotte, Malle, Schaefer, Grone (bb0170) 2005; 115
Dixelius, Cross, Matsumoto, Claesson-Welsh (bb0085) 2003; 196
Hu, Duan, Li, Su, Yan, Zhu, Liu, Yang (bb0095) 2014; 5
Chen, Fisher, Robey, Young (bb0060) 2004; 18
Rehn, Veikkola, Kukk-Valdre, Nakamura, Ilmonen, Lombardo, Pihlajaniemi, Alitalo, Vuori (bb0110) 2001; 98
Corsi (10.1016/j.matbio.2016.03.008_bb0045) 2002; 17
Santolini (10.1016/j.matbio.2016.03.008_bb0025) 2015; 46
Sipola (10.1016/j.matbio.2016.03.008_bb0120) 2009; 85
Behl (10.1016/j.matbio.2016.03.008_bb0140) 2015; 135
Neill (10.1016/j.matbio.2016.03.008_bb0130) 2015; 54
Dixelius (10.1016/j.matbio.2016.03.008_bb0085) 2003; 196
Muller (10.1016/j.matbio.2016.03.008_bb0175) 1996; 4
Donaldson (10.1016/j.matbio.2016.03.008_bb0015) 2008; 62
Zeng (10.1016/j.matbio.2016.03.008_bb0075) 2005; 46
Faye (10.1016/j.matbio.2016.03.008_bb0185) 2010; 427
Iozzo (10.1016/j.matbio.2016.03.008_bb0135) 2010; 277
Yuasa (10.1016/j.matbio.2016.03.008_bb0145) 2014; 67
Rehn (10.1016/j.matbio.2016.03.008_bb0110) 2001; 98
Yamamoto (10.1016/j.matbio.2016.03.008_bb0100) 2012; 106
Chen (10.1016/j.matbio.2016.03.008_bb0040) 2002; 17
Berendsen (10.1016/j.matbio.2016.03.008_bb0005) 2014; 35
Chen (10.1016/j.matbio.2016.03.008_bb0060) 2004; 18
Claes (10.1016/j.matbio.2016.03.008_bb0165) 2012; 8
Hildebrand (10.1016/j.matbio.2016.03.008_bb0180) 1999; 14
Walia (10.1016/j.matbio.2016.03.008_bb0070) 2015; 1850
Xu (10.1016/j.matbio.2016.03.008_bb0035) 1998; 20
Hu (10.1016/j.matbio.2016.03.008_bb0095) 2014; 5
Moreth (10.1016/j.matbio.2016.03.008_bb0160) 2014; 35
Ferreras (10.1016/j.matbio.2016.03.008_bb0115) 2000; 486
Ameye (10.1016/j.matbio.2016.03.008_bb0050) 2002; 16
Schaefer (10.1016/j.matbio.2016.03.008_bb0170) 2005; 115
Parris (10.1016/j.matbio.2016.03.008_bb0090) 2015; 13
Goyal (10.1016/j.matbio.2016.03.008_bb0150) 2014; 34
Poluzzi (10.1016/j.matbio.2016.03.008_bb0155) 2015
Donaldson (10.1016/j.matbio.2016.03.008_bb0010) 1990; 44
Iozzo (10.1016/j.matbio.2016.03.008_bb0030) 2015; 42
Goldberg (10.1016/j.matbio.2016.03.008_bb0055) 2005; 77
Neill (10.1016/j.matbio.2016.03.008_bb0125) 2015
Berendsen (10.1016/j.matbio.2016.03.008_bb0065) 2011; 108
Moucha (10.1016/j.matbio.2016.03.008_bb0020) 2005
Zhang (10.1016/j.matbio.2016.03.008_bb0080) 2012; 39
Abdollahi (10.1016/j.matbio.2016.03.008_bb0105) 2004; 13
References_xml – volume: 42
  start-page: 11
  year: 2015
  end-page: 55
  ident: bb0030
  article-title: Proteoglycan form and function: a comprehensive nomenclature of proteoglycans
  publication-title: Matrix Biol. J. Int. Soc. Matrix Biol.
– volume: 54
  start-page: 4583
  year: 2015
  end-page: 4598
  ident: bb0130
  article-title: Decoding the matrix: Instructive roles of proteoglycan receptors
  publication-title: Biochemistry
– volume: 39
  start-page: 89
  year: 2012
  end-page: 95
  ident: bb0080
  article-title: Endostar down-regulates HIF-1 and VEGF expression and enhances the radioresponse to human lung adenocarcinoma cancer cells
  publication-title: Mol. Biol. Rep.
– volume: 35
  start-page: 223
  year: 2014
  end-page: 231
  ident: bb0005
  article-title: Biglycan modulates angiogenesis and bone formation during fracture healing
  publication-title: Matrix Biol. J. Int. Soc. Matrix Biol.
– volume: 17
  start-page: 331
  year: 2002
  end-page: 340
  ident: bb0040
  article-title: Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells
  publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
– volume: 115
  start-page: 2223
  year: 2005
  end-page: 2233
  ident: bb0170
  article-title: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages
  publication-title: J. Clin. Invest.
– year: 2015
  ident: bb0125
  article-title: Decorin as a multivalent therapeutic agent against cancer
  publication-title: Adv. Drug Deliv. Rev.
– start-page: 169
  year: 2005
  ident: bb0020
  article-title: Bone Morphogenetic proteins and other growth factors to enhance fracture healing and treatment of nonunions
  publication-title: Bone Regeneration and Repair: Biology and Clinical Applications
– volume: 13
  start-page: 649
  year: 2004
  end-page: 663
  ident: bb0105
  article-title: Endostatin's antiangiogenic signaling network
  publication-title: Mol. Cell
– volume: 18
  start-page: 948
  year: 2004
  end-page: 958
  ident: bb0060
  article-title: The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation
  publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.
– volume: 34
  start-page: 46
  year: 2014
  end-page: 54
  ident: bb0150
  article-title: Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells
  publication-title: Matrix Biol. J. Int. Soc. Matrix Biol.
– volume: 17
  start-page: 1180
  year: 2002
  end-page: 1189
  ident: bb0045
  article-title: Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers–Danlos-like changes in bone and other connective tissues
  publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
– volume: 16
  start-page: 673
  year: 2002
  end-page: 680
  ident: bb0050
  article-title: Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis
  publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.
– volume: 135
  start-page: 131
  year: 2015
  end-page: 137
  ident: bb0140
  article-title: Possible role of endostatin in the antiangiogenic therapy of diabetic retinopathy
  publication-title: Life Sci.
– year: 2015
  ident: bb0155
  article-title: Endostatin and Endorepellin: A Common Route of Action for Similar Angiostatic Cancer Avengers
– volume: 46
  start-page: S8
  year: 2015
  end-page: S19
  ident: bb0025
  article-title: Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence
  publication-title: Injury
– volume: 77
  start-page: 297
  year: 2005
  end-page: 310
  ident: bb0055
  article-title: Targeted disruption of two small leucine-rich proteoglycans, biglycan and decorin, excerpts divergent effects on enamel and dentin formation
  publication-title: Calcif. Tissue Int.
– volume: 14
  start-page: 1167
  year: 1999
  end-page: 1174
  ident: bb0180
  article-title: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus
  publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
– volume: 277
  start-page: 3864
  year: 2010
  end-page: 3875
  ident: bb0135
  article-title: Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans
  publication-title: FEBS J.
– volume: 20
  start-page: 78
  year: 1998
  end-page: 82
  ident: bb0035
  article-title: Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice
  publication-title: Nat. Genet.
– volume: 44
  start-page: 241
  year: 1990
  end-page: 245
  ident: bb0010
  article-title: Incidence of fractures in a geographically defined population
  publication-title: J. Epidemiol. Community Health
– volume: 1850
  start-page: 2422
  year: 2015
  end-page: 2438
  ident: bb0070
  article-title: Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications
  publication-title: Biochim. Biophys. Acta
– volume: 13
  year: 2015
  ident: bb0090
  article-title: A hypothesis concerning the biphasic dose-response of tumors to angiostatin and endostatin
  publication-title: Dose–Response Publ. Int. Hormesis Soc.
– volume: 35
  start-page: 143
  year: 2014
  end-page: 151
  ident: bb0160
  article-title: Biglycan-triggered TLR-2- and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury
  publication-title: Matrix Biol. J. Int. Soc. Matrix Biol.
– volume: 196
  start-page: 1
  year: 2003
  end-page: 12
  ident: bb0085
  article-title: Endostatin action and intracellular signaling: beta-catenin as a potential target?
  publication-title: Cancer Lett.
– volume: 486
  start-page: 247
  year: 2000
  end-page: 251
  ident: bb0115
  article-title: Generation and degradation of human endostatin proteins by various proteinases
  publication-title: FEBS Lett.
– volume: 427
  start-page: 467
  year: 2010
  end-page: 475
  ident: bb0185
  article-title: Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells
  publication-title: Biochem. J.
– volume: 85
  start-page: 412
  year: 2009
  end-page: 420
  ident: bb0120
  article-title: Endostatin affects osteoblast behavior in vitro, but collagen XVIII/endostatin is not essential for skeletal development in vivo
  publication-title: Calcif. Tissue Int.
– volume: 4
  start-page: 113
  year: 1996
  end-page: 119
  ident: bb0175
  article-title: Resolution dependency of microstructural properties of cancellous bone based on three-dimensional mu-tomography
  publication-title: Technology Health Care Off. J. Eur. Soc. Eng. Med.
– volume: 108
  start-page: 17022
  year: 2011
  end-page: 17027
  ident: bb0065
  article-title: Modulation of canonical Wnt signaling by the extracellular matrix component biglycan
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 98
  start-page: 1024
  year: 2001
  end-page: 1029
  ident: bb0110
  article-title: Interaction of endostatin with integrins implicated in angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 62
  start-page: 174
  year: 2008
  end-page: 180
  ident: bb0015
  article-title: The epidemiology of fractures in England
  publication-title: J. Epidemiol. Community Health
– volume: 46
  start-page: 1849
  year: 2005
  end-page: 1859
  ident: bb0075
  article-title: Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis
  publication-title: J. Lipid Res.
– volume: 5
  start-page: 1885
  year: 2014
  end-page: 1896
  ident: bb0095
  article-title: Biglycan enhances gastric cancer invasion by activating FAK signaling pathway
  publication-title: Oncotarget
– volume: 106
  start-page: 1214
  year: 2012
  end-page: 1223
  ident: bb0100
  article-title: Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells
  publication-title: Br. J. Cancer
– volume: 8
  start-page: 133
  year: 2012
  end-page: 143
  ident: bb0165
  article-title: Fracture healing under healthy and inflammatory conditions
  publication-title: Nat. Rev. Rheumatol.
– volume: 67
  start-page: 208
  year: 2014
  end-page: 221
  ident: bb0145
  article-title: The temporal and spatial development of vascularity in a healing displaced fracture
  publication-title: Bone
– volume: 13
  year: 2015
  ident: 10.1016/j.matbio.2016.03.008_bb0090
  article-title: A hypothesis concerning the biphasic dose-response of tumors to angiostatin and endostatin
  publication-title: Dose–Response Publ. Int. Hormesis Soc.
– volume: 34
  start-page: 46
  year: 2014
  ident: 10.1016/j.matbio.2016.03.008_bb0150
  article-title: Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells
  publication-title: Matrix Biol. J. Int. Soc. Matrix Biol.
  doi: 10.1016/j.matbio.2013.12.011
– volume: 17
  start-page: 1180
  year: 2002
  ident: 10.1016/j.matbio.2016.03.008_bb0045
  article-title: Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers–Danlos-like changes in bone and other connective tissues
  publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.7.1180
– volume: 106
  start-page: 1214
  year: 2012
  ident: 10.1016/j.matbio.2016.03.008_bb0100
  article-title: Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2012.59
– volume: 62
  start-page: 174
  year: 2008
  ident: 10.1016/j.matbio.2016.03.008_bb0015
  article-title: The epidemiology of fractures in England
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech.2006.056622
– volume: 13
  start-page: 649
  year: 2004
  ident: 10.1016/j.matbio.2016.03.008_bb0105
  article-title: Endostatin's antiangiogenic signaling network
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(04)00102-9
– volume: 67
  start-page: 208
  year: 2014
  ident: 10.1016/j.matbio.2016.03.008_bb0145
  article-title: The temporal and spatial development of vascularity in a healing displaced fracture
  publication-title: Bone
  doi: 10.1016/j.bone.2014.07.002
– volume: 44
  start-page: 241
  year: 1990
  ident: 10.1016/j.matbio.2016.03.008_bb0010
  article-title: Incidence of fractures in a geographically defined population
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech.44.3.241
– volume: 54
  start-page: 4583
  year: 2015
  ident: 10.1016/j.matbio.2016.03.008_bb0130
  article-title: Decoding the matrix: Instructive roles of proteoglycan receptors
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00653
– volume: 486
  start-page: 247
  year: 2000
  ident: 10.1016/j.matbio.2016.03.008_bb0115
  article-title: Generation and degradation of human endostatin proteins by various proteinases
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)02249-3
– volume: 18
  start-page: 948
  year: 2004
  ident: 10.1016/j.matbio.2016.03.008_bb0060
  article-title: The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation
  publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.
– volume: 46
  start-page: 1849
  year: 2005
  ident: 10.1016/j.matbio.2016.03.008_bb0075
  article-title: Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M500241-JLR200
– volume: 108
  start-page: 17022
  year: 2011
  ident: 10.1016/j.matbio.2016.03.008_bb0065
  article-title: Modulation of canonical Wnt signaling by the extracellular matrix component biglycan
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1110629108
– year: 2015
  ident: 10.1016/j.matbio.2016.03.008_bb0155
– volume: 427
  start-page: 467
  year: 2010
  ident: 10.1016/j.matbio.2016.03.008_bb0185
  article-title: Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20091594
– volume: 35
  start-page: 143
  year: 2014
  ident: 10.1016/j.matbio.2016.03.008_bb0160
  article-title: Biglycan-triggered TLR-2- and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury
  publication-title: Matrix Biol. J. Int. Soc. Matrix Biol.
  doi: 10.1016/j.matbio.2014.01.010
– volume: 115
  start-page: 2223
  year: 2005
  ident: 10.1016/j.matbio.2016.03.008_bb0170
  article-title: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI23755
– volume: 196
  start-page: 1
  year: 2003
  ident: 10.1016/j.matbio.2016.03.008_bb0085
  article-title: Endostatin action and intracellular signaling: beta-catenin as a potential target?
  publication-title: Cancer Lett.
  doi: 10.1016/S0304-3835(03)00267-2
– volume: 14
  start-page: 1167
  year: 1999
  ident: 10.1016/j.matbio.2016.03.008_bb0180
  article-title: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus
  publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
  doi: 10.1359/jbmr.1999.14.7.1167
– volume: 277
  start-page: 3864
  year: 2010
  ident: 10.1016/j.matbio.2016.03.008_bb0135
  article-title: Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07797.x
– volume: 39
  start-page: 89
  year: 2012
  ident: 10.1016/j.matbio.2016.03.008_bb0080
  article-title: Endostar down-regulates HIF-1 and VEGF expression and enhances the radioresponse to human lung adenocarcinoma cancer cells
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-011-0713-6
– volume: 42
  start-page: 11
  year: 2015
  ident: 10.1016/j.matbio.2016.03.008_bb0030
  article-title: Proteoglycan form and function: a comprehensive nomenclature of proteoglycans
  publication-title: Matrix Biol. J. Int. Soc. Matrix Biol.
  doi: 10.1016/j.matbio.2015.02.003
– volume: 35
  start-page: 223
  year: 2014
  ident: 10.1016/j.matbio.2016.03.008_bb0005
  article-title: Biglycan modulates angiogenesis and bone formation during fracture healing
  publication-title: Matrix Biol. J. Int. Soc. Matrix Biol.
  doi: 10.1016/j.matbio.2013.12.004
– volume: 17
  start-page: 331
  year: 2002
  ident: 10.1016/j.matbio.2016.03.008_bb0040
  article-title: Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells
  publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.2.331
– volume: 8
  start-page: 133
  year: 2012
  ident: 10.1016/j.matbio.2016.03.008_bb0165
  article-title: Fracture healing under healthy and inflammatory conditions
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2012.1
– volume: 85
  start-page: 412
  year: 2009
  ident: 10.1016/j.matbio.2016.03.008_bb0120
  article-title: Endostatin affects osteoblast behavior in vitro, but collagen XVIII/endostatin is not essential for skeletal development in vivo
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-009-9287-x
– volume: 5
  start-page: 1885
  year: 2014
  ident: 10.1016/j.matbio.2016.03.008_bb0095
  article-title: Biglycan enhances gastric cancer invasion by activating FAK signaling pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1871
– volume: 98
  start-page: 1024
  year: 2001
  ident: 10.1016/j.matbio.2016.03.008_bb0110
  article-title: Interaction of endostatin with integrins implicated in angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.98.3.1024
– volume: 4
  start-page: 113
  year: 1996
  ident: 10.1016/j.matbio.2016.03.008_bb0175
  article-title: Resolution dependency of microstructural properties of cancellous bone based on three-dimensional mu-tomography
  publication-title: Technology Health Care Off. J. Eur. Soc. Eng. Med.
– volume: 77
  start-page: 297
  year: 2005
  ident: 10.1016/j.matbio.2016.03.008_bb0055
  article-title: Targeted disruption of two small leucine-rich proteoglycans, biglycan and decorin, excerpts divergent effects on enamel and dentin formation
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-005-0026-7
– start-page: 169
  year: 2005
  ident: 10.1016/j.matbio.2016.03.008_bb0020
  article-title: Bone Morphogenetic proteins and other growth factors to enhance fracture healing and treatment of nonunions
– volume: 135
  start-page: 131
  year: 2015
  ident: 10.1016/j.matbio.2016.03.008_bb0140
  article-title: Possible role of endostatin in the antiangiogenic therapy of diabetic retinopathy
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2015.06.017
– volume: 46
  start-page: S8
  issue: Suppl. 8
  year: 2015
  ident: 10.1016/j.matbio.2016.03.008_bb0025
  article-title: Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence
  publication-title: Injury
  doi: 10.1016/S0020-1383(15)30049-8
– volume: 20
  start-page: 78
  year: 1998
  ident: 10.1016/j.matbio.2016.03.008_bb0035
  article-title: Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice
  publication-title: Nat. Genet.
  doi: 10.1038/1746
– volume: 1850
  start-page: 2422
  year: 2015
  ident: 10.1016/j.matbio.2016.03.008_bb0070
  article-title: Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2015.09.007
– year: 2015
  ident: 10.1016/j.matbio.2016.03.008_bb0125
  article-title: Decorin as a multivalent therapeutic agent against cancer
  publication-title: Adv. Drug Deliv. Rev.
– volume: 16
  start-page: 673
  year: 2002
  ident: 10.1016/j.matbio.2016.03.008_bb0050
  article-title: Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis
  publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.
SSID ssj0004478
Score 2.3314183
SecondaryResourceType review_article
Snippet The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms Angiogenesis
Animals
Biglycan
Biglycan - genetics
Biglycan - metabolism
Biochemistry
Biochemistry, Molecular Biology
Computed Tomography Angiography
Down-Regulation
Endostatin
Endostatins - metabolism
Endothelial Cells - cytology
Endothelial Cells - metabolism
Fracture Healing
Gene Knockout Techniques
Life Sciences
Mice
Neovascularization, Physiologic
X-Ray Microtomography
Title Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin
URI https://dx.doi.org/10.1016/j.matbio.2016.03.008
https://www.ncbi.nlm.nih.gov/pubmed/27072616
https://www.proquest.com/docview/1790615978
https://hal.science/hal-01406723
https://pubmed.ncbi.nlm.nih.gov/PMC4875882
Volume 52-54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1569-1802
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004478
  issn: 0945-053X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1569-1802
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004478
  issn: 0945-053X
  databaseCode: ACRLP
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1569-1802
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004478
  issn: 0945-053X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1569-1802
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004478
  issn: 0945-053X
  databaseCode: AIKHN
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1569-1802
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004478
  issn: 0945-053X
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBAviG18FNhkEOLNNI4dJ30s06bytReY1DfLTpwuU3GqNkX0hb-du8QpKwhN4jGJnTi-y9394t-dCXmdSClt5gzjKpJM8rhklpuI5UYpG2UFLs0g2-JCTS7lh2ky3SOnfS4M0iqD7e9semutw5lhmM3hoqqGXwCYgPsWU45VoyAuwAx2qZDW9_bnb5qHlJ01hsYMW_fpcy3HC4JCW2EKIFeh1Om_3NOdK-RJ_h2E_smlvOGczh-SByGqpONu4Adkz_lDcjT2gKi_begb2vI82x_oh-Te57CcfkSad9VsvoHJpYu6QdqQmc83dNltT-9W1PhZVc_QGlYr2iU00hLTqtZLB80WplpSu6Htijtecz8CrdZD14Kiz0S507qkzhc1Ji9V_hG5PD_7ejphYRsGlstR2jCbCAOBn4i5i9PCqTSXYOZKm-UI3soilhBkRCYppCsTKWIwr2BHVBoZmY6cGInHZN_X3j0l1EkH8IqXuZVCGl7YjAuTlQZgaFwqmw-I6Gdf56FGOW6VMdc9Ge1adzLTKDMdCQ0yGxC27bXoanTc0j7tBat3dE2DG7ml5yvQg-1DsDT3ZPxJ4zlEqiqNxXc-IC97NdHwreICjPGuXq80VkODCBKA-4A86dRme684jVJAswoGt6NQOw_bveKrq7YeOGJOAErP_vu1npP7eNTxOF-Q_Wa5dscQazX2pP2YTsjd8fuPk4tfJ_Aq_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TgJeEGwwyqdBiLeocew46WOZmDrW9YVN6ptlJ04XVJyqTRH977lLnEJBaBKv_siH73J3v_h3Z0Lex0IIk1odMBmKQLCoCAzTYZBpKU2Y5rg1g2yLqRzfiM-zeHZAzrpcGKRVetvf2vTGWvuWgV_NwbIsB18AmID75jOGVaMgLjgkRyIGm9wjR6OLy_H0V3qkaA0yjA9wQpdB19C8IC40JWYBMumrnf7LQx3eIlXy7zj0Tzrlb_7p_BF56ANLOmqf_TE5sO6YnIwcgOpvW_qBNlTP5h_6Mbl35XfUT0j9sZwvtrC-dFnVyBzSi8WWrtoT6u2aajcvqzkaxHJN25xGWmBm1WZlYdhSlytqtrTZdMc--8Mzax1MzSm6TRQ9rQpqXV5h_lLpnpCb80_XZ-PAn8QQZGKY1IGJuYbYj0fMRkluZZIJsHSFSTPEb0UeCYgzQh3nwhax4BFYWDAlMgm1SIaWD_lT0nOVs88ItcICwmJFZgQXmuUmZVynhQYkGhXSZH3Cu9VXmS9TjqdlLFTHR_uqWpkplJkKuQKZ9Umwm7Vsy3TcMT7pBKv21E2BJ7lj5jvQg91NsDr3eDRR2IZgVSYR_8765G2nJgo-V9yD0c5Wm7XCgmgQRAJ275PTVm1214qSMAFAK-Hh9hRq72b7Pa68bUqCI-wErPT8v1_rDbk_vr6aqMnF9PIFeYA9La3zJenVq419BaFXbV77T-snMxQtqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biglycan+potentially+regulates+angiogenesis+during+fracture+repair+by+altering+expression+and+function+of+endostatin&rft.jtitle=Matrix+biology&rft.au=Myren%2C+Maja&rft.au=Kirby%2C+David+J&rft.au=Noonan%2C+Megan+L&rft.au=Maeda%2C+Azusa&rft.date=2016-05-01&rft.eissn=1569-1802&rft.volume=52-54&rft.spage=141&rft_id=info:doi/10.1016%2Fj.matbio.2016.03.008&rft_id=info%3Apmid%2F27072616&rft.externalDocID=27072616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0945-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0945-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0945-053X&client=summon