Clinical Decision Support Framework for Segmentation and Classification of Brain Tumor MRIs Using a U-Net and DCNN Cascaded Learning Algorithm

Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its ear...

Full description

Saved in:
Bibliographic Details
Published inHealthcare (Basel) Vol. 10; no. 12; p. 2340
Main Authors Samee, Nagwan Abdel, Ahmad, Tahir, Mahmoud, Noha F., Atteia, Ghada, Abdallah, Hanaa A., Rizwan, Atif
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.11.2022
MDPI
Subjects
Online AccessGet full text
ISSN2227-9032
2227-9032
DOI10.3390/healthcare10122340

Cover

Abstract Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN’s proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%.
AbstractList Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN's proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%.Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN's proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%.
Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN’s proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%.
Audience Academic
Author Ahmad, Tahir
Samee, Nagwan Abdel
Atteia, Ghada
Mahmoud, Noha F.
Abdallah, Hanaa A.
Rizwan, Atif
AuthorAffiliation 2 Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan
4 Department of Computer Engineering, Jeju National University, Jejusi 63243, Republic of Korea
1 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
3 Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
AuthorAffiliation_xml – name: 3 Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– name: 2 Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan
– name: 1 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– name: 4 Department of Computer Engineering, Jeju National University, Jejusi 63243, Republic of Korea
Author_xml – sequence: 1
  givenname: Nagwan Abdel
  orcidid: 0000-0001-5957-1383
  surname: Samee
  fullname: Samee, Nagwan Abdel
– sequence: 2
  givenname: Tahir
  surname: Ahmad
  fullname: Ahmad, Tahir
– sequence: 3
  givenname: Noha F.
  orcidid: 0000-0003-0608-6661
  surname: Mahmoud
  fullname: Mahmoud, Noha F.
– sequence: 4
  givenname: Ghada
  orcidid: 0000-0002-5462-595X
  surname: Atteia
  fullname: Atteia, Ghada
– sequence: 5
  givenname: Hanaa A.
  orcidid: 0000-0003-0307-1384
  surname: Abdallah
  fullname: Abdallah, Hanaa A.
– sequence: 6
  givenname: Atif
  orcidid: 0000-0001-6669-8147
  surname: Rizwan
  fullname: Rizwan, Atif
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36553864$$D View this record in MEDLINE/PubMed
BookMark eNqNkttu1DAQhiNUREvpC3CBLHHDzRYfkji-QSophUrLItHutTVxnF0Xx97aCVVfgmfG6RZ6ACEsWbbG3z_2_J7n2Y7zTmfZS4IPGRP47VqDHdYKgiaYUMpy_CTbo5TymcCM7tzb72YHMV7gNARhFSueZbusLApWlfle9qO2xhkFFh1rZaLxDp2Nm40PAzoJ0OsrH76hzgd0ple9dgMMEwKuRbWFGE2XtDch36H3AYxD52Of8M9fTyNaRuNWCNByttDDjei4XixQDVFBq1s01xDchBzZlQ9mWPcvsqcd2KgPbtf9bHny4bz-NJt_-XhaH81nKhd8mHEGecsF7kiVJm1awlTFS1wKzVtSdJi3BVVN04gGY6VaUpKi6mjLMS0oaVq2n7Ft3tFt4PoKrJWbYHoI15JgORks_zQ4qd5tVZux6XWrkh8B7pQejHx44sxarvx3KTjnIqcpwZvbBMFfjjoOsjdRaWvBaT9GSXlREZKLakJfP0Iv_BhcMmWiyrJKg91RK7BaGtf5dK-aksojnuclE6SYqMO_UDB9Qm9U6qvOpPgDwav7hf6u8FffJIBuARV8jEF3_2df9UikzLah0nOM_Zf0Jw-C69Q
CitedBy_id crossref_primary_10_3390_healthcare11050683
crossref_primary_10_1007_s00521_024_10919_3
crossref_primary_10_3390_bioengineering10101120
crossref_primary_10_3390_bioengineering10060629
crossref_primary_10_3390_healthcare11172462
crossref_primary_10_1007_s11517_023_02820_3
crossref_primary_10_1007_s11042_024_18478_4
crossref_primary_10_3390_cancers16020300
crossref_primary_10_1016_j_bspc_2024_107469
crossref_primary_10_1038_s41598_024_81966_y
Cites_doi 10.1371/journal.pmed.1002699
10.1016/j.cogsys.2019.09.007
10.7861/futurehosp.6-2-94
10.1109/EIT.2018.8500308
10.3390/electronics11071045
10.1016/j.bspc.2022.103949
10.31486/toj.17.0062
10.1109/ICCES.2007.4447063
10.1145/3278198.3278209
10.3390/s22197575
10.1007/978-981-10-9035-6_33
10.3390/app12115645
10.21037/tcr.2018.05.02
10.1002/ima.22368
10.3390/s22155520
10.1016/j.compmedimag.2019.05.001
10.1016/j.compbiomed.2019.03.014
10.1007/s10278-018-0050-6
10.1109/TMI.2016.2538465
10.3390/app12105083
10.1016/j.future.2017.04.036
10.1093/jnen/64.6.479
10.1109/ICIP.2009.5413992
10.1007/s40708-017-0075-5
10.5815/ijigsp.2012.10.05
10.3390/healthcare10081592
10.1016/j.health.2022.100098
10.1109/ACCESS.2018.2885639
10.1007/s00401-007-0243-4
10.1016/j.fcij.2017.12.001
10.1109/ACCESS.2019.2919122
10.1007/s11063-020-10398-2
10.1007/s40846-017-0321-6
10.1109/TMI.2014.2377694
10.1007/s00521-019-04369-5
10.1007/978-3-319-60964-5_44
10.1155/2018/4940593
10.3390/healthcare9020153
10.1007/978-3-319-55524-9_15
10.1109/CIBEC.2008.4786034
10.1166/jmihi.2016.1731
10.3390/electronics11070991
10.1016/j.glohj.2019.07.001
10.1016/j.cmpb.2018.01.017
10.3389/fnins.2021.801008
10.1016/j.nicl.2020.102357
10.1016/j.compbiomed.2022.105273
10.1515/revneuro-2018-0050
10.3390/s22134938
10.3390/cancers13215546
10.1016/j.bspc.2022.104018
10.1109/42.511750
10.5414/NP301066
10.1109/TNNLS.2020.2995800
10.1016/j.compbiomed.2022.105775
10.1155/2022/4189781
10.1038/s41598-021-89686-3
10.1155/2022/6305748
10.1038/s41467-017-02465-5
10.1109/ICIIECS.2017.8276094
10.3390/math10183274
10.3390/e23101251
10.1186/1742-4682-9-34
10.1109/ICIINFS.2017.8300364
10.1016/j.jmir.2019.09.005
10.3390/a13030073
10.1016/j.bbe.2018.10.004
10.1007/s10334-015-0520-5
10.3390/electronics9122203
10.3390/electronics11081174
10.1016/j.procs.2017.12.017
10.1016/j.mlwa.2020.100003
10.4103/2152-7806.74243
10.14569/IJACSA.2021.0120937
10.1007/s10586-018-2111-5
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/healthcare10122340
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Nursing & Allied Health Database (Alumni Edition)
Research Library (Proquest)
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2227-9032
ExternalDocumentID 10.3390/healthcare10122340
PMC9777942
A744639153
36553864
10_3390_healthcare10122340
Genre Journal Article
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GrantInformation_xml – fundername: Princess Nourah bint Abdulrahman University
  grantid: PNURSP2022R206
GroupedDBID 53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EIHBH
FYUFA
GNUQQ
GUQSH
GX1
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
RNS
RPM
UKHRP
3V.
ALIPV
GROUPED_DOAJ
NPM
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c497t-73a4d790f180f12bd13c876069e7d15f07d52cbbb9b00ccd16158f2d702521bd3
IEDL.DBID M48
ISSN 2227-9032
IngestDate Sun Oct 26 04:02:17 EDT 2025
Tue Sep 30 17:17:29 EDT 2025
Fri Sep 05 09:34:23 EDT 2025
Sat Jul 26 00:19:37 EDT 2025
Mon Oct 20 22:07:10 EDT 2025
Mon Oct 20 17:18:35 EDT 2025
Thu Jan 02 22:54:48 EST 2025
Thu Apr 24 23:07:08 EDT 2025
Thu Oct 16 04:42:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords CNN
CAD system
U-Net
clinical decision
brain tumor
segmentation
classification
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-73a4d790f180f12bd13c876069e7d15f07d52cbbb9b00ccd16158f2d702521bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5462-595X
0000-0001-5957-1383
0000-0003-0608-6661
0000-0001-6669-8147
0000-0003-0307-1384
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/healthcare10122340
PMID 36553864
PQID 2756688883
PQPubID 2032390
ParticipantIDs unpaywall_primary_10_3390_healthcare10122340
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777942
proquest_miscellaneous_2758114982
proquest_journals_2756688883
gale_infotracmisc_A744639153
gale_infotracacademiconefile_A744639153
pubmed_primary_36553864
crossref_primary_10_3390_healthcare10122340
crossref_citationtrail_10_3390_healthcare10122340
PublicationCentury 2000
PublicationDate 20221122
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 20221122
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_92
Park (ref_44) 2018; 38
Davenport (ref_28) 2019; 6
ref_95
Hmeed (ref_94) 2021; Volume 201
ref_18
ref_17
ref_15
Das (ref_88) 2022; 143
Walsh (ref_86) 2022; 2
Tian (ref_1) 2019; 3
Rao (ref_69) 2015; 59
ref_25
ref_24
Menze (ref_79) 2015; 34
Alfonse (ref_11) 2016; 40
Vanderbecq (ref_97) 2020; 27
ref_29
Kouli (ref_87) 2022; 4
ref_27
ref_26
Currie (ref_38) 2019; 50
Alhussan (ref_6) 2021; 12
Mehrotra (ref_62) 2020; 2
ref_71
Dong (ref_72) 2017; Volume 723
Goyal (ref_93) 2022; Volume 858
ref_76
ref_74
ref_73
Kabade (ref_83) 2013; 4
Swati (ref_13) 2019; 75
Shree (ref_56) 2018; 5
Devkota (ref_52) 2018; 125
Rajesh (ref_55) 2019; 22
ref_82
Farahani (ref_3) 2018; 78
Ohgaki (ref_80) 2005; 64
Samee (ref_32) 2012; 9
Peng (ref_78) 2020; 30
ref_85
Dandil (ref_16) 2015; Volume 311
Yin (ref_90) 2022; 2022
Kim (ref_57) 2021; 11
ref_50
ref_58
Ronneberger (ref_89) 2015; Volume 9351
ref_53
ref_51
Samee (ref_34) 2022; 73
Pereira (ref_70) 2016; 35
Wang (ref_20) 2016; 29
Sultan (ref_63) 2019; 7
Ayadi (ref_96) 2021; 53
ref_67
ref_65
Anaraki (ref_60) 2019; 39
ref_64
Mohsen (ref_66) 2018; 3
Muhammad (ref_14) 2021; 32
Park (ref_45) 2018; 157
Goossens (ref_19) 2015; 2015
Li (ref_77) 2019; 108
Kadah (ref_42) 1996; 15
Johnson (ref_9) 2017; 36
Louis (ref_81) 2007; 114
Jiang (ref_22) 2022; 2022
Hochhalter (ref_7) 2018; 18
ref_36
ref_35
ref_33
ref_31
ref_30
Mirzaei (ref_21) 2019; 30
Hemanth (ref_68) 2019; 7
ref_39
Vial (ref_46) 2018; 7
Amulya (ref_47) 2016; 2
Lee (ref_37) 2018; 9
Tandel (ref_59) 2022; 78
Wicaksono (ref_49) 2015; 1
Fernandes (ref_10) 2020; 32
Kazemi (ref_61) 2022; 148
Kelly (ref_8) 2011; 1
Atteia (ref_23) 2021; 12
Mustaqeem (ref_84) 2012; 10
Abduh (ref_40) 2016; 6
Saba (ref_12) 2020; 59
ref_43
ref_41
Bahadure (ref_54) 2018; 31
ref_48
ref_5
ref_4
Cui (ref_75) 2018; 2018
Gong (ref_2) 2013; 11
Hsu (ref_91) 2021; 15
References_xml – ident: ref_74
– ident: ref_51
– ident: ref_85
  doi: 10.1371/journal.pmed.1002699
– volume: 59
  start-page: 221
  year: 2020
  ident: ref_12
  article-title: Brain Tumor Detection Using Fusion of Hand Crafted and Deep Learning Features
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2019.09.007
– volume: 6
  start-page: 94
  year: 2019
  ident: ref_28
  article-title: The Potential for Artificial Intelligence in Healthcare
  publication-title: Future Healthc. J.
  doi: 10.7861/futurehosp.6-2-94
– ident: ref_53
  doi: 10.1109/EIT.2018.8500308
– ident: ref_26
  doi: 10.3390/electronics11071045
– ident: ref_58
  doi: 10.1016/j.bspc.2022.103949
– volume: 18
  start-page: 236
  year: 2018
  ident: ref_7
  article-title: Advances in Neuro-Oncology Imaging Techniques
  publication-title: Ochsner J.
  doi: 10.31486/toj.17.0062
– ident: ref_39
  doi: 10.1109/ICCES.2007.4447063
– ident: ref_76
  doi: 10.1145/3278198.3278209
– ident: ref_18
  doi: 10.3390/s22197575
– ident: ref_64
  doi: 10.1007/978-981-10-9035-6_33
– ident: ref_17
  doi: 10.3390/app12115645
– volume: 7
  start-page: 803
  year: 2018
  ident: ref_46
  article-title: The Role of Deep Learning and Radiomic Feature Extraction in Cancer-Specific Predictive Modelling: A Review
  publication-title: Transl. Cancer Res.
  doi: 10.21037/tcr.2018.05.02
– volume: 30
  start-page: 5
  year: 2020
  ident: ref_78
  article-title: Multi-Scale 3D U-Nets: An Approach to Automatic Segmentation of Brain Tumor
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22368
– ident: ref_33
  doi: 10.3390/s22155520
– ident: ref_48
– volume: 75
  start-page: 34
  year: 2019
  ident: ref_13
  article-title: Brain Tumor Classification for MR Images Using Transfer Learning and Fine-Tuning
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.05.001
– volume: 108
  start-page: 150
  year: 2019
  ident: ref_77
  article-title: A Novel End-to-End Brain Tumor Segmentation Method Using Improved Fully Convolutional Networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.03.014
– volume: 31
  start-page: 477
  year: 2018
  ident: ref_54
  article-title: Comparative Approach of MRI-Based Brain Tumor Segmentation and Classification Using Genetic Algorithm
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0050-6
– volume: 35
  start-page: 1240
  year: 2016
  ident: ref_70
  article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– ident: ref_25
  doi: 10.3390/app12105083
– volume: 78
  start-page: 659
  year: 2018
  ident: ref_3
  article-title: Towards Fog-Driven IoT EHealth: Promises and Challenges of IoT in Medicine and Healthcare
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.04.036
– volume: 1
  start-page: 15
  year: 2015
  ident: ref_49
  article-title: Color and Texture Feature Extraction Using Gabor Filter-Local Binary Patterns for Image Segmentation with Fuzzy C-Means
  publication-title: J. Intell. Syst.
– volume: 64
  start-page: 479
  year: 2005
  ident: ref_80
  article-title: Population-Based Studies on Incidence, Survival Rates, and Genetic Alterations in Astrocytic and Oligodendroglial Gliomas
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/64.6.479
– ident: ref_43
  doi: 10.1109/ICIP.2009.5413992
– volume: 5
  start-page: 23
  year: 2018
  ident: ref_56
  article-title: Identification and Classification of Brain Tumor MRI Images with Feature Extraction Using DWT and Probabilistic Neural Network
  publication-title: Brain Inform.
  doi: 10.1007/s40708-017-0075-5
– volume: 10
  start-page: 34
  year: 2012
  ident: ref_84
  article-title: An Efficient Brain Tumor Detection Algorithm Using Watershed & Thresholding Based Segmentation
  publication-title: Image Graph. Signal Process.
  doi: 10.5815/ijigsp.2012.10.05
– ident: ref_4
  doi: 10.3390/healthcare10081592
– volume: 4
  start-page: 524
  year: 2013
  ident: ref_83
  article-title: Segmentation of Brain Tumour and Its Area Calculation in Brain MR Images Using K-Mean Clustering and Fuzzy C-Mean Algorithm
  publication-title: Med. Comput. Sci.
– volume: 2
  start-page: 100098
  year: 2022
  ident: ref_86
  article-title: Using U-Net Network for Efficient Brain Tumor Segmentation in MRI Images
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2022.100098
– ident: ref_92
– volume: 7
  start-page: 4275
  year: 2019
  ident: ref_68
  article-title: A Modified Deep Convolutional Neural Network for Abnormal Brain Image Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2885639
– volume: 114
  start-page: 97
  year: 2007
  ident: ref_81
  article-title: The 2007 WHO Classification of Tumours of the Central Nervous System
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-007-0243-4
– ident: ref_73
– volume: 3
  start-page: 68
  year: 2018
  ident: ref_66
  article-title: Classification Using Deep Learning Neural Networks for Brain Tumors
  publication-title: Future Comput. Inform. J.
  doi: 10.1016/j.fcij.2017.12.001
– volume: 7
  start-page: 69215
  year: 2019
  ident: ref_63
  article-title: Multi-Classification of Brain Tumor Images Using Deep Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919122
– volume: 53
  start-page: 671
  year: 2021
  ident: ref_96
  article-title: Deep CNN for Brain Tumor Classification
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10398-2
– volume: 38
  start-page: 443
  year: 2018
  ident: ref_44
  article-title: An Automatic Computer-Aided Diagnosis System for Breast Cancer in Digital Mammograms via Deep Belief Network
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0321-6
– volume: 34
  start-page: 1993
  year: 2015
  ident: ref_79
  article-title: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 32
  start-page: 15897
  year: 2020
  ident: ref_10
  article-title: A Reliable Framework for Accurate Brain Image Examination and Treatment Planning Based on Early Diagnosis Support for Clinicians
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-019-04369-5
– volume: Volume 723
  start-page: 506
  year: 2017
  ident: ref_72
  article-title: Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
  publication-title: Medical Image Understanding and Analysis
  doi: 10.1007/978-3-319-60964-5_44
– volume: 12
  start-page: 304
  year: 2021
  ident: ref_6
  article-title: Evaluating Deep and Statistical Machine Learning Models in the Classification of Breast Cancer from Digital Mammograms
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_36
– volume: 2018
  start-page: 4940593
  year: 2018
  ident: ref_75
  article-title: Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/4940593
– ident: ref_65
  doi: 10.3390/healthcare9020153
– volume: Volume 311
  start-page: 157
  year: 2015
  ident: ref_16
  article-title: Computer-Aided Diagnosis of Malign and Benign Brain Tumors on MR Images
  publication-title: Advances in Intelligent Systems and Computing, Proceedings of the International Conference on ICT Innovations, Macedonia, 9–12 September 2014
– ident: ref_71
  doi: 10.1007/978-3-319-55524-9_15
– ident: ref_41
  doi: 10.1109/CIBEC.2008.4786034
– volume: 6
  start-page: 693
  year: 2016
  ident: ref_40
  article-title: Robust Computer-Aided Detection of Pulmonary Nodules from Chest Computed Tomography
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2016.1731
– ident: ref_29
  doi: 10.3390/electronics11070991
– volume: 3
  start-page: 62
  year: 2019
  ident: ref_1
  article-title: Smart Healthcare: Making Medical Care More Intelligent
  publication-title: Glob. Health J.
  doi: 10.1016/j.glohj.2019.07.001
– volume: 157
  start-page: 85
  year: 2018
  ident: ref_45
  article-title: Simultaneous Detection and Classification of Breast Masses in Digital Mammograms via a Deep Learning YOLO-Based CAD System
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.017
– volume: 15
  start-page: 1674
  year: 2021
  ident: ref_91
  article-title: 3D U-Net Improves Automatic Brain Extraction for Isotropic Rat Brain Magnetic Resonance Imaging Data
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.801008
– volume: 27
  start-page: 102357
  year: 2020
  ident: ref_97
  article-title: Comparison and Validation of Seven White Matter Hyperintensities Segmentation Software in Elderly Patients
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2020.102357
– volume: 143
  start-page: 105273
  year: 2022
  ident: ref_88
  article-title: An Artificial Intelligence Framework and Its Bias for Brain Tumor Segmentation: A Narrative Review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105273
– volume: 30
  start-page: 31
  year: 2019
  ident: ref_21
  article-title: Segmentation and Clustering in Brain MRI Imaging
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2018-0050
– volume: 59
  start-page: 1
  year: 2015
  ident: ref_69
  article-title: Brain Tumor Segmentation with Deep Learning
  publication-title: MICCAI Multimodal Brain Tumor Segm. Chall. (BraTS)
– volume: 2
  start-page: 123
  year: 2016
  ident: ref_47
  article-title: MRI Brain Tumour Classification Using SURF and SIFT Features
  publication-title: Int. J. Mod. Trends Sci. Technol.
– ident: ref_5
  doi: 10.3390/s22134938
– volume: 40
  start-page: 11
  year: 2016
  ident: ref_11
  article-title: An Automatic Classification of Brain Tumors through MRI Using Support Vector Machine
  publication-title: Egypt. Comput. Sci. J.
– ident: ref_15
  doi: 10.3390/cancers13215546
– volume: Volume 858
  start-page: 569
  year: 2022
  ident: ref_93
  article-title: Exploring Unet Architecture for Semantic Segmentation of the Brain MRI Scans
  publication-title: Lecture Notes in Electrical Engineering, Proceedings of the Machine Intelligence and Signal Processing, Allahabad, India, 7–10 September, 2019
– volume: 78
  start-page: 104018
  year: 2022
  ident: ref_59
  article-title: Performance Enhancement of MRI-Based Brain Tumor Classification Using Suitable Segmentation Method and Deep Learning-Based Ensemble Algorithm
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2022.104018
– volume: 12
  start-page: 647
  year: 2021
  ident: ref_23
  article-title: Evaluation of Using Parametric and Non-Parametric Machine Learning Algorithms for Covid-19 Forecasting
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 15
  start-page: 466
  year: 1996
  ident: ref_42
  article-title: Classification Algorithms for Quantitative Tissue Characterization of Diffuse Liver Disease from Ultrasound Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.511750
– volume: 36
  start-page: 255
  year: 2017
  ident: ref_9
  article-title: Brain Tumor Epidemiology in the Era of Precision Medicine: The 2017 Brain Tumor Epidemiology Consortium Meeting Report
  publication-title: Clin. Neuropathol.
  doi: 10.5414/NP301066
– volume: 11
  start-page: 28
  year: 2013
  ident: ref_2
  article-title: Primary Exploration in Establishment of China’s Intelligent Medical Treatment
  publication-title: Mod. Hosp. Manag.
– volume: 32
  start-page: 507
  year: 2021
  ident: ref_14
  article-title: Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2995800
– volume: 2015
  start-page: 450341
  year: 2015
  ident: ref_19
  article-title: MRI Segmentation of the Human Brain: Challenges, Methods, and Applications
  publication-title: Comput. Math. Methods Med.
– volume: 148
  start-page: 105775
  year: 2022
  ident: ref_61
  article-title: Classifying Tumor Brain Images Using Parallel Deep Learning Algorithms
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105775
– volume: 2022
  start-page: 4189781
  year: 2022
  ident: ref_90
  article-title: U-Net-Based Medical Image Segmentation
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/4189781
– volume: 11
  start-page: 10191
  year: 2021
  ident: ref_57
  article-title: CMM-Net: Contextual Multi-Scale Multi-Level Network for Efficient Biomedical Image Segmentation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89686-3
– volume: 4
  start-page: 1
  year: 2022
  ident: ref_87
  article-title: Automated Brain Tumor Identification Using Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis
  publication-title: Neuro-Oncol. Adv.
– ident: ref_82
– volume: 2022
  start-page: 6305748
  year: 2022
  ident: ref_22
  article-title: MRF-IUNet: A Multiresolution Fusion Brain Tumor Segmentation Network Based on Improved Inception U-Net
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/6305748
– volume: 9
  start-page: 42
  year: 2018
  ident: ref_37
  article-title: A Machine Learning Approach to Integrate Big Data for Precision Medicine in Acute Myeloid Leukemia
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02465-5
– ident: ref_50
  doi: 10.1109/ICIIECS.2017.8276094
– ident: ref_35
  doi: 10.3390/math10183274
– ident: ref_31
  doi: 10.3390/e23101251
– volume: 9
  start-page: 34
  year: 2012
  ident: ref_32
  article-title: Detection of Biomarkers for Hepatocellular Carcinoma Using a Hybrid Univariate Gene Selection Methods
  publication-title: Theor. Biol. Med. Model.
  doi: 10.1186/1742-4682-9-34
– ident: ref_67
  doi: 10.1109/ICIINFS.2017.8300364
– volume: 50
  start-page: 477
  year: 2019
  ident: ref_38
  article-title: Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging
  publication-title: J. Med. Imaging Radiat. Sci.
  doi: 10.1016/j.jmir.2019.09.005
– ident: ref_30
  doi: 10.3390/a13030073
– volume: 39
  start-page: 63
  year: 2019
  ident: ref_60
  article-title: Magnetic Resonance Imaging-Based Brain Tumor Grades Classification and Grading via Convolutional Neural Networks and Genetic Algorithms
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.10.004
– volume: 73
  start-page: 4193
  year: 2022
  ident: ref_34
  article-title: Metaheuristic Optimization Through Deep Learning Classification Of COVID-19 in Chest X-Ray Images
  publication-title: Comput. Mater. Contin.
– volume: 29
  start-page: 95
  year: 2016
  ident: ref_20
  article-title: Principles and Methods for Automatic and Semi-Automatic Tissue Segmentation in MRI Data
  publication-title: Magn. Reson. Mater. Phys. Biol. Med.
  doi: 10.1007/s10334-015-0520-5
– ident: ref_95
  doi: 10.3390/electronics9122203
– ident: ref_27
  doi: 10.3390/electronics11081174
– volume: Volume 201
  start-page: 353
  year: 2021
  ident: ref_94
  article-title: Enhancement of the U-Net Architecture for MRI Brain Tumor Segmentation
  publication-title: Lecture Notes in Networks and Systems, Proceedings of the International Conference on Next Generation of Internet of Things (ICNGIoT 2021), Odisha, India, 5–6 February 2021
– volume: 125
  start-page: 115
  year: 2018
  ident: ref_52
  article-title: Image Segmentation for Early Stage Brain Tumor Detection Using Mathematical Morphological Reconstruction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.12.017
– volume: 2
  start-page: 100003
  year: 2020
  ident: ref_62
  article-title: A Transfer Learning Approach for AI-Based Classification of Brain Tumors
  publication-title: Machine Learning with Applications
  doi: 10.1016/j.mlwa.2020.100003
– volume: 1
  start-page: 96
  year: 2011
  ident: ref_8
  article-title: Gliomas: Survival, Origin and Early Detection
  publication-title: Surg. Neurol. Int.
  doi: 10.4103/2152-7806.74243
– ident: ref_24
  doi: 10.14569/IJACSA.2021.0120937
– volume: 22
  start-page: 13853
  year: 2019
  ident: ref_55
  article-title: Brain Tumor Detection Using Optimisation Classification Based on Rough Set Theory
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-018-2111-5
– volume: Volume 9351
  start-page: 234
  year: 2015
  ident: ref_89
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Lecture Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015
SSID ssj0000913835
Score 2.2764087
Snippet Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2340
SubjectTerms Algorithms
Artificial intelligence
Brain cancer
Brain research
Brain tumors
Classification
Clinical decision making
Data mining
Decision support systems
Deep learning
Diagnosis
Glioma
Gliomas
Image segmentation
Literature reviews
Machine learning
Magnetic resonance imaging
Medical imaging equipment
Methods
Neural networks
Patients
Precision medicine
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AASQjyLS0GLhMQBrNq7fh4QStNGBQkLlUbqzfI-nCA5TmgSIf4Ev5kZe22SIlUcfPHOWo5ndnZm8803AG_i1Cu8RKauEalyA2UCV1KyEkVlKKLQRIVuALJZdD4JPl-FV3uQdbUwBKvsfGLjqPVC0Rn5MdGUR5iuJeLj8odLXaPo39WuhUZhWyvoDw3F2B3Y58SMNYD9k7Ps60V_6kIsmBhztNUzAvP941kPsyKmKy7oFGRrh7rpp7c2qpsgyrubeln8-llU1dYONX4ID2xoyYatLTyCPVM_hvvtuRxry42ewG9LBFqxU9tdh1FjTwzC2bjDaTEMZNk3M53buqSaFbVmTftMAha1txYlO6H2EuxyM0fxLxefVqzBH7CCTdzMrJtJp6MsY6NiRSh8zSyZ65QNqyl-2_Vs_hQm47PL0blrezK4KkjjtRuLItCo4NJP8OJS-0KhQ_Wi1MTaD0sv1iFXUkriWlRKU0CZlFzHGFtxX2rxDAb1ojbPgYVoB5zroPQ8iUaiEqVDKRSaRyBlIpQDfqeHXFnCcuqbUeWYuJDu8n9158C7fs6ypeu4VfotqTentYxPVoUtScD3I1asfBhjskwM-sKBox1JXINqd7gzkNz6gFX-12IdeN0P00zCtdVmsWlkEsxI04Q7cNDaU__euFRwN4oCB-IdS-sFiBl8d6T-PmsYwjGoRz-Lz3zf2-R_fI7D23_FC7jHqfbD913Oj2Cwvt6YlxiRreUru8z-APsOOUA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEF6096Ag528vesoKgg-aa7KbbJInqT3LKVhEr3A-hexu0hbTtFwTRf8I_2Znkk1oKohioVC6s0vSfjs7E775hpBnQeQkTigjO-WRsj2VerbEZEWIzOfCT0Wia4LsVJzNvHcX_sVOFT_SKiEVX9ZOGus07cjhDPb20GVDxj1nuNHZq6_mWZIrBETgoeDBVXIgfPg8IAez6YfRZ-wp185uamU4ZPfDRUeqQl0rXK93Hu175Z1jaZ8yea0qNsn3b0me75xHk5skae-koaF8OalKeaJ-7Ik8_s-t3iKHJlilowZdt8mVtLhDbjRP-mhTwHSX_DTSojk9Nf16KLYKhbCeTlrmF4XQmH5K5ytT6VTQpNC0bsiJVKXmq3VGX2PDCnpercD8_ce3W1ozGmhCZ_Y0LetJp-PplI6TLfL6NTXysHM6yufry2W5WN0js8mb8_GZbbo82MqLgtIOeOJpgEzmhvBmUrtcgYt2RJQG2vUzJ9A-U1JKVG9USmOIGmZMBxCtMVdqfp8MinWRHhHqA7IY017mOBJgp0KlfckVAM6TMuTKIm77X8fKSKBjJ448hlQI8RH_jg-LvOjmbBoBkD9aP0cIxegdYGWVmCIHuD7U2YpHAaTfqMnPLXLcs4RdrfrDLQhj41W2MUr1ixBeMPy0G8aZyJQr0nVV24SQ40Yhs8iDBrPddcPmg_NNeBYJemjuDFBrvD9SLBe15jikCeC5Yc2XHe7_4ud4-G_mj8h1htUlrmszdkwG5WWVPoaYr5RPzLb-BacnU6s
  priority: 102
  providerName: Unpaywall
Title Clinical Decision Support Framework for Segmentation and Classification of Brain Tumor MRIs Using a U-Net and DCNN Cascaded Learning Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/36553864
https://www.proquest.com/docview/2756688883
https://www.proquest.com/docview/2758114982
https://pubmed.ncbi.nlm.nih.gov/PMC9777942
https://www.mdpi.com/2227-9032/10/12/2340/pdf?version=1669608637
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD : Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 8C1
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M48
  dateStart: 20131001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF9q-6Ag4rfReqwg-KDRZDefDyLXa48qNJTaQH0K2Y_cFXK5epdD-0_4NzuTbEJTP-jBPdzt7BJ2frszE2Z-Q8jrMHZyJxKxrXksbU9qzxYYrARB4fPA10GumgTZJDhMvS9n_tkW6dodmQ1c_zW0w35S6ap8__P75Sc48B8x4oSQ_cO8z5RCsirGPQjhd8BSxdjK4ci4-83NHLsQkGFWI1aA2rHDWVtH849lBrbq-o19xWRdT6e8vaku8ssfeVlesVXT--SecTLpuEXFA7Klq4fkbvuGjraFR4_IL0MJWtJ902eHYotP2Ak67TK2KLi09KueLUyFUkXzStGmkSamGLV_LQu6h40m6OlmAeJHJ5_XtMlEoDlN7UTXzaT9SZLQSb7GfHxFDa3rjI7L2XJ1Xs8Xj0k6PTidHNqmO4MtvTis7ZDnngJVF24EXyaUyyVcrU4Q61C5fuGEymdSCIGsi1IqdC2jgqkQvCzmCsWfkO1qWelnhPqACMaUVziOALjISCpfcAlA8YSIuLSI2-khk4a6HDtolBmEMKi77E_dWeRtP-eiJe74r_QbVG-GOIOVZW6KE-D5kB8rG4cQNiOXPrfI7kASTqMcDncAyTowZ0ixH0TwgeFX_TDOxAy3Si83jUwEsWkcMYs8bfHUPzccGrBLgWeRcIC0XgA5wocj1fm84QoH9x5uXFjzXY_JG2zH8xtvxwtyh2FBiOvajO2S7Xq10S_BTavFiNyKJu6I7OwdJMcno-Ykwq80OR5_-w0Nn0Gj
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigSqnjjUmCRQBzAqr3r5wGhkBAltM0BEqk31_twgpQ4gSSq-if4KfxGZvwiKVLFpQdfvLOrdeaxM5uZbwBeh7GTOpGMbSNiZXvKeLakYCUIMl8EvglSXSTIDoLeyPty5p_twO-6FobSKmubWBhqPVd0R35EMOUBhmuR-Lj4YVPXKPp3tW6hUYrFsbm8wJBt-aHfQf6-4bz7edju2VVXAVt5cbiyQ5F6GreYuRE-XGpXKDQJThCbULt-5oTa50pKSWiBSmlyiaKM6xC9A-5KLXDdW3DbEzwkQxC13eZOhzA20aMpa3OEiJ2jSZPERThaXNAdy8b5d_UU2DgGr6Zo7q3zRXp5kU6nG-df9x7sV44ra5WSdh92TP4A7pa3fqwsZnoIvyqY0SnrVL17GLUNRRefdessMIZuMvtmxrOq6ilnaa5Z0ZyT0pbKV_OMfaLmFWy4niH56df-khXZDSxlI3tgVsWkTnswYO10STn-mlVQsWPWmo6Rc6vJ7BGMboQ3j2E3n-fmKTAfpYxz7WWOI1EEVaS0L4VC4fOkjISywK35kKgKDp26ckwTDIuId8m_vLPgXTNnUYKBXEv9ltibkKXAlVVaFTzg_ghzK2mFGIoTPr-w4HCLEjVcbQ_XApJUFmaZ_NUHC141wzSTsuZyM18XNBHGu3HELXhSylOzb1REPOsCz4JwS9IaAsId3x7Jv08K_HEMGdCK45rvG5n8j5_j4PqveAl7veHpSXLSHxw_gzucqkxc1-b8EHZXP9fmOfp-K_miUDgG5zet4X8AVb1urw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIkElhHjXUGCRQBzAir3r5wGhkBA1FCIEjdSb8T6cICVOII6q_gl-EL-OGb9IilRx6cEX7-xqnXnszGbmG4DnYeykTiRj24hY2Z4yni0pWAmCzBeBb4JUlwmyo-Bw7H048U924HdTC0NplY1NLA21Xii6I-8QTHmA4VokOlmdFvG5P3i7_GFTByn6p7Vpp1GJyJE5O8XwbfVm2Edev-B88P64d2jXHQZs5cVhYYci9TRuN3MjfLjUrlBoHpwgNqF2_cwJtc-VlJKQA5XS5B5FGdchegrclVrgulfgaiiCgHD7o57b3u8Q3iZ6N1WdjhCx05m2CV2EqcUF3bdsnIXnT4SNI_F8uub1db5Mz07T2WzjLBzcgpu1E8u6ldTdhh2T34Eb1Q0gqwqb7sKvGnJ0xvp1Hx9GLUTR3WeDJiOMocvMvprJvK6Aylmaa1Y26qQUpurVImPvqJEFO17PkfzTl-GKlZkOLGVje2SKclK_NxqxXrqifH_NatjYCevOJsi5Yjq_B-NL4c192M0XudkH5qPEca69zHEkiqOKlPalUCiInpSRUBa4DR8SVUOjU4eOWYIhEvEu-Zd3Frxq5ywrYJALqV8SexOyGriySuviB9wf4W8l3RDDcsLqFxYcbFGitqvt4UZAktrarJK_umHBs3aYZlIGXW4W65Imwtg3jrgFDyp5aveNSonnXuBZEG5JWktAGOTbI_n3aYlFjuEDWnRc83Urk__xczy8-CuewjXU7eTjcHT0CPY4FZy4rs35AewWP9fmMbqBhXxS6huDb5et4H8AZIFy6Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEF6096Ag528vesoKgg-aa7KbbJInqT3LKVhEr3A-hexu0hbTtFwTRf8I_2Znkk1oKohioVC6s0vSfjs7E775hpBnQeQkTigjO-WRsj2VerbEZEWIzOfCT0Wia4LsVJzNvHcX_sVOFT_SKiEVX9ZOGus07cjhDPb20GVDxj1nuNHZq6_mWZIrBETgoeDBVXIgfPg8IAez6YfRZ-wp185uamU4ZPfDRUeqQl0rXK93Hu175Z1jaZ8yea0qNsn3b0me75xHk5skae-koaF8OalKeaJ-7Ik8_s-t3iKHJlilowZdt8mVtLhDbjRP-mhTwHSX_DTSojk9Nf16KLYKhbCeTlrmF4XQmH5K5ytT6VTQpNC0bsiJVKXmq3VGX2PDCnpercD8_ce3W1ozGmhCZ_Y0LetJp-PplI6TLfL6NTXysHM6yufry2W5WN0js8mb8_GZbbo82MqLgtIOeOJpgEzmhvBmUrtcgYt2RJQG2vUzJ9A-U1JKVG9USmOIGmZMBxCtMVdqfp8MinWRHhHqA7IY017mOBJgp0KlfckVAM6TMuTKIm77X8fKSKBjJ448hlQI8RH_jg-LvOjmbBoBkD9aP0cIxegdYGWVmCIHuD7U2YpHAaTfqMnPLXLcs4RdrfrDLQhj41W2MUr1ixBeMPy0G8aZyJQr0nVV24SQ40Yhs8iDBrPddcPmg_NNeBYJemjuDFBrvD9SLBe15jikCeC5Yc2XHe7_4ud4-G_mj8h1htUlrmszdkwG5WWVPoaYr5RPzLb-BacnU6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+Decision+Support+Framework+for+Segmentation+and+Classification+of+Brain+Tumor+MRIs+Using+a+U-Net+and+DCNN+Cascaded+Learning+Algorithm&rft.jtitle=Healthcare+%28Basel%29&rft.au=Samee%2C+Nagwan+Abdel&rft.au=Ahmad%2C+Tahir&rft.au=Mahmoud%2C+Noha+F&rft.au=Atteia%2C+Ghada&rft.date=2022-11-22&rft.pub=MDPI+AG&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=10&rft.issue=12&rft_id=info:doi/10.3390%2Fhealthcare10122340&rft.externalDocID=A744639153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon