Clinical Decision Support Framework for Segmentation and Classification of Brain Tumor MRIs Using a U-Net and DCNN Cascaded Learning Algorithm
Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its ear...
Saved in:
| Published in | Healthcare (Basel) Vol. 10; no. 12; p. 2340 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
22.11.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-9032 2227-9032 |
| DOI | 10.3390/healthcare10122340 |
Cover
| Abstract | Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN’s proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%. |
|---|---|
| AbstractList | Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN's proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%.Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN's proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%. Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN’s proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%. |
| Audience | Academic |
| Author | Ahmad, Tahir Samee, Nagwan Abdel Atteia, Ghada Mahmoud, Noha F. Abdallah, Hanaa A. Rizwan, Atif |
| AuthorAffiliation | 2 Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan 4 Department of Computer Engineering, Jeju National University, Jejusi 63243, Republic of Korea 1 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia 3 Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| AuthorAffiliation_xml | – name: 3 Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – name: 2 Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan – name: 1 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – name: 4 Department of Computer Engineering, Jeju National University, Jejusi 63243, Republic of Korea |
| Author_xml | – sequence: 1 givenname: Nagwan Abdel orcidid: 0000-0001-5957-1383 surname: Samee fullname: Samee, Nagwan Abdel – sequence: 2 givenname: Tahir surname: Ahmad fullname: Ahmad, Tahir – sequence: 3 givenname: Noha F. orcidid: 0000-0003-0608-6661 surname: Mahmoud fullname: Mahmoud, Noha F. – sequence: 4 givenname: Ghada orcidid: 0000-0002-5462-595X surname: Atteia fullname: Atteia, Ghada – sequence: 5 givenname: Hanaa A. orcidid: 0000-0003-0307-1384 surname: Abdallah fullname: Abdallah, Hanaa A. – sequence: 6 givenname: Atif orcidid: 0000-0001-6669-8147 surname: Rizwan fullname: Rizwan, Atif |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36553864$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttu1DAQhiNUREvpC3CBLHHDzRYfkji-QSophUrLItHutTVxnF0Xx97aCVVfgmfG6RZ6ACEsWbbG3z_2_J7n2Y7zTmfZS4IPGRP47VqDHdYKgiaYUMpy_CTbo5TymcCM7tzb72YHMV7gNARhFSueZbusLApWlfle9qO2xhkFFh1rZaLxDp2Nm40PAzoJ0OsrH76hzgd0ple9dgMMEwKuRbWFGE2XtDch36H3AYxD52Of8M9fTyNaRuNWCNByttDDjei4XixQDVFBq1s01xDchBzZlQ9mWPcvsqcd2KgPbtf9bHny4bz-NJt_-XhaH81nKhd8mHEGecsF7kiVJm1awlTFS1wKzVtSdJi3BVVN04gGY6VaUpKi6mjLMS0oaVq2n7Ft3tFt4PoKrJWbYHoI15JgORks_zQ4qd5tVZux6XWrkh8B7pQejHx44sxarvx3KTjnIqcpwZvbBMFfjjoOsjdRaWvBaT9GSXlREZKLakJfP0Iv_BhcMmWiyrJKg91RK7BaGtf5dK-aksojnuclE6SYqMO_UDB9Qm9U6qvOpPgDwav7hf6u8FffJIBuARV8jEF3_2df9UikzLah0nOM_Zf0Jw-C69Q |
| CitedBy_id | crossref_primary_10_3390_healthcare11050683 crossref_primary_10_1007_s00521_024_10919_3 crossref_primary_10_3390_bioengineering10101120 crossref_primary_10_3390_bioengineering10060629 crossref_primary_10_3390_healthcare11172462 crossref_primary_10_1007_s11517_023_02820_3 crossref_primary_10_1007_s11042_024_18478_4 crossref_primary_10_3390_cancers16020300 crossref_primary_10_1016_j_bspc_2024_107469 crossref_primary_10_1038_s41598_024_81966_y |
| Cites_doi | 10.1371/journal.pmed.1002699 10.1016/j.cogsys.2019.09.007 10.7861/futurehosp.6-2-94 10.1109/EIT.2018.8500308 10.3390/electronics11071045 10.1016/j.bspc.2022.103949 10.31486/toj.17.0062 10.1109/ICCES.2007.4447063 10.1145/3278198.3278209 10.3390/s22197575 10.1007/978-981-10-9035-6_33 10.3390/app12115645 10.21037/tcr.2018.05.02 10.1002/ima.22368 10.3390/s22155520 10.1016/j.compmedimag.2019.05.001 10.1016/j.compbiomed.2019.03.014 10.1007/s10278-018-0050-6 10.1109/TMI.2016.2538465 10.3390/app12105083 10.1016/j.future.2017.04.036 10.1093/jnen/64.6.479 10.1109/ICIP.2009.5413992 10.1007/s40708-017-0075-5 10.5815/ijigsp.2012.10.05 10.3390/healthcare10081592 10.1016/j.health.2022.100098 10.1109/ACCESS.2018.2885639 10.1007/s00401-007-0243-4 10.1016/j.fcij.2017.12.001 10.1109/ACCESS.2019.2919122 10.1007/s11063-020-10398-2 10.1007/s40846-017-0321-6 10.1109/TMI.2014.2377694 10.1007/s00521-019-04369-5 10.1007/978-3-319-60964-5_44 10.1155/2018/4940593 10.3390/healthcare9020153 10.1007/978-3-319-55524-9_15 10.1109/CIBEC.2008.4786034 10.1166/jmihi.2016.1731 10.3390/electronics11070991 10.1016/j.glohj.2019.07.001 10.1016/j.cmpb.2018.01.017 10.3389/fnins.2021.801008 10.1016/j.nicl.2020.102357 10.1016/j.compbiomed.2022.105273 10.1515/revneuro-2018-0050 10.3390/s22134938 10.3390/cancers13215546 10.1016/j.bspc.2022.104018 10.1109/42.511750 10.5414/NP301066 10.1109/TNNLS.2020.2995800 10.1016/j.compbiomed.2022.105775 10.1155/2022/4189781 10.1038/s41598-021-89686-3 10.1155/2022/6305748 10.1038/s41467-017-02465-5 10.1109/ICIIECS.2017.8276094 10.3390/math10183274 10.3390/e23101251 10.1186/1742-4682-9-34 10.1109/ICIINFS.2017.8300364 10.1016/j.jmir.2019.09.005 10.3390/a13030073 10.1016/j.bbe.2018.10.004 10.1007/s10334-015-0520-5 10.3390/electronics9122203 10.3390/electronics11081174 10.1016/j.procs.2017.12.017 10.1016/j.mlwa.2020.100003 10.4103/2152-7806.74243 10.14569/IJACSA.2021.0120937 10.1007/s10586-018-2111-5 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7RV 7XB 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH KB0 M2O MBDVC NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.3390/healthcare10122340 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Central (purchase pre-March 2016) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Nursing & Allied Health Database (Alumni Edition) Research Library (Proquest) Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 2227-9032 |
| ExternalDocumentID | 10.3390/healthcare10122340 PMC9777942 A744639153 36553864 10_3390_healthcare10122340 |
| Genre | Journal Article |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GrantInformation_xml | – fundername: Princess Nourah bint Abdulrahman University grantid: PNURSP2022R206 |
| GroupedDBID | 53G 5VS 7RV 8C1 8FI 8FJ 8G5 AAFWJ AAHBH AAYXX ABUWG ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO EIHBH FYUFA GNUQQ GUQSH GX1 HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E NAPCQ OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC RNS RPM UKHRP 3V. ALIPV GROUPED_DOAJ NPM 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c497t-73a4d790f180f12bd13c876069e7d15f07d52cbbb9b00ccd16158f2d702521bd3 |
| IEDL.DBID | M48 |
| ISSN | 2227-9032 |
| IngestDate | Sun Oct 26 04:02:17 EDT 2025 Tue Sep 30 17:17:29 EDT 2025 Fri Sep 05 09:34:23 EDT 2025 Sat Jul 26 00:19:37 EDT 2025 Mon Oct 20 22:07:10 EDT 2025 Mon Oct 20 17:18:35 EDT 2025 Thu Jan 02 22:54:48 EST 2025 Thu Apr 24 23:07:08 EDT 2025 Thu Oct 16 04:42:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | CNN CAD system U-Net clinical decision brain tumor segmentation classification |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c497t-73a4d790f180f12bd13c876069e7d15f07d52cbbb9b00ccd16158f2d702521bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5462-595X 0000-0001-5957-1383 0000-0003-0608-6661 0000-0001-6669-8147 0000-0003-0307-1384 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/healthcare10122340 |
| PMID | 36553864 |
| PQID | 2756688883 |
| PQPubID | 2032390 |
| ParticipantIDs | unpaywall_primary_10_3390_healthcare10122340 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777942 proquest_miscellaneous_2758114982 proquest_journals_2756688883 gale_infotracmisc_A744639153 gale_infotracacademiconefile_A744639153 pubmed_primary_36553864 crossref_primary_10_3390_healthcare10122340 crossref_citationtrail_10_3390_healthcare10122340 |
| PublicationCentury | 2000 |
| PublicationDate | 20221122 |
| PublicationDateYYYYMMDD | 2022-11-22 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221122 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Healthcare (Basel) |
| PublicationTitleAlternate | Healthcare (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_92 Park (ref_44) 2018; 38 Davenport (ref_28) 2019; 6 ref_95 Hmeed (ref_94) 2021; Volume 201 ref_18 ref_17 ref_15 Das (ref_88) 2022; 143 Walsh (ref_86) 2022; 2 Tian (ref_1) 2019; 3 Rao (ref_69) 2015; 59 ref_25 ref_24 Menze (ref_79) 2015; 34 Alfonse (ref_11) 2016; 40 Vanderbecq (ref_97) 2020; 27 ref_29 Kouli (ref_87) 2022; 4 ref_27 ref_26 Currie (ref_38) 2019; 50 Alhussan (ref_6) 2021; 12 Mehrotra (ref_62) 2020; 2 ref_71 Dong (ref_72) 2017; Volume 723 Goyal (ref_93) 2022; Volume 858 ref_76 ref_74 ref_73 Kabade (ref_83) 2013; 4 Swati (ref_13) 2019; 75 Shree (ref_56) 2018; 5 Devkota (ref_52) 2018; 125 Rajesh (ref_55) 2019; 22 ref_82 Farahani (ref_3) 2018; 78 Ohgaki (ref_80) 2005; 64 Samee (ref_32) 2012; 9 Peng (ref_78) 2020; 30 ref_85 Dandil (ref_16) 2015; Volume 311 Yin (ref_90) 2022; 2022 Kim (ref_57) 2021; 11 ref_50 ref_58 Ronneberger (ref_89) 2015; Volume 9351 ref_53 ref_51 Samee (ref_34) 2022; 73 Pereira (ref_70) 2016; 35 Wang (ref_20) 2016; 29 Sultan (ref_63) 2019; 7 Ayadi (ref_96) 2021; 53 ref_67 ref_65 Anaraki (ref_60) 2019; 39 ref_64 Mohsen (ref_66) 2018; 3 Muhammad (ref_14) 2021; 32 Park (ref_45) 2018; 157 Goossens (ref_19) 2015; 2015 Li (ref_77) 2019; 108 Kadah (ref_42) 1996; 15 Johnson (ref_9) 2017; 36 Louis (ref_81) 2007; 114 Jiang (ref_22) 2022; 2022 Hochhalter (ref_7) 2018; 18 ref_36 ref_35 ref_33 ref_31 ref_30 Mirzaei (ref_21) 2019; 30 Hemanth (ref_68) 2019; 7 ref_39 Vial (ref_46) 2018; 7 Amulya (ref_47) 2016; 2 Lee (ref_37) 2018; 9 Tandel (ref_59) 2022; 78 Wicaksono (ref_49) 2015; 1 Fernandes (ref_10) 2020; 32 Kazemi (ref_61) 2022; 148 Kelly (ref_8) 2011; 1 Atteia (ref_23) 2021; 12 Mustaqeem (ref_84) 2012; 10 Abduh (ref_40) 2016; 6 Saba (ref_12) 2020; 59 ref_43 ref_41 Bahadure (ref_54) 2018; 31 ref_48 ref_5 ref_4 Cui (ref_75) 2018; 2018 Gong (ref_2) 2013; 11 Hsu (ref_91) 2021; 15 |
| References_xml | – ident: ref_74 – ident: ref_51 – ident: ref_85 doi: 10.1371/journal.pmed.1002699 – volume: 59 start-page: 221 year: 2020 ident: ref_12 article-title: Brain Tumor Detection Using Fusion of Hand Crafted and Deep Learning Features publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2019.09.007 – volume: 6 start-page: 94 year: 2019 ident: ref_28 article-title: The Potential for Artificial Intelligence in Healthcare publication-title: Future Healthc. J. doi: 10.7861/futurehosp.6-2-94 – ident: ref_53 doi: 10.1109/EIT.2018.8500308 – ident: ref_26 doi: 10.3390/electronics11071045 – ident: ref_58 doi: 10.1016/j.bspc.2022.103949 – volume: 18 start-page: 236 year: 2018 ident: ref_7 article-title: Advances in Neuro-Oncology Imaging Techniques publication-title: Ochsner J. doi: 10.31486/toj.17.0062 – ident: ref_39 doi: 10.1109/ICCES.2007.4447063 – ident: ref_76 doi: 10.1145/3278198.3278209 – ident: ref_18 doi: 10.3390/s22197575 – ident: ref_64 doi: 10.1007/978-981-10-9035-6_33 – ident: ref_17 doi: 10.3390/app12115645 – volume: 7 start-page: 803 year: 2018 ident: ref_46 article-title: The Role of Deep Learning and Radiomic Feature Extraction in Cancer-Specific Predictive Modelling: A Review publication-title: Transl. Cancer Res. doi: 10.21037/tcr.2018.05.02 – volume: 30 start-page: 5 year: 2020 ident: ref_78 article-title: Multi-Scale 3D U-Nets: An Approach to Automatic Segmentation of Brain Tumor publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22368 – ident: ref_33 doi: 10.3390/s22155520 – ident: ref_48 – volume: 75 start-page: 34 year: 2019 ident: ref_13 article-title: Brain Tumor Classification for MR Images Using Transfer Learning and Fine-Tuning publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.05.001 – volume: 108 start-page: 150 year: 2019 ident: ref_77 article-title: A Novel End-to-End Brain Tumor Segmentation Method Using Improved Fully Convolutional Networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.03.014 – volume: 31 start-page: 477 year: 2018 ident: ref_54 article-title: Comparative Approach of MRI-Based Brain Tumor Segmentation and Classification Using Genetic Algorithm publication-title: J. Digit. Imaging doi: 10.1007/s10278-018-0050-6 – volume: 35 start-page: 1240 year: 2016 ident: ref_70 article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – ident: ref_25 doi: 10.3390/app12105083 – volume: 78 start-page: 659 year: 2018 ident: ref_3 article-title: Towards Fog-Driven IoT EHealth: Promises and Challenges of IoT in Medicine and Healthcare publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.04.036 – volume: 1 start-page: 15 year: 2015 ident: ref_49 article-title: Color and Texture Feature Extraction Using Gabor Filter-Local Binary Patterns for Image Segmentation with Fuzzy C-Means publication-title: J. Intell. Syst. – volume: 64 start-page: 479 year: 2005 ident: ref_80 article-title: Population-Based Studies on Incidence, Survival Rates, and Genetic Alterations in Astrocytic and Oligodendroglial Gliomas publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/64.6.479 – ident: ref_43 doi: 10.1109/ICIP.2009.5413992 – volume: 5 start-page: 23 year: 2018 ident: ref_56 article-title: Identification and Classification of Brain Tumor MRI Images with Feature Extraction Using DWT and Probabilistic Neural Network publication-title: Brain Inform. doi: 10.1007/s40708-017-0075-5 – volume: 10 start-page: 34 year: 2012 ident: ref_84 article-title: An Efficient Brain Tumor Detection Algorithm Using Watershed & Thresholding Based Segmentation publication-title: Image Graph. Signal Process. doi: 10.5815/ijigsp.2012.10.05 – ident: ref_4 doi: 10.3390/healthcare10081592 – volume: 4 start-page: 524 year: 2013 ident: ref_83 article-title: Segmentation of Brain Tumour and Its Area Calculation in Brain MR Images Using K-Mean Clustering and Fuzzy C-Mean Algorithm publication-title: Med. Comput. Sci. – volume: 2 start-page: 100098 year: 2022 ident: ref_86 article-title: Using U-Net Network for Efficient Brain Tumor Segmentation in MRI Images publication-title: Healthc. Anal. doi: 10.1016/j.health.2022.100098 – ident: ref_92 – volume: 7 start-page: 4275 year: 2019 ident: ref_68 article-title: A Modified Deep Convolutional Neural Network for Abnormal Brain Image Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2885639 – volume: 114 start-page: 97 year: 2007 ident: ref_81 article-title: The 2007 WHO Classification of Tumours of the Central Nervous System publication-title: Acta Neuropathol. doi: 10.1007/s00401-007-0243-4 – ident: ref_73 – volume: 3 start-page: 68 year: 2018 ident: ref_66 article-title: Classification Using Deep Learning Neural Networks for Brain Tumors publication-title: Future Comput. Inform. J. doi: 10.1016/j.fcij.2017.12.001 – volume: 7 start-page: 69215 year: 2019 ident: ref_63 article-title: Multi-Classification of Brain Tumor Images Using Deep Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919122 – volume: 53 start-page: 671 year: 2021 ident: ref_96 article-title: Deep CNN for Brain Tumor Classification publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10398-2 – volume: 38 start-page: 443 year: 2018 ident: ref_44 article-title: An Automatic Computer-Aided Diagnosis System for Breast Cancer in Digital Mammograms via Deep Belief Network publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-017-0321-6 – volume: 34 start-page: 1993 year: 2015 ident: ref_79 article-title: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 32 start-page: 15897 year: 2020 ident: ref_10 article-title: A Reliable Framework for Accurate Brain Image Examination and Treatment Planning Based on Early Diagnosis Support for Clinicians publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-019-04369-5 – volume: Volume 723 start-page: 506 year: 2017 ident: ref_72 article-title: Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks publication-title: Medical Image Understanding and Analysis doi: 10.1007/978-3-319-60964-5_44 – volume: 12 start-page: 304 year: 2021 ident: ref_6 article-title: Evaluating Deep and Statistical Machine Learning Models in the Classification of Breast Cancer from Digital Mammograms publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_36 – volume: 2018 start-page: 4940593 year: 2018 ident: ref_75 article-title: Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network publication-title: J. Healthc. Eng. doi: 10.1155/2018/4940593 – ident: ref_65 doi: 10.3390/healthcare9020153 – volume: Volume 311 start-page: 157 year: 2015 ident: ref_16 article-title: Computer-Aided Diagnosis of Malign and Benign Brain Tumors on MR Images publication-title: Advances in Intelligent Systems and Computing, Proceedings of the International Conference on ICT Innovations, Macedonia, 9–12 September 2014 – ident: ref_71 doi: 10.1007/978-3-319-55524-9_15 – ident: ref_41 doi: 10.1109/CIBEC.2008.4786034 – volume: 6 start-page: 693 year: 2016 ident: ref_40 article-title: Robust Computer-Aided Detection of Pulmonary Nodules from Chest Computed Tomography publication-title: J. Med. Imaging Health Inform. doi: 10.1166/jmihi.2016.1731 – ident: ref_29 doi: 10.3390/electronics11070991 – volume: 3 start-page: 62 year: 2019 ident: ref_1 article-title: Smart Healthcare: Making Medical Care More Intelligent publication-title: Glob. Health J. doi: 10.1016/j.glohj.2019.07.001 – volume: 157 start-page: 85 year: 2018 ident: ref_45 article-title: Simultaneous Detection and Classification of Breast Masses in Digital Mammograms via a Deep Learning YOLO-Based CAD System publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.01.017 – volume: 15 start-page: 1674 year: 2021 ident: ref_91 article-title: 3D U-Net Improves Automatic Brain Extraction for Isotropic Rat Brain Magnetic Resonance Imaging Data publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.801008 – volume: 27 start-page: 102357 year: 2020 ident: ref_97 article-title: Comparison and Validation of Seven White Matter Hyperintensities Segmentation Software in Elderly Patients publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2020.102357 – volume: 143 start-page: 105273 year: 2022 ident: ref_88 article-title: An Artificial Intelligence Framework and Its Bias for Brain Tumor Segmentation: A Narrative Review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105273 – volume: 30 start-page: 31 year: 2019 ident: ref_21 article-title: Segmentation and Clustering in Brain MRI Imaging publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2018-0050 – volume: 59 start-page: 1 year: 2015 ident: ref_69 article-title: Brain Tumor Segmentation with Deep Learning publication-title: MICCAI Multimodal Brain Tumor Segm. Chall. (BraTS) – volume: 2 start-page: 123 year: 2016 ident: ref_47 article-title: MRI Brain Tumour Classification Using SURF and SIFT Features publication-title: Int. J. Mod. Trends Sci. Technol. – ident: ref_5 doi: 10.3390/s22134938 – volume: 40 start-page: 11 year: 2016 ident: ref_11 article-title: An Automatic Classification of Brain Tumors through MRI Using Support Vector Machine publication-title: Egypt. Comput. Sci. J. – ident: ref_15 doi: 10.3390/cancers13215546 – volume: Volume 858 start-page: 569 year: 2022 ident: ref_93 article-title: Exploring Unet Architecture for Semantic Segmentation of the Brain MRI Scans publication-title: Lecture Notes in Electrical Engineering, Proceedings of the Machine Intelligence and Signal Processing, Allahabad, India, 7–10 September, 2019 – volume: 78 start-page: 104018 year: 2022 ident: ref_59 article-title: Performance Enhancement of MRI-Based Brain Tumor Classification Using Suitable Segmentation Method and Deep Learning-Based Ensemble Algorithm publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2022.104018 – volume: 12 start-page: 647 year: 2021 ident: ref_23 article-title: Evaluation of Using Parametric and Non-Parametric Machine Learning Algorithms for Covid-19 Forecasting publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 15 start-page: 466 year: 1996 ident: ref_42 article-title: Classification Algorithms for Quantitative Tissue Characterization of Diffuse Liver Disease from Ultrasound Images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.511750 – volume: 36 start-page: 255 year: 2017 ident: ref_9 article-title: Brain Tumor Epidemiology in the Era of Precision Medicine: The 2017 Brain Tumor Epidemiology Consortium Meeting Report publication-title: Clin. Neuropathol. doi: 10.5414/NP301066 – volume: 11 start-page: 28 year: 2013 ident: ref_2 article-title: Primary Exploration in Establishment of China’s Intelligent Medical Treatment publication-title: Mod. Hosp. Manag. – volume: 32 start-page: 507 year: 2021 ident: ref_14 article-title: Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2995800 – volume: 2015 start-page: 450341 year: 2015 ident: ref_19 article-title: MRI Segmentation of the Human Brain: Challenges, Methods, and Applications publication-title: Comput. Math. Methods Med. – volume: 148 start-page: 105775 year: 2022 ident: ref_61 article-title: Classifying Tumor Brain Images Using Parallel Deep Learning Algorithms publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105775 – volume: 2022 start-page: 4189781 year: 2022 ident: ref_90 article-title: U-Net-Based Medical Image Segmentation publication-title: J. Healthc. Eng. doi: 10.1155/2022/4189781 – volume: 11 start-page: 10191 year: 2021 ident: ref_57 article-title: CMM-Net: Contextual Multi-Scale Multi-Level Network for Efficient Biomedical Image Segmentation publication-title: Sci. Rep. doi: 10.1038/s41598-021-89686-3 – volume: 4 start-page: 1 year: 2022 ident: ref_87 article-title: Automated Brain Tumor Identification Using Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis publication-title: Neuro-Oncol. Adv. – ident: ref_82 – volume: 2022 start-page: 6305748 year: 2022 ident: ref_22 article-title: MRF-IUNet: A Multiresolution Fusion Brain Tumor Segmentation Network Based on Improved Inception U-Net publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/6305748 – volume: 9 start-page: 42 year: 2018 ident: ref_37 article-title: A Machine Learning Approach to Integrate Big Data for Precision Medicine in Acute Myeloid Leukemia publication-title: Nat. Commun. doi: 10.1038/s41467-017-02465-5 – ident: ref_50 doi: 10.1109/ICIIECS.2017.8276094 – ident: ref_35 doi: 10.3390/math10183274 – ident: ref_31 doi: 10.3390/e23101251 – volume: 9 start-page: 34 year: 2012 ident: ref_32 article-title: Detection of Biomarkers for Hepatocellular Carcinoma Using a Hybrid Univariate Gene Selection Methods publication-title: Theor. Biol. Med. Model. doi: 10.1186/1742-4682-9-34 – ident: ref_67 doi: 10.1109/ICIINFS.2017.8300364 – volume: 50 start-page: 477 year: 2019 ident: ref_38 article-title: Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging publication-title: J. Med. Imaging Radiat. Sci. doi: 10.1016/j.jmir.2019.09.005 – ident: ref_30 doi: 10.3390/a13030073 – volume: 39 start-page: 63 year: 2019 ident: ref_60 article-title: Magnetic Resonance Imaging-Based Brain Tumor Grades Classification and Grading via Convolutional Neural Networks and Genetic Algorithms publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.10.004 – volume: 73 start-page: 4193 year: 2022 ident: ref_34 article-title: Metaheuristic Optimization Through Deep Learning Classification Of COVID-19 in Chest X-Ray Images publication-title: Comput. Mater. Contin. – volume: 29 start-page: 95 year: 2016 ident: ref_20 article-title: Principles and Methods for Automatic and Semi-Automatic Tissue Segmentation in MRI Data publication-title: Magn. Reson. Mater. Phys. Biol. Med. doi: 10.1007/s10334-015-0520-5 – ident: ref_95 doi: 10.3390/electronics9122203 – ident: ref_27 doi: 10.3390/electronics11081174 – volume: Volume 201 start-page: 353 year: 2021 ident: ref_94 article-title: Enhancement of the U-Net Architecture for MRI Brain Tumor Segmentation publication-title: Lecture Notes in Networks and Systems, Proceedings of the International Conference on Next Generation of Internet of Things (ICNGIoT 2021), Odisha, India, 5–6 February 2021 – volume: 125 start-page: 115 year: 2018 ident: ref_52 article-title: Image Segmentation for Early Stage Brain Tumor Detection Using Mathematical Morphological Reconstruction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.12.017 – volume: 2 start-page: 100003 year: 2020 ident: ref_62 article-title: A Transfer Learning Approach for AI-Based Classification of Brain Tumors publication-title: Machine Learning with Applications doi: 10.1016/j.mlwa.2020.100003 – volume: 1 start-page: 96 year: 2011 ident: ref_8 article-title: Gliomas: Survival, Origin and Early Detection publication-title: Surg. Neurol. Int. doi: 10.4103/2152-7806.74243 – ident: ref_24 doi: 10.14569/IJACSA.2021.0120937 – volume: 22 start-page: 13853 year: 2019 ident: ref_55 article-title: Brain Tumor Detection Using Optimisation Classification Based on Rough Set Theory publication-title: Clust. Comput. doi: 10.1007/s10586-018-2111-5 – volume: Volume 9351 start-page: 234 year: 2015 ident: ref_89 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation publication-title: Lecture Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015 |
| SSID | ssj0000913835 |
| Score | 2.2764087 |
| Snippet | Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2340 |
| SubjectTerms | Algorithms Artificial intelligence Brain cancer Brain research Brain tumors Classification Clinical decision making Data mining Decision support systems Deep learning Diagnosis Glioma Gliomas Image segmentation Literature reviews Machine learning Magnetic resonance imaging Medical imaging equipment Methods Neural networks Patients Precision medicine Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AASQjyLS0GLhMQBrNq7fh4QStNGBQkLlUbqzfI-nCA5TmgSIf4Ev5kZe22SIlUcfPHOWo5ndnZm8803AG_i1Cu8RKauEalyA2UCV1KyEkVlKKLQRIVuALJZdD4JPl-FV3uQdbUwBKvsfGLjqPVC0Rn5MdGUR5iuJeLj8odLXaPo39WuhUZhWyvoDw3F2B3Y58SMNYD9k7Ps60V_6kIsmBhztNUzAvP941kPsyKmKy7oFGRrh7rpp7c2qpsgyrubeln8-llU1dYONX4ID2xoyYatLTyCPVM_hvvtuRxry42ewG9LBFqxU9tdh1FjTwzC2bjDaTEMZNk3M53buqSaFbVmTftMAha1txYlO6H2EuxyM0fxLxefVqzBH7CCTdzMrJtJp6MsY6NiRSh8zSyZ65QNqyl-2_Vs_hQm47PL0blrezK4KkjjtRuLItCo4NJP8OJS-0KhQ_Wi1MTaD0sv1iFXUkriWlRKU0CZlFzHGFtxX2rxDAb1ojbPgYVoB5zroPQ8iUaiEqVDKRSaRyBlIpQDfqeHXFnCcuqbUeWYuJDu8n9158C7fs6ypeu4VfotqTentYxPVoUtScD3I1asfBhjskwM-sKBox1JXINqd7gzkNz6gFX-12IdeN0P00zCtdVmsWlkEsxI04Q7cNDaU__euFRwN4oCB-IdS-sFiBl8d6T-PmsYwjGoRz-Lz3zf2-R_fI7D23_FC7jHqfbD913Oj2Cwvt6YlxiRreUru8z-APsOOUA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEF6096Ag528vesoKgg-aa7KbbJInqT3LKVhEr3A-hexu0hbTtFwTRf8I_2Znkk1oKohioVC6s0vSfjs7E775hpBnQeQkTigjO-WRsj2VerbEZEWIzOfCT0Wia4LsVJzNvHcX_sVOFT_SKiEVX9ZOGus07cjhDPb20GVDxj1nuNHZq6_mWZIrBETgoeDBVXIgfPg8IAez6YfRZ-wp185uamU4ZPfDRUeqQl0rXK93Hu175Z1jaZ8yea0qNsn3b0me75xHk5skae-koaF8OalKeaJ-7Ik8_s-t3iKHJlilowZdt8mVtLhDbjRP-mhTwHSX_DTSojk9Nf16KLYKhbCeTlrmF4XQmH5K5ytT6VTQpNC0bsiJVKXmq3VGX2PDCnpercD8_ce3W1ozGmhCZ_Y0LetJp-PplI6TLfL6NTXysHM6yufry2W5WN0js8mb8_GZbbo82MqLgtIOeOJpgEzmhvBmUrtcgYt2RJQG2vUzJ9A-U1JKVG9USmOIGmZMBxCtMVdqfp8MinWRHhHqA7IY017mOBJgp0KlfckVAM6TMuTKIm77X8fKSKBjJ448hlQI8RH_jg-LvOjmbBoBkD9aP0cIxegdYGWVmCIHuD7U2YpHAaTfqMnPLXLcs4RdrfrDLQhj41W2MUr1ixBeMPy0G8aZyJQr0nVV24SQ40Yhs8iDBrPddcPmg_NNeBYJemjuDFBrvD9SLBe15jikCeC5Yc2XHe7_4ud4-G_mj8h1htUlrmszdkwG5WWVPoaYr5RPzLb-BacnU6s priority: 102 providerName: Unpaywall |
| Title | Clinical Decision Support Framework for Segmentation and Classification of Brain Tumor MRIs Using a U-Net and DCNN Cascaded Learning Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36553864 https://www.proquest.com/docview/2756688883 https://www.proquest.com/docview/2758114982 https://pubmed.ncbi.nlm.nih.gov/PMC9777942 https://www.mdpi.com/2227-9032/10/12/2340/pdf?version=1669608637 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: DIK dateStart: 20130101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD : Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: 8C1 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2227-9032 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: M48 dateStart: 20131001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF9q-6Ag4rfReqwg-KDRZDefDyLXa48qNJTaQH0K2Y_cFXK5epdD-0_4NzuTbEJTP-jBPdzt7BJ2frszE2Z-Q8jrMHZyJxKxrXksbU9qzxYYrARB4fPA10GumgTZJDhMvS9n_tkW6dodmQ1c_zW0w35S6ap8__P75Sc48B8x4oSQ_cO8z5RCsirGPQjhd8BSxdjK4ci4-83NHLsQkGFWI1aA2rHDWVtH849lBrbq-o19xWRdT6e8vaku8ssfeVlesVXT--SecTLpuEXFA7Klq4fkbvuGjraFR4_IL0MJWtJ902eHYotP2Ak67TK2KLi09KueLUyFUkXzStGmkSamGLV_LQu6h40m6OlmAeJHJ5_XtMlEoDlN7UTXzaT9SZLQSb7GfHxFDa3rjI7L2XJ1Xs8Xj0k6PTidHNqmO4MtvTis7ZDnngJVF24EXyaUyyVcrU4Q61C5fuGEymdSCIGsi1IqdC2jgqkQvCzmCsWfkO1qWelnhPqACMaUVziOALjISCpfcAlA8YSIuLSI2-khk4a6HDtolBmEMKi77E_dWeRtP-eiJe74r_QbVG-GOIOVZW6KE-D5kB8rG4cQNiOXPrfI7kASTqMcDncAyTowZ0ixH0TwgeFX_TDOxAy3Si83jUwEsWkcMYs8bfHUPzccGrBLgWeRcIC0XgA5wocj1fm84QoH9x5uXFjzXY_JG2zH8xtvxwtyh2FBiOvajO2S7Xq10S_BTavFiNyKJu6I7OwdJMcno-Ykwq80OR5_-w0Nn0Gj |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigSqnjjUmCRQBzAqr3r5wGhkBAltM0BEqk31_twgpQ4gSSq-if4KfxGZvwiKVLFpQdfvLOrdeaxM5uZbwBeh7GTOpGMbSNiZXvKeLakYCUIMl8EvglSXSTIDoLeyPty5p_twO-6FobSKmubWBhqPVd0R35EMOUBhmuR-Lj4YVPXKPp3tW6hUYrFsbm8wJBt-aHfQf6-4bz7edju2VVXAVt5cbiyQ5F6GreYuRE-XGpXKDQJThCbULt-5oTa50pKSWiBSmlyiaKM6xC9A-5KLXDdW3DbEzwkQxC13eZOhzA20aMpa3OEiJ2jSZPERThaXNAdy8b5d_UU2DgGr6Zo7q3zRXp5kU6nG-df9x7sV44ra5WSdh92TP4A7pa3fqwsZnoIvyqY0SnrVL17GLUNRRefdessMIZuMvtmxrOq6ilnaa5Z0ZyT0pbKV_OMfaLmFWy4niH56df-khXZDSxlI3tgVsWkTnswYO10STn-mlVQsWPWmo6Rc6vJ7BGMboQ3j2E3n-fmKTAfpYxz7WWOI1EEVaS0L4VC4fOkjISywK35kKgKDp26ckwTDIuId8m_vLPgXTNnUYKBXEv9ltibkKXAlVVaFTzg_ghzK2mFGIoTPr-w4HCLEjVcbQ_XApJUFmaZ_NUHC141wzSTsuZyM18XNBHGu3HELXhSylOzb1REPOsCz4JwS9IaAsId3x7Jv08K_HEMGdCK45rvG5n8j5_j4PqveAl7veHpSXLSHxw_gzucqkxc1-b8EHZXP9fmOfp-K_miUDgG5zet4X8AVb1urw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIkElhHjXUGCRQBzAir3r5wGhkBA1FCIEjdSb8T6cICVOII6q_gl-EL-OGb9IilRx6cEX7-xqnXnszGbmG4DnYeykTiRj24hY2Z4yni0pWAmCzBeBb4JUlwmyo-Bw7H048U924HdTC0NplY1NLA21Xii6I-8QTHmA4VokOlmdFvG5P3i7_GFTByn6p7Vpp1GJyJE5O8XwbfVm2Edev-B88P64d2jXHQZs5cVhYYci9TRuN3MjfLjUrlBoHpwgNqF2_cwJtc-VlJKQA5XS5B5FGdchegrclVrgulfgaiiCgHD7o57b3u8Q3iZ6N1WdjhCx05m2CV2EqcUF3bdsnIXnT4SNI_F8uub1db5Mz07T2WzjLBzcgpu1E8u6ldTdhh2T34Eb1Q0gqwqb7sKvGnJ0xvp1Hx9GLUTR3WeDJiOMocvMvprJvK6Aylmaa1Y26qQUpurVImPvqJEFO17PkfzTl-GKlZkOLGVje2SKclK_NxqxXrqifH_NatjYCevOJsi5Yjq_B-NL4c192M0XudkH5qPEca69zHEkiqOKlPalUCiInpSRUBa4DR8SVUOjU4eOWYIhEvEu-Zd3Frxq5ywrYJALqV8SexOyGriySuviB9wf4W8l3RDDcsLqFxYcbFGitqvt4UZAktrarJK_umHBs3aYZlIGXW4W65Imwtg3jrgFDyp5aveNSonnXuBZEG5JWktAGOTbI_n3aYlFjuEDWnRc83Urk__xczy8-CuewjXU7eTjcHT0CPY4FZy4rs35AewWP9fmMbqBhXxS6huDb5et4H8AZIFy6Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEF6096Ag528vesoKgg-aa7KbbJInqT3LKVhEr3A-hexu0hbTtFwTRf8I_2Znkk1oKohioVC6s0vSfjs7E775hpBnQeQkTigjO-WRsj2VerbEZEWIzOfCT0Wia4LsVJzNvHcX_sVOFT_SKiEVX9ZOGus07cjhDPb20GVDxj1nuNHZq6_mWZIrBETgoeDBVXIgfPg8IAez6YfRZ-wp185uamU4ZPfDRUeqQl0rXK93Hu175Z1jaZ8yea0qNsn3b0me75xHk5skae-koaF8OalKeaJ-7Ik8_s-t3iKHJlilowZdt8mVtLhDbjRP-mhTwHSX_DTSojk9Nf16KLYKhbCeTlrmF4XQmH5K5ytT6VTQpNC0bsiJVKXmq3VGX2PDCnpercD8_ce3W1ozGmhCZ_Y0LetJp-PplI6TLfL6NTXysHM6yufry2W5WN0js8mb8_GZbbo82MqLgtIOeOJpgEzmhvBmUrtcgYt2RJQG2vUzJ9A-U1JKVG9USmOIGmZMBxCtMVdqfp8MinWRHhHqA7IY017mOBJgp0KlfckVAM6TMuTKIm77X8fKSKBjJ448hlQI8RH_jg-LvOjmbBoBkD9aP0cIxegdYGWVmCIHuD7U2YpHAaTfqMnPLXLcs4RdrfrDLQhj41W2MUr1ixBeMPy0G8aZyJQr0nVV24SQ40Yhs8iDBrPddcPmg_NNeBYJemjuDFBrvD9SLBe15jikCeC5Yc2XHe7_4ud4-G_mj8h1htUlrmszdkwG5WWVPoaYr5RPzLb-BacnU6s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+Decision+Support+Framework+for+Segmentation+and+Classification+of+Brain+Tumor+MRIs+Using+a+U-Net+and+DCNN+Cascaded+Learning+Algorithm&rft.jtitle=Healthcare+%28Basel%29&rft.au=Samee%2C+Nagwan+Abdel&rft.au=Ahmad%2C+Tahir&rft.au=Mahmoud%2C+Noha+F&rft.au=Atteia%2C+Ghada&rft.date=2022-11-22&rft.pub=MDPI+AG&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=10&rft.issue=12&rft_id=info:doi/10.3390%2Fhealthcare10122340&rft.externalDocID=A744639153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon |