RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination
•Only RAD51D isoform 1 rescues HR-deficiency observed in RAD51D knock-out cell lines.•The RAD51D Walker A motif is important for its HR-function and interaction with XRCC2.•Phosphorylation near the Walker A motif is unlikely to regulate RAD51D function. The proficiency of cancer cells to repair DNA...
Saved in:
Published in | DNA repair Vol. 76; pp. 99 - 107 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2019
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1568-7864 1568-7856 1568-7856 |
DOI | 10.1016/j.dnarep.2019.02.008 |
Cover
Abstract | •Only RAD51D isoform 1 rescues HR-deficiency observed in RAD51D knock-out cell lines.•The RAD51D Walker A motif is important for its HR-function and interaction with XRCC2.•Phosphorylation near the Walker A motif is unlikely to regulate RAD51D function.
The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D. |
---|---|
AbstractList | The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D. The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U20S cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D. •Only RAD51D isoform 1 rescues HR-deficiency observed in RAD51D knock-out cell lines.•The RAD51D Walker A motif is important for its HR-function and interaction with XRCC2.•Phosphorylation near the Walker A motif is unlikely to regulate RAD51D function. The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D. The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knockout cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D. The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D. |
Author | Gon, Stéphanie Baldock, Robert A. Garcin, Edwige B. Baird, Jared M. Prakash, Rohit Smith, Chelsea M. Jasin, Maria Grundy, McKenzie K. Bernstein, Kara A. Luong, Thong T. Bratton-Palmer, Dominique S. Khodakov, Anton Pressimone, Catherine A. Karpenshif, Yoav Modesti, Mauro |
AuthorAffiliation | 1 Current Address: Solent University, School of Sport, Health and Social Sciences, East Park Terrace, Southampton, UK 2 University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, Pennsylvania, USA 3 Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France |
AuthorAffiliation_xml | – name: 2 University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, Pennsylvania, USA – name: 1 Current Address: Solent University, School of Sport, Health and Social Sciences, East Park Terrace, Southampton, UK – name: 3 Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France |
Author_xml | – sequence: 1 givenname: Robert A. surname: Baldock fullname: Baldock, Robert A. organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 2 givenname: Catherine A. surname: Pressimone fullname: Pressimone, Catherine A. organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 3 givenname: Jared M. surname: Baird fullname: Baird, Jared M. organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 4 givenname: Anton surname: Khodakov fullname: Khodakov, Anton organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 5 givenname: Thong T. surname: Luong fullname: Luong, Thong T. organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 6 givenname: McKenzie K. surname: Grundy fullname: Grundy, McKenzie K. organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 7 givenname: Chelsea M. surname: Smith fullname: Smith, Chelsea M. organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 8 givenname: Yoav surname: Karpenshif fullname: Karpenshif, Yoav organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 9 givenname: Dominique S. surname: Bratton-Palmer fullname: Bratton-Palmer, Dominique S. organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA – sequence: 10 givenname: Rohit orcidid: 0000-0002-0533-6940 surname: Prakash fullname: Prakash, Rohit organization: Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 11 givenname: Maria surname: Jasin fullname: Jasin, Maria organization: Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 12 givenname: Edwige B. surname: Garcin fullname: Garcin, Edwige B. organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France – sequence: 13 givenname: Stéphanie surname: Gon fullname: Gon, Stéphanie organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France – sequence: 14 givenname: Mauro orcidid: 0000-0002-4964-331X surname: Modesti fullname: Modesti, Mauro organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France – sequence: 15 givenname: Kara A. surname: Bernstein fullname: Bernstein, Kara A. email: karab@pitt.edu organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30836272$$D View this record in MEDLINE/PubMed https://hal.science/hal-02144115$$DView record in HAL |
BookMark | eNqFUl2LEzEUHWTF_dB_IJJH96Fjkk4-xgehdFdXKAiLgm8hk9zZpswkNUkL4p_fjO0uug_6EBJyzzn3cs85r0588FBVrwmuCSb83aa2XkfY1hSTtsa0xlg-q84I43ImJOMnj2_enFbnKW0wJkxw_qI6nWM551TQs-rX7eKKkSuUtoMzgPY6Ou1zQtpbZLQ3EGc6pWCczmDRuMs6u-ATirAHPaDvt8slRc5niNpMFZQD6gCZ6LIzBdCHiNZhDEO4C7uJZsLYOf9b5WX1vNdDglfH-6L69vH66_Jmtvry6fNysZqZphV5xqU1Zk5bwRvLu44LS3gjGZHC9pxQ0mJmORGM9gz3thVNR6EcAS0HQaSeX1QfDrrbXTeCNeBz1IPaRjfq-FMF7dTfFe_W6i7sFWdYypYWgcuDwPoJ7WaxUtMfpqRpCGF7UrBvj81i-LGDlNXokoFh0B7KBhQlUrK27L8p0Dd_zvWo_OBOAbw_AEwMKUXolXEHA8qYblAEqykKaqMOUVBTFMowqkShkJsn5Af9_9COy4LiyN5BVMk4KEGwrpiXlQ3u3wL3SpfQfA |
CitedBy_id | crossref_primary_10_3390_ijms23031863 crossref_primary_10_1016_j_gde_2021_06_010 crossref_primary_10_1093_nar_gkad856 crossref_primary_10_1038_s41388_024_03264_1 crossref_primary_10_1186_s10020_021_00316_0 crossref_primary_10_1371_journal_pgen_1008355 crossref_primary_10_3390_cancers13112845 crossref_primary_10_1093_bioinformatics_btae171 crossref_primary_10_1146_annurev_genet_021920_092410 crossref_primary_10_1186_s12935_024_03348_8 crossref_primary_10_1038_s41467_024_51595_0 crossref_primary_10_1073_pnas_2202727119 crossref_primary_10_3892_mmr_2022_12774 crossref_primary_10_1016_j_canlet_2021_04_026 |
Cites_doi | 10.1128/MCB.00465-12 10.1074/jbc.M001473200 10.1038/nrm3805 10.1245/s10434-017-5963-7 10.1200/JCO.2015.61.2408 10.1016/S1470-2045(16)30559-9 10.1016/S0140-6736(10)60892-6 10.1093/mutage/gei059 10.1128/MCB.01521-12 10.1016/j.dnarep.2016.04.006 10.1074/jbc.M105719200 10.1371/journal.pone.0153788 10.1016/j.semcdb.2011.07.019 10.1001/jamaoncol.2017.0424 10.1158/0008-5472.CAN-08-3057 10.1093/nar/gkr1122 10.1006/geno.1998.5226 10.1038/nature03445 10.1016/j.dnarep.2004.08.010 10.1101/gad.947001 10.3233/CBM-150519 10.1038/nature03443 10.1093/nar/gkl366 10.1074/jbc.M102396200 10.1038/onc.2013.421 10.1016/S1470-2045(11)70214-5 10.1200/JCO.2015.65.0747 10.1038/nmeth0410-248 10.1073/pnas.151253498 10.1126/scisignal.2001497 10.1101/gad.12.24.3831 10.1371/journal.pone.0054772 10.1128/MCB.19.12.8686 10.1093/nar/gkw1204 10.1534/genetics.115.185827 10.1038/sj.emboj.7601141 10.1093/emboj/19.24.6675 10.1186/s40064-015-0880-3 10.1371/journal.pone.0081371 10.1007/s10549-017-4181-0 10.1038/nature14664 10.1038/ng.2396 10.1038/nature14129 10.1101/cshperspect.a012740 10.1093/nar/29.1.308 10.1038/nature18003 10.1016/S0092-8674(04)00337-X 10.1093/nar/gkg925 10.1016/S1097-2765(00)80202-6 10.1016/S0140-6736(10)60893-8 10.1093/nar/gkw535 10.1186/1471-2199-10-27 10.1074/jbc.M111.271080 10.1371/journal.pone.0155476 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1016/j.dnarep.2019.02.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1568-7856 |
EndPage | 107 |
ExternalDocumentID | PMC6508892 oai_HAL_hal_02144115v1 30836272 10_1016_j_dnarep_2019_02_008 S1568786418301939 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: F32 GM110978 – fundername: NIGMS NIH HHS grantid: R35 GM118175 – fundername: NIGMS NIH HHS grantid: K99 GM088413 – fundername: NIGMS NIH HHS grantid: R00 GM088413 – fundername: NIEHS NIH HHS grantid: R01 ES024872 – fundername: NCI NIH HHS grantid: P30 CA047904 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: R01 CA185660 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ H~9 IH2 IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSJ SSP SSU SSZ T5K ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT ~HD 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c497t-68dcc329764d6bb67d16485187df6121905d61752f50fd974b2e4b27e96e718a3 |
IEDL.DBID | AIKHN |
ISSN | 1568-7864 1568-7856 |
IngestDate | Thu Aug 21 18:27:28 EDT 2025 Fri Sep 12 12:31:50 EDT 2025 Sun Sep 28 02:58:47 EDT 2025 Mon Jul 21 06:01:44 EDT 2025 Tue Jul 01 04:11:49 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Fri Feb 23 02:32:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RAD51 paralogs RAD51D Double-strand break repair Walker A motif Homologous recombination XRCC2 Double-strand break repair, Homologous recombination, RAD51 paralogs, RAD51D, Walker A motif, XRCC2 |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-68dcc329764d6bb67d16485187df6121905d61752f50fd974b2e4b27e96e718a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 RAB, CAP, JMB, AK, YK, DSB, CMS, TTL, MKG, and KAB designed, performed and analyzed experiments; EBG, SG, and MM generated and provided the RAD51D CRISPR/Cas9 knock-out cell lines; RAB and KAB wrote the manuscript. Author contributions |
ORCID | 0000-0002-0533-6940 0000-0002-4964-331X 0000-0002-7976-2379 0000-0001-5981-8980 0000-0002-1513-5018 |
OpenAccessLink | https://hal.science/hal-02144115 |
PMID | 30836272 |
PQID | 2188590834 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6508892 hal_primary_oai_HAL_hal_02144115v1 proquest_miscellaneous_2188590834 pubmed_primary_30836272 crossref_citationtrail_10_1016_j_dnarep_2019_02_008 crossref_primary_10_1016_j_dnarep_2019_02_008 elsevier_sciencedirect_doi_10_1016_j_dnarep_2019_02_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | DNA repair |
PublicationTitleAlternate | DNA Repair (Amst) |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mertins (bib0230) 2016; 534 Crawford (bib0235) 2017; 163 Pelttari (bib0070) 2015; 4 Bryant (bib0260) 2005; 434 Xia (bib0270) 2001; 98 Moynahan (bib0275) 1999; 4 Schild (bib0165) 2000; 275 Audeh (bib0245) 2010; 376 O’Leary (bib0240) 2017; 24 Sherry (bib0180) 2001; 29 Cancer Genome Atlas (bib0200) 2015; 517 Kuznetsov (bib0120) 2009; 69 Richardson, Moynahan, Jasin (bib0140) 1998; 12 Tutt (bib0250) 2010; 376 Chun, Buechelmaier, Powell (bib0015) 2013; 33 Gruver (bib0100) 2005; 20 Miller (bib0160) 2004; 32 Masson (bib0030) 2001; 15 Shu (bib0095) 1999; 19 Yard (bib0210) 2016; 42 Godin, Sullivan, Bernstein (bib0025) 2016 McClendon (bib0170) 2016 Krivokuca (bib0060) 2015; 15 Farmer (bib0265) 2005; 434 Liu (bib0020) 2011; 286 Xu (bib0285) 2013; 8 Deans (bib0115) 2000; 19 Somyajit (bib0040) 2015; 43 O’Regan (bib0105) 2001; 276 Tung (bib0085) 2016; 34 Kurumizaka (bib0050) 2002; 277 Ollier (bib0065) 2015; 5 Somyajit (bib0205) 2013; 33 Wiese (bib0110) 2006; 34 Jasin, Rothstein (bib0005) 2013; 5 Gelmon (bib0255) 2011; 12 Thompson (bib0185) 2013; 8 Renkawitz, Lademann, Jentsch (bib0010) 2014; 15 Pittman, Weinberg, Schimenti (bib0145) 1998; 49 Tarsounas (bib0045) 2004; 117 Reh (bib0090) 2017; 45 Pelttari (bib0075) 2016; 11 Han (bib0215) 2016; 11 Martin (bib0135) 2006; 25 Song (bib0080) 2015; 33 Godin (bib0055) 2016; 44 Park (bib0035) 2014; 33 Adzhubei (bib0175) 2010; 7 Swisher (bib0280) 2017; 18 Puget, Knowlton, Scully (bib0130) 2005; 4 Gruver (bib0150) 2009; 10 Kettenbach (bib0225) 2011; 4 George (bib0190) 2015; 524 Suwaki, Klare, Tarsounas (bib0125) 2011; 22 Couch (bib0155) 2017; 3 Peifer (bib0195) 2012; 44 Hornbeck (bib0220) 2012; 40 Chun (10.1016/j.dnarep.2019.02.008_bib0015) 2013; 33 Han (10.1016/j.dnarep.2019.02.008_bib0215) 2016; 11 Moynahan (10.1016/j.dnarep.2019.02.008_bib0275) 1999; 4 Peifer (10.1016/j.dnarep.2019.02.008_bib0195) 2012; 44 Cancer Genome Atlas (10.1016/j.dnarep.2019.02.008_bib0200) 2015; 517 Kurumizaka (10.1016/j.dnarep.2019.02.008_bib0050) 2002; 277 Martin (10.1016/j.dnarep.2019.02.008_bib0135) 2006; 25 Xia (10.1016/j.dnarep.2019.02.008_bib0270) 2001; 98 Tutt (10.1016/j.dnarep.2019.02.008_bib0250) 2010; 376 Reh (10.1016/j.dnarep.2019.02.008_bib0090) 2017; 45 Gruver (10.1016/j.dnarep.2019.02.008_bib0150) 2009; 10 Krivokuca (10.1016/j.dnarep.2019.02.008_bib0060) 2015; 15 Pelttari (10.1016/j.dnarep.2019.02.008_bib0075) 2016; 11 Shu (10.1016/j.dnarep.2019.02.008_bib0095) 1999; 19 Kuznetsov (10.1016/j.dnarep.2019.02.008_bib0120) 2009; 69 Liu (10.1016/j.dnarep.2019.02.008_bib0020) 2011; 286 Godin (10.1016/j.dnarep.2019.02.008_bib0055) 2016; 44 Deans (10.1016/j.dnarep.2019.02.008_bib0115) 2000; 19 Mertins (10.1016/j.dnarep.2019.02.008_bib0230) 2016; 534 Pelttari (10.1016/j.dnarep.2019.02.008_bib0070) 2015; 4 Richardson (10.1016/j.dnarep.2019.02.008_bib0140) 1998; 12 George (10.1016/j.dnarep.2019.02.008_bib0190) 2015; 524 Miller (10.1016/j.dnarep.2019.02.008_bib0160) 2004; 32 Adzhubei (10.1016/j.dnarep.2019.02.008_bib0175) 2010; 7 Ollier (10.1016/j.dnarep.2019.02.008_bib0065) 2015; 5 Somyajit (10.1016/j.dnarep.2019.02.008_bib0040) 2015; 43 Couch (10.1016/j.dnarep.2019.02.008_bib0155) 2017; 3 Schild (10.1016/j.dnarep.2019.02.008_bib0165) 2000; 275 Song (10.1016/j.dnarep.2019.02.008_bib0080) 2015; 33 Audeh (10.1016/j.dnarep.2019.02.008_bib0245) 2010; 376 Tung (10.1016/j.dnarep.2019.02.008_bib0085) 2016; 34 Wiese (10.1016/j.dnarep.2019.02.008_bib0110) 2006; 34 Puget (10.1016/j.dnarep.2019.02.008_bib0130) 2005; 4 Pittman (10.1016/j.dnarep.2019.02.008_bib0145) 1998; 49 Somyajit (10.1016/j.dnarep.2019.02.008_bib0205) 2013; 33 Yard (10.1016/j.dnarep.2019.02.008_bib0210) 2016; 42 Renkawitz (10.1016/j.dnarep.2019.02.008_bib0010) 2014; 15 Kettenbach (10.1016/j.dnarep.2019.02.008_bib0225) 2011; 4 Xu (10.1016/j.dnarep.2019.02.008_bib0285) 2013; 8 Thompson (10.1016/j.dnarep.2019.02.008_bib0185) 2013; 8 McClendon (10.1016/j.dnarep.2019.02.008_bib0170) 2016 Suwaki (10.1016/j.dnarep.2019.02.008_bib0125) 2011; 22 Godin (10.1016/j.dnarep.2019.02.008_bib0025) 2016 Park (10.1016/j.dnarep.2019.02.008_bib0035) 2014; 33 Jasin (10.1016/j.dnarep.2019.02.008_bib0005) 2013; 5 Crawford (10.1016/j.dnarep.2019.02.008_bib0235) 2017; 163 Farmer (10.1016/j.dnarep.2019.02.008_bib0265) 2005; 434 O’Regan (10.1016/j.dnarep.2019.02.008_bib0105) 2001; 276 Hornbeck (10.1016/j.dnarep.2019.02.008_bib0220) 2012; 40 Bryant (10.1016/j.dnarep.2019.02.008_bib0260) 2005; 434 Gruver (10.1016/j.dnarep.2019.02.008_bib0100) 2005; 20 O’Leary (10.1016/j.dnarep.2019.02.008_bib0240) 2017; 24 Sherry (10.1016/j.dnarep.2019.02.008_bib0180) 2001; 29 Swisher (10.1016/j.dnarep.2019.02.008_bib0280) 2017; 18 Masson (10.1016/j.dnarep.2019.02.008_bib0030) 2001; 15 Tarsounas (10.1016/j.dnarep.2019.02.008_bib0045) 2004; 117 Gelmon (10.1016/j.dnarep.2019.02.008_bib0255) 2011; 12 |
References_xml | – volume: 69 start-page: 863 year: 2009 end-page: 872 ident: bib0120 article-title: Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice publication-title: Cancer Res. – volume: 434 start-page: 913 year: 2005 end-page: 917 ident: bib0260 article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase publication-title: Nature – volume: 25 start-page: 2564 year: 2006 end-page: 2574 ident: bib0135 article-title: Sws1 is a conserved regulator of homologous recombination in eukaryotic cells publication-title: EMBO J. – volume: 11 year: 2016 ident: bib0075 article-title: RAD51B in familial breast cancer publication-title: PLoS One – volume: 15 start-page: 369 year: 2014 end-page: 383 ident: bib0010 article-title: Mechanisms and principles of homology search during recombination publication-title: Nat. Rev. Mol. Cell Biol. – volume: 8 year: 2013 ident: bib0285 article-title: The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue publication-title: PLoS One – volume: 4 start-page: 511 year: 1999 end-page: 518 ident: bib0275 article-title: Brca1 controls homology-directed DNA repair publication-title: Mol. Cell – volume: 34 start-page: 1460 year: 2016 end-page: 1468 ident: bib0085 article-title: Frequency of germline mutations in 25 Cancer susceptibility genes in a sequential series of patients with breast Cancer publication-title: J. Clin. Oncol. – volume: 44 start-page: 8199 year: 2016 end-page: 8215 ident: bib0055 article-title: The Shu complex promotes error-free tolerance of alkylation-induced base excision repair products publication-title: Nucleic Acids Res. – volume: 32 start-page: 169 year: 2004 end-page: 178 ident: bib0160 article-title: Domain mapping of the Rad51 paralog protein complexes publication-title: Nucleic Acids Res. – volume: 49 start-page: 103 year: 1998 end-page: 111 ident: bib0145 article-title: Identification, characterization, and genetic mapping ofRad51d,a new mouse and HumanRAD51/RecA-Related gene publication-title: Genomics – volume: 376 start-page: 245 year: 2010 end-page: 251 ident: bib0245 article-title: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial publication-title: Lancet – volume: 8 year: 2013 ident: bib0185 article-title: Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer publication-title: PLoS One – volume: 15 start-page: 775 year: 2015 end-page: 781 ident: bib0060 article-title: RAD51C mutation screening in high-risk patients from Serbian hereditary breast/ovarian cancer families publication-title: Cancer Biomark. – volume: 434 start-page: 917 year: 2005 end-page: 921 ident: bib0265 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature – volume: 33 start-page: 4803 year: 2014 end-page: 4812 ident: bib0035 article-title: Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair publication-title: Oncogene – volume: 19 start-page: 8686 year: 1999 end-page: 8693 ident: bib0095 article-title: Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53(-/-) background publication-title: Mol. Cell. Biol. – volume: 524 start-page: 47 year: 2015 end-page: 53 ident: bib0190 article-title: Comprehensive genomic profiles of small cell lung cancer publication-title: Nature – volume: 44 start-page: 1104 year: 2012 end-page: 1110 ident: bib0195 article-title: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer publication-title: Nat. Genet. – volume: 24 start-page: 3060 year: 2017 end-page: 3066 ident: bib0240 article-title: Expanded gene panel use for women with breast cancer: identification and intervention beyond breast cancer risk publication-title: Ann. Surg. Oncol. – volume: 277 start-page: 14315 year: 2002 end-page: 14320 ident: bib0050 article-title: Homologous pairing and ring and filament structure formation activities of the human Xrcc2*Rad51D complex publication-title: J. Biol. Chem. – volume: 286 start-page: 41758 year: 2011 end-page: 41766 ident: bib0020 article-title: hSWS1.SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair publication-title: J. Biol. Chem. – volume: 43 start-page: 9835 year: 2015 end-page: 9855 ident: bib0040 article-title: Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart publication-title: Nucleic Acids Res. – volume: 34 start-page: 2833 year: 2006 end-page: 2843 ident: bib0110 article-title: Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination publication-title: Nucleic Acids Res. – volume: 42 start-page: 82 year: 2016 end-page: 93 ident: bib0210 article-title: RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity publication-title: DNA Repair – volume: 12 start-page: 3831 year: 1998 end-page: 3842 ident: bib0140 article-title: Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations publication-title: Genes Dev. – year: 2016 ident: bib0170 article-title: Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in caenorhabditis elegans publication-title: Genetics – volume: 7 start-page: 248 year: 2010 end-page: 249 ident: bib0175 article-title: A method and server for predicting damaging missense mutations publication-title: Nat. Methods – volume: 11 year: 2016 ident: bib0215 article-title: Ubiquitylation of Rad51d mediated by E3 ligase Rnf138 promotes the homologous recombination repair pathway publication-title: PLoS One – volume: 20 start-page: 433 year: 2005 end-page: 440 ident: bib0100 article-title: The ATPase motif in RAD51D is required for resistance to DNA interstrand crosslinking agents and interaction with RAD51C publication-title: Mutagenesis – volume: 15 start-page: 3296 year: 2001 end-page: 3307 ident: bib0030 article-title: Identification and purification of two distinct complexes containing the five RAD51 paralogs publication-title: Genes Dev. – volume: 4 start-page: rs5 year: 2011 ident: bib0225 article-title: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells publication-title: Sci. Signal. – volume: 22 start-page: 898 year: 2011 end-page: 905 ident: bib0125 article-title: RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis publication-title: Semin. Cell Dev. Biol. – volume: 3 start-page: 1190 year: 2017 end-page: 1196 ident: bib0155 article-title: Associations between cancer predisposition testing panel genes and breast cancer publication-title: JAMA Oncol. – volume: 33 start-page: 1830 year: 2013 end-page: 1844 ident: bib0205 article-title: ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair publication-title: Mol. Cell. Biol. – volume: 4 start-page: 92 year: 2015 ident: bib0070 article-title: RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families publication-title: SpringerPlus – volume: 19 start-page: 6675 year: 2000 end-page: 6685 ident: bib0115 article-title: Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice publication-title: EMBO J. – volume: 5 year: 2013 ident: bib0005 article-title: Repair of strand breaks by homologous recombination publication-title: Cold Spring Harb. Perspect. Biol. – volume: 33 start-page: 387 year: 2013 end-page: 395 ident: bib0015 article-title: Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway publication-title: Mol. Cell. Biol. – volume: 18 start-page: 75 year: 2017 end-page: 87 ident: bib0280 article-title: Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial publication-title: Lancet Oncol. – volume: 33 start-page: 2901 year: 2015 end-page: 2907 ident: bib0080 article-title: Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population publication-title: J. Clin. Oncol. – volume: 10 start-page: 27 year: 2009 ident: bib0150 article-title: Functional characterization and identification of mouse Rad51d splice variants publication-title: BMC Mol. Biol. – volume: 376 start-page: 235 year: 2010 end-page: 244 ident: bib0250 article-title: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial publication-title: Lancet – volume: 12 start-page: 852 year: 2011 end-page: 861 ident: bib0255 article-title: Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study publication-title: Lancet Oncol. – volume: 4 start-page: 149 year: 2005 end-page: 161 ident: bib0130 article-title: Molecular analysis of sister chromatid recombination in mammalian cells publication-title: DNA Repair (Amst.) – volume: 29 start-page: 308 year: 2001 end-page: 311 ident: bib0180 article-title: dbSNP: the NCBI database of genetic variation publication-title: Nucleic Acids Res. – volume: 98 start-page: 8644 year: 2001 end-page: 8649 ident: bib0270 article-title: Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 534 start-page: 55 year: 2016 end-page: 62 ident: bib0230 article-title: Proteogenomics connects somatic mutations to signalling in breast cancer publication-title: Nature – volume: 5 start-page: 2113 year: 2015 end-page: 2126 ident: bib0065 article-title: DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition publication-title: Am. J. Cancer Res. – volume: 517 start-page: 576 year: 2015 end-page: 582 ident: bib0200 article-title: Comprehensive genomic characterization of head and neck squamous cell carcinomas publication-title: Nature – volume: 276 start-page: 22148 year: 2001 end-page: 22153 ident: bib0105 article-title: XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding publication-title: J. Biol. Chem. – start-page: 1 year: 2016 end-page: 12 ident: bib0025 article-title: Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication publication-title: Biochem. Cell Biol. – volume: 45 start-page: 1835 year: 2017 end-page: 1847 ident: bib0090 article-title: The homologous recombination protein RAD51D protects the genome from large deletions publication-title: Nucleic Acids Res. – volume: 40 start-page: D261 year: 2012 end-page: 70 ident: bib0220 article-title: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse publication-title: Nucleic Acids Res. – volume: 117 start-page: 337 year: 2004 end-page: 347 ident: bib0045 article-title: Telomere maintenance requires the RAD51D recombination/repair protein publication-title: Cell – volume: 275 start-page: 16443 year: 2000 end-page: 16449 ident: bib0165 article-title: Evidence for simultaneous protein interactions between human Rad51 paralogs publication-title: J. Biol. Chem. – volume: 163 start-page: 383 year: 2017 end-page: 390 ident: bib0235 article-title: Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients publication-title: Breast Cancer Res. Treat. – volume: 33 start-page: 387 issue: 2 year: 2013 ident: 10.1016/j.dnarep.2019.02.008_bib0015 article-title: Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00465-12 – volume: 275 start-page: 16443 issue: 22 year: 2000 ident: 10.1016/j.dnarep.2019.02.008_bib0165 article-title: Evidence for simultaneous protein interactions between human Rad51 paralogs publication-title: J. Biol. Chem. doi: 10.1074/jbc.M001473200 – volume: 15 start-page: 369 issue: 6 year: 2014 ident: 10.1016/j.dnarep.2019.02.008_bib0010 article-title: Mechanisms and principles of homology search during recombination publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3805 – volume: 24 start-page: 3060 issue: 10 year: 2017 ident: 10.1016/j.dnarep.2019.02.008_bib0240 article-title: Expanded gene panel use for women with breast cancer: identification and intervention beyond breast cancer risk publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-017-5963-7 – volume: 33 start-page: 2901 issue: 26 year: 2015 ident: 10.1016/j.dnarep.2019.02.008_bib0080 article-title: Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2015.61.2408 – volume: 18 start-page: 75 issue: 1 year: 2017 ident: 10.1016/j.dnarep.2019.02.008_bib0280 article-title: Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)30559-9 – volume: 376 start-page: 235 issue: 9737 year: 2010 ident: 10.1016/j.dnarep.2019.02.008_bib0250 article-title: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial publication-title: Lancet doi: 10.1016/S0140-6736(10)60892-6 – volume: 20 start-page: 433 issue: 6 year: 2005 ident: 10.1016/j.dnarep.2019.02.008_bib0100 article-title: The ATPase motif in RAD51D is required for resistance to DNA interstrand crosslinking agents and interaction with RAD51C publication-title: Mutagenesis doi: 10.1093/mutage/gei059 – volume: 33 start-page: 1830 issue: 9 year: 2013 ident: 10.1016/j.dnarep.2019.02.008_bib0205 article-title: ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01521-12 – volume: 42 start-page: 82 year: 2016 ident: 10.1016/j.dnarep.2019.02.008_bib0210 article-title: RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity publication-title: DNA Repair doi: 10.1016/j.dnarep.2016.04.006 – volume: 43 start-page: 9835 issue: 20 year: 2015 ident: 10.1016/j.dnarep.2019.02.008_bib0040 article-title: Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart publication-title: Nucleic Acids Res. – volume: 277 start-page: 14315 issue: 16 year: 2002 ident: 10.1016/j.dnarep.2019.02.008_bib0050 article-title: Homologous pairing and ring and filament structure formation activities of the human Xrcc2*Rad51D complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105719200 – start-page: 1 year: 2016 ident: 10.1016/j.dnarep.2019.02.008_bib0025 article-title: Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication publication-title: Biochem. Cell Biol. – volume: 11 issue: 5 year: 2016 ident: 10.1016/j.dnarep.2019.02.008_bib0075 article-title: RAD51B in familial breast cancer publication-title: PLoS One doi: 10.1371/journal.pone.0153788 – volume: 22 start-page: 898 issue: 8 year: 2011 ident: 10.1016/j.dnarep.2019.02.008_bib0125 article-title: RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2011.07.019 – volume: 3 start-page: 1190 issue: 9 year: 2017 ident: 10.1016/j.dnarep.2019.02.008_bib0155 article-title: Associations between cancer predisposition testing panel genes and breast cancer publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2017.0424 – volume: 69 start-page: 863 issue: 3 year: 2009 ident: 10.1016/j.dnarep.2019.02.008_bib0120 article-title: Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-3057 – volume: 40 start-page: D261 year: 2012 ident: 10.1016/j.dnarep.2019.02.008_bib0220 article-title: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1122 – volume: 49 start-page: 103 issue: 1 year: 1998 ident: 10.1016/j.dnarep.2019.02.008_bib0145 article-title: Identification, characterization, and genetic mapping ofRad51d,a new mouse and HumanRAD51/RecA-Related gene publication-title: Genomics doi: 10.1006/geno.1998.5226 – volume: 434 start-page: 917 issue: 7035 year: 2005 ident: 10.1016/j.dnarep.2019.02.008_bib0265 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature doi: 10.1038/nature03445 – volume: 4 start-page: 149 issue: 2 year: 2005 ident: 10.1016/j.dnarep.2019.02.008_bib0130 article-title: Molecular analysis of sister chromatid recombination in mammalian cells publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2004.08.010 – volume: 15 start-page: 3296 issue: 24 year: 2001 ident: 10.1016/j.dnarep.2019.02.008_bib0030 article-title: Identification and purification of two distinct complexes containing the five RAD51 paralogs publication-title: Genes Dev. doi: 10.1101/gad.947001 – volume: 15 start-page: 775 issue: 6 year: 2015 ident: 10.1016/j.dnarep.2019.02.008_bib0060 article-title: RAD51C mutation screening in high-risk patients from Serbian hereditary breast/ovarian cancer families publication-title: Cancer Biomark. doi: 10.3233/CBM-150519 – volume: 434 start-page: 913 issue: 7035 year: 2005 ident: 10.1016/j.dnarep.2019.02.008_bib0260 article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase publication-title: Nature doi: 10.1038/nature03443 – volume: 34 start-page: 2833 issue: 9 year: 2006 ident: 10.1016/j.dnarep.2019.02.008_bib0110 article-title: Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl366 – volume: 276 start-page: 22148 issue: 25 year: 2001 ident: 10.1016/j.dnarep.2019.02.008_bib0105 article-title: XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M102396200 – volume: 33 start-page: 4803 issue: 40 year: 2014 ident: 10.1016/j.dnarep.2019.02.008_bib0035 article-title: Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair publication-title: Oncogene doi: 10.1038/onc.2013.421 – volume: 12 start-page: 852 issue: 9 year: 2011 ident: 10.1016/j.dnarep.2019.02.008_bib0255 article-title: Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(11)70214-5 – volume: 34 start-page: 1460 issue: 13 year: 2016 ident: 10.1016/j.dnarep.2019.02.008_bib0085 article-title: Frequency of germline mutations in 25 Cancer susceptibility genes in a sequential series of patients with breast Cancer publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2015.65.0747 – volume: 7 start-page: 248 issue: 4 year: 2010 ident: 10.1016/j.dnarep.2019.02.008_bib0175 article-title: A method and server for predicting damaging missense mutations publication-title: Nat. Methods doi: 10.1038/nmeth0410-248 – volume: 98 start-page: 8644 issue: 15 year: 2001 ident: 10.1016/j.dnarep.2019.02.008_bib0270 article-title: Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.151253498 – volume: 4 start-page: rs5 issue: 179 year: 2011 ident: 10.1016/j.dnarep.2019.02.008_bib0225 article-title: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells publication-title: Sci. Signal. doi: 10.1126/scisignal.2001497 – volume: 12 start-page: 3831 issue: 24 year: 1998 ident: 10.1016/j.dnarep.2019.02.008_bib0140 article-title: Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations publication-title: Genes Dev. doi: 10.1101/gad.12.24.3831 – volume: 8 issue: 1 year: 2013 ident: 10.1016/j.dnarep.2019.02.008_bib0185 article-title: Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer publication-title: PLoS One doi: 10.1371/journal.pone.0054772 – volume: 19 start-page: 8686 issue: 12 year: 1999 ident: 10.1016/j.dnarep.2019.02.008_bib0095 article-title: Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53(-/-) background publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.12.8686 – volume: 45 start-page: 1835 issue: 4 year: 2017 ident: 10.1016/j.dnarep.2019.02.008_bib0090 article-title: The homologous recombination protein RAD51D protects the genome from large deletions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1204 – year: 2016 ident: 10.1016/j.dnarep.2019.02.008_bib0170 article-title: Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in caenorhabditis elegans publication-title: Genetics doi: 10.1534/genetics.115.185827 – volume: 25 start-page: 2564 issue: 11 year: 2006 ident: 10.1016/j.dnarep.2019.02.008_bib0135 article-title: Sws1 is a conserved regulator of homologous recombination in eukaryotic cells publication-title: EMBO J. doi: 10.1038/sj.emboj.7601141 – volume: 19 start-page: 6675 issue: 24 year: 2000 ident: 10.1016/j.dnarep.2019.02.008_bib0115 article-title: Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice publication-title: EMBO J. doi: 10.1093/emboj/19.24.6675 – volume: 4 start-page: 92 year: 2015 ident: 10.1016/j.dnarep.2019.02.008_bib0070 article-title: RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families publication-title: SpringerPlus doi: 10.1186/s40064-015-0880-3 – volume: 8 issue: 12 year: 2013 ident: 10.1016/j.dnarep.2019.02.008_bib0285 article-title: The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue publication-title: PLoS One doi: 10.1371/journal.pone.0081371 – volume: 163 start-page: 383 issue: 2 year: 2017 ident: 10.1016/j.dnarep.2019.02.008_bib0235 article-title: Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-017-4181-0 – volume: 524 start-page: 47 issue: 7563 year: 2015 ident: 10.1016/j.dnarep.2019.02.008_bib0190 article-title: Comprehensive genomic profiles of small cell lung cancer publication-title: Nature doi: 10.1038/nature14664 – volume: 44 start-page: 1104 issue: 10 year: 2012 ident: 10.1016/j.dnarep.2019.02.008_bib0195 article-title: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer publication-title: Nat. Genet. doi: 10.1038/ng.2396 – volume: 517 start-page: 576 issue: 7536 year: 2015 ident: 10.1016/j.dnarep.2019.02.008_bib0200 article-title: Comprehensive genomic characterization of head and neck squamous cell carcinomas publication-title: Nature doi: 10.1038/nature14129 – volume: 5 issue: 11 year: 2013 ident: 10.1016/j.dnarep.2019.02.008_bib0005 article-title: Repair of strand breaks by homologous recombination publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a012740 – volume: 29 start-page: 308 issue: 1 year: 2001 ident: 10.1016/j.dnarep.2019.02.008_bib0180 article-title: dbSNP: the NCBI database of genetic variation publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.1.308 – volume: 5 start-page: 2113 issue: 7 year: 2015 ident: 10.1016/j.dnarep.2019.02.008_bib0065 article-title: DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition publication-title: Am. J. Cancer Res. – volume: 534 start-page: 55 issue: 7605 year: 2016 ident: 10.1016/j.dnarep.2019.02.008_bib0230 article-title: Proteogenomics connects somatic mutations to signalling in breast cancer publication-title: Nature doi: 10.1038/nature18003 – volume: 117 start-page: 337 issue: 3 year: 2004 ident: 10.1016/j.dnarep.2019.02.008_bib0045 article-title: Telomere maintenance requires the RAD51D recombination/repair protein publication-title: Cell doi: 10.1016/S0092-8674(04)00337-X – volume: 32 start-page: 169 issue: 1 year: 2004 ident: 10.1016/j.dnarep.2019.02.008_bib0160 article-title: Domain mapping of the Rad51 paralog protein complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg925 – volume: 4 start-page: 511 issue: 4 year: 1999 ident: 10.1016/j.dnarep.2019.02.008_bib0275 article-title: Brca1 controls homology-directed DNA repair publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80202-6 – volume: 376 start-page: 245 issue: 9737 year: 2010 ident: 10.1016/j.dnarep.2019.02.008_bib0245 article-title: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial publication-title: Lancet doi: 10.1016/S0140-6736(10)60893-8 – volume: 44 start-page: 8199 issue: 17 year: 2016 ident: 10.1016/j.dnarep.2019.02.008_bib0055 article-title: The Shu complex promotes error-free tolerance of alkylation-induced base excision repair products publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw535 – volume: 10 start-page: 27 year: 2009 ident: 10.1016/j.dnarep.2019.02.008_bib0150 article-title: Functional characterization and identification of mouse Rad51d splice variants publication-title: BMC Mol. Biol. doi: 10.1186/1471-2199-10-27 – volume: 286 start-page: 41758 issue: 48 year: 2011 ident: 10.1016/j.dnarep.2019.02.008_bib0020 article-title: hSWS1.SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.271080 – volume: 11 issue: 5 year: 2016 ident: 10.1016/j.dnarep.2019.02.008_bib0215 article-title: Ubiquitylation of Rad51d mediated by E3 ligase Rnf138 promotes the homologous recombination repair pathway publication-title: PLoS One doi: 10.1371/journal.pone.0155476 |
SSID | ssj0015766 |
Score | 2.3550982 |
Snippet | •Only RAD51D isoform 1 rescues HR-deficiency observed in RAD51D knock-out cell lines.•The RAD51D Walker A motif is important for its HR-function and... The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | Cell Line, Tumor DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Double-strand break repair Homologous Recombination Humans Life Sciences Mutation Protein Binding Protein Isoforms - genetics Protein Isoforms - metabolism Protein Processing, Post-Translational RAD51 paralogs RAD51D Walker A motif XRCC2 |
Title | RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination |
URI | https://dx.doi.org/10.1016/j.dnarep.2019.02.008 https://www.ncbi.nlm.nih.gov/pubmed/30836272 https://www.proquest.com/docview/2188590834 https://hal.science/hal-02144115 https://pubmed.ncbi.nlm.nih.gov/PMC6508892 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tnRC8INhglI_JIMSbaeN82HkMGVP52sNgUt-sOHbVIppOXTsJIfG3c-c4FQWhSTxUatM4Tn1X3-9yd78DeJm5aWQSJ7l0LucJ2hiu6shwKk1zpiIKcHqg_-ksG18k7yfpZA_KrhaG0irD3t_u6X63DkeGYTWHl_P58DN6HkqqLEGlRJwS5z3YF2jtVR_2i3cfxmfbYAJCal9khOdzGtBV0Pk0L9tUK0fElVHekneqf1mo3oxSJf_GoX-mU_5mn07vwd0ALFnR3vt92HPNARwWDTrVi-_sFfOpnv4Z-gHcetO9u112Dd8O4cd5cZJGJ-yKQtqOXaMXTUkyrGosq0k5VrwKwnSWLTZtEP-KEQkUzjw5L0vBiH5i1RZLsPWSGcfq0EyBITxms-WCZl5uaBiuOfrl_ioP4OL07ZdyzENvBl4nuVzzTNm6jgWCmcRmxmTSot-F6E1JOyVSsnyUWhR0KqbpaGrRaTHC4Uu6PHNoDqv4IfSbZeMeAaNYosJ9oRY2R3ihKoRYJk5ilwoU3MgNIO7koetAXE79M77pLkPtq26lqEmKeiQ0SnEAfDvqsiXuuOF82Yla7yigRttyw8gXqBnbSYive1x81HTME9Ih5r6OBvC8UxyNYqWoTNU4XG2NGEtR4_k4GcBRq0jba8XEHS6kwJvbUbGdyXa_aeYzTxLukXcuHv_3z3oCd-hTm6X0FPrr1cY9QwC2NsfQe_0zOg5_s1-edS8a |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5tndB4QWODURhgEOLNauM4ifOYZUwZ6_owNqlvVhK7ahFNp66dNO3Pc5c41QpCk3ioVCVxnPquvu9yd98BfAnt2CukjXhkbcwl2hiuSq_gVJpmi5wowOmF_sUwzK7l91Ew2oK0rYWhtEq39zd7er1buyM9t5q9m-m09wM9DxWpUKJSIk7x423YkdTUugM7ydl5NlwHExBS10VGeD2nAW0FXZ3mZap8YYm40osb8k71Lwu1PaFUyb9x6J_plI_s0-kevHDAkiXNs7-ELVvtw0FSoVM9u2dfWZ3qWb9D34dnx-233bRt-HYAD5fJSeCdsFsKaVt2h140JcmwvDKsJOVY8NwJ0xo2WzVB_FtGJFA48-gyTQUj-olFUyzBlnNWWFa6ZgoM4TGbzGc083xFw3DN0S-v7_IKrk-_XaUZd70ZeCnjaMlDZcrSFwhmpAmLIowM-l2I3lRkxkRKFvcDg4IOxDjojw06LYWw-IlsHFo0h7n_GjrVvLJvgFEsUeG-UAoTI7xQOUKswpe-DQQKrm-74Lfy0KUjLqf-Gb90m6H2UzdS1CRF3RcapdgFvh510xB3PHF91IpabyigRtvyxMjPqBnrSYivO0sGmo7VhHSIue-8LnxqFUejWCkqk1cWV1sjxlLUeN6XXThsFGl9L5-4w0Uk8OE2VGxjss0z1XRSk4TXyDsWb__7Z32E3ezqYqAHZ8Pzd_CczjQZS0fQWS5W9j2CsWXxwf3ZfgO9JjEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAD51D+splice+variants+and+cancer-associated+mutations+reveal+XRCC2+interaction+to+be+critical+for+homologous+recombination&rft.jtitle=DNA+repair&rft.au=Baldock%2C+Robert+A&rft.au=Pressimone%2C+Catherine+A&rft.au=Baird%2C+Jared+M&rft.au=Khodakov%2C+Anton&rft.date=2019-04-01&rft.pub=Elsevier&rft.issn=1568-7864&rft.eissn=1568-7856&rft.volume=76&rft.spage=99&rft.epage=107&rft_id=info:doi/10.1016%2Fj.dnarep.2019.02.008&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02144115v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-7864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-7864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-7864&client=summon |