RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination

•Only RAD51D isoform 1 rescues HR-deficiency observed in RAD51D knock-out cell lines.•The RAD51D Walker A motif is important for its HR-function and interaction with XRCC2.•Phosphorylation near the Walker A motif is unlikely to regulate RAD51D function. The proficiency of cancer cells to repair DNA...

Full description

Saved in:
Bibliographic Details
Published inDNA repair Vol. 76; pp. 99 - 107
Main Authors Baldock, Robert A., Pressimone, Catherine A., Baird, Jared M., Khodakov, Anton, Luong, Thong T., Grundy, McKenzie K., Smith, Chelsea M., Karpenshif, Yoav, Bratton-Palmer, Dominique S., Prakash, Rohit, Jasin, Maria, Garcin, Edwige B., Gon, Stéphanie, Modesti, Mauro, Bernstein, Kara A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2019
Elsevier
Subjects
Online AccessGet full text
ISSN1568-7864
1568-7856
1568-7856
DOI10.1016/j.dnarep.2019.02.008

Cover

Abstract •Only RAD51D isoform 1 rescues HR-deficiency observed in RAD51D knock-out cell lines.•The RAD51D Walker A motif is important for its HR-function and interaction with XRCC2.•Phosphorylation near the Walker A motif is unlikely to regulate RAD51D function. The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.
AbstractList The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.
The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U20S cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.
•Only RAD51D isoform 1 rescues HR-deficiency observed in RAD51D knock-out cell lines.•The RAD51D Walker A motif is important for its HR-function and interaction with XRCC2.•Phosphorylation near the Walker A motif is unlikely to regulate RAD51D function. The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.
The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knockout cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.
The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.
Author Gon, Stéphanie
Baldock, Robert A.
Garcin, Edwige B.
Baird, Jared M.
Prakash, Rohit
Smith, Chelsea M.
Jasin, Maria
Grundy, McKenzie K.
Bernstein, Kara A.
Luong, Thong T.
Bratton-Palmer, Dominique S.
Khodakov, Anton
Pressimone, Catherine A.
Karpenshif, Yoav
Modesti, Mauro
AuthorAffiliation 1 Current Address: Solent University, School of Sport, Health and Social Sciences, East Park Terrace, Southampton, UK
2 University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, Pennsylvania, USA
3 Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
AuthorAffiliation_xml – name: 2 University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, Pennsylvania, USA
– name: 1 Current Address: Solent University, School of Sport, Health and Social Sciences, East Park Terrace, Southampton, UK
– name: 3 Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
Author_xml – sequence: 1
  givenname: Robert A.
  surname: Baldock
  fullname: Baldock, Robert A.
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 2
  givenname: Catherine A.
  surname: Pressimone
  fullname: Pressimone, Catherine A.
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 3
  givenname: Jared M.
  surname: Baird
  fullname: Baird, Jared M.
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 4
  givenname: Anton
  surname: Khodakov
  fullname: Khodakov, Anton
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 5
  givenname: Thong T.
  surname: Luong
  fullname: Luong, Thong T.
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 6
  givenname: McKenzie K.
  surname: Grundy
  fullname: Grundy, McKenzie K.
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 7
  givenname: Chelsea M.
  surname: Smith
  fullname: Smith, Chelsea M.
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 8
  givenname: Yoav
  surname: Karpenshif
  fullname: Karpenshif, Yoav
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 9
  givenname: Dominique S.
  surname: Bratton-Palmer
  fullname: Bratton-Palmer, Dominique S.
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
– sequence: 10
  givenname: Rohit
  orcidid: 0000-0002-0533-6940
  surname: Prakash
  fullname: Prakash, Rohit
  organization: Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 11
  givenname: Maria
  surname: Jasin
  fullname: Jasin, Maria
  organization: Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– sequence: 12
  givenname: Edwige B.
  surname: Garcin
  fullname: Garcin, Edwige B.
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
– sequence: 13
  givenname: Stéphanie
  surname: Gon
  fullname: Gon, Stéphanie
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
– sequence: 14
  givenname: Mauro
  orcidid: 0000-0002-4964-331X
  surname: Modesti
  fullname: Modesti, Mauro
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
– sequence: 15
  givenname: Kara A.
  surname: Bernstein
  fullname: Bernstein, Kara A.
  email: karab@pitt.edu
  organization: University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30836272$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02144115$$DView record in HAL
BookMark eNqFUl2LEzEUHWTF_dB_IJJH96Fjkk4-xgehdFdXKAiLgm8hk9zZpswkNUkL4p_fjO0uug_6EBJyzzn3cs85r0588FBVrwmuCSb83aa2XkfY1hSTtsa0xlg-q84I43ImJOMnj2_enFbnKW0wJkxw_qI6nWM551TQs-rX7eKKkSuUtoMzgPY6Ou1zQtpbZLQ3EGc6pWCczmDRuMs6u-ATirAHPaDvt8slRc5niNpMFZQD6gCZ6LIzBdCHiNZhDEO4C7uJZsLYOf9b5WX1vNdDglfH-6L69vH66_Jmtvry6fNysZqZphV5xqU1Zk5bwRvLu44LS3gjGZHC9pxQ0mJmORGM9gz3thVNR6EcAS0HQaSeX1QfDrrbXTeCNeBz1IPaRjfq-FMF7dTfFe_W6i7sFWdYypYWgcuDwPoJ7WaxUtMfpqRpCGF7UrBvj81i-LGDlNXokoFh0B7KBhQlUrK27L8p0Dd_zvWo_OBOAbw_AEwMKUXolXEHA8qYblAEqykKaqMOUVBTFMowqkShkJsn5Af9_9COy4LiyN5BVMk4KEGwrpiXlQ3u3wL3SpfQfA
CitedBy_id crossref_primary_10_3390_ijms23031863
crossref_primary_10_1016_j_gde_2021_06_010
crossref_primary_10_1093_nar_gkad856
crossref_primary_10_1038_s41388_024_03264_1
crossref_primary_10_1186_s10020_021_00316_0
crossref_primary_10_1371_journal_pgen_1008355
crossref_primary_10_3390_cancers13112845
crossref_primary_10_1093_bioinformatics_btae171
crossref_primary_10_1146_annurev_genet_021920_092410
crossref_primary_10_1186_s12935_024_03348_8
crossref_primary_10_1038_s41467_024_51595_0
crossref_primary_10_1073_pnas_2202727119
crossref_primary_10_3892_mmr_2022_12774
crossref_primary_10_1016_j_canlet_2021_04_026
Cites_doi 10.1128/MCB.00465-12
10.1074/jbc.M001473200
10.1038/nrm3805
10.1245/s10434-017-5963-7
10.1200/JCO.2015.61.2408
10.1016/S1470-2045(16)30559-9
10.1016/S0140-6736(10)60892-6
10.1093/mutage/gei059
10.1128/MCB.01521-12
10.1016/j.dnarep.2016.04.006
10.1074/jbc.M105719200
10.1371/journal.pone.0153788
10.1016/j.semcdb.2011.07.019
10.1001/jamaoncol.2017.0424
10.1158/0008-5472.CAN-08-3057
10.1093/nar/gkr1122
10.1006/geno.1998.5226
10.1038/nature03445
10.1016/j.dnarep.2004.08.010
10.1101/gad.947001
10.3233/CBM-150519
10.1038/nature03443
10.1093/nar/gkl366
10.1074/jbc.M102396200
10.1038/onc.2013.421
10.1016/S1470-2045(11)70214-5
10.1200/JCO.2015.65.0747
10.1038/nmeth0410-248
10.1073/pnas.151253498
10.1126/scisignal.2001497
10.1101/gad.12.24.3831
10.1371/journal.pone.0054772
10.1128/MCB.19.12.8686
10.1093/nar/gkw1204
10.1534/genetics.115.185827
10.1038/sj.emboj.7601141
10.1093/emboj/19.24.6675
10.1186/s40064-015-0880-3
10.1371/journal.pone.0081371
10.1007/s10549-017-4181-0
10.1038/nature14664
10.1038/ng.2396
10.1038/nature14129
10.1101/cshperspect.a012740
10.1093/nar/29.1.308
10.1038/nature18003
10.1016/S0092-8674(04)00337-X
10.1093/nar/gkg925
10.1016/S1097-2765(00)80202-6
10.1016/S0140-6736(10)60893-8
10.1093/nar/gkw535
10.1186/1471-2199-10-27
10.1074/jbc.M111.271080
10.1371/journal.pone.0155476
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1016/j.dnarep.2019.02.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1568-7856
EndPage 107
ExternalDocumentID PMC6508892
oai_HAL_hal_02144115v1
30836272
10_1016_j_dnarep_2019_02_008
S1568786418301939
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: F32 GM110978
– fundername: NIGMS NIH HHS
  grantid: R35 GM118175
– fundername: NIGMS NIH HHS
  grantid: K99 GM088413
– fundername: NIGMS NIH HHS
  grantid: R00 GM088413
– fundername: NIEHS NIH HHS
  grantid: R01 ES024872
– fundername: NCI NIH HHS
  grantid: P30 CA047904
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: R01 CA185660
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
H~9
IH2
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSP
SSU
SSZ
T5K
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ACLOT
~HD
1XC
VOOES
5PM
ID FETCH-LOGICAL-c497t-68dcc329764d6bb67d16485187df6121905d61752f50fd974b2e4b27e96e718a3
IEDL.DBID AIKHN
ISSN 1568-7864
1568-7856
IngestDate Thu Aug 21 18:27:28 EDT 2025
Fri Sep 12 12:31:50 EDT 2025
Sun Sep 28 02:58:47 EDT 2025
Mon Jul 21 06:01:44 EDT 2025
Tue Jul 01 04:11:49 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Fri Feb 23 02:32:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RAD51 paralogs
RAD51D
Double-strand break repair
Walker A motif
Homologous recombination
XRCC2
Double-strand break repair, Homologous recombination, RAD51 paralogs, RAD51D, Walker A motif, XRCC2
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-68dcc329764d6bb67d16485187df6121905d61752f50fd974b2e4b27e96e718a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
RAB, CAP, JMB, AK, YK, DSB, CMS, TTL, MKG, and KAB designed, performed and analyzed experiments; EBG, SG, and MM generated and provided the RAD51D CRISPR/Cas9 knock-out cell lines; RAB and KAB wrote the manuscript.
Author contributions
ORCID 0000-0002-0533-6940
0000-0002-4964-331X
0000-0002-7976-2379
0000-0001-5981-8980
0000-0002-1513-5018
OpenAccessLink https://hal.science/hal-02144115
PMID 30836272
PQID 2188590834
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6508892
hal_primary_oai_HAL_hal_02144115v1
proquest_miscellaneous_2188590834
pubmed_primary_30836272
crossref_citationtrail_10_1016_j_dnarep_2019_02_008
crossref_primary_10_1016_j_dnarep_2019_02_008
elsevier_sciencedirect_doi_10_1016_j_dnarep_2019_02_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle DNA repair
PublicationTitleAlternate DNA Repair (Amst)
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mertins (bib0230) 2016; 534
Crawford (bib0235) 2017; 163
Pelttari (bib0070) 2015; 4
Bryant (bib0260) 2005; 434
Xia (bib0270) 2001; 98
Moynahan (bib0275) 1999; 4
Schild (bib0165) 2000; 275
Audeh (bib0245) 2010; 376
O’Leary (bib0240) 2017; 24
Sherry (bib0180) 2001; 29
Cancer Genome Atlas (bib0200) 2015; 517
Kuznetsov (bib0120) 2009; 69
Richardson, Moynahan, Jasin (bib0140) 1998; 12
Tutt (bib0250) 2010; 376
Chun, Buechelmaier, Powell (bib0015) 2013; 33
Gruver (bib0100) 2005; 20
Miller (bib0160) 2004; 32
Masson (bib0030) 2001; 15
Shu (bib0095) 1999; 19
Yard (bib0210) 2016; 42
Godin, Sullivan, Bernstein (bib0025) 2016
McClendon (bib0170) 2016
Krivokuca (bib0060) 2015; 15
Farmer (bib0265) 2005; 434
Liu (bib0020) 2011; 286
Xu (bib0285) 2013; 8
Deans (bib0115) 2000; 19
Somyajit (bib0040) 2015; 43
O’Regan (bib0105) 2001; 276
Tung (bib0085) 2016; 34
Kurumizaka (bib0050) 2002; 277
Ollier (bib0065) 2015; 5
Somyajit (bib0205) 2013; 33
Wiese (bib0110) 2006; 34
Jasin, Rothstein (bib0005) 2013; 5
Gelmon (bib0255) 2011; 12
Thompson (bib0185) 2013; 8
Renkawitz, Lademann, Jentsch (bib0010) 2014; 15
Pittman, Weinberg, Schimenti (bib0145) 1998; 49
Tarsounas (bib0045) 2004; 117
Reh (bib0090) 2017; 45
Pelttari (bib0075) 2016; 11
Han (bib0215) 2016; 11
Martin (bib0135) 2006; 25
Song (bib0080) 2015; 33
Godin (bib0055) 2016; 44
Park (bib0035) 2014; 33
Adzhubei (bib0175) 2010; 7
Swisher (bib0280) 2017; 18
Puget, Knowlton, Scully (bib0130) 2005; 4
Gruver (bib0150) 2009; 10
Kettenbach (bib0225) 2011; 4
George (bib0190) 2015; 524
Suwaki, Klare, Tarsounas (bib0125) 2011; 22
Couch (bib0155) 2017; 3
Peifer (bib0195) 2012; 44
Hornbeck (bib0220) 2012; 40
Chun (10.1016/j.dnarep.2019.02.008_bib0015) 2013; 33
Han (10.1016/j.dnarep.2019.02.008_bib0215) 2016; 11
Moynahan (10.1016/j.dnarep.2019.02.008_bib0275) 1999; 4
Peifer (10.1016/j.dnarep.2019.02.008_bib0195) 2012; 44
Cancer Genome Atlas (10.1016/j.dnarep.2019.02.008_bib0200) 2015; 517
Kurumizaka (10.1016/j.dnarep.2019.02.008_bib0050) 2002; 277
Martin (10.1016/j.dnarep.2019.02.008_bib0135) 2006; 25
Xia (10.1016/j.dnarep.2019.02.008_bib0270) 2001; 98
Tutt (10.1016/j.dnarep.2019.02.008_bib0250) 2010; 376
Reh (10.1016/j.dnarep.2019.02.008_bib0090) 2017; 45
Gruver (10.1016/j.dnarep.2019.02.008_bib0150) 2009; 10
Krivokuca (10.1016/j.dnarep.2019.02.008_bib0060) 2015; 15
Pelttari (10.1016/j.dnarep.2019.02.008_bib0075) 2016; 11
Shu (10.1016/j.dnarep.2019.02.008_bib0095) 1999; 19
Kuznetsov (10.1016/j.dnarep.2019.02.008_bib0120) 2009; 69
Liu (10.1016/j.dnarep.2019.02.008_bib0020) 2011; 286
Godin (10.1016/j.dnarep.2019.02.008_bib0055) 2016; 44
Deans (10.1016/j.dnarep.2019.02.008_bib0115) 2000; 19
Mertins (10.1016/j.dnarep.2019.02.008_bib0230) 2016; 534
Pelttari (10.1016/j.dnarep.2019.02.008_bib0070) 2015; 4
Richardson (10.1016/j.dnarep.2019.02.008_bib0140) 1998; 12
George (10.1016/j.dnarep.2019.02.008_bib0190) 2015; 524
Miller (10.1016/j.dnarep.2019.02.008_bib0160) 2004; 32
Adzhubei (10.1016/j.dnarep.2019.02.008_bib0175) 2010; 7
Ollier (10.1016/j.dnarep.2019.02.008_bib0065) 2015; 5
Somyajit (10.1016/j.dnarep.2019.02.008_bib0040) 2015; 43
Couch (10.1016/j.dnarep.2019.02.008_bib0155) 2017; 3
Schild (10.1016/j.dnarep.2019.02.008_bib0165) 2000; 275
Song (10.1016/j.dnarep.2019.02.008_bib0080) 2015; 33
Audeh (10.1016/j.dnarep.2019.02.008_bib0245) 2010; 376
Tung (10.1016/j.dnarep.2019.02.008_bib0085) 2016; 34
Wiese (10.1016/j.dnarep.2019.02.008_bib0110) 2006; 34
Puget (10.1016/j.dnarep.2019.02.008_bib0130) 2005; 4
Pittman (10.1016/j.dnarep.2019.02.008_bib0145) 1998; 49
Somyajit (10.1016/j.dnarep.2019.02.008_bib0205) 2013; 33
Yard (10.1016/j.dnarep.2019.02.008_bib0210) 2016; 42
Renkawitz (10.1016/j.dnarep.2019.02.008_bib0010) 2014; 15
Kettenbach (10.1016/j.dnarep.2019.02.008_bib0225) 2011; 4
Xu (10.1016/j.dnarep.2019.02.008_bib0285) 2013; 8
Thompson (10.1016/j.dnarep.2019.02.008_bib0185) 2013; 8
McClendon (10.1016/j.dnarep.2019.02.008_bib0170) 2016
Suwaki (10.1016/j.dnarep.2019.02.008_bib0125) 2011; 22
Godin (10.1016/j.dnarep.2019.02.008_bib0025) 2016
Park (10.1016/j.dnarep.2019.02.008_bib0035) 2014; 33
Jasin (10.1016/j.dnarep.2019.02.008_bib0005) 2013; 5
Crawford (10.1016/j.dnarep.2019.02.008_bib0235) 2017; 163
Farmer (10.1016/j.dnarep.2019.02.008_bib0265) 2005; 434
O’Regan (10.1016/j.dnarep.2019.02.008_bib0105) 2001; 276
Hornbeck (10.1016/j.dnarep.2019.02.008_bib0220) 2012; 40
Bryant (10.1016/j.dnarep.2019.02.008_bib0260) 2005; 434
Gruver (10.1016/j.dnarep.2019.02.008_bib0100) 2005; 20
O’Leary (10.1016/j.dnarep.2019.02.008_bib0240) 2017; 24
Sherry (10.1016/j.dnarep.2019.02.008_bib0180) 2001; 29
Swisher (10.1016/j.dnarep.2019.02.008_bib0280) 2017; 18
Masson (10.1016/j.dnarep.2019.02.008_bib0030) 2001; 15
Tarsounas (10.1016/j.dnarep.2019.02.008_bib0045) 2004; 117
Gelmon (10.1016/j.dnarep.2019.02.008_bib0255) 2011; 12
References_xml – volume: 69
  start-page: 863
  year: 2009
  end-page: 872
  ident: bib0120
  article-title: Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice
  publication-title: Cancer Res.
– volume: 434
  start-page: 913
  year: 2005
  end-page: 917
  ident: bib0260
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
– volume: 25
  start-page: 2564
  year: 2006
  end-page: 2574
  ident: bib0135
  article-title: Sws1 is a conserved regulator of homologous recombination in eukaryotic cells
  publication-title: EMBO J.
– volume: 11
  year: 2016
  ident: bib0075
  article-title: RAD51B in familial breast cancer
  publication-title: PLoS One
– volume: 15
  start-page: 369
  year: 2014
  end-page: 383
  ident: bib0010
  article-title: Mechanisms and principles of homology search during recombination
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 8
  year: 2013
  ident: bib0285
  article-title: The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue
  publication-title: PLoS One
– volume: 4
  start-page: 511
  year: 1999
  end-page: 518
  ident: bib0275
  article-title: Brca1 controls homology-directed DNA repair
  publication-title: Mol. Cell
– volume: 34
  start-page: 1460
  year: 2016
  end-page: 1468
  ident: bib0085
  article-title: Frequency of germline mutations in 25 Cancer susceptibility genes in a sequential series of patients with breast Cancer
  publication-title: J. Clin. Oncol.
– volume: 44
  start-page: 8199
  year: 2016
  end-page: 8215
  ident: bib0055
  article-title: The Shu complex promotes error-free tolerance of alkylation-induced base excision repair products
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: 169
  year: 2004
  end-page: 178
  ident: bib0160
  article-title: Domain mapping of the Rad51 paralog protein complexes
  publication-title: Nucleic Acids Res.
– volume: 49
  start-page: 103
  year: 1998
  end-page: 111
  ident: bib0145
  article-title: Identification, characterization, and genetic mapping ofRad51d,a new mouse and HumanRAD51/RecA-Related gene
  publication-title: Genomics
– volume: 376
  start-page: 245
  year: 2010
  end-page: 251
  ident: bib0245
  article-title: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial
  publication-title: Lancet
– volume: 8
  year: 2013
  ident: bib0185
  article-title: Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer
  publication-title: PLoS One
– volume: 15
  start-page: 775
  year: 2015
  end-page: 781
  ident: bib0060
  article-title: RAD51C mutation screening in high-risk patients from Serbian hereditary breast/ovarian cancer families
  publication-title: Cancer Biomark.
– volume: 434
  start-page: 917
  year: 2005
  end-page: 921
  ident: bib0265
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
– volume: 33
  start-page: 4803
  year: 2014
  end-page: 4812
  ident: bib0035
  article-title: Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair
  publication-title: Oncogene
– volume: 19
  start-page: 8686
  year: 1999
  end-page: 8693
  ident: bib0095
  article-title: Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53(-/-) background
  publication-title: Mol. Cell. Biol.
– volume: 524
  start-page: 47
  year: 2015
  end-page: 53
  ident: bib0190
  article-title: Comprehensive genomic profiles of small cell lung cancer
  publication-title: Nature
– volume: 44
  start-page: 1104
  year: 2012
  end-page: 1110
  ident: bib0195
  article-title: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer
  publication-title: Nat. Genet.
– volume: 24
  start-page: 3060
  year: 2017
  end-page: 3066
  ident: bib0240
  article-title: Expanded gene panel use for women with breast cancer: identification and intervention beyond breast cancer risk
  publication-title: Ann. Surg. Oncol.
– volume: 277
  start-page: 14315
  year: 2002
  end-page: 14320
  ident: bib0050
  article-title: Homologous pairing and ring and filament structure formation activities of the human Xrcc2*Rad51D complex
  publication-title: J. Biol. Chem.
– volume: 286
  start-page: 41758
  year: 2011
  end-page: 41766
  ident: bib0020
  article-title: hSWS1.SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 9835
  year: 2015
  end-page: 9855
  ident: bib0040
  article-title: Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart
  publication-title: Nucleic Acids Res.
– volume: 34
  start-page: 2833
  year: 2006
  end-page: 2843
  ident: bib0110
  article-title: Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 82
  year: 2016
  end-page: 93
  ident: bib0210
  article-title: RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity
  publication-title: DNA Repair
– volume: 12
  start-page: 3831
  year: 1998
  end-page: 3842
  ident: bib0140
  article-title: Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations
  publication-title: Genes Dev.
– year: 2016
  ident: bib0170
  article-title: Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in caenorhabditis elegans
  publication-title: Genetics
– volume: 7
  start-page: 248
  year: 2010
  end-page: 249
  ident: bib0175
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat. Methods
– volume: 11
  year: 2016
  ident: bib0215
  article-title: Ubiquitylation of Rad51d mediated by E3 ligase Rnf138 promotes the homologous recombination repair pathway
  publication-title: PLoS One
– volume: 20
  start-page: 433
  year: 2005
  end-page: 440
  ident: bib0100
  article-title: The ATPase motif in RAD51D is required for resistance to DNA interstrand crosslinking agents and interaction with RAD51C
  publication-title: Mutagenesis
– volume: 15
  start-page: 3296
  year: 2001
  end-page: 3307
  ident: bib0030
  article-title: Identification and purification of two distinct complexes containing the five RAD51 paralogs
  publication-title: Genes Dev.
– volume: 4
  start-page: rs5
  year: 2011
  ident: bib0225
  article-title: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells
  publication-title: Sci. Signal.
– volume: 22
  start-page: 898
  year: 2011
  end-page: 905
  ident: bib0125
  article-title: RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis
  publication-title: Semin. Cell Dev. Biol.
– volume: 3
  start-page: 1190
  year: 2017
  end-page: 1196
  ident: bib0155
  article-title: Associations between cancer predisposition testing panel genes and breast cancer
  publication-title: JAMA Oncol.
– volume: 33
  start-page: 1830
  year: 2013
  end-page: 1844
  ident: bib0205
  article-title: ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair
  publication-title: Mol. Cell. Biol.
– volume: 4
  start-page: 92
  year: 2015
  ident: bib0070
  article-title: RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families
  publication-title: SpringerPlus
– volume: 19
  start-page: 6675
  year: 2000
  end-page: 6685
  ident: bib0115
  article-title: Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice
  publication-title: EMBO J.
– volume: 5
  year: 2013
  ident: bib0005
  article-title: Repair of strand breaks by homologous recombination
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 33
  start-page: 387
  year: 2013
  end-page: 395
  ident: bib0015
  article-title: Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway
  publication-title: Mol. Cell. Biol.
– volume: 18
  start-page: 75
  year: 2017
  end-page: 87
  ident: bib0280
  article-title: Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial
  publication-title: Lancet Oncol.
– volume: 33
  start-page: 2901
  year: 2015
  end-page: 2907
  ident: bib0080
  article-title: Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population
  publication-title: J. Clin. Oncol.
– volume: 10
  start-page: 27
  year: 2009
  ident: bib0150
  article-title: Functional characterization and identification of mouse Rad51d splice variants
  publication-title: BMC Mol. Biol.
– volume: 376
  start-page: 235
  year: 2010
  end-page: 244
  ident: bib0250
  article-title: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial
  publication-title: Lancet
– volume: 12
  start-page: 852
  year: 2011
  end-page: 861
  ident: bib0255
  article-title: Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study
  publication-title: Lancet Oncol.
– volume: 4
  start-page: 149
  year: 2005
  end-page: 161
  ident: bib0130
  article-title: Molecular analysis of sister chromatid recombination in mammalian cells
  publication-title: DNA Repair (Amst.)
– volume: 29
  start-page: 308
  year: 2001
  end-page: 311
  ident: bib0180
  article-title: dbSNP: the NCBI database of genetic variation
  publication-title: Nucleic Acids Res.
– volume: 98
  start-page: 8644
  year: 2001
  end-page: 8649
  ident: bib0270
  article-title: Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 534
  start-page: 55
  year: 2016
  end-page: 62
  ident: bib0230
  article-title: Proteogenomics connects somatic mutations to signalling in breast cancer
  publication-title: Nature
– volume: 5
  start-page: 2113
  year: 2015
  end-page: 2126
  ident: bib0065
  article-title: DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition
  publication-title: Am. J. Cancer Res.
– volume: 517
  start-page: 576
  year: 2015
  end-page: 582
  ident: bib0200
  article-title: Comprehensive genomic characterization of head and neck squamous cell carcinomas
  publication-title: Nature
– volume: 276
  start-page: 22148
  year: 2001
  end-page: 22153
  ident: bib0105
  article-title: XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding
  publication-title: J. Biol. Chem.
– start-page: 1
  year: 2016
  end-page: 12
  ident: bib0025
  article-title: Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication
  publication-title: Biochem. Cell Biol.
– volume: 45
  start-page: 1835
  year: 2017
  end-page: 1847
  ident: bib0090
  article-title: The homologous recombination protein RAD51D protects the genome from large deletions
  publication-title: Nucleic Acids Res.
– volume: 40
  start-page: D261
  year: 2012
  end-page: 70
  ident: bib0220
  article-title: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
  publication-title: Nucleic Acids Res.
– volume: 117
  start-page: 337
  year: 2004
  end-page: 347
  ident: bib0045
  article-title: Telomere maintenance requires the RAD51D recombination/repair protein
  publication-title: Cell
– volume: 275
  start-page: 16443
  year: 2000
  end-page: 16449
  ident: bib0165
  article-title: Evidence for simultaneous protein interactions between human Rad51 paralogs
  publication-title: J. Biol. Chem.
– volume: 163
  start-page: 383
  year: 2017
  end-page: 390
  ident: bib0235
  article-title: Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients
  publication-title: Breast Cancer Res. Treat.
– volume: 33
  start-page: 387
  issue: 2
  year: 2013
  ident: 10.1016/j.dnarep.2019.02.008_bib0015
  article-title: Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00465-12
– volume: 275
  start-page: 16443
  issue: 22
  year: 2000
  ident: 10.1016/j.dnarep.2019.02.008_bib0165
  article-title: Evidence for simultaneous protein interactions between human Rad51 paralogs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M001473200
– volume: 15
  start-page: 369
  issue: 6
  year: 2014
  ident: 10.1016/j.dnarep.2019.02.008_bib0010
  article-title: Mechanisms and principles of homology search during recombination
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3805
– volume: 24
  start-page: 3060
  issue: 10
  year: 2017
  ident: 10.1016/j.dnarep.2019.02.008_bib0240
  article-title: Expanded gene panel use for women with breast cancer: identification and intervention beyond breast cancer risk
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-017-5963-7
– volume: 33
  start-page: 2901
  issue: 26
  year: 2015
  ident: 10.1016/j.dnarep.2019.02.008_bib0080
  article-title: Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2015.61.2408
– volume: 18
  start-page: 75
  issue: 1
  year: 2017
  ident: 10.1016/j.dnarep.2019.02.008_bib0280
  article-title: Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30559-9
– volume: 376
  start-page: 235
  issue: 9737
  year: 2010
  ident: 10.1016/j.dnarep.2019.02.008_bib0250
  article-title: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60892-6
– volume: 20
  start-page: 433
  issue: 6
  year: 2005
  ident: 10.1016/j.dnarep.2019.02.008_bib0100
  article-title: The ATPase motif in RAD51D is required for resistance to DNA interstrand crosslinking agents and interaction with RAD51C
  publication-title: Mutagenesis
  doi: 10.1093/mutage/gei059
– volume: 33
  start-page: 1830
  issue: 9
  year: 2013
  ident: 10.1016/j.dnarep.2019.02.008_bib0205
  article-title: ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01521-12
– volume: 42
  start-page: 82
  year: 2016
  ident: 10.1016/j.dnarep.2019.02.008_bib0210
  article-title: RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2016.04.006
– volume: 43
  start-page: 9835
  issue: 20
  year: 2015
  ident: 10.1016/j.dnarep.2019.02.008_bib0040
  article-title: Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart
  publication-title: Nucleic Acids Res.
– volume: 277
  start-page: 14315
  issue: 16
  year: 2002
  ident: 10.1016/j.dnarep.2019.02.008_bib0050
  article-title: Homologous pairing and ring and filament structure formation activities of the human Xrcc2*Rad51D complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M105719200
– start-page: 1
  year: 2016
  ident: 10.1016/j.dnarep.2019.02.008_bib0025
  article-title: Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication
  publication-title: Biochem. Cell Biol.
– volume: 11
  issue: 5
  year: 2016
  ident: 10.1016/j.dnarep.2019.02.008_bib0075
  article-title: RAD51B in familial breast cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153788
– volume: 22
  start-page: 898
  issue: 8
  year: 2011
  ident: 10.1016/j.dnarep.2019.02.008_bib0125
  article-title: RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2011.07.019
– volume: 3
  start-page: 1190
  issue: 9
  year: 2017
  ident: 10.1016/j.dnarep.2019.02.008_bib0155
  article-title: Associations between cancer predisposition testing panel genes and breast cancer
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2017.0424
– volume: 69
  start-page: 863
  issue: 3
  year: 2009
  ident: 10.1016/j.dnarep.2019.02.008_bib0120
  article-title: Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-3057
– volume: 40
  start-page: D261
  year: 2012
  ident: 10.1016/j.dnarep.2019.02.008_bib0220
  article-title: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1122
– volume: 49
  start-page: 103
  issue: 1
  year: 1998
  ident: 10.1016/j.dnarep.2019.02.008_bib0145
  article-title: Identification, characterization, and genetic mapping ofRad51d,a new mouse and HumanRAD51/RecA-Related gene
  publication-title: Genomics
  doi: 10.1006/geno.1998.5226
– volume: 434
  start-page: 917
  issue: 7035
  year: 2005
  ident: 10.1016/j.dnarep.2019.02.008_bib0265
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
  doi: 10.1038/nature03445
– volume: 4
  start-page: 149
  issue: 2
  year: 2005
  ident: 10.1016/j.dnarep.2019.02.008_bib0130
  article-title: Molecular analysis of sister chromatid recombination in mammalian cells
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2004.08.010
– volume: 15
  start-page: 3296
  issue: 24
  year: 2001
  ident: 10.1016/j.dnarep.2019.02.008_bib0030
  article-title: Identification and purification of two distinct complexes containing the five RAD51 paralogs
  publication-title: Genes Dev.
  doi: 10.1101/gad.947001
– volume: 15
  start-page: 775
  issue: 6
  year: 2015
  ident: 10.1016/j.dnarep.2019.02.008_bib0060
  article-title: RAD51C mutation screening in high-risk patients from Serbian hereditary breast/ovarian cancer families
  publication-title: Cancer Biomark.
  doi: 10.3233/CBM-150519
– volume: 434
  start-page: 913
  issue: 7035
  year: 2005
  ident: 10.1016/j.dnarep.2019.02.008_bib0260
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
  doi: 10.1038/nature03443
– volume: 34
  start-page: 2833
  issue: 9
  year: 2006
  ident: 10.1016/j.dnarep.2019.02.008_bib0110
  article-title: Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl366
– volume: 276
  start-page: 22148
  issue: 25
  year: 2001
  ident: 10.1016/j.dnarep.2019.02.008_bib0105
  article-title: XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M102396200
– volume: 33
  start-page: 4803
  issue: 40
  year: 2014
  ident: 10.1016/j.dnarep.2019.02.008_bib0035
  article-title: Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair
  publication-title: Oncogene
  doi: 10.1038/onc.2013.421
– volume: 12
  start-page: 852
  issue: 9
  year: 2011
  ident: 10.1016/j.dnarep.2019.02.008_bib0255
  article-title: Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(11)70214-5
– volume: 34
  start-page: 1460
  issue: 13
  year: 2016
  ident: 10.1016/j.dnarep.2019.02.008_bib0085
  article-title: Frequency of germline mutations in 25 Cancer susceptibility genes in a sequential series of patients with breast Cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2015.65.0747
– volume: 7
  start-page: 248
  issue: 4
  year: 2010
  ident: 10.1016/j.dnarep.2019.02.008_bib0175
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0410-248
– volume: 98
  start-page: 8644
  issue: 15
  year: 2001
  ident: 10.1016/j.dnarep.2019.02.008_bib0270
  article-title: Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.151253498
– volume: 4
  start-page: rs5
  issue: 179
  year: 2011
  ident: 10.1016/j.dnarep.2019.02.008_bib0225
  article-title: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2001497
– volume: 12
  start-page: 3831
  issue: 24
  year: 1998
  ident: 10.1016/j.dnarep.2019.02.008_bib0140
  article-title: Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.24.3831
– volume: 8
  issue: 1
  year: 2013
  ident: 10.1016/j.dnarep.2019.02.008_bib0185
  article-title: Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054772
– volume: 19
  start-page: 8686
  issue: 12
  year: 1999
  ident: 10.1016/j.dnarep.2019.02.008_bib0095
  article-title: Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53(-/-) background
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.12.8686
– volume: 45
  start-page: 1835
  issue: 4
  year: 2017
  ident: 10.1016/j.dnarep.2019.02.008_bib0090
  article-title: The homologous recombination protein RAD51D protects the genome from large deletions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1204
– year: 2016
  ident: 10.1016/j.dnarep.2019.02.008_bib0170
  article-title: Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in caenorhabditis elegans
  publication-title: Genetics
  doi: 10.1534/genetics.115.185827
– volume: 25
  start-page: 2564
  issue: 11
  year: 2006
  ident: 10.1016/j.dnarep.2019.02.008_bib0135
  article-title: Sws1 is a conserved regulator of homologous recombination in eukaryotic cells
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601141
– volume: 19
  start-page: 6675
  issue: 24
  year: 2000
  ident: 10.1016/j.dnarep.2019.02.008_bib0115
  article-title: Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.24.6675
– volume: 4
  start-page: 92
  year: 2015
  ident: 10.1016/j.dnarep.2019.02.008_bib0070
  article-title: RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families
  publication-title: SpringerPlus
  doi: 10.1186/s40064-015-0880-3
– volume: 8
  issue: 12
  year: 2013
  ident: 10.1016/j.dnarep.2019.02.008_bib0285
  article-title: The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081371
– volume: 163
  start-page: 383
  issue: 2
  year: 2017
  ident: 10.1016/j.dnarep.2019.02.008_bib0235
  article-title: Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-017-4181-0
– volume: 524
  start-page: 47
  issue: 7563
  year: 2015
  ident: 10.1016/j.dnarep.2019.02.008_bib0190
  article-title: Comprehensive genomic profiles of small cell lung cancer
  publication-title: Nature
  doi: 10.1038/nature14664
– volume: 44
  start-page: 1104
  issue: 10
  year: 2012
  ident: 10.1016/j.dnarep.2019.02.008_bib0195
  article-title: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2396
– volume: 517
  start-page: 576
  issue: 7536
  year: 2015
  ident: 10.1016/j.dnarep.2019.02.008_bib0200
  article-title: Comprehensive genomic characterization of head and neck squamous cell carcinomas
  publication-title: Nature
  doi: 10.1038/nature14129
– volume: 5
  issue: 11
  year: 2013
  ident: 10.1016/j.dnarep.2019.02.008_bib0005
  article-title: Repair of strand breaks by homologous recombination
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012740
– volume: 29
  start-page: 308
  issue: 1
  year: 2001
  ident: 10.1016/j.dnarep.2019.02.008_bib0180
  article-title: dbSNP: the NCBI database of genetic variation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.1.308
– volume: 5
  start-page: 2113
  issue: 7
  year: 2015
  ident: 10.1016/j.dnarep.2019.02.008_bib0065
  article-title: DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition
  publication-title: Am. J. Cancer Res.
– volume: 534
  start-page: 55
  issue: 7605
  year: 2016
  ident: 10.1016/j.dnarep.2019.02.008_bib0230
  article-title: Proteogenomics connects somatic mutations to signalling in breast cancer
  publication-title: Nature
  doi: 10.1038/nature18003
– volume: 117
  start-page: 337
  issue: 3
  year: 2004
  ident: 10.1016/j.dnarep.2019.02.008_bib0045
  article-title: Telomere maintenance requires the RAD51D recombination/repair protein
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00337-X
– volume: 32
  start-page: 169
  issue: 1
  year: 2004
  ident: 10.1016/j.dnarep.2019.02.008_bib0160
  article-title: Domain mapping of the Rad51 paralog protein complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg925
– volume: 4
  start-page: 511
  issue: 4
  year: 1999
  ident: 10.1016/j.dnarep.2019.02.008_bib0275
  article-title: Brca1 controls homology-directed DNA repair
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80202-6
– volume: 376
  start-page: 245
  issue: 9737
  year: 2010
  ident: 10.1016/j.dnarep.2019.02.008_bib0245
  article-title: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60893-8
– volume: 44
  start-page: 8199
  issue: 17
  year: 2016
  ident: 10.1016/j.dnarep.2019.02.008_bib0055
  article-title: The Shu complex promotes error-free tolerance of alkylation-induced base excision repair products
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw535
– volume: 10
  start-page: 27
  year: 2009
  ident: 10.1016/j.dnarep.2019.02.008_bib0150
  article-title: Functional characterization and identification of mouse Rad51d splice variants
  publication-title: BMC Mol. Biol.
  doi: 10.1186/1471-2199-10-27
– volume: 286
  start-page: 41758
  issue: 48
  year: 2011
  ident: 10.1016/j.dnarep.2019.02.008_bib0020
  article-title: hSWS1.SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.271080
– volume: 11
  issue: 5
  year: 2016
  ident: 10.1016/j.dnarep.2019.02.008_bib0215
  article-title: Ubiquitylation of Rad51d mediated by E3 ligase Rnf138 promotes the homologous recombination repair pathway
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155476
SSID ssj0015766
Score 2.3550982
Snippet •Only RAD51D isoform 1 rescues HR-deficiency observed in RAD51D knock-out cell lines.•The RAD51D Walker A motif is important for its HR-function and...
The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Cell Line, Tumor
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Double-strand break repair
Homologous Recombination
Humans
Life Sciences
Mutation
Protein Binding
Protein Isoforms - genetics
Protein Isoforms - metabolism
Protein Processing, Post-Translational
RAD51 paralogs
RAD51D
Walker A motif
XRCC2
Title RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination
URI https://dx.doi.org/10.1016/j.dnarep.2019.02.008
https://www.ncbi.nlm.nih.gov/pubmed/30836272
https://www.proquest.com/docview/2188590834
https://hal.science/hal-02144115
https://pubmed.ncbi.nlm.nih.gov/PMC6508892
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tnRC8INhglI_JIMSbaeN82HkMGVP52sNgUt-sOHbVIppOXTsJIfG3c-c4FQWhSTxUatM4Tn1X3-9yd78DeJm5aWQSJ7l0LucJ2hiu6shwKk1zpiIKcHqg_-ksG18k7yfpZA_KrhaG0irD3t_u6X63DkeGYTWHl_P58DN6HkqqLEGlRJwS5z3YF2jtVR_2i3cfxmfbYAJCal9khOdzGtBV0Pk0L9tUK0fElVHekneqf1mo3oxSJf_GoX-mU_5mn07vwd0ALFnR3vt92HPNARwWDTrVi-_sFfOpnv4Z-gHcetO9u112Dd8O4cd5cZJGJ-yKQtqOXaMXTUkyrGosq0k5VrwKwnSWLTZtEP-KEQkUzjw5L0vBiH5i1RZLsPWSGcfq0EyBITxms-WCZl5uaBiuOfrl_ioP4OL07ZdyzENvBl4nuVzzTNm6jgWCmcRmxmTSot-F6E1JOyVSsnyUWhR0KqbpaGrRaTHC4Uu6PHNoDqv4IfSbZeMeAaNYosJ9oRY2R3ihKoRYJk5ilwoU3MgNIO7koetAXE79M77pLkPtq26lqEmKeiQ0SnEAfDvqsiXuuOF82Yla7yigRttyw8gXqBnbSYive1x81HTME9Ih5r6OBvC8UxyNYqWoTNU4XG2NGEtR4_k4GcBRq0jba8XEHS6kwJvbUbGdyXa_aeYzTxLukXcuHv_3z3oCd-hTm6X0FPrr1cY9QwC2NsfQe_0zOg5_s1-edS8a
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5tndB4QWODURhgEOLNauM4ifOYZUwZ6_owNqlvVhK7ahFNp66dNO3Pc5c41QpCk3ioVCVxnPquvu9yd98BfAnt2CukjXhkbcwl2hiuSq_gVJpmi5wowOmF_sUwzK7l91Ew2oK0rYWhtEq39zd7er1buyM9t5q9m-m09wM9DxWpUKJSIk7x423YkdTUugM7ydl5NlwHExBS10VGeD2nAW0FXZ3mZap8YYm40osb8k71Lwu1PaFUyb9x6J_plI_s0-kevHDAkiXNs7-ELVvtw0FSoVM9u2dfWZ3qWb9D34dnx-233bRt-HYAD5fJSeCdsFsKaVt2h140JcmwvDKsJOVY8NwJ0xo2WzVB_FtGJFA48-gyTQUj-olFUyzBlnNWWFa6ZgoM4TGbzGc083xFw3DN0S-v7_IKrk-_XaUZd70ZeCnjaMlDZcrSFwhmpAmLIowM-l2I3lRkxkRKFvcDg4IOxDjojw06LYWw-IlsHFo0h7n_GjrVvLJvgFEsUeG-UAoTI7xQOUKswpe-DQQKrm-74Lfy0KUjLqf-Gb90m6H2UzdS1CRF3RcapdgFvh510xB3PHF91IpabyigRtvyxMjPqBnrSYivO0sGmo7VhHSIue-8LnxqFUejWCkqk1cWV1sjxlLUeN6XXThsFGl9L5-4w0Uk8OE2VGxjss0z1XRSk4TXyDsWb__7Z32E3ezqYqAHZ8Pzd_CczjQZS0fQWS5W9j2CsWXxwf3ZfgO9JjEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAD51D+splice+variants+and+cancer-associated+mutations+reveal+XRCC2+interaction+to+be+critical+for+homologous+recombination&rft.jtitle=DNA+repair&rft.au=Baldock%2C+Robert+A&rft.au=Pressimone%2C+Catherine+A&rft.au=Baird%2C+Jared+M&rft.au=Khodakov%2C+Anton&rft.date=2019-04-01&rft.pub=Elsevier&rft.issn=1568-7864&rft.eissn=1568-7856&rft.volume=76&rft.spage=99&rft.epage=107&rft_id=info:doi/10.1016%2Fj.dnarep.2019.02.008&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02144115v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-7864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-7864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-7864&client=summon