Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries
Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redo...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 2541 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.05.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-022-30112-1 |
Cover
Abstract | Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi
0.8
Co
0.1
Mn
0.1
O
2
active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm
−2
is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg
−1
and 772 Wh L
−1
(based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm
−2
) and 25 °C.
The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with a cathode capacity of 12 mAh cm-2. The positive electrode is prepared by applying UV-curable gel electrolyte as a processing solvent. |
---|---|
AbstractList | Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm−2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg−1 and 772 Wh L−1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm−2) and 25 °C.The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with a cathode capacity of 12 mAh cm-2. The positive electrode is prepared by applying UV-curable gel electrolyte as a processing solvent. Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm-2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg-1 and 772 Wh L-1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm-2) and 25 °C. Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi Co Mn O active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg and 772 Wh L (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm ) and 25 °C. The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with a cathode capacity of 12 mAh cm-2. The positive electrode is prepared by applying UV-curable gel electrolyte as a processing solvent. Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi 0.8 Co 0.1 Mn 0.1 O 2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm −2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg −1 and 772 Wh L −1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm −2 ) and 25 °C. The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with a cathode capacity of 12 mAh cm-2. The positive electrode is prepared by applying UV-curable gel electrolyte as a processing solvent. Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm-2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg-1 and 772 Wh L-1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm-2) and 25 °C.Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm-2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg-1 and 772 Wh L-1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm-2) and 25 °C. Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi 0.8 Co 0.1 Mn 0.1 O 2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm −2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg −1 and 772 Wh L −1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm −2 ) and 25 °C. |
ArticleNumber | 2541 |
Author | Cho, Seok-Kyu Lee, Sang-Young Kim, Jung-Hui Kim, Nag-Young Kim, Ju-Myung |
Author_xml | – sequence: 1 givenname: Jung-Hui orcidid: 0000-0001-5893-0161 surname: Kim fullname: Kim, Jung-Hui organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) – sequence: 2 givenname: Ju-Myung surname: Kim fullname: Kim, Ju-Myung organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Energy and Environment Directorate, Pacific Northwest National Laboratory – sequence: 3 givenname: Seok-Kyu surname: Cho fullname: Cho, Seok-Kyu organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Battery Materials Research Center, Research Institute of Industrial Science and Technology (RIST) – sequence: 4 givenname: Nag-Young surname: Kim fullname: Kim, Nag-Young organization: Department of Chemical and Biomolecular Engineering, Yonsei University – sequence: 5 givenname: Sang-Young orcidid: 0000-0001-7153-0517 surname: Lee fullname: Lee, Sang-Young email: syleek@yonsei.ac.kr organization: Department of Chemical and Biomolecular Engineering, Yonsei University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35534482$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2471603$$D View this record in Osti.gov |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOK4MIBg7-SOJdKqOKjUiUkBGfLsV8Srxy72F7E_nu8mxbaHuqLLb-Z8fi9eV4d-eChql4S_J5gJj4kTnjbIUwpYpgQisiT6oRiThDpKDu6cz6uzlLa4LJYTwTnz6pj1jSMc0FPKv8dTPiD5rCECTyEbXpXT-BqcKBzDG6XAcEygDFg6tlOM1pUSsgFZayfaq3yHAykegxxLReROO1qZ_Nst0u9QFauHlTOEC2kF9XTUbkEZzf7afXz86cfF1_R1bcvlxcfr5DmfZcR7aFjrTEKa8yINkNHNJi26QhtO0wGxrUasNB8MFQYUVoBQhjWkmEkXKmGnVaXq64JaiOvo11U3MmgrDxchDhJFbPVDmRjDNONglEQzkcDSkPfs7HDo2YNp2PROl-1rrfDAkaDz1G5e6L3K97Ocgq_ZY9FIwgrAq9XgZCylUnbDHrWwfvSYkl5R1q8B729eSWGX1tIWS42aXBOHaYiaduSvmEUtwX65gF0E7bRl34eULTlnPGCenXX9j-_t7MvALECdAwpRRhlcaayDftfWCcJlvukyTVpsiRNHpImSaHSB9Rb9UdJbCWlAvYTxP-2H2H9BVb85qM |
CitedBy_id | crossref_primary_10_1002_adma_202410974 crossref_primary_10_1007_s40820_024_01642_8 crossref_primary_10_1002_anie_202307802 crossref_primary_10_1007_s12274_023_6230_0 crossref_primary_10_1002_adma_202208340 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_3390_batteries10010039 crossref_primary_10_1002_celc_202400288 crossref_primary_10_1021_acsanm_3c05113 crossref_primary_10_1016_j_cclet_2022_07_049 crossref_primary_10_1016_j_memsci_2025_123778 crossref_primary_10_1021_acsnano_4c15915 crossref_primary_10_1016_j_compscitech_2022_109731 crossref_primary_10_1002_ange_202307802 crossref_primary_10_1002_smll_202305596 crossref_primary_10_1039_D3CS00551H crossref_primary_10_1021_acsenergylett_4c01690 crossref_primary_10_1021_acsami_4c21246 crossref_primary_10_1002_advs_202402156 crossref_primary_10_1002_aenm_202301428 crossref_primary_10_1016_j_pnsc_2024_02_013 crossref_primary_10_1021_acs_chemrev_3c00498 crossref_primary_10_1002_smll_202309160 crossref_primary_10_1016_j_ensm_2023_102970 crossref_primary_10_1021_acs_nanolett_4c02168 crossref_primary_10_1007_s11581_024_06036_9 crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1002_adma_202303509 crossref_primary_10_1021_acsnano_4c04517 crossref_primary_10_1002_advs_202301248 crossref_primary_10_1016_j_est_2023_109477 crossref_primary_10_1002_smll_202304677 crossref_primary_10_1016_j_mattod_2025_01_002 crossref_primary_10_1021_acsenergylett_3c00600 crossref_primary_10_1016_j_cej_2023_146266 crossref_primary_10_1038_s41560_025_01720_0 |
Cites_doi | 10.1149/2.0321602jes 10.1038/natrevmats.2016.13 10.1002/aenm.201802930 10.1149/06422.0057ecst 10.1149/2.057207jes 10.1038/s41560-018-0191-3 10.1038/nnano.2016.207 10.1002/adma.202101275 10.1002/aenm.201501594 10.1016/j.joule.2019.02.004 10.1002/adma.201204182 10.1016/j.jelechem.2016.10.040 10.1103/PhysRevLett.98.218302 10.1002/aenm.201903864 10.1038/nenergy.2016.99 10.1002/aenm.201703031 10.1038/s41560-019-0513-0 10.1038/s41467-021-26894-5 10.1126/science.aam5852 10.1002/aenm.201901597 10.1021/acsami.8b14797 10.1149/2.1021814jes 10.1002/cssc.201400056 10.1039/C7EE01630A 10.1149/2.0631811jes 10.1149/2.0091908jes 10.1002/adma.201703027 10.1002/aenm.201802398 10.1039/C7CS00863E 10.1039/C8TA05049J 10.1002/aenm.201100261 10.1002/aenm.201502459 10.1002/adma.201706745 10.1016/j.nanoen.2018.04.062 10.1002/aenm.201700595 10.1002/anie.201911724 10.1016/j.chempr.2017.12.027 10.1016/j.apmt.2020.100809 10.1002/adma.201800561 10.1016/j.jpowsour.2011.06.071 10.1038/s41560-019-0398-y 10.1021/acsenergylett.8b02131 10.1016/j.nanoen.2020.104450 10.1016/j.joule.2019.05.006 10.1016/j.jpowsour.2018.03.020 10.1002/aenm.201901457 10.1002/adma.201301036 10.1038/s41560-019-0338-x 10.1002/adfm.201809196 10.1002/adma.201802014 10.1111/j.1151-2916.1993.tb07762.x 10.1002/adfm.201602734 10.1016/j.jpowsour.2013.01.063 10.1038/s41560-018-0107-2 10.1039/C8EE00155C 10.1038/s41560-019-0387-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-022-30112-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_5dd3c5aef8144fdeace993f70fc3542f PMC9085813 2471603 35534482 10_1038_s41467_022_30112_1 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c497t-29e736dda0c031cdb71ced657126701b34cab08c4bd28d8414e88d361bf14aa53 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Thu Aug 21 17:56:30 EDT 2025 Mon May 05 02:20:37 EDT 2025 Fri Sep 05 05:20:08 EDT 2025 Wed Aug 13 10:56:10 EDT 2025 Wed Feb 19 02:24:49 EST 2025 Thu Apr 24 23:07:18 EDT 2025 Tue Jul 01 00:58:11 EDT 2025 Fri Feb 21 02:38:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-29e736dda0c031cdb71ced657126701b34cab08c4bd28d8414e88d361bf14aa53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE National Research Foundation of Korea (NRF) Ministry of Science and ICT (MSIT) Ministry of Trade, Industry & Energy (MOTIE) AC05-76RL01830; 2021R1A2B5B03001615; 2018M3D1A1058744; 20010960 |
ORCID | 0000-0001-7153-0517 0000-0001-5893-0161 0000000171530517 0000000158930161 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-30112-1 |
PMID | 35534482 |
PQID | 2661264434 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5dd3c5aef8144fdeace993f70fc3542f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9085813 osti_scitechconnect_2471603 proquest_miscellaneous_2661953206 proquest_journals_2661264434 pubmed_primary_35534482 crossref_citationtrail_10_1038_s41467_022_30112_1 crossref_primary_10_1038_s41467_022_30112_1 springer_journals_10_1038_s41467_022_30112_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-09 |
PublicationDateYYYYMMDD | 2022-05-09 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Schmuch, Wagner, Hörpel, Placke, Winter (CR1) 2018; 3 Kuang, Chen, Kirsch, Hu (CR8) 2019; 9 Lu (CR2) 2016; 11 Gallagher (CR12) 2015; 163 Wang, Ding, Deng, Chen (CR49) 2020; 10 Sun (CR37) 2017; 356 Chen (CR21) 2017; 7 Xia, Zheng, Wang, Gu (CR48) 2018; 49 Fan (CR51) 2020; 70 Ren (CR55) 2019; 3 Masayuki Tagaki, Shitanda, Watanabe (CR38) 2007; 75 Chen (CR44) 2019; 3 Sander, Erb, Li, Gurijala, Chiang (CR13) 2016; 1 Sun (CR17) 2013; 25 Yan (CR53) 2018; 3 Liu (CR54) 2019; 4 Wang, Liu, Sherman, Verbrugge, Tataria (CR24) 2011; 196 Ogihara (CR39) 2012; 159 Gaberscek (CR42) 2021; 12 Kim (CR50) 2018; 11 Maleki Kheimeh Sari, Li (CR31) 2019; 9 Kuang (CR28) 2018; 8 Huang, Grant (CR19) 2018; 6 Xu (CR52) 2019; 4 Jin, Jiang, Ji, Yu (CR29) 2018; 30 Huang (CR43) 2011; 4 Singh, Kaiser, Hahn (CR11) 2016; 782 Louli (CR58) 2019; 166 Zeng, Zhan, Lu, Amine (CR4) 2018; 4 Qie, Zu, Manthiram (CR56) 2016; 6 Elango, Demortière (CR14) 2018; 8 Raccichini, Furness, Dibden, Owen, Garc´ıa-Araez (CR40) 2018; 165 Wang (CR16) 2018; 10 Wu (CR7) 2021; 33 Mussa, Klett, Lindbergh, Lindström (CR57) 2018; 385 Kil (CR34) 2013; 25 Li, Lu, Chen, Amine (CR6) 2018; 30 Zhao (CR18) 2019; 29 Byun, Roh, Kim, Ryou, Lee (CR36) 2020; 21 Klink, Schuhmann, La Mantia (CR47) 2014; 7 Choi, Aurbach (CR3) 2016; 1 Zhang (CR45) 2020; 59 Wei, Ahn, Grotto, Lewis (CR15) 2018; 30 Oh (CR35) 2016; 26 Westphal, Bockholt, Günther, Haselrieder, Kwade (CR32) 2015; 64 Hu (CR22) 2011; 1 Li, Erickson, Manthiram (CR30) 2020; 5 Lu (CR20) 2018; 30 Kim, Park, Wu, Lee (CR26) 2016; 6 Morasch, Landesfeind, Suthar, Gasteiger (CR41) 2018; 165 Kim (CR33) 2018; 11 Chiu, Garino, Cima (CR9) 1993; 76 Wu, Maier, Yu (CR5) 2020; 49 Singh, Tirumkudulu (CR10) 2007; 98 Li (CR27) 2019; 9 Park (CR25) 2019; 4 Zheng (CR23) 2018; 4 Noh, Youn, Yoon, Sun (CR46) 2013; 233 AS Mussa (30112_CR57) 2018; 385 KB Singh (30112_CR10) 2007; 98 S Jin (30112_CR29) 2018; 30 P Yan (30112_CR53) 2018; 3 J Liu (30112_CR54) 2019; 4 J Wu (30112_CR7) 2021; 33 S Byun (30112_CR36) 2020; 21 M Li (30112_CR6) 2018; 30 H-J Noh (30112_CR46) 2013; 233 L Hu (30112_CR22) 2011; 1 R Morasch (30112_CR41) 2018; 165 S-H Kim (30112_CR33) 2018; 11 S-H Park (30112_CR25) 2019; 4 XQ Zhang (30112_CR45) 2020; 59 J Lu (30112_CR2) 2016; 11 C Chen (30112_CR21) 2017; 7 B Westphal (30112_CR32) 2015; 64 H Sun (30112_CR37) 2017; 356 J-M Kim (30112_CR26) 2016; 6 EH Kil (30112_CR34) 2013; 25 M Singh (30112_CR11) 2016; 782 JS Wang (30112_CR24) 2011; 196 K Sun (30112_CR17) 2013; 25 Y Xia (30112_CR48) 2018; 49 X Fan (30112_CR51) 2020; 70 R Raccichini (30112_CR40) 2018; 165 LL Lu (30112_CR20) 2018; 30 F Wu (30112_CR5) 2020; 49 G-L Xu (30112_CR52) 2019; 4 R Schmuch (30112_CR1) 2018; 3 R Elango (30112_CR14) 2018; 8 W Li (30112_CR30) 2020; 5 TS Wei (30112_CR15) 2018; 30 JW Choi (30112_CR3) 2016; 1 Z Zhao (30112_CR18) 2019; 29 Y Kuang (30112_CR8) 2019; 9 S Chen (30112_CR44) 2019; 3 J Zheng (30112_CR23) 2018; 4 C Huang (30112_CR19) 2018; 6 J Wang (30112_CR16) 2018; 10 JS Sander (30112_CR13) 2016; 1 H Maleki Kheimeh Sari (30112_CR31) 2019; 9 SS Masayuki Tagaki (30112_CR38) 2007; 75 L Qie (30112_CR56) 2016; 6 RC Chiu (30112_CR9) 1993; 76 N Ogihara (30112_CR39) 2012; 159 X Zeng (30112_CR4) 2018; 4 KG Gallagher (30112_CR12) 2015; 163 X Ren (30112_CR55) 2019; 3 Y Kuang (30112_CR28) 2018; 8 M Gaberscek (30112_CR42) 2021; 12 J Kim (30112_CR50) 2018; 11 H Li (30112_CR27) 2019; 9 VM Huang (30112_CR43) 2011; 4 X Wang (30112_CR49) 2020; 10 S Klink (30112_CR47) 2014; 7 AJ Louli (30112_CR58) 2019; 166 Y-S Oh (30112_CR35) 2016; 26 |
References_xml | – volume: 163 start-page: A138 year: 2015 end-page: A149 ident: CR12 article-title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0321602jes – volume: 1 start-page: 1 year: 2016 end-page: 16 ident: CR3 article-title: Promise and reality of post-lithium-ion batteries with high energy densities publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 9 start-page: 1802930 year: 2019 ident: CR27 article-title: Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802930 – volume: 64 start-page: 57 year: 2015 end-page: 68 ident: CR32 article-title: Influence of convective drying parameters on electrode performance and physical electrode properties publication-title: ECS Trans. doi: 10.1149/06422.0057ecst – volume: 159 start-page: A1034 year: 2012 end-page: A1039 ident: CR39 article-title: Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell publication-title: J. Electrochem. Soc. doi: 10.1149/2.057207jes – volume: 3 start-page: 600 year: 2018 end-page: 605 ident: CR53 article-title: Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0191-3 – volume: 11 start-page: 1031 year: 2016 ident: CR2 article-title: The role of nanotechnology in the development of battery materials for electric vehicles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.207 – volume: 33 start-page: 2101275 year: 2021 ident: CR7 article-title: From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems publication-title: Adv. Mater. doi: 10.1002/adma.202101275 – volume: 6 start-page: 1501594 year: 2016 ident: CR26 article-title: 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501594 – volume: 3 start-page: 1094 year: 2019 end-page: 1105 ident: CR44 article-title: Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries publication-title: Joule doi: 10.1016/j.joule.2019.02.004 – volume: 25 start-page: 1395 year: 2013 end-page: 1400 ident: CR34 article-title: Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201204182 – volume: 782 start-page: 245 year: 2016 end-page: 249 ident: CR11 article-title: A systematic study of thick electrodes for high energy lithium ion batteries publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.10.040 – volume: 75 start-page: 7 year: 2007 ident: CR38 article-title: Electrochemical impedance and complex capacitance to interpret electrochemical capacitor publication-title: Electrochemistry – volume: 98 start-page: 218302 year: 2007 ident: CR10 article-title: Cracking in drying colloidal films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.218302 – volume: 10 start-page: 1903864 year: 2020 ident: CR49 article-title: Ni‐Rich/Co‐poor layered cathode for automotive Li‐ion batteries: promises and challenges publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903864 – volume: 1 start-page: 16099 year: 2016 ident: CR13 article-title: High-performance battery electrodes via magnetic templating publication-title: Nat. Energy doi: 10.1038/nenergy.2016.99 – volume: 8 start-page: 1703031 year: 2018 ident: CR14 article-title: Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703031 – volume: 5 start-page: 26 year: 2020 end-page: 34 ident: CR30 article-title: High-nickel layered oxide cathodes for lithium-based automotive batteries publication-title: Nat. Energy doi: 10.1038/s41560-019-0513-0 – volume: 12 year: 2021 ident: CR42 article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy publication-title: Nat. Commun. doi: 10.1038/s41467-021-26894-5 – volume: 356 start-page: 599 year: 2017 end-page: 604 ident: CR37 article-title: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage publication-title: Science doi: 10.1126/science.aam5852 – volume: 9 start-page: 1901597 year: 2019 ident: CR31 article-title: Controllable cathode–electrolyte interface of Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium ion batteries: a review publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901597 – volume: 10 start-page: 39794 year: 2018 end-page: 39801 ident: CR16 article-title: Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14797 – volume: 165 start-page: A3459 year: 2018 ident: CR41 article-title: Detection of binder gradients using impedance spectroscopy and their influence on the tortuosity of Li-ion battery graphite electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.1021814jes – volume: 7 start-page: 2159 year: 2014 end-page: 2166 ident: CR47 article-title: Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes publication-title: ChemSusChem doi: 10.1002/cssc.201400056 – volume: 11 start-page: 321 year: 2018 end-page: 330 ident: CR33 article-title: Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01630A – volume: 165 start-page: A2741 year: 2018 ident: CR40 article-title: Impedance characterization of the transport properties of electrolytes contained within porous electrodes and separators useful for Li-S Batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0631811jes – volume: 166 start-page: A1291 year: 2019 ident: CR58 article-title: Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0091908jes – volume: 30 start-page: 1703027 year: 2018 ident: CR15 article-title: 3D printing of customized Li-ion batteries with thick electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201703027 – volume: 8 start-page: 1802398 year: 2018 ident: CR28 article-title: Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802398 – volume: 49 start-page: 1569 year: 2020 end-page: 1614 ident: CR5 article-title: Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00863E – volume: 6 start-page: 14689 year: 2018 end-page: 14699 ident: CR19 article-title: Coral-like directional porosity lithium ion battery cathodes by ice templating publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05049J – volume: 1 start-page: 1012 year: 2011 end-page: 1017 ident: CR22 article-title: Lithium-ion textile batteries with large areal mass loading publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100261 – volume: 6 start-page: 1502459 year: 2016 ident: CR56 article-title: A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502459 – volume: 30 start-page: 1706745 year: 2018 ident: CR20 article-title: Wood-inspired high-performance ultrathick bulk battery electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201706745 – volume: 49 start-page: 434 year: 2018 end-page: 452 ident: CR48 article-title: Designing principle for Ni-rich cathode materials with high energy density for practical applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.062 – volume: 7 start-page: 1700595 year: 2017 ident: CR21 article-title: Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700595 – volume: 59 start-page: 3252 year: 2020 end-page: 3257 ident: CR45 article-title: A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911724 – volume: 4 start-page: 690 year: 2018 end-page: 704 ident: CR4 article-title: Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries publication-title: Chem doi: 10.1016/j.chempr.2017.12.027 – volume: 21 start-page: 100809 year: 2020 ident: CR36 article-title: Toward understanding the real mechanical robustness of composite electrode impregnated with a liquid electrolyte publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2020.100809 – volume: 30 start-page: 1800561 year: 2018 ident: CR6 article-title: 30 years of lithium‐ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201800561 – volume: 196 start-page: 8714 year: 2011 end-page: 8718 ident: CR24 article-title: Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.06.071 – volume: 4 start-page: 560 year: 2019 end-page: 567 ident: CR25 article-title: High areal capacity battery electrodes enabled by segregated nanotube networks publication-title: Nat. Energy doi: 10.1038/s41560-019-0398-y – volume: 4 start-page: 271 year: 2018 end-page: 275 ident: CR23 article-title: Nonplanar electrodearchitectures for ultrahigh areal capacity batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02131 – volume: 70 start-page: 104450 year: 2020 ident: CR51 article-title: Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104450 – volume: 3 start-page: 1662 year: 2019 end-page: 1676 ident: CR55 article-title: Enabling high-voltage lithium-metal batteries under practical conditions publication-title: Joule doi: 10.1016/j.joule.2019.05.006 – volume: 385 start-page: 18 year: 2018 end-page: 26 ident: CR57 article-title: Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.020 – volume: 9 start-page: 1901457 year: 2019 ident: CR8 article-title: Thick Electrode Batteries: Principles, Opportunities, and Challenges publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901457 – volume: 25 start-page: 4539 year: 2013 end-page: 4543 ident: CR17 article-title: 3D printing of interdigitated Li-ion microbattery architectures publication-title: Adv. Mater. doi: 10.1002/adma.201301036 – volume: 4 start-page: 180 year: 2019 end-page: 186 ident: CR54 article-title: Pathways for practical high-energy long-cycling lithium metal batteries publication-title: Nat. Energy doi: 10.1038/s41560-019-0338-x – volume: 4 start-page: 8048 year: 2011 ident: CR43 article-title: Local electrochemical impedance spectroscopy: A review and some recent developments publication-title: Electrochim. Acta – volume: 29 start-page: 1809196 year: 2019 ident: CR18 article-title: Sandwich, vertical‐channeled thick electrodes with high rate and cycle performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201809196 – volume: 30 start-page: 1802014 year: 2018 ident: CR29 article-title: Advanced 3D current collectors for lithium-based batteries publication-title: Adv. Mater. doi: 10.1002/adma.201802014 – volume: 76 start-page: 2257 year: 1993 ident: CR9 article-title: Drying of granular ceramic films: I, effect of processing variables on cracking behavior publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1993.tb07762.x – volume: 26 start-page: 7074 year: 2016 end-page: 7083 ident: CR35 article-title: Janus-faced, dual-conductive/chemically active battery separator membranes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602734 – volume: 233 start-page: 121 year: 2013 end-page: 130 ident: CR46 article-title: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.063 – volume: 3 start-page: 267 year: 2018 end-page: 278 ident: CR1 article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0107-2 – volume: 11 start-page: 1449 year: 2018 end-page: 1459 ident: CR50 article-title: A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00155C – volume: 4 start-page: 484 year: 2019 end-page: 494 ident: CR52 article-title: Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes publication-title: Nat. Energy doi: 10.1038/s41560-019-0387-1 – volume: 4 start-page: 560 year: 2019 ident: 30112_CR25 publication-title: Nat. Energy doi: 10.1038/s41560-019-0398-y – volume: 11 start-page: 321 year: 2018 ident: 30112_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01630A – volume: 5 start-page: 26 year: 2020 ident: 30112_CR30 publication-title: Nat. Energy doi: 10.1038/s41560-019-0513-0 – volume: 165 start-page: A2741 year: 2018 ident: 30112_CR40 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0631811jes – volume: 1 start-page: 1012 year: 2011 ident: 30112_CR22 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100261 – volume: 25 start-page: 4539 year: 2013 ident: 30112_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201301036 – volume: 8 start-page: 1703031 year: 2018 ident: 30112_CR14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703031 – volume: 30 start-page: 1706745 year: 2018 ident: 30112_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201706745 – volume: 30 start-page: 1800561 year: 2018 ident: 30112_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201800561 – volume: 6 start-page: 1501594 year: 2016 ident: 30112_CR26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501594 – volume: 159 start-page: A1034 year: 2012 ident: 30112_CR39 publication-title: J. Electrochem. Soc. doi: 10.1149/2.057207jes – volume: 12 year: 2021 ident: 30112_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26894-5 – volume: 64 start-page: 57 year: 2015 ident: 30112_CR32 publication-title: ECS Trans. doi: 10.1149/06422.0057ecst – volume: 4 start-page: 271 year: 2018 ident: 30112_CR23 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02131 – volume: 3 start-page: 267 year: 2018 ident: 30112_CR1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0107-2 – volume: 3 start-page: 1094 year: 2019 ident: 30112_CR44 publication-title: Joule doi: 10.1016/j.joule.2019.02.004 – volume: 25 start-page: 1395 year: 2013 ident: 30112_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201204182 – volume: 7 start-page: 2159 year: 2014 ident: 30112_CR47 publication-title: ChemSusChem doi: 10.1002/cssc.201400056 – volume: 4 start-page: 690 year: 2018 ident: 30112_CR4 publication-title: Chem doi: 10.1016/j.chempr.2017.12.027 – volume: 9 start-page: 1802930 year: 2019 ident: 30112_CR27 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802930 – volume: 49 start-page: 434 year: 2018 ident: 30112_CR48 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.062 – volume: 7 start-page: 1700595 year: 2017 ident: 30112_CR21 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700595 – volume: 233 start-page: 121 year: 2013 ident: 30112_CR46 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.063 – volume: 4 start-page: 484 year: 2019 ident: 30112_CR52 publication-title: Nat. Energy doi: 10.1038/s41560-019-0387-1 – volume: 21 start-page: 100809 year: 2020 ident: 30112_CR36 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2020.100809 – volume: 76 start-page: 2257 year: 1993 ident: 30112_CR9 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1993.tb07762.x – volume: 11 start-page: 1449 year: 2018 ident: 30112_CR50 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00155C – volume: 1 start-page: 16099 year: 2016 ident: 30112_CR13 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.99 – volume: 59 start-page: 3252 year: 2020 ident: 30112_CR45 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911724 – volume: 356 start-page: 599 year: 2017 ident: 30112_CR37 publication-title: Science doi: 10.1126/science.aam5852 – volume: 70 start-page: 104450 year: 2020 ident: 30112_CR51 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104450 – volume: 6 start-page: 1502459 year: 2016 ident: 30112_CR56 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502459 – volume: 29 start-page: 1809196 year: 2019 ident: 30112_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201809196 – volume: 163 start-page: A138 year: 2015 ident: 30112_CR12 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0321602jes – volume: 9 start-page: 1901597 year: 2019 ident: 30112_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901597 – volume: 10 start-page: 1903864 year: 2020 ident: 30112_CR49 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903864 – volume: 9 start-page: 1901457 year: 2019 ident: 30112_CR8 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901457 – volume: 782 start-page: 245 year: 2016 ident: 30112_CR11 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.10.040 – volume: 30 start-page: 1802014 year: 2018 ident: 30112_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.201802014 – volume: 30 start-page: 1703027 year: 2018 ident: 30112_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201703027 – volume: 10 start-page: 39794 year: 2018 ident: 30112_CR16 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14797 – volume: 1 start-page: 1 year: 2016 ident: 30112_CR3 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 49 start-page: 1569 year: 2020 ident: 30112_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00863E – volume: 3 start-page: 600 year: 2018 ident: 30112_CR53 publication-title: Nat. Energy doi: 10.1038/s41560-018-0191-3 – volume: 8 start-page: 1802398 year: 2018 ident: 30112_CR28 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802398 – volume: 4 start-page: 8048 year: 2011 ident: 30112_CR43 publication-title: Electrochim. Acta – volume: 3 start-page: 1662 year: 2019 ident: 30112_CR55 publication-title: Joule doi: 10.1016/j.joule.2019.05.006 – volume: 6 start-page: 14689 year: 2018 ident: 30112_CR19 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05049J – volume: 75 start-page: 7 year: 2007 ident: 30112_CR38 publication-title: Electrochemistry – volume: 166 start-page: A1291 year: 2019 ident: 30112_CR58 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0091908jes – volume: 196 start-page: 8714 year: 2011 ident: 30112_CR24 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.06.071 – volume: 98 start-page: 218302 year: 2007 ident: 30112_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.218302 – volume: 4 start-page: 180 year: 2019 ident: 30112_CR54 publication-title: Nat. Energy doi: 10.1038/s41560-019-0338-x – volume: 385 start-page: 18 year: 2018 ident: 30112_CR57 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.020 – volume: 26 start-page: 7074 year: 2016 ident: 30112_CR35 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602734 – volume: 11 start-page: 1031 year: 2016 ident: 30112_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.207 – volume: 165 start-page: A3459 year: 2018 ident: 30112_CR41 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1021814jes – volume: 33 start-page: 2101275 year: 2021 ident: 30112_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.202101275 |
SSID | ssj0000391844 |
Score | 2.5662067 |
Snippet | Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling... The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2541 |
SubjectTerms | 147/135 147/136 147/143 147/28 639/166 639/301 639/301/299/161 639/4077/4079/891 639/638/675 Aging Cathodes Drying Electrodes Electrolytes Energy ENERGY STORAGE Flux density Homogeneity Humanities and Social Sciences Lithium Lithium batteries Lithium ions Metals multidisciplinary Rechargeable batteries Redox reactions Science Science & Technology - Other Topics Science (multidisciplinary) Solvents Ultraviolet radiation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SEHwR746tEsE3G5rbTJLHVixF0Aex0LeQq1vY2RF3Cvbfe5KZXbteX3wamGQhOdcvmzPfQegV5JwgKM2EhZyJdKojhjtGYqeE8Ew7k8of-u8_dGfn8t1Fe3Gj1VepCZvogSfBHbUxitC6lDVA_xwhTiRIqVnRHEQreS7Rlxp64zBVY7AwcHSR81cyVOijtawxoRavg01zwnYyUSXsh8cAjvU7sPlrzeRPF6c1H53eQ3dnIImPpw3cR7fS6gG6PbWWvH6IVh9THL6RxdAPYCIJzveH-HNa4rntzfJ6TCT1PkHcibhwFpMeYDRZDrWmHhc21yGmNQZMOw2n-pEgBtS-uLzqcZ8AtWNf2TnhsP0InZ--_fTmjMy9FUiQRo2Em6REF6OjAdw6RK9YSLFrFeOdoswLGZynOkgfuY4ahJe0jqJjPjPpXCseo73VsEpPEQ40-JzbyHSGfK-c55F30YSYVHYQUBvENnK2YSYeL_0vlrZegAttJ91Y0I2turGsQa-3v_ky0W78dfZJUd92ZqHMri_AkOxsSPZfhtSg_aJ8C8ij0OeGUmcURsshe3cUNnGwsQk7e_naFnBTAKWQDXq5HQb_LJcuruq2zjGl-0bXoCeTCW3XCVhPwPGYN0jtGNfORnZHVpeLygFuACprBss63Jjhj2X9WVDP_oeg9tEdXtyoVH2aA7Q3fr1KzwGZjf5FdcLvsNw2tg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ba9UwGA86EXwR7-s2pYJvLqy5tEmfRMUxBH0QB-ct5LozOG3nTgfbf--XNKfjeNlToUkhyXf7Jfn6-xB6BzHHsqoKmNgQMNeiwS3VBLtGMGaI1K2PB_rfvjcnp_zrol7kA7d1Tqvc-MTkqN1g4xn5UQwkMXgz_uHiF45Vo-Ltai6hcR89SNRloM9iIeYzlsh-LjnP_8pUTB6tefIMKYUdNJtishWPEm0_PAYwr39Bzr8zJ_-4Pk1R6fgJepzhZPlxkv9TdM_3z9DDqcDkzXPU__BuuMbLoRtAUTzs8g_LM78qc_Gb1c3ose-MB-_jyshcjDsA03g1pMz6MnK6Ds6vS0C2U7NPvwqWgN2X51dd2XnA7qVJHJ2w5X6BTo-__Px8gnOFBWx5K0ZMWy9Y45yuLBi3dUYQ611TC1hqURHDuNWmkpYbR6WTsHheSscaYgLhWtfsJdrph97votJW1oRQOyIDRH2hDXW0ca11XgQNbrVAZLPOymb68VgFY6XSNTiTapKNAtmoJBtFCvR-_uZiIt-4s_enKL65ZyTOTi-GyzOV7VDVzjFbax8k7CSDg7DjAaEFUQXLak5Dgfaj8BXgj0iia2O2kR0VhRjeVDCJg41OqGzra3WrmQV6OzeDlcarF51km_q0sQZHU6BXkwrN4wTEx2CTTAsktpRrayLbLf35MjGBtwCYJYFhHW7U8HZY_1-ovbtnsY8e0WggMauzPUA74-WVfw3IazRvknn9BiSPLII priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZhQ6GX0nfdpMWF3hpR62FLPm5LQ1hoD20DuQk9s4G1HbIOJP8-I_lRtk0LPRksGWTNjOYbafQNQu_B51hWFAETGwLmWlS4pppgVwnGDJG69nFD_-u36uSUr87Ksz1Ep7swKWk_UVqmZXrKDvu45cmkU-45qCTFEPHsS3B_dIH2l8vVj9W8sxI5zyXn4w2Zgsl7Pt7xQomsHx4dGNV9QPPPfMnfDk2TLzp-jB6NIDJfDsN-gvZ8-xQ9GMpK3j5D7Xfvuhu87poO1MNDbH-Un_tNPpa82dz2HvvGeFhzXB75inEDEBpvupRPn0cm1875bQ54dmj26YJgDoh9fXHd5I0HxJ6bxMwJgfZzdHr85efnEzzWVcCW16LHtPaCVc7pwoJJW2cEsd5VpSC0EgUxjFttCmm5cVQ6CZPnpXSsIiYQrnXJXqBF27X-FcptYU0IpSMygK8X2lBHK1db50XQsJhmiEzzrOxIOh5rX2xUOvxmUg2yUSAblWSjSIY-zN9cDpQb_-z9KYpv7hnpstOL7upcjeqjSueYLbUPEuLH4MDZeMBlQRTBspLTkKGDKHwFqCNS59qYY2R7RcFzVwX8xOGkE2q08K2KwCaCScYz9G5uBtuMBy46yTb1qWPljSpDLwcVmscJOI9BaEwzJHaUa-dHdlvai3Xi_64BJksCwzqa1PDXsP4-Ua__r_sBekijwcTczvoQLfqra_8G8Fdv3o4Gdwf91yuL priority: 102 providerName: Springer Nature |
Title | Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries |
URI | https://link.springer.com/article/10.1038/s41467-022-30112-1 https://www.ncbi.nlm.nih.gov/pubmed/35534482 https://www.proquest.com/docview/2661264434 https://www.proquest.com/docview/2661953206 https://www.osti.gov/servlets/purl/2471603 https://pubmed.ncbi.nlm.nih.gov/PMC9085813 https://doaj.org/article/5dd3c5aef8144fdeace993f70fc3542f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddy0Zfyr7ntgse7G3VZkm2JD-MkYZmJdAyugXyJmx9NIUk3vIBzX-_k2xnZEv3YoElgXwfut9ZpzuE3oPN0SxJHCbaOZwWguOcFgQbLhgriSxy63_oX13zy2E6GGWjPdSWO2oIuNjp2vl6UsP55OP9r_UXUPjP9ZVx-WmRBnUPcekgrhSDN3QAlol7Z-yqgfthZ2Y5ODRpc3dm99RD9ARMMAOvhW6ZqpDRH5oKNG8XGv03qPKvk9VgsPpP0VGDNONuLRrP0J6dPUeP69qT6xdodmNNdY_H1bQCGbLVanEW39pJ3NTFmayXFttpaWFjMrFPaoyngLPxpApB97FP91oZu4gB9NbdNtwijAHWj-9W03hqgaJxGdJ3gjf-Eg37Fz96l7gpvoB1moslprkVjBtTJBr0XptSEG0NzwShXCSkZKkuykTqtDRUGgl0tFIaxknpSFoUGXuF9mfVzL5BsU506VxmiHQACERRUkO5ybWxwhWw40aItHRWuslM7gtkTFQ4IWdS1WxSwCYV2KRIhD5s5vys83L8d_S5Z99mpM-pHV5U81vVqKjKjGE6K6yT4GQ6AxbJAnhzInGaZSl1ETrxzFcATXx-Xe0DkfRSUTDvPIGPOG1lQrVSrDz68YiTpRF6t-kGBfanMkXgbRiT-_IcPEKvaxHarLOVxAiJLeHa-pDtntndOCQJzwFLSwLLOmvF8M-yHibU8YNLOEGH1KuJj_XMT9H-cr6ybwGPLcsOeiRGAp6y_7WDDrrdwfcBtOcX199u4G2P9zrhT0cnKONv-vk2Rw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLaqVgguiJ2hBQYJTtTqeJkZz6FCFFqltI1Q1Uq9Ga9NpSRTmkSQP8dv49kzkyosvfUUKXYU22_7nv0WhN6CzTEsyzwmxnvMVVngiiqCbVEypolQlQsX-kf9onfKv5zlZyvoV5cLE8IqO50YFbWtTbgj3wqGJBhvxj9cfseha1R4Xe1aaKi2tYLdjiXG2sSOAzf_AS7cZHv_M9D7HaV7uyeferjtMoANr8opppUrWWGtygwwuLG6JMbZIi_h78qMaMaN0pkwXFsqrOCEOyEsK4j2hCsVukaACVjjIcN1Fa3t7Pa_Hi9ueUL9dcF5m62TMbE14VE3xSB6kC2KyZJFjI0D4KMGAf8X6P07dvOPB9xoF_ceoPstoE0_Nhz4EK248SN0p2lxOX-MxsfO1j_xoB7VwKqunk0203M3TNv2O8P51GE30g70n01D7WQ8AjiPh3WM7U9DVdnaukkK2LoZdjFZMQXvYXAxG6UjB95DqmOVUHD6n6DTWzn9p2h1XI_dc5SazGjvc0uEB9xRKk0tLWxlrCu9AsWeINKdszRtAfTQh2Mo40M8E7KhjQTayEgbSRL0fvGby6b8x42zdwL5FjND6e74RX11LltNIHNrmcmV8wJ8WW_B8DnAiL7MvGE5pz5B64H4EhBQKONrQryTmUoKKKLIYBMbHU_IVttM5LVsJOjNYhj0RHj8UZG2cU4VuoAUCXrWsNBinYA5GbjpNEHlEnMtbWR5ZHwxiLXIK4DsgsCyNjs2vF7W_w_qxc27eI3u9k6ODuXhfv9gHd2jQVhCjGm1gVanVzP3EnDgVL9qhS1F325bvn8DMJNwAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTSBeEPeFDQgSPDGrsePEzsOEGFu1MaimiUl7M44va6W2GUsr6F_kV3HsJJ3KZW97qlS7qu1z-2wfnw-hNxBzdJokDhPtHGaK57igimCT8zQtiVCF9Qf6Xwb54Rn7dJ6dr6Ff3VsYn1bZ-cTgqE2l_Rl5zwcSH7xT1nNtWsTJfv_95XfsGaT8TWtHp6FamgWzG8qNtY88ju3iB2zn6t2jfZD9W0r7B18_HuKWcQBrVvAZpoXlaW6MSjQouzYlJ9qaPOPw1zwhZcq0KhOhWWmoMIIRZoUwaU5KR5hSnkECwsEGhyjJ1tHG3sHg5HR54uNrsQvG2pc7SSp6NQt-KiTUg51RTFaiYyARgI8KjP1fAPjvPM4_LnNDjOw_QPdbcBt_aLTxIVqz00foTkN3uXiMpqfWVD_xsJpUoLa2mtc78YUdxy0Vz3gxs9hOSgu-0MS-jjKeALTH4yrk-ce-wmxlbB0Dzm6abXi4GMNOYjiaT-KJhZ1EXIaKoSNbP0Fnt7L6T9H6tJraTRTrRJfOZYYIBxiEq5IamptCG8udAicfIdKts9RtMXTPyTGW4VI-FbKRjQTZyCAbSSL0bvmby6YUyI2997z4lj19Ge_wRXV1IVuvIDNjUp0p6wTsa52BIGgBLzqeOJ1mjLoIbXnhS0BDvqSv9rlPeiYpIIo8gUlsdzohW89Ty2s7idDrZTP4DH8RpIJsQ5_CM4LkEXrWqNBynIA_U9iy0wjxFeVamchqy3Q0DHXJC4DvgsCwdjo1vB7W_xfq-c2zeIXugp3Lz0eD4y10j3pb8emmxTZan13N7QuAhLPyZWtrMfp22-b9G0YidC4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox-homogeneous%2C+gel+electrolyte-embedded+high-mass-loading+cathodes+for+high-energy+lithium+metal+batteries&rft.jtitle=Nature+communications&rft.au=Kim%2C+Jung-Hui&rft.au=Kim%2C+Ju-Myung&rft.au=Cho%2C+Seok-Kyu&rft.au=Kim%2C+Nag-Young&rft.date=2022-05-09&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=2541&rft_id=info:doi/10.1038%2Fs41467-022-30112-1&rft_id=info%3Apmid%2F35534482&rft.externalDocID=35534482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |