Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries

Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redo...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 2541 - 11
Main Authors Kim, Jung-Hui, Kim, Ju-Myung, Cho, Seok-Kyu, Kim, Nag-Young, Lee, Sang-Young
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-022-30112-1

Cover

Abstract Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi 0.8 Co 0.1 Mn 0.1 O 2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm −2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg −1 and 772 Wh L −1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm −2 ) and 25 °C. The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with a cathode capacity of 12 mAh cm-2. The positive electrode is prepared by applying UV-curable gel electrolyte as a processing solvent.
AbstractList Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm−2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg−1 and 772 Wh L−1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm−2) and 25 °C.The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with a cathode capacity of 12 mAh cm-2. The positive electrode is prepared by applying UV-curable gel electrolyte as a processing solvent.
Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm-2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg-1 and 772 Wh L-1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm-2) and 25 °C.
Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi Co Mn O active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg and 772 Wh L (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm ) and 25 °C.
The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with a cathode capacity of 12 mAh cm-2. The positive electrode is prepared by applying UV-curable gel electrolyte as a processing solvent.
Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi 0.8 Co 0.1 Mn 0.1 O 2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm −2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg −1 and 772 Wh L −1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm −2 ) and 25 °C. The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with a cathode capacity of 12 mAh cm-2. The positive electrode is prepared by applying UV-curable gel electrolyte as a processing solvent.
Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm-2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg-1 and 772 Wh L-1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm-2) and 25 °C.Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm-2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg-1 and 772 Wh L-1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm-2) and 25 °C.
Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi 0.8 Co 0.1 Mn 0.1 O 2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm −2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg −1 and 772 Wh L −1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm −2 ) and 25 °C.
ArticleNumber 2541
Author Cho, Seok-Kyu
Lee, Sang-Young
Kim, Jung-Hui
Kim, Nag-Young
Kim, Ju-Myung
Author_xml – sequence: 1
  givenname: Jung-Hui
  orcidid: 0000-0001-5893-0161
  surname: Kim
  fullname: Kim, Jung-Hui
  organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)
– sequence: 2
  givenname: Ju-Myung
  surname: Kim
  fullname: Kim, Ju-Myung
  organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Energy and Environment Directorate, Pacific Northwest National Laboratory
– sequence: 3
  givenname: Seok-Kyu
  surname: Cho
  fullname: Cho, Seok-Kyu
  organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Battery Materials Research Center, Research Institute of Industrial Science and Technology (RIST)
– sequence: 4
  givenname: Nag-Young
  surname: Kim
  fullname: Kim, Nag-Young
  organization: Department of Chemical and Biomolecular Engineering, Yonsei University
– sequence: 5
  givenname: Sang-Young
  orcidid: 0000-0001-7153-0517
  surname: Lee
  fullname: Lee, Sang-Young
  email: syleek@yonsei.ac.kr
  organization: Department of Chemical and Biomolecular Engineering, Yonsei University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35534482$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2471603$$D View this record in Osti.gov
BookMark eNp9Uk1v1DAUjFARLaV_gAOK4MIBg7-SOJdKqOKjUiUkBGfLsV8Srxy72F7E_nu8mxbaHuqLLb-Z8fi9eV4d-eChql4S_J5gJj4kTnjbIUwpYpgQisiT6oRiThDpKDu6cz6uzlLa4LJYTwTnz6pj1jSMc0FPKv8dTPiD5rCECTyEbXpXT-BqcKBzDG6XAcEygDFg6tlOM1pUSsgFZayfaq3yHAykegxxLReROO1qZ_Nst0u9QFauHlTOEC2kF9XTUbkEZzf7afXz86cfF1_R1bcvlxcfr5DmfZcR7aFjrTEKa8yINkNHNJi26QhtO0wGxrUasNB8MFQYUVoBQhjWkmEkXKmGnVaXq64JaiOvo11U3MmgrDxchDhJFbPVDmRjDNONglEQzkcDSkPfs7HDo2YNp2PROl-1rrfDAkaDz1G5e6L3K97Ocgq_ZY9FIwgrAq9XgZCylUnbDHrWwfvSYkl5R1q8B729eSWGX1tIWS42aXBOHaYiaduSvmEUtwX65gF0E7bRl34eULTlnPGCenXX9j-_t7MvALECdAwpRRhlcaayDftfWCcJlvukyTVpsiRNHpImSaHSB9Rb9UdJbCWlAvYTxP-2H2H9BVb85qM
CitedBy_id crossref_primary_10_1002_adma_202410974
crossref_primary_10_1007_s40820_024_01642_8
crossref_primary_10_1002_anie_202307802
crossref_primary_10_1007_s12274_023_6230_0
crossref_primary_10_1002_adma_202208340
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_3390_batteries10010039
crossref_primary_10_1002_celc_202400288
crossref_primary_10_1021_acsanm_3c05113
crossref_primary_10_1016_j_cclet_2022_07_049
crossref_primary_10_1016_j_memsci_2025_123778
crossref_primary_10_1021_acsnano_4c15915
crossref_primary_10_1016_j_compscitech_2022_109731
crossref_primary_10_1002_ange_202307802
crossref_primary_10_1002_smll_202305596
crossref_primary_10_1039_D3CS00551H
crossref_primary_10_1021_acsenergylett_4c01690
crossref_primary_10_1021_acsami_4c21246
crossref_primary_10_1002_advs_202402156
crossref_primary_10_1002_aenm_202301428
crossref_primary_10_1016_j_pnsc_2024_02_013
crossref_primary_10_1021_acs_chemrev_3c00498
crossref_primary_10_1002_smll_202309160
crossref_primary_10_1016_j_ensm_2023_102970
crossref_primary_10_1021_acs_nanolett_4c02168
crossref_primary_10_1007_s11581_024_06036_9
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1002_adma_202303509
crossref_primary_10_1021_acsnano_4c04517
crossref_primary_10_1002_advs_202301248
crossref_primary_10_1016_j_est_2023_109477
crossref_primary_10_1002_smll_202304677
crossref_primary_10_1016_j_mattod_2025_01_002
crossref_primary_10_1021_acsenergylett_3c00600
crossref_primary_10_1016_j_cej_2023_146266
crossref_primary_10_1038_s41560_025_01720_0
Cites_doi 10.1149/2.0321602jes
10.1038/natrevmats.2016.13
10.1002/aenm.201802930
10.1149/06422.0057ecst
10.1149/2.057207jes
10.1038/s41560-018-0191-3
10.1038/nnano.2016.207
10.1002/adma.202101275
10.1002/aenm.201501594
10.1016/j.joule.2019.02.004
10.1002/adma.201204182
10.1016/j.jelechem.2016.10.040
10.1103/PhysRevLett.98.218302
10.1002/aenm.201903864
10.1038/nenergy.2016.99
10.1002/aenm.201703031
10.1038/s41560-019-0513-0
10.1038/s41467-021-26894-5
10.1126/science.aam5852
10.1002/aenm.201901597
10.1021/acsami.8b14797
10.1149/2.1021814jes
10.1002/cssc.201400056
10.1039/C7EE01630A
10.1149/2.0631811jes
10.1149/2.0091908jes
10.1002/adma.201703027
10.1002/aenm.201802398
10.1039/C7CS00863E
10.1039/C8TA05049J
10.1002/aenm.201100261
10.1002/aenm.201502459
10.1002/adma.201706745
10.1016/j.nanoen.2018.04.062
10.1002/aenm.201700595
10.1002/anie.201911724
10.1016/j.chempr.2017.12.027
10.1016/j.apmt.2020.100809
10.1002/adma.201800561
10.1016/j.jpowsour.2011.06.071
10.1038/s41560-019-0398-y
10.1021/acsenergylett.8b02131
10.1016/j.nanoen.2020.104450
10.1016/j.joule.2019.05.006
10.1016/j.jpowsour.2018.03.020
10.1002/aenm.201901457
10.1002/adma.201301036
10.1038/s41560-019-0338-x
10.1002/adfm.201809196
10.1002/adma.201802014
10.1111/j.1151-2916.1993.tb07762.x
10.1002/adfm.201602734
10.1016/j.jpowsour.2013.01.063
10.1038/s41560-018-0107-2
10.1039/C8EE00155C
10.1038/s41560-019-0387-1
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-022-30112-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed


MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_5dd3c5aef8144fdeace993f70fc3542f
PMC9085813
2471603
35534482
10_1038_s41467_022_30112_1
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c497t-29e736dda0c031cdb71ced657126701b34cab08c4bd28d8414e88d361bf14aa53
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:27 EDT 2025
Thu Aug 21 17:56:30 EDT 2025
Mon May 05 02:20:37 EDT 2025
Fri Sep 05 05:20:08 EDT 2025
Wed Aug 13 10:56:10 EDT 2025
Wed Feb 19 02:24:49 EST 2025
Thu Apr 24 23:07:18 EDT 2025
Tue Jul 01 00:58:11 EDT 2025
Fri Feb 21 02:38:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-29e736dda0c031cdb71ced657126701b34cab08c4bd28d8414e88d361bf14aa53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
National Research Foundation of Korea (NRF)
Ministry of Science and ICT (MSIT)
Ministry of Trade, Industry & Energy (MOTIE)
AC05-76RL01830; 2021R1A2B5B03001615; 2018M3D1A1058744; 20010960
ORCID 0000-0001-7153-0517
0000-0001-5893-0161
0000000171530517
0000000158930161
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-30112-1
PMID 35534482
PQID 2661264434
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_5dd3c5aef8144fdeace993f70fc3542f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9085813
osti_scitechconnect_2471603
proquest_miscellaneous_2661953206
proquest_journals_2661264434
pubmed_primary_35534482
crossref_citationtrail_10_1038_s41467_022_30112_1
crossref_primary_10_1038_s41467_022_30112_1
springer_journals_10_1038_s41467_022_30112_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-09
PublicationDateYYYYMMDD 2022-05-09
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Schmuch, Wagner, Hörpel, Placke, Winter (CR1) 2018; 3
Kuang, Chen, Kirsch, Hu (CR8) 2019; 9
Lu (CR2) 2016; 11
Gallagher (CR12) 2015; 163
Wang, Ding, Deng, Chen (CR49) 2020; 10
Sun (CR37) 2017; 356
Chen (CR21) 2017; 7
Xia, Zheng, Wang, Gu (CR48) 2018; 49
Fan (CR51) 2020; 70
Ren (CR55) 2019; 3
Masayuki Tagaki, Shitanda, Watanabe (CR38) 2007; 75
Chen (CR44) 2019; 3
Sander, Erb, Li, Gurijala, Chiang (CR13) 2016; 1
Sun (CR17) 2013; 25
Yan (CR53) 2018; 3
Liu (CR54) 2019; 4
Wang, Liu, Sherman, Verbrugge, Tataria (CR24) 2011; 196
Ogihara (CR39) 2012; 159
Gaberscek (CR42) 2021; 12
Kim (CR50) 2018; 11
Maleki Kheimeh Sari, Li (CR31) 2019; 9
Kuang (CR28) 2018; 8
Huang, Grant (CR19) 2018; 6
Xu (CR52) 2019; 4
Jin, Jiang, Ji, Yu (CR29) 2018; 30
Huang (CR43) 2011; 4
Singh, Kaiser, Hahn (CR11) 2016; 782
Louli (CR58) 2019; 166
Zeng, Zhan, Lu, Amine (CR4) 2018; 4
Qie, Zu, Manthiram (CR56) 2016; 6
Elango, Demortière (CR14) 2018; 8
Raccichini, Furness, Dibden, Owen, Garc´ıa-Araez (CR40) 2018; 165
Wang (CR16) 2018; 10
Wu (CR7) 2021; 33
Mussa, Klett, Lindbergh, Lindström (CR57) 2018; 385
Kil (CR34) 2013; 25
Li, Lu, Chen, Amine (CR6) 2018; 30
Zhao (CR18) 2019; 29
Byun, Roh, Kim, Ryou, Lee (CR36) 2020; 21
Klink, Schuhmann, La Mantia (CR47) 2014; 7
Choi, Aurbach (CR3) 2016; 1
Zhang (CR45) 2020; 59
Wei, Ahn, Grotto, Lewis (CR15) 2018; 30
Oh (CR35) 2016; 26
Westphal, Bockholt, Günther, Haselrieder, Kwade (CR32) 2015; 64
Hu (CR22) 2011; 1
Li, Erickson, Manthiram (CR30) 2020; 5
Lu (CR20) 2018; 30
Kim, Park, Wu, Lee (CR26) 2016; 6
Morasch, Landesfeind, Suthar, Gasteiger (CR41) 2018; 165
Kim (CR33) 2018; 11
Chiu, Garino, Cima (CR9) 1993; 76
Wu, Maier, Yu (CR5) 2020; 49
Singh, Tirumkudulu (CR10) 2007; 98
Li (CR27) 2019; 9
Park (CR25) 2019; 4
Zheng (CR23) 2018; 4
Noh, Youn, Yoon, Sun (CR46) 2013; 233
AS Mussa (30112_CR57) 2018; 385
KB Singh (30112_CR10) 2007; 98
S Jin (30112_CR29) 2018; 30
P Yan (30112_CR53) 2018; 3
J Liu (30112_CR54) 2019; 4
J Wu (30112_CR7) 2021; 33
S Byun (30112_CR36) 2020; 21
M Li (30112_CR6) 2018; 30
H-J Noh (30112_CR46) 2013; 233
L Hu (30112_CR22) 2011; 1
R Morasch (30112_CR41) 2018; 165
S-H Kim (30112_CR33) 2018; 11
S-H Park (30112_CR25) 2019; 4
XQ Zhang (30112_CR45) 2020; 59
J Lu (30112_CR2) 2016; 11
C Chen (30112_CR21) 2017; 7
B Westphal (30112_CR32) 2015; 64
H Sun (30112_CR37) 2017; 356
J-M Kim (30112_CR26) 2016; 6
EH Kil (30112_CR34) 2013; 25
M Singh (30112_CR11) 2016; 782
JS Wang (30112_CR24) 2011; 196
K Sun (30112_CR17) 2013; 25
Y Xia (30112_CR48) 2018; 49
X Fan (30112_CR51) 2020; 70
R Raccichini (30112_CR40) 2018; 165
LL Lu (30112_CR20) 2018; 30
F Wu (30112_CR5) 2020; 49
G-L Xu (30112_CR52) 2019; 4
R Schmuch (30112_CR1) 2018; 3
R Elango (30112_CR14) 2018; 8
W Li (30112_CR30) 2020; 5
TS Wei (30112_CR15) 2018; 30
JW Choi (30112_CR3) 2016; 1
Z Zhao (30112_CR18) 2019; 29
Y Kuang (30112_CR8) 2019; 9
S Chen (30112_CR44) 2019; 3
J Zheng (30112_CR23) 2018; 4
C Huang (30112_CR19) 2018; 6
J Wang (30112_CR16) 2018; 10
JS Sander (30112_CR13) 2016; 1
H Maleki Kheimeh Sari (30112_CR31) 2019; 9
SS Masayuki Tagaki (30112_CR38) 2007; 75
L Qie (30112_CR56) 2016; 6
RC Chiu (30112_CR9) 1993; 76
N Ogihara (30112_CR39) 2012; 159
X Zeng (30112_CR4) 2018; 4
KG Gallagher (30112_CR12) 2015; 163
X Ren (30112_CR55) 2019; 3
Y Kuang (30112_CR28) 2018; 8
M Gaberscek (30112_CR42) 2021; 12
J Kim (30112_CR50) 2018; 11
H Li (30112_CR27) 2019; 9
VM Huang (30112_CR43) 2011; 4
X Wang (30112_CR49) 2020; 10
S Klink (30112_CR47) 2014; 7
AJ Louli (30112_CR58) 2019; 166
Y-S Oh (30112_CR35) 2016; 26
References_xml – volume: 163
  start-page: A138
  year: 2015
  end-page: A149
  ident: CR12
  article-title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0321602jes
– volume: 1
  start-page: 1
  year: 2016
  end-page: 16
  ident: CR3
  article-title: Promise and reality of post-lithium-ion batteries with high energy densities
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 9
  start-page: 1802930
  year: 2019
  ident: CR27
  article-title: Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802930
– volume: 64
  start-page: 57
  year: 2015
  end-page: 68
  ident: CR32
  article-title: Influence of convective drying parameters on electrode performance and physical electrode properties
  publication-title: ECS Trans.
  doi: 10.1149/06422.0057ecst
– volume: 159
  start-page: A1034
  year: 2012
  end-page: A1039
  ident: CR39
  article-title: Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.057207jes
– volume: 3
  start-page: 600
  year: 2018
  end-page: 605
  ident: CR53
  article-title: Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0191-3
– volume: 11
  start-page: 1031
  year: 2016
  ident: CR2
  article-title: The role of nanotechnology in the development of battery materials for electric vehicles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.207
– volume: 33
  start-page: 2101275
  year: 2021
  ident: CR7
  article-title: From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101275
– volume: 6
  start-page: 1501594
  year: 2016
  ident: CR26
  article-title: 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501594
– volume: 3
  start-page: 1094
  year: 2019
  end-page: 1105
  ident: CR44
  article-title: Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.004
– volume: 25
  start-page: 1395
  year: 2013
  end-page: 1400
  ident: CR34
  article-title: Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204182
– volume: 782
  start-page: 245
  year: 2016
  end-page: 249
  ident: CR11
  article-title: A systematic study of thick electrodes for high energy lithium ion batteries
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.10.040
– volume: 75
  start-page: 7
  year: 2007
  ident: CR38
  article-title: Electrochemical impedance and complex capacitance to interpret electrochemical capacitor
  publication-title: Electrochemistry
– volume: 98
  start-page: 218302
  year: 2007
  ident: CR10
  article-title: Cracking in drying colloidal films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.218302
– volume: 10
  start-page: 1903864
  year: 2020
  ident: CR49
  article-title: Ni‐Rich/Co‐poor layered cathode for automotive Li‐ion batteries: promises and challenges
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903864
– volume: 1
  start-page: 16099
  year: 2016
  ident: CR13
  article-title: High-performance battery electrodes via magnetic templating
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.99
– volume: 8
  start-page: 1703031
  year: 2018
  ident: CR14
  article-title: Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703031
– volume: 5
  start-page: 26
  year: 2020
  end-page: 34
  ident: CR30
  article-title: High-nickel layered oxide cathodes for lithium-based automotive batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0513-0
– volume: 12
  year: 2021
  ident: CR42
  article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26894-5
– volume: 356
  start-page: 599
  year: 2017
  end-page: 604
  ident: CR37
  article-title: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage
  publication-title: Science
  doi: 10.1126/science.aam5852
– volume: 9
  start-page: 1901597
  year: 2019
  ident: CR31
  article-title: Controllable cathode–electrolyte interface of Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium ion batteries: a review
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901597
– volume: 10
  start-page: 39794
  year: 2018
  end-page: 39801
  ident: CR16
  article-title: Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14797
– volume: 165
  start-page: A3459
  year: 2018
  ident: CR41
  article-title: Detection of binder gradients using impedance spectroscopy and their influence on the tortuosity of Li-ion battery graphite electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1021814jes
– volume: 7
  start-page: 2159
  year: 2014
  end-page: 2166
  ident: CR47
  article-title: Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201400056
– volume: 11
  start-page: 321
  year: 2018
  end-page: 330
  ident: CR33
  article-title: Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01630A
– volume: 165
  start-page: A2741
  year: 2018
  ident: CR40
  article-title: Impedance characterization of the transport properties of electrolytes contained within porous electrodes and separators useful for Li-S Batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0631811jes
– volume: 166
  start-page: A1291
  year: 2019
  ident: CR58
  article-title: Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0091908jes
– volume: 30
  start-page: 1703027
  year: 2018
  ident: CR15
  article-title: 3D printing of customized Li-ion batteries with thick electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703027
– volume: 8
  start-page: 1802398
  year: 2018
  ident: CR28
  article-title: Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802398
– volume: 49
  start-page: 1569
  year: 2020
  end-page: 1614
  ident: CR5
  article-title: Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00863E
– volume: 6
  start-page: 14689
  year: 2018
  end-page: 14699
  ident: CR19
  article-title: Coral-like directional porosity lithium ion battery cathodes by ice templating
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05049J
– volume: 1
  start-page: 1012
  year: 2011
  end-page: 1017
  ident: CR22
  article-title: Lithium-ion textile batteries with large areal mass loading
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100261
– volume: 6
  start-page: 1502459
  year: 2016
  ident: CR56
  article-title: A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502459
– volume: 30
  start-page: 1706745
  year: 2018
  ident: CR20
  article-title: Wood-inspired high-performance ultrathick bulk battery electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706745
– volume: 49
  start-page: 434
  year: 2018
  end-page: 452
  ident: CR48
  article-title: Designing principle for Ni-rich cathode materials with high energy density for practical applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.062
– volume: 7
  start-page: 1700595
  year: 2017
  ident: CR21
  article-title: Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700595
– volume: 59
  start-page: 3252
  year: 2020
  end-page: 3257
  ident: CR45
  article-title: A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911724
– volume: 4
  start-page: 690
  year: 2018
  end-page: 704
  ident: CR4
  article-title: Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.027
– volume: 21
  start-page: 100809
  year: 2020
  ident: CR36
  article-title: Toward understanding the real mechanical robustness of composite electrode impregnated with a liquid electrolyte
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2020.100809
– volume: 30
  start-page: 1800561
  year: 2018
  ident: CR6
  article-title: 30 years of lithium‐ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
– volume: 196
  start-page: 8714
  year: 2011
  end-page: 8718
  ident: CR24
  article-title: Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.06.071
– volume: 4
  start-page: 560
  year: 2019
  end-page: 567
  ident: CR25
  article-title: High areal capacity battery electrodes enabled by segregated nanotube networks
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0398-y
– volume: 4
  start-page: 271
  year: 2018
  end-page: 275
  ident: CR23
  article-title: Nonplanar electrodearchitectures for ultrahigh areal capacity batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02131
– volume: 70
  start-page: 104450
  year: 2020
  ident: CR51
  article-title: Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104450
– volume: 3
  start-page: 1662
  year: 2019
  end-page: 1676
  ident: CR55
  article-title: Enabling high-voltage lithium-metal batteries under practical conditions
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.006
– volume: 385
  start-page: 18
  year: 2018
  end-page: 26
  ident: CR57
  article-title: Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.020
– volume: 9
  start-page: 1901457
  year: 2019
  ident: CR8
  article-title: Thick Electrode Batteries: Principles, Opportunities, and Challenges
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901457
– volume: 25
  start-page: 4539
  year: 2013
  end-page: 4543
  ident: CR17
  article-title: 3D printing of interdigitated Li-ion microbattery architectures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301036
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  ident: CR54
  article-title: Pathways for practical high-energy long-cycling lithium metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0338-x
– volume: 4
  start-page: 8048
  year: 2011
  ident: CR43
  article-title: Local electrochemical impedance spectroscopy: A review and some recent developments
  publication-title: Electrochim. Acta
– volume: 29
  start-page: 1809196
  year: 2019
  ident: CR18
  article-title: Sandwich, vertical‐channeled thick electrodes with high rate and cycle performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201809196
– volume: 30
  start-page: 1802014
  year: 2018
  ident: CR29
  article-title: Advanced 3D current collectors for lithium-based batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802014
– volume: 76
  start-page: 2257
  year: 1993
  ident: CR9
  article-title: Drying of granular ceramic films: I, effect of processing variables on cracking behavior
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1993.tb07762.x
– volume: 26
  start-page: 7074
  year: 2016
  end-page: 7083
  ident: CR35
  article-title: Janus-faced, dual-conductive/chemically active battery separator membranes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602734
– volume: 233
  start-page: 121
  year: 2013
  end-page: 130
  ident: CR46
  article-title: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.063
– volume: 3
  start-page: 267
  year: 2018
  end-page: 278
  ident: CR1
  article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 11
  start-page: 1449
  year: 2018
  end-page: 1459
  ident: CR50
  article-title: A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00155C
– volume: 4
  start-page: 484
  year: 2019
  end-page: 494
  ident: CR52
  article-title: Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0387-1
– volume: 4
  start-page: 560
  year: 2019
  ident: 30112_CR25
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0398-y
– volume: 11
  start-page: 321
  year: 2018
  ident: 30112_CR33
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01630A
– volume: 5
  start-page: 26
  year: 2020
  ident: 30112_CR30
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0513-0
– volume: 165
  start-page: A2741
  year: 2018
  ident: 30112_CR40
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0631811jes
– volume: 1
  start-page: 1012
  year: 2011
  ident: 30112_CR22
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100261
– volume: 25
  start-page: 4539
  year: 2013
  ident: 30112_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301036
– volume: 8
  start-page: 1703031
  year: 2018
  ident: 30112_CR14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703031
– volume: 30
  start-page: 1706745
  year: 2018
  ident: 30112_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706745
– volume: 30
  start-page: 1800561
  year: 2018
  ident: 30112_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
– volume: 6
  start-page: 1501594
  year: 2016
  ident: 30112_CR26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501594
– volume: 159
  start-page: A1034
  year: 2012
  ident: 30112_CR39
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.057207jes
– volume: 12
  year: 2021
  ident: 30112_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26894-5
– volume: 64
  start-page: 57
  year: 2015
  ident: 30112_CR32
  publication-title: ECS Trans.
  doi: 10.1149/06422.0057ecst
– volume: 4
  start-page: 271
  year: 2018
  ident: 30112_CR23
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02131
– volume: 3
  start-page: 267
  year: 2018
  ident: 30112_CR1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 3
  start-page: 1094
  year: 2019
  ident: 30112_CR44
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.004
– volume: 25
  start-page: 1395
  year: 2013
  ident: 30112_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204182
– volume: 7
  start-page: 2159
  year: 2014
  ident: 30112_CR47
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201400056
– volume: 4
  start-page: 690
  year: 2018
  ident: 30112_CR4
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.027
– volume: 9
  start-page: 1802930
  year: 2019
  ident: 30112_CR27
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802930
– volume: 49
  start-page: 434
  year: 2018
  ident: 30112_CR48
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.062
– volume: 7
  start-page: 1700595
  year: 2017
  ident: 30112_CR21
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700595
– volume: 233
  start-page: 121
  year: 2013
  ident: 30112_CR46
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.063
– volume: 4
  start-page: 484
  year: 2019
  ident: 30112_CR52
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0387-1
– volume: 21
  start-page: 100809
  year: 2020
  ident: 30112_CR36
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2020.100809
– volume: 76
  start-page: 2257
  year: 1993
  ident: 30112_CR9
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1993.tb07762.x
– volume: 11
  start-page: 1449
  year: 2018
  ident: 30112_CR50
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00155C
– volume: 1
  start-page: 16099
  year: 2016
  ident: 30112_CR13
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.99
– volume: 59
  start-page: 3252
  year: 2020
  ident: 30112_CR45
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911724
– volume: 356
  start-page: 599
  year: 2017
  ident: 30112_CR37
  publication-title: Science
  doi: 10.1126/science.aam5852
– volume: 70
  start-page: 104450
  year: 2020
  ident: 30112_CR51
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104450
– volume: 6
  start-page: 1502459
  year: 2016
  ident: 30112_CR56
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502459
– volume: 29
  start-page: 1809196
  year: 2019
  ident: 30112_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201809196
– volume: 163
  start-page: A138
  year: 2015
  ident: 30112_CR12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0321602jes
– volume: 9
  start-page: 1901597
  year: 2019
  ident: 30112_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901597
– volume: 10
  start-page: 1903864
  year: 2020
  ident: 30112_CR49
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903864
– volume: 9
  start-page: 1901457
  year: 2019
  ident: 30112_CR8
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901457
– volume: 782
  start-page: 245
  year: 2016
  ident: 30112_CR11
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.10.040
– volume: 30
  start-page: 1802014
  year: 2018
  ident: 30112_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802014
– volume: 30
  start-page: 1703027
  year: 2018
  ident: 30112_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703027
– volume: 10
  start-page: 39794
  year: 2018
  ident: 30112_CR16
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14797
– volume: 1
  start-page: 1
  year: 2016
  ident: 30112_CR3
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 49
  start-page: 1569
  year: 2020
  ident: 30112_CR5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00863E
– volume: 3
  start-page: 600
  year: 2018
  ident: 30112_CR53
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0191-3
– volume: 8
  start-page: 1802398
  year: 2018
  ident: 30112_CR28
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802398
– volume: 4
  start-page: 8048
  year: 2011
  ident: 30112_CR43
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 1662
  year: 2019
  ident: 30112_CR55
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.006
– volume: 6
  start-page: 14689
  year: 2018
  ident: 30112_CR19
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05049J
– volume: 75
  start-page: 7
  year: 2007
  ident: 30112_CR38
  publication-title: Electrochemistry
– volume: 166
  start-page: A1291
  year: 2019
  ident: 30112_CR58
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0091908jes
– volume: 196
  start-page: 8714
  year: 2011
  ident: 30112_CR24
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.06.071
– volume: 98
  start-page: 218302
  year: 2007
  ident: 30112_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.218302
– volume: 4
  start-page: 180
  year: 2019
  ident: 30112_CR54
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0338-x
– volume: 385
  start-page: 18
  year: 2018
  ident: 30112_CR57
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.020
– volume: 26
  start-page: 7074
  year: 2016
  ident: 30112_CR35
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602734
– volume: 11
  start-page: 1031
  year: 2016
  ident: 30112_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.207
– volume: 165
  start-page: A3459
  year: 2018
  ident: 30112_CR41
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1021814jes
– volume: 33
  start-page: 2101275
  year: 2021
  ident: 30112_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101275
SSID ssj0000391844
Score 2.5662067
Snippet Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling...
The development of high energy lithium metal batteries is affected by the mass loading of the cathode. Here, the authors report a lithium metal pouch cell with...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2541
SubjectTerms 147/135
147/136
147/143
147/28
639/166
639/301
639/301/299/161
639/4077/4079/891
639/638/675
Aging
Cathodes
Drying
Electrodes
Electrolytes
Energy
ENERGY STORAGE
Flux density
Homogeneity
Humanities and Social Sciences
Lithium
Lithium batteries
Lithium ions
Metals
multidisciplinary
Rechargeable batteries
Redox reactions
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Solvents
Ultraviolet radiation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SEHwR746tEsE3G5rbTJLHVixF0Aex0LeQq1vY2RF3Cvbfe5KZXbteX3wamGQhOdcvmzPfQegV5JwgKM2EhZyJdKojhjtGYqeE8Ew7k8of-u8_dGfn8t1Fe3Gj1VepCZvogSfBHbUxitC6lDVA_xwhTiRIqVnRHEQreS7Rlxp64zBVY7AwcHSR81cyVOijtawxoRavg01zwnYyUSXsh8cAjvU7sPlrzeRPF6c1H53eQ3dnIImPpw3cR7fS6gG6PbWWvH6IVh9THL6RxdAPYCIJzveH-HNa4rntzfJ6TCT1PkHcibhwFpMeYDRZDrWmHhc21yGmNQZMOw2n-pEgBtS-uLzqcZ8AtWNf2TnhsP0InZ--_fTmjMy9FUiQRo2Em6REF6OjAdw6RK9YSLFrFeOdoswLGZynOkgfuY4ahJe0jqJjPjPpXCseo73VsEpPEQ40-JzbyHSGfK-c55F30YSYVHYQUBvENnK2YSYeL_0vlrZegAttJ91Y0I2turGsQa-3v_ky0W78dfZJUd92ZqHMri_AkOxsSPZfhtSg_aJ8C8ij0OeGUmcURsshe3cUNnGwsQk7e_naFnBTAKWQDXq5HQb_LJcuruq2zjGl-0bXoCeTCW3XCVhPwPGYN0jtGNfORnZHVpeLygFuACprBss63Jjhj2X9WVDP_oeg9tEdXtyoVH2aA7Q3fr1KzwGZjf5FdcLvsNw2tg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ba9UwGA86EXwR7-s2pYJvLqy5tEmfRMUxBH0QB-ct5LozOG3nTgfbf--XNKfjeNlToUkhyXf7Jfn6-xB6BzHHsqoKmNgQMNeiwS3VBLtGMGaI1K2PB_rfvjcnp_zrol7kA7d1Tqvc-MTkqN1g4xn5UQwkMXgz_uHiF45Vo-Ltai6hcR89SNRloM9iIeYzlsh-LjnP_8pUTB6tefIMKYUdNJtishWPEm0_PAYwr39Bzr8zJ_-4Pk1R6fgJepzhZPlxkv9TdM_3z9DDqcDkzXPU__BuuMbLoRtAUTzs8g_LM78qc_Gb1c3ose-MB-_jyshcjDsA03g1pMz6MnK6Ds6vS0C2U7NPvwqWgN2X51dd2XnA7qVJHJ2w5X6BTo-__Px8gnOFBWx5K0ZMWy9Y45yuLBi3dUYQ611TC1hqURHDuNWmkpYbR6WTsHheSscaYgLhWtfsJdrph97votJW1oRQOyIDRH2hDXW0ca11XgQNbrVAZLPOymb68VgFY6XSNTiTapKNAtmoJBtFCvR-_uZiIt-4s_enKL65ZyTOTi-GyzOV7VDVzjFbax8k7CSDg7DjAaEFUQXLak5Dgfaj8BXgj0iia2O2kR0VhRjeVDCJg41OqGzra3WrmQV6OzeDlcarF51km_q0sQZHU6BXkwrN4wTEx2CTTAsktpRrayLbLf35MjGBtwCYJYFhHW7U8HZY_1-ovbtnsY8e0WggMauzPUA74-WVfw3IazRvknn9BiSPLII
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZhQ6GX0nfdpMWF3hpR62FLPm5LQ1hoD20DuQk9s4G1HbIOJP8-I_lRtk0LPRksGWTNjOYbafQNQu_B51hWFAETGwLmWlS4pppgVwnGDJG69nFD_-u36uSUr87Ksz1Ep7swKWk_UVqmZXrKDvu45cmkU-45qCTFEPHsS3B_dIH2l8vVj9W8sxI5zyXn4w2Zgsl7Pt7xQomsHx4dGNV9QPPPfMnfDk2TLzp-jB6NIDJfDsN-gvZ8-xQ9GMpK3j5D7Xfvuhu87poO1MNDbH-Un_tNPpa82dz2HvvGeFhzXB75inEDEBpvupRPn0cm1875bQ54dmj26YJgDoh9fXHd5I0HxJ6bxMwJgfZzdHr85efnEzzWVcCW16LHtPaCVc7pwoJJW2cEsd5VpSC0EgUxjFttCmm5cVQ6CZPnpXSsIiYQrnXJXqBF27X-FcptYU0IpSMygK8X2lBHK1db50XQsJhmiEzzrOxIOh5rX2xUOvxmUg2yUSAblWSjSIY-zN9cDpQb_-z9KYpv7hnpstOL7upcjeqjSueYLbUPEuLH4MDZeMBlQRTBspLTkKGDKHwFqCNS59qYY2R7RcFzVwX8xOGkE2q08K2KwCaCScYz9G5uBtuMBy46yTb1qWPljSpDLwcVmscJOI9BaEwzJHaUa-dHdlvai3Xi_64BJksCwzqa1PDXsP4-Ua__r_sBekijwcTczvoQLfqra_8G8Fdv3o4Gdwf91yuL
  priority: 102
  providerName: Springer Nature
Title Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries
URI https://link.springer.com/article/10.1038/s41467-022-30112-1
https://www.ncbi.nlm.nih.gov/pubmed/35534482
https://www.proquest.com/docview/2661264434
https://www.proquest.com/docview/2661953206
https://www.osti.gov/servlets/purl/2471603
https://pubmed.ncbi.nlm.nih.gov/PMC9085813
https://doaj.org/article/5dd3c5aef8144fdeace993f70fc3542f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddy0Zfyr7ntgse7G3VZkm2JD-MkYZmJdAyugXyJmx9NIUk3vIBzX-_k2xnZEv3YoElgXwfut9ZpzuE3oPN0SxJHCbaOZwWguOcFgQbLhgriSxy63_oX13zy2E6GGWjPdSWO2oIuNjp2vl6UsP55OP9r_UXUPjP9ZVx-WmRBnUPcekgrhSDN3QAlol7Z-yqgfthZ2Y5ODRpc3dm99RD9ARMMAOvhW6ZqpDRH5oKNG8XGv03qPKvk9VgsPpP0VGDNONuLRrP0J6dPUeP69qT6xdodmNNdY_H1bQCGbLVanEW39pJ3NTFmayXFttpaWFjMrFPaoyngLPxpApB97FP91oZu4gB9NbdNtwijAHWj-9W03hqgaJxGdJ3gjf-Eg37Fz96l7gpvoB1moslprkVjBtTJBr0XptSEG0NzwShXCSkZKkuykTqtDRUGgl0tFIaxknpSFoUGXuF9mfVzL5BsU506VxmiHQACERRUkO5ybWxwhWw40aItHRWuslM7gtkTFQ4IWdS1WxSwCYV2KRIhD5s5vys83L8d_S5Z99mpM-pHV5U81vVqKjKjGE6K6yT4GQ6AxbJAnhzInGaZSl1ETrxzFcATXx-Xe0DkfRSUTDvPIGPOG1lQrVSrDz68YiTpRF6t-kGBfanMkXgbRiT-_IcPEKvaxHarLOVxAiJLeHa-pDtntndOCQJzwFLSwLLOmvF8M-yHibU8YNLOEGH1KuJj_XMT9H-cr6ybwGPLcsOeiRGAp6y_7WDDrrdwfcBtOcX199u4G2P9zrhT0cnKONv-vk2Rw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLaqVgguiJ2hBQYJTtTqeJkZz6FCFFqltI1Q1Uq9Ga9NpSRTmkSQP8dv49kzkyosvfUUKXYU22_7nv0WhN6CzTEsyzwmxnvMVVngiiqCbVEypolQlQsX-kf9onfKv5zlZyvoV5cLE8IqO50YFbWtTbgj3wqGJBhvxj9cfseha1R4Xe1aaKi2tYLdjiXG2sSOAzf_AS7cZHv_M9D7HaV7uyeferjtMoANr8opppUrWWGtygwwuLG6JMbZIi_h78qMaMaN0pkwXFsqrOCEOyEsK4j2hCsVukaACVjjIcN1Fa3t7Pa_Hi9ueUL9dcF5m62TMbE14VE3xSB6kC2KyZJFjI0D4KMGAf8X6P07dvOPB9xoF_ceoPstoE0_Nhz4EK248SN0p2lxOX-MxsfO1j_xoB7VwKqunk0203M3TNv2O8P51GE30g70n01D7WQ8AjiPh3WM7U9DVdnaukkK2LoZdjFZMQXvYXAxG6UjB95DqmOVUHD6n6DTWzn9p2h1XI_dc5SazGjvc0uEB9xRKk0tLWxlrCu9AsWeINKdszRtAfTQh2Mo40M8E7KhjQTayEgbSRL0fvGby6b8x42zdwL5FjND6e74RX11LltNIHNrmcmV8wJ8WW_B8DnAiL7MvGE5pz5B64H4EhBQKONrQryTmUoKKKLIYBMbHU_IVttM5LVsJOjNYhj0RHj8UZG2cU4VuoAUCXrWsNBinYA5GbjpNEHlEnMtbWR5ZHwxiLXIK4DsgsCyNjs2vF7W_w_qxc27eI3u9k6ODuXhfv9gHd2jQVhCjGm1gVanVzP3EnDgVL9qhS1F325bvn8DMJNwAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTSBeEPeFDQgSPDGrsePEzsOEGFu1MaimiUl7M44va6W2GUsr6F_kV3HsJJ3KZW97qlS7qu1z-2wfnw-hNxBzdJokDhPtHGaK57igimCT8zQtiVCF9Qf6Xwb54Rn7dJ6dr6Ff3VsYn1bZ-cTgqE2l_Rl5zwcSH7xT1nNtWsTJfv_95XfsGaT8TWtHp6FamgWzG8qNtY88ju3iB2zn6t2jfZD9W0r7B18_HuKWcQBrVvAZpoXlaW6MSjQouzYlJ9qaPOPw1zwhZcq0KhOhWWmoMIIRZoUwaU5KR5hSnkECwsEGhyjJ1tHG3sHg5HR54uNrsQvG2pc7SSp6NQt-KiTUg51RTFaiYyARgI8KjP1fAPjvPM4_LnNDjOw_QPdbcBt_aLTxIVqz00foTkN3uXiMpqfWVD_xsJpUoLa2mtc78YUdxy0Vz3gxs9hOSgu-0MS-jjKeALTH4yrk-ce-wmxlbB0Dzm6abXi4GMNOYjiaT-KJhZ1EXIaKoSNbP0Fnt7L6T9H6tJraTRTrRJfOZYYIBxiEq5IamptCG8udAicfIdKts9RtMXTPyTGW4VI-FbKRjQTZyCAbSSL0bvmby6YUyI2997z4lj19Ge_wRXV1IVuvIDNjUp0p6wTsa52BIGgBLzqeOJ1mjLoIbXnhS0BDvqSv9rlPeiYpIIo8gUlsdzohW89Ty2s7idDrZTP4DH8RpIJsQ5_CM4LkEXrWqNBynIA_U9iy0wjxFeVamchqy3Q0DHXJC4DvgsCwdjo1vB7W_xfq-c2zeIXugp3Lz0eD4y10j3pb8emmxTZan13N7QuAhLPyZWtrMfp22-b9G0YidC4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox-homogeneous%2C+gel+electrolyte-embedded+high-mass-loading+cathodes+for+high-energy+lithium+metal+batteries&rft.jtitle=Nature+communications&rft.au=Kim%2C+Jung-Hui&rft.au=Kim%2C+Ju-Myung&rft.au=Cho%2C+Seok-Kyu&rft.au=Kim%2C+Nag-Young&rft.date=2022-05-09&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=2541&rft_id=info:doi/10.1038%2Fs41467-022-30112-1&rft_id=info%3Apmid%2F35534482&rft.externalDocID=35534482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon