Eye movement prediction and variability on natural video data sets

We here study the predictability of eye movements when viewing high-resolution natural videos. We use three recently published gaze data sets that contain a wide range of footage, from scenes of almost still-life character to professionally made, fast-paced advertisements and movie trailers. Intersu...

Full description

Saved in:
Bibliographic Details
Published inVisual cognition Vol. 20; no. 4-5; pp. 495 - 514
Main Authors Dorr, Michael, Vig, Eleonora, Barth, Erhardt
Format Journal Article
LanguageEnglish
Published England Taylor & Francis Group 01.04.2012
Subjects
Online AccessGet full text
ISSN1350-6285
1464-0716
1464-0716
DOI10.1080/13506285.2012.667456

Cover

Abstract We here study the predictability of eye movements when viewing high-resolution natural videos. We use three recently published gaze data sets that contain a wide range of footage, from scenes of almost still-life character to professionally made, fast-paced advertisements and movie trailers. Intersubject gaze variability differs significantly between data sets, with variability being lowest for the professional movies. We then evaluate three state-of-the-art saliency models on these data sets. A model that is based on the invariants of the structure tensor and that combines very generic, sparse video representations with machine learning techniques outperforms the two reference models; performance is further improved for two data sets when the model is extended to a perceptually inspired colour space. Finally, a combined analysis of gaze variability and predictability shows that eye movements on the professionally made movies are the most coherent (due to implicit gaze-guidance strategies of the movie directors), yet the least predictable (presumably due to the frequent cuts). Our results highlight the need for standardized benchmarks to comparatively evaluate eye movement prediction algorithms.
AbstractList We here study the predictability of eye movements when viewing high-resolution natural videos. We use three recently published gaze data sets that contain a wide range of footage, from scenes of almost still-life character to professionally made, fast-paced advertisements and movie trailers. Inter-subject gaze variability differs significantly between data sets, with variability being lowest for the professional movies. We then evaluate three state-of-the-art saliency models on these data sets. A model that is based on the invariants of the structure tensor and that combines very generic, sparse video representations with machine learning techniques outperforms the two reference models; performance is further improved for two data sets when the model is extended to a perceptually inspired colour space. Finally, a combined analysis of gaze variability and predictability shows that eye movements on the professionally made movies are the most coherent (due to implicit gaze-guidance strategies of the movie directors), yet the least predictable (presumably due to the frequent cuts). Our results highlight the need for standardized benchmarks to comparatively evaluate eye movement prediction algorithms.
We here study the predictability of eye movements when viewing high-resolution natural videos. We use three recently published gaze data sets that contain a wide range of footage, from scenes of almost still-life character to professionally made, fast-paced advertisements and movie trailers. Intersubject gaze variability differs significantly between data sets, with variability being lowest for the professional movies. We then evaluate three state-of-the-art saliency models on these data sets. A model that is based on the invariants of the structure tensor and that combines very generic, sparse video representations with machine learning techniques outperforms the two reference models; performance is further improved for two data sets when the model is extended to a perceptually inspired colour space. Finally, a combined analysis of gaze variability and predictability shows that eye movements on the professionally made movies are the most coherent (due to implicit gaze-guidance strategies of the movie directors), yet the least predictable (presumably due to the frequent cuts). Our results highlight the need for standardized benchmarks to comparatively evaluate eye movement prediction algorithms.
We here study the predictability of eye movements when viewing high-resolution natural videos. We use three recently published gaze data sets that contain a wide range of footage, from scenes of almost still-life character to professionally made, fast-paced advertisements and movie trailers. Inter-subject gaze variability differs significantly between data sets, with variability being lowest for the professional movies. We then evaluate three state-of-the-art saliency models on these data sets. A model that is based on the invariants of the structure tensor and that combines very generic, sparse video representations with machine learning techniques outperforms the two reference models; performance is further improved for two data sets when the model is extended to a perceptually inspired colour space. Finally, a combined analysis of gaze variability and predictability shows that eye movements on the professionally made movies are the most coherent (due to implicit gaze-guidance strategies of the movie directors), yet the least predictable (presumably due to the frequent cuts). Our results highlight the need for standardized benchmarks to comparatively evaluate eye movement prediction algorithms.We here study the predictability of eye movements when viewing high-resolution natural videos. We use three recently published gaze data sets that contain a wide range of footage, from scenes of almost still-life character to professionally made, fast-paced advertisements and movie trailers. Inter-subject gaze variability differs significantly between data sets, with variability being lowest for the professional movies. We then evaluate three state-of-the-art saliency models on these data sets. A model that is based on the invariants of the structure tensor and that combines very generic, sparse video representations with machine learning techniques outperforms the two reference models; performance is further improved for two data sets when the model is extended to a perceptually inspired colour space. Finally, a combined analysis of gaze variability and predictability shows that eye movements on the professionally made movies are the most coherent (due to implicit gaze-guidance strategies of the movie directors), yet the least predictable (presumably due to the frequent cuts). Our results highlight the need for standardized benchmarks to comparatively evaluate eye movement prediction algorithms.
Author Vig, Eleonora
Dorr, Michael
Barth, Erhardt
AuthorAffiliation 2 Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA, michael.dorr@schepens.harvard.edu
1 Institute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany, vig@inb.uni-luebeck.de , barth@inb.uni-luebeck.de
AuthorAffiliation_xml – name: 1 Institute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany, vig@inb.uni-luebeck.de , barth@inb.uni-luebeck.de
– name: 2 Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA, michael.dorr@schepens.harvard.edu
Author_xml – sequence: 1
  givenname: Michael
  surname: Dorr
  fullname: Dorr, Michael
  email: michael.dorr@schepens.harvard.edu
  organization: Schepens Eye Research Institute, Department of Ophthalmology , Harvard Medical School
– sequence: 2
  givenname: Eleonora
  surname: Vig
  fullname: Vig, Eleonora
  organization: Institute for Neuro- and Bioinformatics , University of Lübeck
– sequence: 3
  givenname: Erhardt
  surname: Barth
  fullname: Barth, Erhardt
  organization: Institute for Neuro- and Bioinformatics , University of Lübeck
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22844203$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wDxDKkk2mfsfDAlSqQpEqsYG1dePYYJTYg-1MlX-PR2krYEFZ2bLPd3TPuafoKMRgEXpJ8IZghc8JE1hSJTYUE7qRsuNCPkEnhEve4o7Io3qvkvagOUanOf_AmEjViWfomFLFOcXsBL2_Wmwzxb2dbCjNLtnBm-JjaCAMzR6Sh96PvixNfQpQ5gRjs_eDjc0ABZpsS36OnjoYs31xd56hrx-uvlxetzefP366vLhpDd92paVbJRxshXOsJ6CcoJYy45wVlktQRuKBAzaOcbWVygwW9xz3lFnTiR4YsDMkVt857GC5hXHUu-QnSIsmWB860fed6EMneu2kcm9Xbjf3kx1MDVpTPLARvP7zJ_jv-lvca8YxV1xVg9d3Bin-nG0uevLZ2HGEYOOcNVFUCtEJwR-XUtF1qqtAlb76fayHee53UwV8FZgUc07W_W_cN39hxhc47LSG8-Nj8LsV9sHFNMFtTOOgCyxjTC5BMD5r9k-HX8Nxx14
CitedBy_id crossref_primary_10_3390_mti3010019
crossref_primary_10_1111_cgf_13150
crossref_primary_10_1109_TCSVT_2008_2005798
crossref_primary_10_1371_journal_pone_0093254
crossref_primary_10_3390_drones2040036
crossref_primary_10_1038_s42003_020_0771_1
crossref_primary_10_1038_s41598_020_66196_2
Cites_doi 10.1167/8.2.2
10.1109/TPAMI.2009.112
10.1016/0042-6989(90)90120-A
10.3167/proj.2008.020102
10.1145/1671954.1671958
10.1016/j.imavis.2010.07.001
10.1007/s11263-009-0275-4
10.1068/p2935
10.1167/10.10.28
10.1109/34.730558
10.1038/81887
10.1016/j.visres.2005.03.019
10.1006/cgip.1993.1033
10.1109/CVPR.2008.4587756
10.1167/11.5.5
10.1109/TIP.2009.2030969
10.1038/381607a0
10.1364/JOSAA.4.002379
10.1162/neco.2009.11-06-391
10.1109/TIP.2004.834657
10.1167/8.14.18
10.1016/S0042-6989(01)00102-X
10.1117/12.674147
10.1016/j.visres.2004.09.017
10.1016/j.visres.2005.10.002
10.1007/s12559-010-9074-z
10.1016/j.visres.2010.08.011
10.1167/8.7.32
10.1080/13506280444000661
10.1109/TPAMI.2006.86
10.1167/11.2.20
10.1163/15685680360511645
10.1080/13506280902764539
10.1163/156856809789476065
10.1007/s12559-010-9061-4
10.1088/0954-898X/10/4/304
10.1167/9.3.5
10.1016/j.visres.2005.12.005
10.1167/9.5.7
10.16910/jemr.2.2.6
ContentType Journal Article
Copyright Copyright Psychology Press Ltd 2012
Copyright_xml – notice: Copyright Psychology Press Ltd 2012
DBID AAYXX
CITATION
NPM
7TK
7X8
5PM
ADTOC
UNPAY
DOI 10.1080/13506285.2012.667456
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1464-0716
EndPage 514
ExternalDocumentID oai:pubmedcentral.nih.gov:3404848
PMC3404848
22844203
10_1080_13506285_2012_667456
667456
Genre Journal Article
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY018664
– fundername: NEI NIH HHS
  grantid: R01 EY019281
– fundername: National Eye Institute : NEI
  grantid: R01 EY018664 || EY
GroupedDBID ---
-~X
.7I
.QK
0BK
0R~
123
29Q
4.4
53G
5VS
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGEJ
ACGFS
ACHQT
ACPRK
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADXPE
AECIN
AEFOU
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EAP
EBD
EBO
EBS
EJD
EMK
EMOBN
EPL
EPS
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
IPNFZ
J.O
KYCEM
M4Z
NA5
NW-
O9-
P2P
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
~01
~S~
07M
1TA
4B3
AANPH
AAYXX
ABBZI
ABVXC
ABWZE
ACIKQ
ACPKE
ACRBO
ADEWX
ADIUE
ADLFI
ADXAZ
AETEA
AEXSR
AIXGP
ALLRG
C5A
CAG
CBZAQ
CITATION
CKOZC
COF
C~T
DGXZK
EFRLQ
EGDCR
FXNIP
JLMOS
L7Y
LJTGL
QZZOY
RBICI
TBH
UA1
UQL
ADYSH
NPM
7TK
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c497t-2985fa95ff3b1a8f52e23cffe5e46a8c60d4a0cf348968cde0b40b23ec75ba3a3
IEDL.DBID UNPAY
ISSN 1350-6285
1464-0716
IngestDate Sun Oct 26 04:14:18 EDT 2025
Thu Aug 21 18:45:58 EDT 2025
Thu Sep 04 18:05:15 EDT 2025
Wed Oct 01 14:10:38 EDT 2025
Mon Jul 21 05:53:02 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Wed Oct 01 03:38:58 EDT 2025
Mon Oct 20 23:47:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4-5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-2985fa95ff3b1a8f52e23cffe5e46a8c60d4a0cf348968cde0b40b23ec75ba3a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3404848
PMID 22844203
PQID 1257787826
PQPubID 23462
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_13506285_2012_667456
proquest_miscellaneous_1257787826
crossref_primary_10_1080_13506285_2012_667456
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3404848
unpaywall_primary_10_1080_13506285_2012_667456
crossref_citationtrail_10_1080_13506285_2012_667456
proquest_miscellaneous_1826557554
pubmed_primary_22844203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-00
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Visual cognition
PublicationTitleAlternate Vis cogn
PublicationYear 2012
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Kienzle W. (CIT0023) 2007
CIT0030
CIT0032
CIT0031
CIT0033
Foulsham T. (CIT0012)
CIT0036
Mota C. (CIT0034) 2000; 9
Jähne B. (CIT0020) 1999; 2
CIT0038
CIT0037
CIT0039
CIT0041
Barth E. (CIT0002) 2006; 6057
CIT0043
CIT0001
CIT0045
CIT0044
Nuthmann A. (CIT0035)
Smith T. J. (CIT0042) 2008; 2
Itti L. (CIT0018) 2006; 19
CIT0003
CIT0047
CIT0046
CIT0005
Judd T. (CIT0021) 2009
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0010
CIT0054
CIT0053
CIT0055
CIT0014
CIT0013
CIT0016
CIT0015
CIT0017
CIT0019
Poynton C. (CIT0040) 2003
Wolfe J. M. (CIT0051) 1998
CIT0022
Field D. J. (CIT0011) 1987; 4
CIT0024
CIT0027
Koch C. (CIT0025) 1985; 4
CIT0026
Zelinsky G. (CIT0052)
CIT0029
CIT0028
19210172 - Neural Comput. 2009 Jan;21(1):239-71
10695763 - Network. 1999 Nov;10(4):341-50
19709976 - IEEE Trans Image Process. 2010 Jan;19(1):185-98
21622729 - J Vis. 2011 May 27;11(5):5
2392840 - Vision Res. 1990;30(7):1111-7
19814903 - Spat Vis. 2009;22(5):397-408
16640265 - IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):802-17
20801147 - Vision Res. 2010 Oct 28;50(22):2190-9
22711998 - Vis cogn. 2012 Jan 1;20(4-5):515-545
16289663 - Vision Res. 2006 May;46(11):1762-76
11100157 - Nat Neurosci. 2000 Dec;3(12):1340-5
19146319 - J Vis. 2008 Nov 20;8(14):18.1-26
15935435 - Vision Res. 2005 Aug;45(18):2397-416
19146264 - J Vis. 2008 Dec 16;8(7):32.1-20
12696858 - Spat Vis. 2003;16(2):125-54
3430225 - J Opt Soc Am A. 1987 Dec;4(12):2379-94
19757944 - J Vis. 2009 Mar 13;9(3):5.1-24
19926907 - IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):171-7
20884493 - J Vis. 2010 Aug 26;10(10):28
11718795 - Vision Res. 2001;41(25-26):3559-65
3836989 - Hum Neurobiol. 1985;4(4):219-27
19757885 - J Vis. 2009 May 13;9(5):7.1-15
21367757 - J Vis. 2011 Feb 25;11(2):null
15462141 - IEEE Trans Image Process. 2004 Oct;13(10):1304-18
10755142 - Perception. 1999;28(11):1311-28
18318628 - J Vis. 2008 Feb 15;8(2):2.1-19
8637596 - Nature. 1996 Jun 13;381(6583):607-9
22516647 - IEEE Trans Pattern Anal Mach Intell. 2012 Jun;34(6):1080-91
15621181 - Vision Res. 2005 Mar;45(5):643-59
16469349 - Vision Res. 2006 Jun;46(12):1857-62
References_xml – ident: CIT0012
  publication-title: Visual Cognition
– ident: CIT0008
  doi: 10.1167/8.2.2
– ident: CIT0031
  doi: 10.1109/TPAMI.2009.112
– start-page: 405
  volume-title: Proceedings of the 29th annual symposium of the German Association for Pattern Recognition (DAGM 2007)
  year: 2007
  ident: CIT0023
– volume: 4
  start-page: 219
  issue: 4
  year: 1985
  ident: CIT0025
  publication-title: Human Neurobiology
– ident: CIT0053
  doi: 10.1016/0042-6989(90)90120-A
– ident: CIT0015
  doi: 10.3167/proj.2008.020102
– ident: CIT0036
  doi: 10.1145/1671954.1671958
– ident: CIT0052
  publication-title: Visual Cognition
– ident: CIT0054
– ident: CIT0050
– ident: CIT0035
  publication-title: Visual Cognition
– ident: CIT0030
  doi: 10.1016/j.imavis.2010.07.001
– ident: CIT0010
  doi: 10.1007/s11263-009-0275-4
– ident: CIT0028
  doi: 10.1068/p2935
– ident: CIT0006
  doi: 10.1167/10.10.28
– ident: CIT0019
  doi: 10.1109/34.730558
– ident: CIT0026
  doi: 10.1038/81887
– start-page: 13
  volume-title: Attention
  year: 1998
  ident: CIT0051
– ident: CIT0039
  doi: 10.1016/j.visres.2005.03.019
– ident: CIT0001
  doi: 10.1006/cgip.1993.1033
– ident: CIT0005
– ident: CIT0029
  doi: 10.1109/CVPR.2008.4587756
– volume-title: Digital video and HDTV
  year: 2003
  ident: CIT0040
– ident: CIT0045
  doi: 10.1167/11.5.5
– ident: CIT0014
  doi: 10.1109/TIP.2009.2030969
– ident: CIT0037
  doi: 10.1038/381607a0
– volume: 4
  start-page: 2379
  year: 1987
  ident: CIT0011
  publication-title: Journal of the Optical Society of America
  doi: 10.1364/JOSAA.4.002379
– ident: CIT0013
  doi: 10.1162/neco.2009.11-06-391
– ident: CIT0016
  doi: 10.1109/TIP.2004.834657
– ident: CIT0009
  doi: 10.1167/8.14.18
– ident: CIT0027
  doi: 10.1016/S0042-6989(01)00102-X
– volume: 9
  start-page: 175
  volume-title: Dynamische Perzeption
  year: 2000
  ident: CIT0034
– volume: 6057
  start-page: 116
  volume-title: Human vision and electronic imaging XI
  year: 2006
  ident: CIT0002
  doi: 10.1117/12.674147
– ident: CIT0043
  doi: 10.1016/j.visres.2004.09.017
– ident: CIT0024
  doi: 10.1016/j.visres.2005.10.002
– ident: CIT0033
  doi: 10.1007/s12559-010-9074-z
– volume: 2
  start-page: 209
  volume-title: Handbook of computer vision and applications
  year: 1999
  ident: CIT0020
– ident: CIT0003
  doi: 10.1016/j.visres.2010.08.011
– ident: CIT0055
  doi: 10.1167/8.7.32
– volume: 19
  start-page: 547
  volume-title: Advances in neural information processing systems
  year: 2006
  ident: CIT0018
– ident: CIT0017
  doi: 10.1080/13506280444000661
– ident: CIT0032
  doi: 10.1109/TPAMI.2006.86
– ident: CIT0007
  doi: 10.1167/11.2.20
– ident: CIT0038
  doi: 10.1163/15685680360511645
– ident: CIT0046
  doi: 10.1080/13506280902764539
– ident: CIT0047
  doi: 10.1163/156856809789476065
– ident: CIT0049
– ident: CIT0048
  doi: 10.1007/s12559-010-9061-4
– ident: CIT0041
  doi: 10.1088/0954-898X/10/4/304
– ident: CIT0004
  doi: 10.1167/9.3.5
– ident: CIT0044
  doi: 10.1016/j.visres.2005.12.005
– ident: CIT0022
  doi: 10.1167/9.5.7
– volume: 2
  start-page: 1
  issue: 2
  year: 2008
  ident: CIT0042
  publication-title: Journal of Eye Movement Research
  doi: 10.16910/jemr.2.2.6
– start-page: 2106
  volume-title: Proceedings of IEEE international conference on Computer Vision (ICCV)
  year: 2009
  ident: CIT0021
– reference: 19926907 - IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):171-7
– reference: 21367757 - J Vis. 2011 Feb 25;11(2):null
– reference: 20801147 - Vision Res. 2010 Oct 28;50(22):2190-9
– reference: 19146264 - J Vis. 2008 Dec 16;8(7):32.1-20
– reference: 10695763 - Network. 1999 Nov;10(4):341-50
– reference: 19709976 - IEEE Trans Image Process. 2010 Jan;19(1):185-98
– reference: 3836989 - Hum Neurobiol. 1985;4(4):219-27
– reference: 21622729 - J Vis. 2011 May 27;11(5):5
– reference: 22516647 - IEEE Trans Pattern Anal Mach Intell. 2012 Jun;34(6):1080-91
– reference: 11100157 - Nat Neurosci. 2000 Dec;3(12):1340-5
– reference: 19757944 - J Vis. 2009 Mar 13;9(3):5.1-24
– reference: 19210172 - Neural Comput. 2009 Jan;21(1):239-71
– reference: 16469349 - Vision Res. 2006 Jun;46(12):1857-62
– reference: 19814903 - Spat Vis. 2009;22(5):397-408
– reference: 15462141 - IEEE Trans Image Process. 2004 Oct;13(10):1304-18
– reference: 2392840 - Vision Res. 1990;30(7):1111-7
– reference: 19757885 - J Vis. 2009 May 13;9(5):7.1-15
– reference: 15621181 - Vision Res. 2005 Mar;45(5):643-59
– reference: 19146319 - J Vis. 2008 Nov 20;8(14):18.1-26
– reference: 15935435 - Vision Res. 2005 Aug;45(18):2397-416
– reference: 16640265 - IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):802-17
– reference: 3430225 - J Opt Soc Am A. 1987 Dec;4(12):2379-94
– reference: 16289663 - Vision Res. 2006 May;46(11):1762-76
– reference: 18318628 - J Vis. 2008 Feb 15;8(2):2.1-19
– reference: 12696858 - Spat Vis. 2003;16(2):125-54
– reference: 8637596 - Nature. 1996 Jun 13;381(6583):607-9
– reference: 20884493 - J Vis. 2010 Aug 26;10(10):28
– reference: 22711998 - Vis cogn. 2012 Jan 1;20(4-5):515-545
– reference: 10755142 - Perception. 1999;28(11):1311-28
– reference: 11718795 - Vision Res. 2001;41(25-26):3559-65
SSID ssj0016875
Score 2.0284958
Snippet We here study the predictability of eye movements when viewing high-resolution natural videos. We use three recently published gaze data sets that contain a...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 495
SubjectTerms Algorithms
Cognition
Data processing
Dynamic natural scenes
Eye
Eye movement variability
Intrinsic dimension
Learning algorithms
Saliency
Structure tensor
Visual perception
Title Eye movement prediction and variability on natural video data sets
URI https://www.tandfonline.com/doi/abs/10.1080/13506285.2012.667456
https://www.ncbi.nlm.nih.gov/pubmed/22844203
https://www.proquest.com/docview/1257787826
https://www.proquest.com/docview/1826557554
https://pubmed.ncbi.nlm.nih.gov/PMC3404848
https://www.ncbi.nlm.nih.gov/pmc/articles/3404848
UnpaywallVersion submittedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1464-0716
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0016875
  issn: 1464-0716
  databaseCode: ABDBF
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1464-0716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016875
  issn: 1464-0716
  databaseCode: AHDZW
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Social Science and Humanities Library - DRAA
  customDbUrl:
  eissn: 1464-0716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016875
  issn: 1464-0716
  databaseCode: TRJHH
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N9oG9DNj4CB-TkRBvSZP4M48trJqQmBCi0niKHMcWE21arelQ-euxnQ-1gAZ7TM5W4tzZubN_9zuAN5IpkzEuw6LEaUiojEOpGQ01pkqLUmtuXHLyxwt2PiMfLunlASRdLowH7aviKqrmi6i6-uaxlauFGnU4sREm1uiIuAdDRq37PYDh7OLT-KsPrKgNhVJfhtMuAMQl57AuXU7EIyd3YgfoSiPGOHFlq3d-R3tkpX9zOf9ETt7fVCu5_SHn853f0vQBfO4G1KBRvkebuojUz9-4Hu804odw1DqpaNyIHsGBro7hZFzZAH2xRW-Rh436_fhjOOyX0O0JTM62Gi2WnoO8RqtrdwrkNI9kVaIbG5Y3rOBbZG95SlH7FJcIuEQOqYrWul4_htn07Mu787Ct0hAqkvE6TDNBjcyoMbhIpDA01SlWxmiqCZNCsbgkMlYGE5ExoUodFyQuUqwVp4XEEj-BQbWs9DNAJTdMaJ5o6_WQskgKzKVjkLP9OJZUBIA7ZeWqpTB3lTTmedIynXYqzp2K80bFAYR9r1VD4fGP9mLXDvLab52Yps5Jjm_v-rqzmdxOU3f2Iiu93Kxz60dyuzbaYO6WNlZKrftMSQBPGzvrXzi1bgRJYxwA37PAvoGjCd-XWFvydOGt-QQQ9bb6X9_h-V07vIBDd9Xgml7CoL7e6FfWZauLUxiOJ-8n09N2sv4C1tg6bQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6C9tBeCrQsw2okxC1DEq85FtRqKG0PaCpxi2zHVhHTzKiTKQq_nuds6rAUBNfYL8vLs_09-_NngFdaWJ8JqSNT0DRiXMeRdoJHjnLrVOGc9GFz8smpmJyxo0-8ZxMuO1plyKF9KxTR9NWhcYfJ6J4S9yahvNn6F5hZ6VgIiSjgNmxyxCKYf21OPx5NJsNSglCN2m6wiYJRv3_uN_dZG5_W1Et_hUF_plJurcqFrr_q2ezaOHV4B0z_hS095ct4VZmx_faD-ON_ueAu7HQoluy3YXcPbrlyF_b2S8zgL2rymjS80mbCfhe2hz623oO3B7UjF_NGpLwii8uwTBRCg-CbkCvM21vZ8JrgpUZzFJ8SdgrOSaCykqWrlvfh7PBg-m4Sdcc4RJZlsorSTHGvM-49NYlWnqcupdZ7xx0TWlkRF0zH1lOmMqFs4WLDYpNSZyU3mmr6ADbKeekeASmkF8rJxCEsYoVJDJU6SMyhnaSaqxHQ_uflttM4D0dtzPKkk0Lt_ZYHv-Wt30YQDVaLVuPjD_XV9bjIq2ZuxbcHoeT0ZtOXfQzl2I7D4owu3Xy1zBFoSuw8Mdu7oQ6WcsTXnI3gYRt3wwuniDNYGtMRyLWIHCoEHfH1kvLzeaMnThl24wydNx5i96_88Pjf_fACtibTk-P8-P3phyewHUpaOtRT2KguV-4ZIr3KPO_a8ndme0W9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7BVoK-UGihLKeREG9ZkvjMYwtdLQUqhFqpb5bj2GrVbXbVzYLCr8d2Du1yFASvsSfHZGzPeL75DPBSMW0zxlWUFziNCFVxpAyjkcFUG1EYw60vTv54xCYn5PCUnq5U8XtYpY-hbUMUEeZqP7jnhe0Qca8TTEPlnwdmpSPGuHMCbsIG8zmFAWwcfz6cTPpMAhOBbNfLRF6oK5_7zX3Wlqc18tJfuaA_IylvL8u5qr-q6XRlmRpvgeo-sEGnXIyWVT7S337gfvwfDdyFO60Pi_Yao7sHN0y5DTt7pYvfL2v0CgVUadiu34bNfoatd2D_oDbochYoyis0v_JJIm8YyL0I-uKi9oY0vEbuUmAcdU_xdYIz5IGsaGGqxX04GR8cv5lE7SEOkSYZr6I0E9SqjFqL80QJS1OTYm2toYYwJTSLC6JibTERGRO6MHFO4jzFRnOaK6zwAxiUs9I8BFRwy4ThiXFOESnyJMdceYI5J8exomIIuPt3UrcM5_6gjalMWiLUTm_S6002ehtC1EvNG4aPP_QXq2Yhq7CzYptjUCS-XvRFZ0LSjWKfmlGlmS0X0rmZ3E2dLta7po9rpc67pmQIu43Z9S-cOi-DpDEeAl8zyL6DZxFfbynPzwKbOCZuEidOeaPedP9KD4_-XQ_P4dant2P54d3R-8ew6RsaLNQTGFRXS_PUuXlV_qwdyd8BIzxEYQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7YFeeLQ8lpeMhLglm8TPHBfUqkKiQoiVyimyHVtU3c2uulmq9NdjOw_tAir0mIytxJmxM2N_8w3AO8m0zRmXkSpxFhEqk0gaRiODqTaiNIZbn5z8-Yydzsinc3q-B2mfCxNA-1pdxNV8EVcXPwK2crXQkx4nNsHEGR0R92CfUed-j2B_dvZl-j0EVtSFQlkow-kWAOKTc1ifLieSiZd7sQd0ZTFjnPiy1Vu_ox2y0r-5nH8iJ-9vqpVsruV8vvVbOnkIX_sBtWiUy3hTq1jf_Mb1eKcRP4IHnZOKpq3oMeyZ6hCOppUL0BcNeo8CbDTsxx_CwbCENkfw4bgxaLEMHOQ1Wl35UyCveSSrEv10YXnLCt4gdytQirqn-ETAJfJIVbQ29foJzE6Ov308jboqDZEmOa-jLBfUypxai1UqhaWZybC21lBDmBSaJSWRibaYiJwJXZpEkURl2GhOlcQSP4VRtazMc0Alt0wYnhrn9ZBSpQpz6RnkXD-OJRVjwL2yCt1RmPtKGvMi7ZhOexUXXsVFq-IxREOvVUvh8Y_2YtsOijpsndi2zkmBb-_6treZwk1Tf_YiK7PcrAvnR3K3Nrpg7pY2Tkqd-0zJGJ61dja8cObcCJIleAx8xwKHBp4mfFfibCnQhXfmM4Z4sNX_-g4v7trhJRz4qxbX9ApG9dXGvHYuW63edJP0FwvwOPs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eye+movement+prediction+and+variability+on+natural+video+data+sets&rft.jtitle=Visual+cognition&rft.au=Dorr%2C+Michael&rft.au=Vig%2C+Eleonora&rft.au=Barth%2C+Erhardt&rft.date=2012-04-01&rft.issn=1350-6285&rft.volume=20&rft.issue=4-5&rft.spage=495&rft.epage=514&rft_id=info:doi/10.1080%2F13506285.2012.667456&rft_id=info%3Apmid%2F22844203&rft.externalDocID=PMC3404848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-6285&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-6285&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-6285&client=summon