MSATNet: multi-scale adaptive transformer network for motor imagery classification
Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address thes...
        Saved in:
      
    
          | Published in | Frontiers in neuroscience Vol. 17; p. 1173778 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          Frontiers Research Foundation
    
        14.06.2023
     Frontiers Media S.A  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1662-453X 1662-4548 1662-453X  | 
| DOI | 10.3389/fnins.2023.1173778 | 
Cover
| Abstract | Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system. | 
    
|---|---|
| AbstractList | Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system. Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system. Motor imagery brain-computer interface(MI-BCI) can parse user motor imagery to achieve wheel-chair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are per-formed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75% and 89.34% accuracies for the within-subject experiments and 81.33% and 86.23% accura-cies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.  | 
    
| Author | Hong, Weijie Hu, Lingyan Liu, Lingyu  | 
    
| AuthorAffiliation | 4 Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) , Shanghai , China 3 School of Qianhu, Nanchang University , Nanchang, Jiangxi , China 1 School of Information and Engineering, Nanchang University , Nanchang, Jiangxi , China 2 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science , Shanghai , China  | 
    
| AuthorAffiliation_xml | – name: 3 School of Qianhu, Nanchang University , Nanchang, Jiangxi , China – name: 2 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science , Shanghai , China – name: 4 Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) , Shanghai , China – name: 1 School of Information and Engineering, Nanchang University , Nanchang, Jiangxi , China  | 
    
| Author_xml | – sequence: 1 givenname: Lingyan surname: Hu fullname: Hu, Lingyan – sequence: 2 givenname: Weijie surname: Hong fullname: Hong, Weijie – sequence: 3 givenname: Lingyu surname: Liu fullname: Liu, Lingyu  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37389361$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUctu1DAUtVAr-oAfYIEisWGTqR9xnLBBVdWWSgUkKBI7y3FuBg-OPdhOq_n7eh5UbReIjZ_nnHvuuUdoz3kHCL0heMZY054Mzrg4o5iyGSGCCdG8QIekrmlZcfZz79H5AB3FuMC4pk1FX6IDJjKf1eQQffv8_fTmC6QPxTjZZMqolYVC9WqZzC0UKSgXBx9GCIWDdOfD7yJfi9GnvJpRzSGsCm1VjGYwWiXj3Su0Pygb4fVuP0Y_Ls5vzj6V118vr85Or0tdtSKVBHctrgaOdTNwoXoQpOsx8Fa1QDBudaVBibrqSLYNuOpbDJp1GDONaUeAHaOrrW7v1UIuQ3YTVtIrIzcPPsylCsloC7LhHeGqahuth4oI2rVU8aZmpNZU1wJnLbbVmtxSre6UtQ-CBMt12nKTtlynLXdpZ9bHLWs5dSP0GlzOyz6x8vTHmV9y7m-zJsOMkHXd9zuF4P9MEJMcTdRgrXLgp1yuYZQLWgueoe-eQRd-Ci4nnFGUMywEpRn19rGlBy9_J54BdAvQwccYYPi_RptnJG3SZti5LWP_Rb0HMJ7Sag | 
    
| CitedBy_id | crossref_primary_10_3390_s25051293 crossref_primary_10_1109_TNSRE_2023_3323509 crossref_primary_10_1016_j_bspc_2024_107163 crossref_primary_10_1016_j_neunet_2023_11_037 crossref_primary_10_1088_1741_2552_ad6598 crossref_primary_10_1016_j_bspc_2024_106797 crossref_primary_10_1016_j_jneumeth_2024_110356 crossref_primary_10_3389_fnins_2023_1303242 crossref_primary_10_3390_brainsci15020124 crossref_primary_10_1109_JBHI_2024_3498916 crossref_primary_10_3389_fnins_2024_1366294 crossref_primary_10_3389_fnins_2025_1543508 crossref_primary_10_1016_j_aej_2025_02_001 crossref_primary_10_1177_1088467X251324336  | 
    
| Cites_doi | 10.1109/5.939829 10.3389/fnins.2020.00918 10.1088/1741-2552/ab405f 10.1088/1741-2552/aba7cd 10.1109/86.895946 10.48550/arXiv.1706.03762 10.1109/TNSRE.2018.2876129 10.1016/j.compbiomed.2020.103843 10.3389/fnins.2021.660032 10.1109/TNSRE.2021.3076234 10.1155/2020/8863223 10.1109/TIM.2020.2970846 10.1088/1741-2552/aace8c 10.1002/hbm.23730 10.3389/fnins.2012.00055 10.1007/978-3-030-67664-3_44 10.3389/fnsys.2021.578875 10.1109/TSMC.2021.3114145 10.1088/1741-2552/abed81 10.1109/ICTC52510.2021.9620932 10.1109/TBME.2011.2131142 10.1109/TSMC.2018.2855106 10.1109/NER49283.2021.9441085 10.1109/TNSRE.2022.3156076 10.1109/ICIEA.2018.8398035 10.1109/TNSRE.2021.3059166 10.1088/1741-2552/aba162 10.1109/TNSRE.2022.3211881 10.1109/ACCESS.2022.3161489 10.1109/TBME.2011.2177523  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2023 Hu and Hong. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Hu and Hong. 2023 Hu and Hong  | 
    
| Copyright_xml | – notice: Copyright © 2023 Hu and Hong. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Hu and Hong. 2023 Hu and Hong  | 
    
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3389/fnins.2023.1173778 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| EISSN | 1662-453X | 
    
| ExternalDocumentID | oai_doaj_org_article_85b15a498ccf4172b92a586316c2c670 10.3389/fnins.2023.1173778 PMC10303110 37389361 10_3389_fnins_2023_1173778  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Science and Technology Department of Shanghai of China grantid: 23010501700 – fundername: ; grantid: 81960327  | 
    
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c497t-10b904f50c8f57ade71bd0e59a9e1009c4cea764b1062e04d90ec3b003c02b1e3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1662-453X 1662-4548  | 
    
| IngestDate | Tue Oct 14 14:57:26 EDT 2025 Sun Oct 26 03:57:13 EDT 2025 Tue Sep 30 17:13:40 EDT 2025 Fri Sep 05 05:58:35 EDT 2025 Fri Jul 25 10:27:59 EDT 2025 Mon Jul 21 05:59:51 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Wed Oct 01 03:42:09 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | transformer transfer learning motor imagery classification multi-scale convolution electroencephalogram  | 
    
| Language | English | 
    
| License | Copyright © 2023 Hu and Hong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c497t-10b904f50c8f57ade71bd0e59a9e1009c4cea764b1062e04d90ec3b003c02b1e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Benito de Celis Alonso, Meritorious Autonomous University of Puebla, Mexico; Yizhen Peng, Chongqing University, China; Arpan Pal, Tata Consultancy Services, India Edited by: Bilge Karacali, Izmir Institute of Technology, Türkiye  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2023.1173778 | 
    
| PMID | 37389361 | 
    
| PQID | 2825307722 | 
    
| PQPubID | 4424402 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_85b15a498ccf4172b92a586316c2c670 unpaywall_primary_10_3389_fnins_2023_1173778 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10303110 proquest_miscellaneous_2832572675 proquest_journals_2825307722 pubmed_primary_37389361 crossref_primary_10_3389_fnins_2023_1173778 crossref_citationtrail_10_3389_fnins_2023_1173778  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-06-14 | 
    
| PublicationDateYYYYMMDD | 2023-06-14 | 
    
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-14 day: 14  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Lausanne  | 
    
| PublicationTitle | Frontiers in neuroscience | 
    
| PublicationTitleAlternate | Front Neurosci | 
    
| PublicationYear | 2023 | 
    
| Publisher | Frontiers Research Foundation Frontiers Media S.A  | 
    
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A  | 
    
| References | Chen (ref5) 2018 Tangermann (ref26) 2012; 6 Zhang (ref33) 2021; 18 Ramoser (ref20) 2000; 8 Arvaneh (ref3) 2011; 58 Chen (ref6) 2020; 50 Lee (ref16) 2021 Santurkar (ref24) 2018; 31 Hong (ref11) 2021; 29 Saha (ref22) 2021; 15 Xue (ref32) 2020; 2020 Dai (ref9) 2020; 17 Eldele (ref10) 2021; 29 Chu (ref8) 2020; 17 Khan (ref14) 2020; 123 Roy (ref21) 2020; 14 Chen (ref7) 2022; 30 Chen (ref4) 2022; 52 Wang (ref30) 2012; 59 Wang (ref29) 2018; 26 Liu (ref17) 2022; 30 Ang (ref1) 2008 Arpaia (ref2) 2020; 69 Ingolfsson (ref12) 2020 Jia (ref13) 2021 Wairagkar (ref28) 2021; 15 Schirrmeister (ref25) 2017; 38 Wei (ref31) 2021 Vaswani (ref27) 2017 Salami (ref23) 2022; 10 Pfurtscheller (ref19) 2001; 89 Mane (ref18) 2020; 17 Lawhern (ref15) 2018; 15  | 
    
| References_xml | – volume: 89 start-page: 1123 year: 2001 ident: ref19 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 31 year: 2018 ident: ref24 article-title: How does batch normalization help optimization? publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 918 year: 2020 ident: ref21 article-title: Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00918 – volume: 17 start-page: 016025 year: 2020 ident: ref9 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab405f – volume: 17 start-page: 046029 year: 2020 ident: ref8 article-title: Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aba7cd – volume: 8 start-page: 441 year: 2000 ident: ref20 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895946 – year: 2017 ident: ref27 article-title: Attention is all you need publication-title: arXiv doi: 10.48550/arXiv.1706.03762 – volume: 26 start-page: 2086 year: 2018 ident: ref29 article-title: LSTM-based EEG classification in motor imagery tasks publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2876129 – volume: 123 start-page: 103843 year: 2020 ident: ref14 article-title: Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: from designing to application publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103843 – volume: 15 start-page: 660032 year: 2021 ident: ref28 article-title: Dynamics of long-range temporal correlations in broadband EEG during different motor execution and imagery tasks publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.660032 – volume: 29 start-page: 809 year: 2021 ident: ref10 article-title: An attention-based deep learning approach for sleep stage classification with Single-Channel EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3076234 – volume: 2020 start-page: 8863223 year: 2020 ident: ref32 article-title: A multifrequency brain network-based deep learning framework for motor imagery decoding publication-title: Neural Plast. doi: 10.1155/2020/8863223 – volume: 69 start-page: 6362 year: 2020 ident: ref2 article-title: Wearable brain–computer Interface instrumentation for robot-based rehabilitation by augmented reality publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2970846 – volume: 15 start-page: 056013 year: 2018 ident: ref15 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 38 start-page: 5391 year: 2017 ident: ref25 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization: convolutional neural networks in EEG analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume-title: arXiv year: 2020 ident: ref12 article-title: EEG-cent: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces – volume: 6 start-page: 55 year: 2012 ident: ref26 article-title: Review of the BCI Competition IV publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – start-page: 736 volume-title: Machine learning and knowledge discovery in databases year: 2021 ident: ref13 article-title: MMCNN: a multi-branch multi-scale convolutional neural network for motor imagery classification doi: 10.1007/978-3-030-67664-3_44 – volume: 15 start-page: 578875 year: 2021 ident: ref22 article-title: Progress in brain computer Interface: challenges and opportunities publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2021.578875 – volume: 52 start-page: 5127 year: 2022 ident: ref4 article-title: Multiattention adaptation network for motor imagery recognition publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2021.3114145 – volume: 18 start-page: 046014 year: 2021 ident: ref33 article-title: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abed81 – start-page: 693 volume-title: 2021 international conference on information and communication technology convergence (ICTC) year: 2021 ident: ref16 article-title: A study on the content of mental and physical stability game in virtual reality through EEG detection doi: 10.1109/ICTC52510.2021.9620932 – volume: 58 start-page: 1865 year: 2011 ident: ref3 article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2131142 – volume: 50 start-page: 4557 year: 2020 ident: ref6 article-title: Common spatial patterns based on the quantized minimum error entropy criterion publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2855106 – start-page: 21 volume-title: 2021 10th international IEEE/EMBS conference on neural engineering (NER) year: 2021 ident: ref31 article-title: Inter-subject deep transfer learning for motor imagery EEG decoding doi: 10.1109/NER49283.2021.9441085 – volume: 30 start-page: 540 year: 2022 ident: ref17 article-title: SincNet-based hybrid neural network for motor imagery EEG decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3156076 – start-page: 1988 volume-title: In 2018 13th IEEE conference on industrial electronics and applications (ICIEA) year: 2018 ident: ref5 article-title: An EEG-based brain-computer interface for automatic sleep stage classification doi: 10.1109/ICIEA.2018.8398035 – volume: 29 start-page: 556 year: 2021 ident: ref11 article-title: Dynamic joint domain adaptation network for motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3059166 – volume: 17 start-page: 041001 year: 2020 ident: ref18 article-title: BCI for stroke rehabilitation: motor and beyond publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aba162 – start-page: 2390 volume-title: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) year: 2008 ident: ref1 article-title: Filter Bank common spatial pattern (FBCSP) in brain-computer Interface – volume: 30 start-page: 2866 year: 2022 ident: ref7 article-title: Transfer learning with optimal transportation and frequency Mixup for EEG-based motor imagery recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3211881 – volume: 10 start-page: 36672 year: 2022 ident: ref23 article-title: EEG-ITNet: an explainable inception temporal convolutional network for motor imagery classification publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3161489 – volume: 59 start-page: 653 year: 2012 ident: ref30 article-title: L1-norm-based common spatial patterns publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2177523  | 
    
| SSID | ssj0062842 | 
    
| Score | 2.4579208 | 
    
| Snippet | Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However,... Motor imagery brain-computer interface(MI-BCI) can parse user motor imagery to achieve wheel-chair control or motion control for smart prostheses. However,...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 1173778 | 
    
| SubjectTerms | Accuracy Adaptation Algorithms Brain Classification Computer applications Datasets Deep learning Discriminant analysis electroencephalogram Electroencephalography Implants Machine learning Mental task performance motor imagery classification multi-scale convolution Neural networks Neuroscience Prosthetics Transfer learning transformer Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHmkFGQkxAWi2onjR28LoqqQ2gO0Um-RXxErbd1VyQrtv--Mk412BQIOXCIlcRLL33g8XzL5hpC3ksVGAQ0og_KyFC5o8IOOl_gPJEQT1siI7zvOzuXppfhy1VxtlfrCnLBBHngYuCPdON5YYbT3nYDV1pnKNlrWXPrKS5XZOtNmQ6YGHyzB6VbDLzJAwcxRl-YJtbmrGj9S1gqLqm0tQ1mt_3ch5q-ZkvdXaWnXP-1isbUMnTwiD8f4kc6Gfj8m92J6QvZnCbjz9Zq-ozmjM78q3ydfz77NLs5jf0xz2mD5A_CI1Aa7RB9H-03MGm9pGrLBKexSAA-282tUt1hTj-E15hNlCJ-Sy5PPF59Oy7GGQumFUT14WWeY6BrmddcoG6LiLgA-xprIIb7ywkerpHBADavIRDAs-hrnumeV47F-RvbSTYovCGWh8S52goWuE1Fzq00IwaHmnaq1ZQXhmyFt_SgwjnUuFi0QDYShzTC0CEM7wlCQ99M1y0Fe44-tPyJSU0uUxs4HwGDa0WDavxlMQQ43OLfjfIWnAFEGb6eqqiBvptMw0_DziU3xZoVtavBvFTCsgjwfzGLqCepDmVrygugdg9np6u6ZNP-e1byxzlsNQVhBPky29Q9jcfA_xuIleYD3xNQ3Lg7JXn-7iq8gyOrd6zyf7gDrnyPi priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZd-rC9jG3dD2_d0GDsZTO1bFmyBmOko6UMGkbXQt-MfnkLpEqWOpT897tTbNOwUfYSSKwQxd_p_J109x0h70TmSwlhQOqkFSk3rgI_aFiKNZDAJrQSHvc7Tifi5IJ_uywvd8ikr4XBtMreJ0ZH7eYW98gPsMYS7FHm-ZfF7xS7RuHpat9CQ3etFdznKDF2j-zmqIw1IruHR5PvZ71vFuCM4_mnwFohIOubMhoI09RBE6YB9bvzAg8yC4mN1249qqKi_79o6N_ZlPdXYaHXN3o2u_WoOn5EHnYck443RvGY7PjwhOyNA8TXV2v6nsasz7idvkfOTn-Mzye-_URjamF6DZh5qp1eoB-kbc9r_ZKGTcY4hbcUAIbX6RUqYKypRQqOOUcR5qfk4vjo_OtJ2vVZSC1XsgVPbFTGmzKzVVNK7bxkxgGGSivPgINZbr2WghsIH3Ofcacybwv0BzbLDfPFMzIK8-BfEJq50hrf8Mw1DfcV05VyzhnUxZNFpbOEsP6W1rYTIcdeGLMaghGEoY4w1AhD3cGQkA_DdxYbCY47Rx8iUsNIlM-OH8yXP-tuNdZVaVipuaqsbThQOKNyXVaiYMLmVkiY5n6Pc92tafiVwQIT8na4DKsRj1h08PMVjinAB-YQhSXk-cYshpmghpQqBEtItWUwW1PdvhKmv6LiN_aCK4CoJeTjYFv_cS9e3v03XpEHOBoT3xjfJ6N2ufKvgWK15k23bv4AbWokvQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF6V9AFeuMphKGiREC_g1sd6D95CRVUhNULQSOHJ2stqRLqNWkdV-PXM-IJwCcRLFMdrZz07O_7G_uZbQp7zxBcC0oDYCctjZpyEOGjSGGsgAU1oxT0-7zie8KMpezcrZlvkoK-FQVplhaX7uBD0PLRKwR1FDGc4ZFRqvwrzgFLbWY7vHHMh5P7SVdfINi8AkI_I9nTyfvwJUy2ONUFFPvv2ncm2dOY3J9q4PTUq_r-Cnj8zKK-vwlKvr_Ri8d3t6fAWcf2FtayUz3ur2uzZLz9oPv7nld8mNzv4SsftEXfIlg93yc44QOp-tqYvaEMobZ7U75APxx_HJxNfv6YNazG-BHfwVDu9xBBL6x4y-wsaWjI6hU0KvgOf8zMU11hTi-ge6UyNB90j08O3JwdHcbeEQ2yZEjUEeaMSVhWJlVUhtPMiNQ7cQ2nlU4B3llmvBWcGMtPMJ8ypxNscQ41NMpP6_D4ZhfPgHxKauMIaX7HEVRXzMtVSOecMSu6JXOokImk_cqXt9M1xmY1FCXkOGq9sjFei8crOeBF5ORyzbNU9_tj6DTrE0BKVuZsfYKjKbqhKWZi00ExJaysG6NCoTBeS5ym3meUCurnbu1PZhQv4F8jTIdiKLIvIs2E3THR8e6ODP19hmxzCawYJXkQetN439ATlqVTO04jIDb_c6OrmnjA_bcTEcZm5HDBgRF4NLvwXtnj0b80fkxu4iRy7lO2SUX2x8k8AzdXmaTdbvwLoGkZt priority: 102 providerName: Unpaywall  | 
    
| Title | MSATNet: multi-scale adaptive transformer network for motor imagery classification | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37389361 https://www.proquest.com/docview/2825307722 https://www.proquest.com/docview/2832572675 https://pubmed.ncbi.nlm.nih.gov/PMC10303110 https://www.frontiersin.org/articles/10.3389/fnins.2023.1173778/pdf https://doaj.org/article/85b15a498ccf4172b92a586316c2c670  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbG9gAvCBiwwKiMhHiBQJw4doyEUIc2JqRW01il8hT5V6BSl5auFfS_585JIyoGQrxESuwklr_z-Tv7fEfIM5H4XIIZEDtpRcyNK0APGhbjGUhgE1oJj-sdg6E4HfGP43y8QzbpjtoOvLrWtMN8UqPF9NWPb-t3MODfosUJ8-3rqp7UGHk7zXALMpOyuEH2YKZSmMphwLtdBQGqOOx-CjwpBFS9OUTzh29sTVQhnv91JPR3X8qbq3qu19_1dPrLRHVyh9xuGSbtNyJxl-z4-h7Z79dgXV-u6XMafD7DYvo-OR986l8M_fINDY6F8RUg5ql2eo5akC43rNYvaN34i1O4pQAvXCeXGP9iTS0ScPQ4CiDfJ6OT44v3p3GbZSG2XMkl6GGjEl7liS2qXGrnJTMOEFRaeQYMzHLrtRTcgPGY-oQ7lXiboTawSWqYzx6Q3XpW-wNCE5db4yueuKrivmC6UM45g1HxZFboJCJs06WlbUOQYyaMaQmmCMJQBhhKhKFsYYjIi-6deROA46-1jxCpriYGzw4PZosvZTsWyyI3LNdcFdZWHAicUanOC5ExYVMrJDTzcINzuRHIEs_4gj6UaRqRp10xjEXcYNG1n62wTgYaMAUbLCIPG7HoWoIRpFQmWESKLYHZaup2ST35GuJ9Yya4DGhaRF52svUPffHo___0mNzCL6FLHOOHZHe5WPknQL6Wpkf2jo6HZ-e9sHgB1w9j1gujDEpGw7P-559aOjNE | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9FAuCCgPQ4FFAi5g1Y_12kaqUAqtUtpEqLRSb-6-DJFSJ6SJqvw5fhszG9tqBKq49GLJ9tpe7zz2m915ALwRgU1SNAN8k2rhc2Uy1IMq9CkGEtGEzIWl9Y7-QPRO-dez5GwNfjexMORW2ehEp6jNWNMa-TbFWCI_plH0afLLp6pRtLvalNCQdWkFs-NSjNWBHYd2cYUm3OXOwRek99so2t87-dzz6yoDvuZ5OkM9pPKAl0mgszJJpbFpqAz-QS5zGyIC0VxbmQqu0HiKbMBNHlgdkzToIFKhjfG9d2Cdx_i2Dqzv7g2-HTdzgUDl7_ZbBcUmoXGwDNtBszDfLqthRfnCo5g2TuOUCr1dmxpdBYF_wd6_vTc35tVELq7kaHRtaty_D_dqTMu6SyZ8AGu2egib3Qrt-YsFe8ecl6lbvt-E4_737snAzj4y58roXyKPWCaNnJDeZbMGR9spq5Ye6gxPGTIUHocXlHFjwTRBfvJxcmz1CE5vZcQfQ6caV_YpsMAkWtmSB6Ysuc1CmeXGGEV5-NI4k4EHYTOkha6TnlPtjVGBxg-RoXBkKIgMRU0GD963z0yWKT9ubL1LlGpbUrpud2E8_VHU0l9kiQoTyfNM65IjZFR5JJNMxKHQkRYpdnOroXNR6xD8SsvxHrxub6P005aOrOx4Tm1i1LkRWn0ePFmyRdsTylmVxyL0IFthmJWurt6phj9dhnGqPRcjMPTgQ8tb_zEWz27-jVew0TvpHxVHB4PD53CXniSnu5BvQWc2ndsXCO9m6mUtQwzOb1ts_wCiMmGX | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qC-qLqPUSrTqC-qJhc5lMMkKRre3SWruU2kLf4tzSLmyz6zZL2b_or_KcyYUuSvGlL4Ekk2Qy58w358y5EfKOBzZJQQ3wTaq5z5TJAAdV6GMMJEgTUnCL-x0HQ757wr6dJqcr5HcbC4NulS0mOqA2E4175D2MsQR-TKOoVzRuEYfbgy_TXz5WkEJLa1tOQzZlFsymSzfWBHns28UVqHOXm3vbQPv3UTTYOf666zcVB3zNRFoBJikRsCIJdFYkqTQ2DZWBvxFS2BCkEc20lSlnChSpyAbMiMDqGGeGDiIV2hjee4esofELQGJta2d4eNSuCxwWAmd75RinBIpCHcIDKqLoFeWoxNzhUYxG1DjFom_XlklXTeBfIvDfnpz35uVULq7keHxtmRw8JA8a-Zb2a4Z8RFZs-Zis90vQ7S8W9AN1HqduK3-dHB386B8PbfWZOrdG_xL4xVJp5BQxmFatTG1ntKy91SmcUmAuOI4uMPvGgmoU_9HfybHYE3JyKyP-lKyWk9I-JzQwiVa2YIEpCmazUGbCGKMwJ18aZzLwSNgOaa6bBOhYh2OcgyKEZMgdGXIkQ96QwSMfu2emdfqPG1tvIaW6lpi6212YzM7yBgnyLFFhIpnItC4YiI9KRDLJeBxyHWmeQjc3WjrnDZ7AVzru98jb7jYgAZp3ZGknc2wTA_5GoAF65FnNFl1PMH-ViHnokWyJYZa6unynHJ27bONYhy4GIdEjnzre-o-xeHHzb7whd2H65t_3hvsvyX18EP3vQrZBVqvZ3L4CSa9Sr5spRMnP2561fwARxGXG | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF6V9AFeuMphKGiREC_g1sd6D95CRVUhNULQSOHJ2stqRLqNWkdV-PXM-IJwCcRLFMdrZz07O_7G_uZbQp7zxBcC0oDYCctjZpyEOGjSGGsgAU1oxT0-7zie8KMpezcrZlvkoK-FQVplhaX7uBD0PLRKwR1FDGc4ZFRqvwrzgFLbWY7vHHMh5P7SVdfINi8AkI_I9nTyfvwJUy2ONUFFPvv2ncm2dOY3J9q4PTUq_r-Cnj8zKK-vwlKvr_Ri8d3t6fAWcf2FtayUz3ur2uzZLz9oPv7nld8mNzv4SsftEXfIlg93yc44QOp-tqYvaEMobZ7U75APxx_HJxNfv6YNazG-BHfwVDu9xBBL6x4y-wsaWjI6hU0KvgOf8zMU11hTi-ge6UyNB90j08O3JwdHcbeEQ2yZEjUEeaMSVhWJlVUhtPMiNQ7cQ2nlU4B3llmvBWcGMtPMJ8ypxNscQ41NMpP6_D4ZhfPgHxKauMIaX7HEVRXzMtVSOecMSu6JXOokImk_cqXt9M1xmY1FCXkOGq9sjFei8crOeBF5ORyzbNU9_tj6DTrE0BKVuZsfYKjKbqhKWZi00ExJaysG6NCoTBeS5ym3meUCurnbu1PZhQv4F8jTIdiKLIvIs2E3THR8e6ODP19hmxzCawYJXkQetN439ATlqVTO04jIDb_c6OrmnjA_bcTEcZm5HDBgRF4NLvwXtnj0b80fkxu4iRy7lO2SUX2x8k8AzdXmaTdbvwLoGkZt | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSATNet%3A+multi-scale+adaptive+transformer+network+for+motor+imagery+classification&rft.jtitle=Frontiers+in+neuroscience&rft.au=Hu%2C+Lingyan&rft.au=Hong%2C+Weijie&rft.au=Liu%2C+Lingyu&rft.date=2023-06-14&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1173778&rft.externalDocID=PMC10303110 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |