MSATNet: multi-scale adaptive transformer network for motor imagery classification

Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address thes...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 17; p. 1173778
Main Authors Hu, Lingyan, Hong, Weijie, Liu, Lingyu
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 14.06.2023
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2023.1173778

Cover

Abstract Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.
AbstractList Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.
Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.
Motor imagery brain-computer interface(MI-BCI) can parse user motor imagery to achieve wheel-chair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are per-formed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75% and 89.34% accuracies for the within-subject experiments and 81.33% and 86.23% accura-cies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.
Author Hong, Weijie
Hu, Lingyan
Liu, Lingyu
AuthorAffiliation 4 Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) , Shanghai , China
3 School of Qianhu, Nanchang University , Nanchang, Jiangxi , China
1 School of Information and Engineering, Nanchang University , Nanchang, Jiangxi , China
2 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science , Shanghai , China
AuthorAffiliation_xml – name: 3 School of Qianhu, Nanchang University , Nanchang, Jiangxi , China
– name: 2 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science , Shanghai , China
– name: 4 Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) , Shanghai , China
– name: 1 School of Information and Engineering, Nanchang University , Nanchang, Jiangxi , China
Author_xml – sequence: 1
  givenname: Lingyan
  surname: Hu
  fullname: Hu, Lingyan
– sequence: 2
  givenname: Weijie
  surname: Hong
  fullname: Hong, Weijie
– sequence: 3
  givenname: Lingyu
  surname: Liu
  fullname: Liu, Lingyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37389361$$D View this record in MEDLINE/PubMed
BookMark eNqNUctu1DAUtVAr-oAfYIEisWGTqR9xnLBBVdWWSgUkKBI7y3FuBg-OPdhOq_n7eh5UbReIjZ_nnHvuuUdoz3kHCL0heMZY054Mzrg4o5iyGSGCCdG8QIekrmlZcfZz79H5AB3FuMC4pk1FX6IDJjKf1eQQffv8_fTmC6QPxTjZZMqolYVC9WqZzC0UKSgXBx9GCIWDdOfD7yJfi9GnvJpRzSGsCm1VjGYwWiXj3Su0Pygb4fVuP0Y_Ls5vzj6V118vr85Or0tdtSKVBHctrgaOdTNwoXoQpOsx8Fa1QDBudaVBibrqSLYNuOpbDJp1GDONaUeAHaOrrW7v1UIuQ3YTVtIrIzcPPsylCsloC7LhHeGqahuth4oI2rVU8aZmpNZU1wJnLbbVmtxSre6UtQ-CBMt12nKTtlynLXdpZ9bHLWs5dSP0GlzOyz6x8vTHmV9y7m-zJsOMkHXd9zuF4P9MEJMcTdRgrXLgp1yuYZQLWgueoe-eQRd-Ci4nnFGUMywEpRn19rGlBy9_J54BdAvQwccYYPi_RptnJG3SZti5LWP_Rb0HMJ7Sag
CitedBy_id crossref_primary_10_3390_s25051293
crossref_primary_10_1109_TNSRE_2023_3323509
crossref_primary_10_1016_j_bspc_2024_107163
crossref_primary_10_1016_j_neunet_2023_11_037
crossref_primary_10_1088_1741_2552_ad6598
crossref_primary_10_1016_j_bspc_2024_106797
crossref_primary_10_1016_j_jneumeth_2024_110356
crossref_primary_10_3389_fnins_2023_1303242
crossref_primary_10_3390_brainsci15020124
crossref_primary_10_1109_JBHI_2024_3498916
crossref_primary_10_3389_fnins_2024_1366294
crossref_primary_10_3389_fnins_2025_1543508
crossref_primary_10_1016_j_aej_2025_02_001
crossref_primary_10_1177_1088467X251324336
Cites_doi 10.1109/5.939829
10.3389/fnins.2020.00918
10.1088/1741-2552/ab405f
10.1088/1741-2552/aba7cd
10.1109/86.895946
10.48550/arXiv.1706.03762
10.1109/TNSRE.2018.2876129
10.1016/j.compbiomed.2020.103843
10.3389/fnins.2021.660032
10.1109/TNSRE.2021.3076234
10.1155/2020/8863223
10.1109/TIM.2020.2970846
10.1088/1741-2552/aace8c
10.1002/hbm.23730
10.3389/fnins.2012.00055
10.1007/978-3-030-67664-3_44
10.3389/fnsys.2021.578875
10.1109/TSMC.2021.3114145
10.1088/1741-2552/abed81
10.1109/ICTC52510.2021.9620932
10.1109/TBME.2011.2131142
10.1109/TSMC.2018.2855106
10.1109/NER49283.2021.9441085
10.1109/TNSRE.2022.3156076
10.1109/ICIEA.2018.8398035
10.1109/TNSRE.2021.3059166
10.1088/1741-2552/aba162
10.1109/TNSRE.2022.3211881
10.1109/ACCESS.2022.3161489
10.1109/TBME.2011.2177523
ContentType Journal Article
Copyright Copyright © 2023 Hu and Hong.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Hu and Hong. 2023 Hu and Hong
Copyright_xml – notice: Copyright © 2023 Hu and Hong.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Hu and Hong. 2023 Hu and Hong
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnins.2023.1173778
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_85b15a498ccf4172b92a586316c2c670
10.3389/fnins.2023.1173778
PMC10303110
37389361
10_3389_fnins_2023_1173778
Genre Journal Article
GrantInformation_xml – fundername: Science and Technology Department of Shanghai of China
  grantid: 23010501700
– fundername: ;
  grantid: 81960327
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
W2D
ACXDI
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c497t-10b904f50c8f57ade71bd0e59a9e1009c4cea764b1062e04d90ec3b003c02b1e3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Tue Oct 14 14:57:26 EDT 2025
Sun Oct 26 03:57:13 EDT 2025
Tue Sep 30 17:13:40 EDT 2025
Fri Sep 05 05:58:35 EDT 2025
Fri Jul 25 10:27:59 EDT 2025
Mon Jul 21 05:59:51 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Wed Oct 01 03:42:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords transformer
transfer learning
motor imagery classification
multi-scale convolution
electroencephalogram
Language English
License Copyright © 2023 Hu and Hong.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-10b904f50c8f57ade71bd0e59a9e1009c4cea764b1062e04d90ec3b003c02b1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Benito de Celis Alonso, Meritorious Autonomous University of Puebla, Mexico; Yizhen Peng, Chongqing University, China; Arpan Pal, Tata Consultancy Services, India
Edited by: Bilge Karacali, Izmir Institute of Technology, Türkiye
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2023.1173778
PMID 37389361
PQID 2825307722
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_85b15a498ccf4172b92a586316c2c670
unpaywall_primary_10_3389_fnins_2023_1173778
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10303110
proquest_miscellaneous_2832572675
proquest_journals_2825307722
pubmed_primary_37389361
crossref_primary_10_3389_fnins_2023_1173778
crossref_citationtrail_10_3389_fnins_2023_1173778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-14
PublicationDateYYYYMMDD 2023-06-14
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Chen (ref5) 2018
Tangermann (ref26) 2012; 6
Zhang (ref33) 2021; 18
Ramoser (ref20) 2000; 8
Arvaneh (ref3) 2011; 58
Chen (ref6) 2020; 50
Lee (ref16) 2021
Santurkar (ref24) 2018; 31
Hong (ref11) 2021; 29
Saha (ref22) 2021; 15
Xue (ref32) 2020; 2020
Dai (ref9) 2020; 17
Eldele (ref10) 2021; 29
Chu (ref8) 2020; 17
Khan (ref14) 2020; 123
Roy (ref21) 2020; 14
Chen (ref7) 2022; 30
Chen (ref4) 2022; 52
Wang (ref30) 2012; 59
Wang (ref29) 2018; 26
Liu (ref17) 2022; 30
Ang (ref1) 2008
Arpaia (ref2) 2020; 69
Ingolfsson (ref12) 2020
Jia (ref13) 2021
Wairagkar (ref28) 2021; 15
Schirrmeister (ref25) 2017; 38
Wei (ref31) 2021
Vaswani (ref27) 2017
Salami (ref23) 2022; 10
Pfurtscheller (ref19) 2001; 89
Mane (ref18) 2020; 17
Lawhern (ref15) 2018; 15
References_xml – volume: 89
  start-page: 1123
  year: 2001
  ident: ref19
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 31
  year: 2018
  ident: ref24
  article-title: How does batch normalization help optimization?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 918
  year: 2020
  ident: ref21
  article-title: Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00918
– volume: 17
  start-page: 016025
  year: 2020
  ident: ref9
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab405f
– volume: 17
  start-page: 046029
  year: 2020
  ident: ref8
  article-title: Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aba7cd
– volume: 8
  start-page: 441
  year: 2000
  ident: ref20
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– year: 2017
  ident: ref27
  article-title: Attention is all you need
  publication-title: arXiv
  doi: 10.48550/arXiv.1706.03762
– volume: 26
  start-page: 2086
  year: 2018
  ident: ref29
  article-title: LSTM-based EEG classification in motor imagery tasks
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2876129
– volume: 123
  start-page: 103843
  year: 2020
  ident: ref14
  article-title: Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: from designing to application
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103843
– volume: 15
  start-page: 660032
  year: 2021
  ident: ref28
  article-title: Dynamics of long-range temporal correlations in broadband EEG during different motor execution and imagery tasks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.660032
– volume: 29
  start-page: 809
  year: 2021
  ident: ref10
  article-title: An attention-based deep learning approach for sleep stage classification with Single-Channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3076234
– volume: 2020
  start-page: 8863223
  year: 2020
  ident: ref32
  article-title: A multifrequency brain network-based deep learning framework for motor imagery decoding
  publication-title: Neural Plast.
  doi: 10.1155/2020/8863223
– volume: 69
  start-page: 6362
  year: 2020
  ident: ref2
  article-title: Wearable brain–computer Interface instrumentation for robot-based rehabilitation by augmented reality
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2970846
– volume: 15
  start-page: 056013
  year: 2018
  ident: ref15
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 38
  start-page: 5391
  year: 2017
  ident: ref25
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization: convolutional neural networks in EEG analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume-title: arXiv
  year: 2020
  ident: ref12
  article-title: EEG-cent: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces
– volume: 6
  start-page: 55
  year: 2012
  ident: ref26
  article-title: Review of the BCI Competition IV
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– start-page: 736
  volume-title: Machine learning and knowledge discovery in databases
  year: 2021
  ident: ref13
  article-title: MMCNN: a multi-branch multi-scale convolutional neural network for motor imagery classification
  doi: 10.1007/978-3-030-67664-3_44
– volume: 15
  start-page: 578875
  year: 2021
  ident: ref22
  article-title: Progress in brain computer Interface: challenges and opportunities
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2021.578875
– volume: 52
  start-page: 5127
  year: 2022
  ident: ref4
  article-title: Multiattention adaptation network for motor imagery recognition
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2021.3114145
– volume: 18
  start-page: 046014
  year: 2021
  ident: ref33
  article-title: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abed81
– start-page: 693
  volume-title: 2021 international conference on information and communication technology convergence (ICTC)
  year: 2021
  ident: ref16
  article-title: A study on the content of mental and physical stability game in virtual reality through EEG detection
  doi: 10.1109/ICTC52510.2021.9620932
– volume: 58
  start-page: 1865
  year: 2011
  ident: ref3
  article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2131142
– volume: 50
  start-page: 4557
  year: 2020
  ident: ref6
  article-title: Common spatial patterns based on the quantized minimum error entropy criterion
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2855106
– start-page: 21
  volume-title: 2021 10th international IEEE/EMBS conference on neural engineering (NER)
  year: 2021
  ident: ref31
  article-title: Inter-subject deep transfer learning for motor imagery EEG decoding
  doi: 10.1109/NER49283.2021.9441085
– volume: 30
  start-page: 540
  year: 2022
  ident: ref17
  article-title: SincNet-based hybrid neural network for motor imagery EEG decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3156076
– start-page: 1988
  volume-title: In 2018 13th IEEE conference on industrial electronics and applications (ICIEA)
  year: 2018
  ident: ref5
  article-title: An EEG-based brain-computer interface for automatic sleep stage classification
  doi: 10.1109/ICIEA.2018.8398035
– volume: 29
  start-page: 556
  year: 2021
  ident: ref11
  article-title: Dynamic joint domain adaptation network for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3059166
– volume: 17
  start-page: 041001
  year: 2020
  ident: ref18
  article-title: BCI for stroke rehabilitation: motor and beyond
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aba162
– start-page: 2390
  volume-title: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence)
  year: 2008
  ident: ref1
  article-title: Filter Bank common spatial pattern (FBCSP) in brain-computer Interface
– volume: 30
  start-page: 2866
  year: 2022
  ident: ref7
  article-title: Transfer learning with optimal transportation and frequency Mixup for EEG-based motor imagery recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3211881
– volume: 10
  start-page: 36672
  year: 2022
  ident: ref23
  article-title: EEG-ITNet: an explainable inception temporal convolutional network for motor imagery classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3161489
– volume: 59
  start-page: 653
  year: 2012
  ident: ref30
  article-title: L1-norm-based common spatial patterns
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2177523
SSID ssj0062842
Score 2.4579208
Snippet Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However,...
Motor imagery brain-computer interface(MI-BCI) can parse user motor imagery to achieve wheel-chair control or motion control for smart prostheses. However,...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1173778
SubjectTerms Accuracy
Adaptation
Algorithms
Brain
Classification
Computer applications
Datasets
Deep learning
Discriminant analysis
electroencephalogram
Electroencephalography
Implants
Machine learning
Mental task performance
motor imagery classification
multi-scale convolution
Neural networks
Neuroscience
Prosthetics
Transfer learning
transformer
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHmkFGQkxAWi2onjR28LoqqQ2gO0Um-RXxErbd1VyQrtv--Mk412BQIOXCIlcRLL33g8XzL5hpC3ksVGAQ0og_KyFC5o8IOOl_gPJEQT1siI7zvOzuXppfhy1VxtlfrCnLBBHngYuCPdON5YYbT3nYDV1pnKNlrWXPrKS5XZOtNmQ6YGHyzB6VbDLzJAwcxRl-YJtbmrGj9S1gqLqm0tQ1mt_3ch5q-ZkvdXaWnXP-1isbUMnTwiD8f4kc6Gfj8m92J6QvZnCbjz9Zq-ozmjM78q3ydfz77NLs5jf0xz2mD5A_CI1Aa7RB9H-03MGm9pGrLBKexSAA-282tUt1hTj-E15hNlCJ-Sy5PPF59Oy7GGQumFUT14WWeY6BrmddcoG6LiLgA-xprIIb7ywkerpHBADavIRDAs-hrnumeV47F-RvbSTYovCGWh8S52goWuE1Fzq00IwaHmnaq1ZQXhmyFt_SgwjnUuFi0QDYShzTC0CEM7wlCQ99M1y0Fe44-tPyJSU0uUxs4HwGDa0WDavxlMQQ43OLfjfIWnAFEGb6eqqiBvptMw0_DziU3xZoVtavBvFTCsgjwfzGLqCepDmVrygugdg9np6u6ZNP-e1byxzlsNQVhBPky29Q9jcfA_xuIleYD3xNQ3Lg7JXn-7iq8gyOrd6zyf7gDrnyPi
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZd-rC9jG3dD2_d0GDsZTO1bFmyBmOko6UMGkbXQt-MfnkLpEqWOpT897tTbNOwUfYSSKwQxd_p_J109x0h70TmSwlhQOqkFSk3rgI_aFiKNZDAJrQSHvc7Tifi5IJ_uywvd8ikr4XBtMreJ0ZH7eYW98gPsMYS7FHm-ZfF7xS7RuHpat9CQ3etFdznKDF2j-zmqIw1IruHR5PvZ71vFuCM4_mnwFohIOubMhoI09RBE6YB9bvzAg8yC4mN1249qqKi_79o6N_ZlPdXYaHXN3o2u_WoOn5EHnYck443RvGY7PjwhOyNA8TXV2v6nsasz7idvkfOTn-Mzye-_URjamF6DZh5qp1eoB-kbc9r_ZKGTcY4hbcUAIbX6RUqYKypRQqOOUcR5qfk4vjo_OtJ2vVZSC1XsgVPbFTGmzKzVVNK7bxkxgGGSivPgINZbr2WghsIH3Ofcacybwv0BzbLDfPFMzIK8-BfEJq50hrf8Mw1DfcV05VyzhnUxZNFpbOEsP6W1rYTIcdeGLMaghGEoY4w1AhD3cGQkA_DdxYbCY47Rx8iUsNIlM-OH8yXP-tuNdZVaVipuaqsbThQOKNyXVaiYMLmVkiY5n6Pc92tafiVwQIT8na4DKsRj1h08PMVjinAB-YQhSXk-cYshpmghpQqBEtItWUwW1PdvhKmv6LiN_aCK4CoJeTjYFv_cS9e3v03XpEHOBoT3xjfJ6N2ufKvgWK15k23bv4AbWokvQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF6V9AFeuMphKGiREC_g1sd6D95CRVUhNULQSOHJ2stqRLqNWkdV-PXM-IJwCcRLFMdrZz07O_7G_uZbQp7zxBcC0oDYCctjZpyEOGjSGGsgAU1oxT0-7zie8KMpezcrZlvkoK-FQVplhaX7uBD0PLRKwR1FDGc4ZFRqvwrzgFLbWY7vHHMh5P7SVdfINi8AkI_I9nTyfvwJUy2ONUFFPvv2ncm2dOY3J9q4PTUq_r-Cnj8zKK-vwlKvr_Ri8d3t6fAWcf2FtayUz3ur2uzZLz9oPv7nld8mNzv4SsftEXfIlg93yc44QOp-tqYvaEMobZ7U75APxx_HJxNfv6YNazG-BHfwVDu9xBBL6x4y-wsaWjI6hU0KvgOf8zMU11hTi-ge6UyNB90j08O3JwdHcbeEQ2yZEjUEeaMSVhWJlVUhtPMiNQ7cQ2nlU4B3llmvBWcGMtPMJ8ypxNscQ41NMpP6_D4ZhfPgHxKauMIaX7HEVRXzMtVSOecMSu6JXOokImk_cqXt9M1xmY1FCXkOGq9sjFei8crOeBF5ORyzbNU9_tj6DTrE0BKVuZsfYKjKbqhKWZi00ExJaysG6NCoTBeS5ym3meUCurnbu1PZhQv4F8jTIdiKLIvIs2E3THR8e6ODP19hmxzCawYJXkQetN439ATlqVTO04jIDb_c6OrmnjA_bcTEcZm5HDBgRF4NLvwXtnj0b80fkxu4iRy7lO2SUX2x8k8AzdXmaTdbvwLoGkZt
  priority: 102
  providerName: Unpaywall
Title MSATNet: multi-scale adaptive transformer network for motor imagery classification
URI https://www.ncbi.nlm.nih.gov/pubmed/37389361
https://www.proquest.com/docview/2825307722
https://www.proquest.com/docview/2832572675
https://pubmed.ncbi.nlm.nih.gov/PMC10303110
https://www.frontiersin.org/articles/10.3389/fnins.2023.1173778/pdf
https://doaj.org/article/85b15a498ccf4172b92a586316c2c670
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbG9gAvCBiwwKiMhHiBQJw4doyEUIc2JqRW01il8hT5V6BSl5auFfS_585JIyoGQrxESuwklr_z-Tv7fEfIM5H4XIIZEDtpRcyNK0APGhbjGUhgE1oJj-sdg6E4HfGP43y8QzbpjtoOvLrWtMN8UqPF9NWPb-t3MODfosUJ8-3rqp7UGHk7zXALMpOyuEH2YKZSmMphwLtdBQGqOOx-CjwpBFS9OUTzh29sTVQhnv91JPR3X8qbq3qu19_1dPrLRHVyh9xuGSbtNyJxl-z4-h7Z79dgXV-u6XMafD7DYvo-OR986l8M_fINDY6F8RUg5ql2eo5akC43rNYvaN34i1O4pQAvXCeXGP9iTS0ScPQ4CiDfJ6OT44v3p3GbZSG2XMkl6GGjEl7liS2qXGrnJTMOEFRaeQYMzHLrtRTcgPGY-oQ7lXiboTawSWqYzx6Q3XpW-wNCE5db4yueuKrivmC6UM45g1HxZFboJCJs06WlbUOQYyaMaQmmCMJQBhhKhKFsYYjIi-6deROA46-1jxCpriYGzw4PZosvZTsWyyI3LNdcFdZWHAicUanOC5ExYVMrJDTzcINzuRHIEs_4gj6UaRqRp10xjEXcYNG1n62wTgYaMAUbLCIPG7HoWoIRpFQmWESKLYHZaup2ST35GuJ9Yya4DGhaRF52svUPffHo___0mNzCL6FLHOOHZHe5WPknQL6Wpkf2jo6HZ-e9sHgB1w9j1gujDEpGw7P-559aOjNE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9FAuCCgPQ4FFAi5g1Y_12kaqUAqtUtpEqLRSb-6-DJFSJ6SJqvw5fhszG9tqBKq49GLJ9tpe7zz2m915ALwRgU1SNAN8k2rhc2Uy1IMq9CkGEtGEzIWl9Y7-QPRO-dez5GwNfjexMORW2ehEp6jNWNMa-TbFWCI_plH0afLLp6pRtLvalNCQdWkFs-NSjNWBHYd2cYUm3OXOwRek99so2t87-dzz6yoDvuZ5OkM9pPKAl0mgszJJpbFpqAz-QS5zGyIC0VxbmQqu0HiKbMBNHlgdkzToIFKhjfG9d2Cdx_i2Dqzv7g2-HTdzgUDl7_ZbBcUmoXGwDNtBszDfLqthRfnCo5g2TuOUCr1dmxpdBYF_wd6_vTc35tVELq7kaHRtaty_D_dqTMu6SyZ8AGu2egib3Qrt-YsFe8ecl6lbvt-E4_737snAzj4y58roXyKPWCaNnJDeZbMGR9spq5Ye6gxPGTIUHocXlHFjwTRBfvJxcmz1CE5vZcQfQ6caV_YpsMAkWtmSB6Ysuc1CmeXGGEV5-NI4k4EHYTOkha6TnlPtjVGBxg-RoXBkKIgMRU0GD963z0yWKT9ubL1LlGpbUrpud2E8_VHU0l9kiQoTyfNM65IjZFR5JJNMxKHQkRYpdnOroXNR6xD8SsvxHrxub6P005aOrOx4Tm1i1LkRWn0ePFmyRdsTylmVxyL0IFthmJWurt6phj9dhnGqPRcjMPTgQ8tb_zEWz27-jVew0TvpHxVHB4PD53CXniSnu5BvQWc2ndsXCO9m6mUtQwzOb1ts_wCiMmGX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qC-qLqPUSrTqC-qJhc5lMMkKRre3SWruU2kLf4tzSLmyz6zZL2b_or_KcyYUuSvGlL4Ekk2Qy58w358y5EfKOBzZJQQ3wTaq5z5TJAAdV6GMMJEgTUnCL-x0HQ757wr6dJqcr5HcbC4NulS0mOqA2E4175D2MsQR-TKOoVzRuEYfbgy_TXz5WkEJLa1tOQzZlFsymSzfWBHns28UVqHOXm3vbQPv3UTTYOf666zcVB3zNRFoBJikRsCIJdFYkqTQ2DZWBvxFS2BCkEc20lSlnChSpyAbMiMDqGGeGDiIV2hjee4esofELQGJta2d4eNSuCxwWAmd75RinBIpCHcIDKqLoFeWoxNzhUYxG1DjFom_XlklXTeBfIvDfnpz35uVULq7keHxtmRw8JA8a-Zb2a4Z8RFZs-Zis90vQ7S8W9AN1HqduK3-dHB386B8PbfWZOrdG_xL4xVJp5BQxmFatTG1ntKy91SmcUmAuOI4uMPvGgmoU_9HfybHYE3JyKyP-lKyWk9I-JzQwiVa2YIEpCmazUGbCGKMwJ18aZzLwSNgOaa6bBOhYh2OcgyKEZMgdGXIkQ96QwSMfu2emdfqPG1tvIaW6lpi6212YzM7yBgnyLFFhIpnItC4YiI9KRDLJeBxyHWmeQjc3WjrnDZ7AVzru98jb7jYgAZp3ZGknc2wTA_5GoAF65FnNFl1PMH-ViHnokWyJYZa6unynHJ27bONYhy4GIdEjnzre-o-xeHHzb7whd2H65t_3hvsvyX18EP3vQrZBVqvZ3L4CSa9Sr5spRMnP2561fwARxGXG
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF6V9AFeuMphKGiREC_g1sd6D95CRVUhNULQSOHJ2stqRLqNWkdV-PXM-IJwCcRLFMdrZz07O_7G_uZbQp7zxBcC0oDYCctjZpyEOGjSGGsgAU1oxT0-7zie8KMpezcrZlvkoK-FQVplhaX7uBD0PLRKwR1FDGc4ZFRqvwrzgFLbWY7vHHMh5P7SVdfINi8AkI_I9nTyfvwJUy2ONUFFPvv2ncm2dOY3J9q4PTUq_r-Cnj8zKK-vwlKvr_Ri8d3t6fAWcf2FtayUz3ur2uzZLz9oPv7nld8mNzv4SsftEXfIlg93yc44QOp-tqYvaEMobZ7U75APxx_HJxNfv6YNazG-BHfwVDu9xBBL6x4y-wsaWjI6hU0KvgOf8zMU11hTi-ge6UyNB90j08O3JwdHcbeEQ2yZEjUEeaMSVhWJlVUhtPMiNQ7cQ2nlU4B3llmvBWcGMtPMJ8ypxNscQ41NMpP6_D4ZhfPgHxKauMIaX7HEVRXzMtVSOecMSu6JXOokImk_cqXt9M1xmY1FCXkOGq9sjFei8crOeBF5ORyzbNU9_tj6DTrE0BKVuZsfYKjKbqhKWZi00ExJaysG6NCoTBeS5ym3meUCurnbu1PZhQv4F8jTIdiKLIvIs2E3THR8e6ODP19hmxzCawYJXkQetN439ATlqVTO04jIDb_c6OrmnjA_bcTEcZm5HDBgRF4NLvwXtnj0b80fkxu4iRy7lO2SUX2x8k8AzdXmaTdbvwLoGkZt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSATNet%3A+multi-scale+adaptive+transformer+network+for+motor+imagery+classification&rft.jtitle=Frontiers+in+neuroscience&rft.au=Hu%2C+Lingyan&rft.au=Hong%2C+Weijie&rft.au=Liu%2C+Lingyu&rft.date=2023-06-14&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1173778&rft.externalDocID=PMC10303110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon