Non-parametric Maximum Likelihood Estimation for Cox Regression with Subject-Specific Measurement Error

Many epidemiological studies have been conducted to identify an association between nutrient consumption and chronic disease risk. To this problem, Cox regression with additive covariate measurement error has been well developed in the literature. However, researchers are concerned with the validity...

Full description

Saved in:
Bibliographic Details
Published inScandinavian journal of statistics Vol. 35; no. 4; pp. 613 - 628
Main Author WANG, C. Y.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2008
Blackwell Publishing
Blackwell
Danish Society for Theoretical Statistics
SeriesScandinavian Journal of Statistics
Subjects
Online AccessGet full text
ISSN0303-6898
1467-9469
DOI10.1111/j.1467-9469.2008.00605.x

Cover

Abstract Many epidemiological studies have been conducted to identify an association between nutrient consumption and chronic disease risk. To this problem, Cox regression with additive covariate measurement error has been well developed in the literature. However, researchers are concerned with the validity of the additive measurement error assumption for self-report nutrient data. Recently, some study designs using more reliable biomarker data have been considered, in which the additive measurement error assumption is more likely to hold. Biomarker data are often available in a subcohort. Self-report data often encounter with a variety of serious biases. Complications arise primarily because the magnitude of measurement errors is often associated with some characteristics of a study subject. A more general measurement error model has been developed for self-report data. In this paper, a non-parametric maximum likelihood (NPML) estimator using an EM algorithm is proposed to simultaneously adjust for the general measurement errors.
AbstractList .  Many epidemiological studies have been conducted to identify an association between nutrient consumption and chronic disease risk. To this problem, Cox regression with additive covariate measurement error has been well developed in the literature. However, researchers are concerned with the validity of the additive measurement error assumption for self‐report nutrient data. Recently, some study designs using more reliable biomarker data have been considered, in which the additive measurement error assumption is more likely to hold. Biomarker data are often available in a subcohort. Self‐report data often encounter with a variety of serious biases. Complications arise primarily because the magnitude of measurement errors is often associated with some characteristics of a study subject. A more general measurement error model has been developed for self‐report data. In this paper, a non‐parametric maximum likelihood (NPML) estimator using an EM algorithm is proposed to simultaneously adjust for the general measurement errors.
Many epidemiological studies have been conducted to identify an association between nutrient consumption and chronic disease risk. To this problem, Cox regression with additive covariate measurement error has been well developed in the literature. However, researchers are concerned with the validity of the additive measurement error assumption for self-report nutrient data. Recently, some study designs using more reliable biomarker data have been considered, in which the additive measurement error assumption is more likely to hold. Biomarker data are often available in a subcohort. Self-report data often encounter with a variety of serious biases. Complications arise primarily because the magnitude of measurement errors is often associated with some characteristics of a study subject. A more general measurement error model has been developed for self-report data. In this paper, a non-parametric maximum likelihood (NPML) estimator using an EM algorithm is proposed to simultaneously adjust for the general measurement errors.
Many epidemiological studies have been conducted to identify an association between nutrient consumption and chronic disease risk. To this problem, Cox regression with additive covariate measurement error has been well developed in the literature. However, researchers are concerned with the validity of the additive measurement error assumption for self-report nutrient data. Recently, some study designs using more reliable biomarker data have been considered, in which the additive measurement error assumption is more likely to hold. Biomarker data are often available in a subcohort. Self-report data often encounter with a variety of serious biases. Complications arise primarily because the magnitude of measurement errors is often associated with some characteristics of a study subject. A more general measurement error model has been developed for self-report data. In this paper, a non-parametric maximum likelihood (NPML) estimator using an EM algorithm is proposed to simultaneously adjust for the general measurement errors. Copyright (c) Board of the Foundation of the Scandinavian Journal of Statistics 2008.
Author WANG, C. Y.
Author_xml – sequence: 1
  givenname: C. Y.
  surname: WANG
  fullname: WANG, C. Y.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20852950$$DView record in Pascal Francis
http://econpapers.repec.org/article/blascjsta/v_3a35_3ay_3a2008_3ai_3a4_3ap_3a613-628.htm$$DView record in RePEc
BookMark eNqNUV1v0zAUjdCQ6AY_ASlC4jHFn4nzABKrymCUTaJDIF4s17lZnSVxZ7us_fc4zegDT7N0fS3fe86x7zlNTnrbQ5KkGE1xXO-aKWZ5kZUsL6cEITFFKEd8unuWTI6Fk2SCKKJZLkrxIjn1vkEI5wyLSXJ7Zftso5zqIDij029qZ7ptly7MHbRmbW2Vzn0wnQrG9mltXTqzu_Q73Drwfrh6MGGdLrerBnTIlhvQph5oQPmtgw76kM6ds-5l8rxWrYdXj_ks-fFpfjP7nC2uL77MPi4yzcqCZ0KvUF4hwSpRVJXmfCU0h4KCRpQghUVdEV7UpKA1UEIIZRUhJTAQwJjGNT1L3oy8G2fvt-CDbOzW9VFSEiQwR3FGselybHIQHyw3Lv7P7eWqVV43Pij5R1JFedz2MYapxmRisBibGDmmMidCrkMXyd4-Kka0amunem38kTSqclLyQfTD2Ked9d5BLbUJh7EGp0wrMZKDobKRg29y8E0epA-Gyl0kEP8R_NN4AvT9CH0wLeyfjJPLy-tlPEX86xEfp2PdEc8wQoiUJNazsW58gN2xrtydzAtacPnz6kJ-Pae_bsT5b1nSv8C90vA
CitedBy_id crossref_primary_10_1080_01621459_2014_896805
crossref_primary_10_1515_ijb_2018_0028
crossref_primary_10_1093_biostatistics_kxr051
crossref_primary_10_1002_bimj_201500238
crossref_primary_10_1002_bimj_201000180
Cites_doi 10.1007/978-1-4757-2545-2
10.1111/j.0006-341X.2000.00106.x
10.1002/sim.4780080905
10.1111/1467-9868.00247
10.1111/j.0006-341X.2005.454_1.x
10.1136/bmj.311.7011.986
10.1093/aje/kwg091
10.1093/jnci/88.23.1738
10.2307/2533670
10.1080/01621459.1999.10474195
10.1093/oxfordjournals.aje.a116086
10.1093/biomet/69.2.331
10.1214/aos/1176324462
10.1080/01621459.1997.10474051
10.2307/2532348
10.2307/3315770
10.1093/aje/153.4.394
10.1201/9781420010138
10.2307/2533103
10.2307/2529620
10.1093/biomet/88.2.447
10.1080/01621459.2000.10474321
10.1111/j.2517-6161.1977.tb01600.x
10.1111/1467-9868.00317
10.1080/01621459.1995.10476485
10.1111/j.2517-6161.1972.tb00899.x
10.1111/j.1541-0420.2006.00632.x
ContentType Journal Article
Copyright Board of the Foundation of the Scandinavian Journal of Statistics 2008
2008 INIST-CNRS
Copyright_xml – notice: Board of the Foundation of the Scandinavian Journal of Statistics 2008
– notice: 2008 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DKI
X2L
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/j.1467-9469.2008.00605.x
DatabaseName Istex
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
CrossRef


Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-9469
EndPage 628
ExternalDocumentID 1592940421
blascjsta_v_3a35_3ay_3a2008_3ai_3a4_3ap_3a613_628_htm
20852950
10_1111_j_1467_9469_2008_00605_x
SJOS605
41000292
ark_67375_WNG_KB3XT8BZ_9
Genre article
GroupedDBID -ET
.3N
.GA
.GJ
.L6
.Y3
05W
0R~
10A
123
1OC
3-9
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWIL
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCZN
ACDIW
ACGFS
ACHJO
ACIWK
ACMTB
ACPOU
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AELLO
AEMOZ
AENEX
AEUPB
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFVYC
AFWVQ
AFZJQ
AGHNM
AGLNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHQJS
AIDQK
AIDYY
AIHAF
AITYG
AIURR
AJXKR
AKBRZ
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
ECEWR
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGLYW
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
ZZTAW
~IA
~WT
AAHHS
AAKYL
ACCFJ
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
BHOJU
JSODD
WRC
AAYXX
CITATION
IQODW
0R
31
3N
AAPBV
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AFVGU
AFXKK
AGJLS
AS
BDTQF
DKI
EFSUC
ET
GA
GJ
HZ
IA
IPNFZ
L6
NF
P4A
PQEST
RIG
WT
X2L
Y3
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4975-8cb06d084d87ddc55b8c5e73ec0320a18fd257f273fe322234d229e4e8e44c1f3
IEDL.DBID DR2
ISSN 0303-6898
IngestDate Fri Jul 25 10:50:36 EDT 2025
Wed Aug 18 03:51:22 EDT 2021
Mon Jul 21 09:11:01 EDT 2025
Wed Oct 01 02:10:47 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Wed Jan 22 17:12:47 EST 2025
Thu Jul 03 21:08:47 EDT 2025
Sun Sep 21 06:18:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Biometrics
Parameter estimation
Error estimation
Non parametric estimation
Multivariate analysis
Covariate
Epidemiology
biomarker data
Parametric method
Hypothesis test
Statistical test
Medical science
Measurement error
Chronic disease
Statistical association
Parametric estimation
Statistical method
Statistical regression
Experimental design
Maximum likelihood
corrected score
calibration sample
EM algorithm
Application
Biased estimation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4975-8cb06d084d87ddc55b8c5e73ec0320a18fd257f273fe322234d229e4e8e44c1f3
Notes istex:1F95227FC58917C1659E7F4E27B5F3AEC50E3590
ark:/67375/WNG-KB3XT8BZ-9
ArticleID:SJOS605
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 208150200
PQPubID 30873
PageCount 16
ParticipantIDs proquest_journals_208150200
repec_primary_blascjsta_v_3a35_3ay_3a2008_3ai_3a4_3ap_3a613_628_htm
pascalfrancis_primary_20852950
crossref_citationtrail_10_1111_j_1467_9469_2008_00605_x
crossref_primary_10_1111_j_1467_9469_2008_00605_x
wiley_primary_10_1111_j_1467_9469_2008_00605_x_SJOS605
jstor_primary_41000292
istex_primary_ark_67375_WNG_KB3XT8BZ_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2008
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: December 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationSeriesTitle Scandinavian Journal of Statistics
PublicationTitle Scandinavian journal of statistics
PublicationYear 2008
Publisher Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Danish Society for Theoretical Statistics
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
– name: Danish Society for Theoretical Statistics
References Xie, S. X., Wang, C. Y. & Prentice, R. L. (2001). A risk set calibration method for failure time regression using a covariate reliability sample. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 63, 855-870.
Breslow, N. E. (1974). Covariance analysis of censored survival data. Biometrics 30, 89-99.
Tsiatis, A. A., DeGruttola, V. & Wulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 count in patients with AIDS. J. Amer. Statist. Assoc. 90, 27-37.
Rosner, B., Willett, W. C. & Spiegelman, D. (1989). Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat. Med. 8, 1051-1070.
Tsiatis, A. A. & Davidian, D. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88, 447-458.
Prentice, R. L., Pettinger, M. & Anderson, G. L. (2005). Statistical issues arising in the Women's Health Initiative (with discussion). Biometrics 61, 899-941.
Murphy, S. A., Rossini, A. J. & Van Der Vaart, A. W. (1997). Maximum likelihood estimation in the proportional odds model. J. Amer. Statist. Assoc. 92, 968-976.
Kipnis, V., Subar, A. F., Midthune, D., Freedman, L. S., Ballard-Barbash, R., Troiano, R., Bingham, S., Schoeller, D. A., Schatzkin, A. & Carroll, R. J. (2003). The structure of dietary measurement error: results of the OPEN biomarker study. Am. J. Epidemiol. 158, 14-21.
Chen, H. Y. & Little, R. J. A. (1999). Proportional hazards regression with missing covariates. J. Amer. Statist. Assoc. 94, 896-908.
Wang, C. Y., Hsu, L., Feng, Z. D. & Prentice, R. L. (1997). Regression calibration in failure time regression. Biometrics 53, 131-145.
Van Der Vaart, A. W. & Wellner, J. A. (1996). Weak convergence and empirical processes. Springer-Verlag, New York.
Cox, D. R. (1972). Regression models and life tables (with discussion). J. Roy. Statist. Soc. Ser. B Stat. Methodol. 34, 187-220.
Dafni, U. G. & Tsiatis, A. A. (1998). Evaluating surrogate markers of clinical outcome measured with error. Biometrics 54, 1445-1462.
Willett, W. C. (1990). Nutritional epidemiology. Oxford University Press, Oxford.
Murphy, S. A. (1995). Asymptotic theory for the frailty model. Ann. Statist. 23, 182-198.
Freedman, L. S., Carroll, R. J. & Wax, Y. (1991). Estimating the relationship between dietary intake obtained from a food frequency questionnaire and true average intake. Am. J. Epidemiol. 134, 310-320.
Carroll, R. J., Freedman, L. S., Kipnis, V. & Li, L. (1998). A new class of measurement error models, with applications to estimating the distribution of usual intake. Canad. J. Statist. 26, 467-477.
Nakamura, T. (1992). Proportional hazards models with covariates subject to measurement error. Biometrics 48, 829-838.
Carroll, R. J., Ruppert, D., Stefanski, L. A. & Crainiceanu, C. M. (2006). Nonlinear measurement error models: a modern perspective, 2nd edn. Chapman and Hall, London.
Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 39, 1-38.
Sugar, E. A., Wang, C. Y. & Prentice, R. L. (2007). Methods for logistic regression with flexible measurement error. Biometrics 63, 143-151.
Wang, C. Y. (2000). Weighted normality-based estimator in correcting correlation coefficient estimation between incomplete nutrient measurements. Biometrics 56, 106-112.
Kipnis, V., Midthune, D., Freedman, L. S., Bingham, S., Schatzkin, A., Subar, A. & Carroll, R. J. (2001). Empirical evidence of correlated biases in dietary assessment instruments and its implications. Am. J. Epidemiol. 153, 394-403.
Wang, C. Y. & Pepe, M. S. (2000). Expected estimating equations to accommodate covariate measurement error. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 62, 509-524.
Heitman, B. L. & Lissner, L. (1995). Dietary underreporting by obese individuals - is it specific or non-specific? Br. Med. J. 311, 986-989.
Nielsen, G. G., Gill, R. D., Andersen, P. K. & Sørensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Statist. 19, 25-43.
Prentice, R. L. (1996). Dietary fat and breast cancer: measurement error and results from analytic epidemiology. J. Natl. Cancer Inst. 88, 1738-1747.
Huang, Y. & Wang, C. Y. (2000). Cox regression with accurate covariates unascertainable: a nonparametric-correction approach. J. Amer. Statist. Assoc. 95, 1209-1219.
Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331-342.
1998; 26
1991; 134
1995; 90
1974; 30
1989; 8
2000; 95
1992; 19
1996
2006
1995; 311
2005; 61
2001; 88
2003; 158
2001; 63
1982; 69
2001; 153
1997; 92
1990
1977; 39
2000; 56
1997; 53
1995; 23
2000; 62
1992; 48
1999; 94
2007; 63
1972; 34
1998; 54
1996; 88
e_1_2_9_30_1
Willett W. C. (e_1_2_9_29_1) 1990
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Murphy S. A. (e_1_2_9_15_1) 1997; 92
Tsiatis A. A. (e_1_2_9_24_1) 1995; 90
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Chen H. Y. (e_1_2_9_5_1) 1999; 94
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Nielsen G. G. (e_1_2_9_17_1) 1992; 19
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – reference: Rosner, B., Willett, W. C. & Spiegelman, D. (1989). Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat. Med. 8, 1051-1070.
– reference: Kipnis, V., Subar, A. F., Midthune, D., Freedman, L. S., Ballard-Barbash, R., Troiano, R., Bingham, S., Schoeller, D. A., Schatzkin, A. & Carroll, R. J. (2003). The structure of dietary measurement error: results of the OPEN biomarker study. Am. J. Epidemiol. 158, 14-21.
– reference: Nakamura, T. (1992). Proportional hazards models with covariates subject to measurement error. Biometrics 48, 829-838.
– reference: Prentice, R. L. (1996). Dietary fat and breast cancer: measurement error and results from analytic epidemiology. J. Natl. Cancer Inst. 88, 1738-1747.
– reference: Willett, W. C. (1990). Nutritional epidemiology. Oxford University Press, Oxford.
– reference: Carroll, R. J., Freedman, L. S., Kipnis, V. & Li, L. (1998). A new class of measurement error models, with applications to estimating the distribution of usual intake. Canad. J. Statist. 26, 467-477.
– reference: Xie, S. X., Wang, C. Y. & Prentice, R. L. (2001). A risk set calibration method for failure time regression using a covariate reliability sample. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 63, 855-870.
– reference: Tsiatis, A. A. & Davidian, D. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88, 447-458.
– reference: Cox, D. R. (1972). Regression models and life tables (with discussion). J. Roy. Statist. Soc. Ser. B Stat. Methodol. 34, 187-220.
– reference: Dafni, U. G. & Tsiatis, A. A. (1998). Evaluating surrogate markers of clinical outcome measured with error. Biometrics 54, 1445-1462.
– reference: Freedman, L. S., Carroll, R. J. & Wax, Y. (1991). Estimating the relationship between dietary intake obtained from a food frequency questionnaire and true average intake. Am. J. Epidemiol. 134, 310-320.
– reference: Chen, H. Y. & Little, R. J. A. (1999). Proportional hazards regression with missing covariates. J. Amer. Statist. Assoc. 94, 896-908.
– reference: Murphy, S. A. (1995). Asymptotic theory for the frailty model. Ann. Statist. 23, 182-198.
– reference: Nielsen, G. G., Gill, R. D., Andersen, P. K. & Sørensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Statist. 19, 25-43.
– reference: Tsiatis, A. A., DeGruttola, V. & Wulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 count in patients with AIDS. J. Amer. Statist. Assoc. 90, 27-37.
– reference: Wang, C. Y. & Pepe, M. S. (2000). Expected estimating equations to accommodate covariate measurement error. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 62, 509-524.
– reference: Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 39, 1-38.
– reference: Murphy, S. A., Rossini, A. J. & Van Der Vaart, A. W. (1997). Maximum likelihood estimation in the proportional odds model. J. Amer. Statist. Assoc. 92, 968-976.
– reference: Prentice, R. L., Pettinger, M. & Anderson, G. L. (2005). Statistical issues arising in the Women's Health Initiative (with discussion). Biometrics 61, 899-941.
– reference: Wang, C. Y., Hsu, L., Feng, Z. D. & Prentice, R. L. (1997). Regression calibration in failure time regression. Biometrics 53, 131-145.
– reference: Breslow, N. E. (1974). Covariance analysis of censored survival data. Biometrics 30, 89-99.
– reference: Carroll, R. J., Ruppert, D., Stefanski, L. A. & Crainiceanu, C. M. (2006). Nonlinear measurement error models: a modern perspective, 2nd edn. Chapman and Hall, London.
– reference: Van Der Vaart, A. W. & Wellner, J. A. (1996). Weak convergence and empirical processes. Springer-Verlag, New York.
– reference: Wang, C. Y. (2000). Weighted normality-based estimator in correcting correlation coefficient estimation between incomplete nutrient measurements. Biometrics 56, 106-112.
– reference: Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331-342.
– reference: Huang, Y. & Wang, C. Y. (2000). Cox regression with accurate covariates unascertainable: a nonparametric-correction approach. J. Amer. Statist. Assoc. 95, 1209-1219.
– reference: Heitman, B. L. & Lissner, L. (1995). Dietary underreporting by obese individuals - is it specific or non-specific? Br. Med. J. 311, 986-989.
– reference: Sugar, E. A., Wang, C. Y. & Prentice, R. L. (2007). Methods for logistic regression with flexible measurement error. Biometrics 63, 143-151.
– reference: Kipnis, V., Midthune, D., Freedman, L. S., Bingham, S., Schatzkin, A., Subar, A. & Carroll, R. J. (2001). Empirical evidence of correlated biases in dietary assessment instruments and its implications. Am. J. Epidemiol. 153, 394-403.
– volume: 134
  start-page: 310
  year: 1991
  end-page: 320
  article-title: Estimating the relationship between dietary intake obtained from a food frequency questionnaire and true average intake
  publication-title: Am. J. Epidemiol.
– volume: 48
  start-page: 829
  year: 1992
  end-page: 838
  article-title: Proportional hazards models with covariates subject to measurement error
  publication-title: Biometrics
– volume: 63
  start-page: 855
  year: 2001
  end-page: 870
  article-title: A risk set calibration method for failure time regression using a covariate reliability sample
  publication-title: J. Roy. Statist. Soc. Ser. B Stat. Methodol.
– volume: 62
  start-page: 509
  year: 2000
  end-page: 524
  article-title: Expected estimating equations to accommodate covariate measurement error
  publication-title: J. Roy. Statist. Soc. Ser. B Stat. Methodol.
– volume: 92
  start-page: 968
  year: 1997
  end-page: 976
  article-title: Maximum likelihood estimation in the proportional odds model
  publication-title: J. Amer. Statist. Assoc.
– year: 1996
– volume: 54
  start-page: 1445
  year: 1998
  end-page: 1462
  article-title: Evaluating surrogate markers of clinical outcome measured with error
  publication-title: Biometrics
– volume: 95
  start-page: 1209
  year: 2000
  end-page: 1219
  article-title: Cox regression with accurate covariates unascertainable: a nonparametric‐correction approach
  publication-title: J. Amer. Statist. Assoc.
– volume: 88
  start-page: 447
  year: 2001
  end-page: 458
  article-title: A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error
  publication-title: Biometrika
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  article-title: Regression models and life tables (with discussion)
  publication-title: J. Roy. Statist. Soc. Ser. B Stat. Methodol.
– volume: 153
  start-page: 394
  year: 2001
  end-page: 403
  article-title: Empirical evidence of correlated biases in dietary assessment instruments and its implications
  publication-title: Am. J. Epidemiol.
– volume: 94
  start-page: 896
  year: 1999
  end-page: 908
  article-title: Proportional hazards regression with missing covariates
  publication-title: J. Amer. Statist. Assoc.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. Roy. Statist. Soc. Ser. B Stat. Methodol.
– volume: 63
  start-page: 143
  year: 2007
  end-page: 151
  article-title: Methods for logistic regression with flexible measurement error
  publication-title: Biometrics
– year: 1990
– volume: 53
  start-page: 131
  year: 1997
  end-page: 145
  article-title: Regression calibration in failure time regression
  publication-title: Biometrics
– volume: 61
  start-page: 899
  year: 2005
  end-page: 941
  article-title: Statistical issues arising in the Women's Health Initiative (with discussion)
  publication-title: Biometrics
– volume: 158
  start-page: 14
  year: 2003
  end-page: 21
  article-title: The structure of dietary measurement error: results of the OPEN biomarker study
  publication-title: Am. J. Epidemiol.
– volume: 19
  start-page: 25
  year: 1992
  end-page: 43
  article-title: A counting process approach to maximum likelihood estimation in frailty models
  publication-title: Scand. J. Statist.
– volume: 69
  start-page: 331
  year: 1982
  end-page: 342
  article-title: Covariate measurement errors and parameter estimation in a failure time regression model
  publication-title: Biometrika
– volume: 23
  start-page: 182
  year: 1995
  end-page: 198
  article-title: Asymptotic theory for the frailty model
  publication-title: Ann. Statist.
– volume: 88
  start-page: 1738
  year: 1996
  end-page: 1747
  article-title: Dietary fat and breast cancer: measurement error and results from analytic epidemiology
  publication-title: J. Natl. Cancer Inst.
– volume: 8
  start-page: 1051
  year: 1989
  end-page: 1070
  article-title: Correction of logistic regression relative risk estimates and confidence intervals for systematic within‐person measurement error
  publication-title: Stat. Med.
– volume: 30
  start-page: 89
  year: 1974
  end-page: 99
  article-title: Covariance analysis of censored survival data
  publication-title: Biometrics
– year: 2006
– volume: 90
  start-page: 27
  year: 1995
  end-page: 37
  article-title: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 count in patients with AIDS
  publication-title: J. Amer. Statist. Assoc.
– volume: 56
  start-page: 106
  year: 2000
  end-page: 112
  article-title: Weighted normality‐based estimator in correcting correlation coefficient estimation between incomplete nutrient measurements
  publication-title: Biometrics
– volume: 26
  start-page: 467
  year: 1998
  end-page: 477
  article-title: A new class of measurement error models, with applications to estimating the distribution of usual intake
  publication-title: Canad. J. Statist.
– volume: 311
  start-page: 986
  year: 1995
  end-page: 989
  article-title: Dietary underreporting by obese individuals – is it specific or non‐specific?
  publication-title: Br. Med. J.
– ident: e_1_2_9_25_1
  doi: 10.1007/978-1-4757-2545-2
– ident: e_1_2_9_26_1
  doi: 10.1111/j.0006-341X.2000.00106.x
– ident: e_1_2_9_21_1
  doi: 10.1002/sim.4780080905
– ident: e_1_2_9_27_1
  doi: 10.1111/1467-9868.00247
– ident: e_1_2_9_20_1
  doi: 10.1111/j.0006-341X.2005.454_1.x
– ident: e_1_2_9_10_1
  doi: 10.1136/bmj.311.7011.986
– ident: e_1_2_9_13_1
  doi: 10.1093/aje/kwg091
– ident: e_1_2_9_19_1
  doi: 10.1093/jnci/88.23.1738
– ident: e_1_2_9_7_1
  doi: 10.2307/2533670
– volume: 94
  start-page: 896
  year: 1999
  ident: e_1_2_9_5_1
  article-title: Proportional hazards regression with missing covariates
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1999.10474195
– ident: e_1_2_9_9_1
  doi: 10.1093/oxfordjournals.aje.a116086
– ident: e_1_2_9_18_1
  doi: 10.1093/biomet/69.2.331
– ident: e_1_2_9_14_1
  doi: 10.1214/aos/1176324462
– volume: 92
  start-page: 968
  year: 1997
  ident: e_1_2_9_15_1
  article-title: Maximum likelihood estimation in the proportional odds model
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1997.10474051
– ident: e_1_2_9_16_1
  doi: 10.2307/2532348
– ident: e_1_2_9_4_1
  doi: 10.2307/3315770
– ident: e_1_2_9_12_1
  doi: 10.1093/aje/153.4.394
– volume-title: Nutritional epidemiology
  year: 1990
  ident: e_1_2_9_29_1
– ident: e_1_2_9_3_1
  doi: 10.1201/9781420010138
– ident: e_1_2_9_28_1
  doi: 10.2307/2533103
– ident: e_1_2_9_2_1
  doi: 10.2307/2529620
– ident: e_1_2_9_23_1
  doi: 10.1093/biomet/88.2.447
– ident: e_1_2_9_11_1
  doi: 10.1080/01621459.2000.10474321
– ident: e_1_2_9_8_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_9_30_1
  doi: 10.1111/1467-9868.00317
– volume: 90
  start-page: 27
  year: 1995
  ident: e_1_2_9_24_1
  article-title: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 count in patients with AIDS
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1995.10476485
– ident: e_1_2_9_6_1
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 19
  start-page: 25
  year: 1992
  ident: e_1_2_9_17_1
  article-title: A counting process approach to maximum likelihood estimation in frailty models
  publication-title: Scand. J. Statist.
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1541-0420.2006.00632.x
SSID ssj0016418
Score 1.8216828
Snippet Many epidemiological studies have been conducted to identify an association between nutrient consumption and chronic disease risk. To this problem, Cox...
.  Many epidemiological studies have been conducted to identify an association between nutrient consumption and chronic disease risk. To this problem, Cox...
SourceID proquest
repec
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 613
SubjectTerms Applications
Biological markers
biomarker data
Biomarkers
Calibration
calibration sample
Consistent estimators
corrected score
Data sampling
Estimation bias
Estimators
Exact sciences and technology
General topics
Linear inference, regression
Mathematics
measurement error
Medical sciences
Parametric inference
Probability and statistics
Questionnaires
Sampling bias
Sciences and techniques of general use
Self reports
Statistical variance
Statistics
Title Non-parametric Maximum Likelihood Estimation for Cox Regression with Subject-Specific Measurement Error
URI https://api.istex.fr/ark:/67375/WNG-KB3XT8BZ-9/fulltext.pdf
https://www.jstor.org/stable/41000292
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9469.2008.00605.x
http://econpapers.repec.org/article/blascjsta/v_3a35_3ay_3a2008_3ai_3a4_3ap_3a613-628.htm
https://www.proquest.com/docview/208150200
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-9469
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016418
  issn: 0303-6898
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1467-9469
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016418
  issn: 0303-6898
  databaseCode: AMVHM
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0303-6898
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-9469
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016418
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6h9lIO_BQqTCHaA-LmKLbX9u6RRimlJUFqWhFxWe2u1yUy-ZGToMCJR-AZeRJm1o6RgUOFOGwUKTv2ejKz_mb8eYaQF1nPmjQ1sW-DUPsshJhVJDrzYSNUJjBZIDTmIYej5OyanU_iSc1_wndhqvoQTcINPcPt1-jgSq_-dHIB8d2OEgnQvIt4MogSF11dNpWkIChwqT4w6chPuOBtUs9fD9S6U-2j0rc70iIyKNUKlJhX3S9a8HS_tEtr2mDX3a1O75Nid50VSaXobta6a77-VgLy_yjiAblXg1r6qrLCh-SOnR-Su8OmIuzqkBwgqq2KQj8ixWgx__HtO5Ydn2FHL0OHajudbWb07bSA1WCpZTqAydV7lRSANe0vtvTS3lS03TnF_DGFXQ_TSHCoMegCSU90-CvnSQdluSgfk-vTwVX_zK-7PviGiTT2udG9JOtxlvE0y0wca25im0bWYK93FfA8g20mB9iVW3xMFLEsDIVlllvGTJBHR2RvvpjbJ4SyTJs8MiGoRzCumDBKxT2VWRElibXaI-nuH5amLomOnTk-yVZolErUbd2wE3Urtx4JGsllVRbkFjIvnRE1AqoskFaXxvL96LW8OIkmV_zkgxQeOXJW1kxk-BAmFKFHOi2zayZgo9VQxD2PHO_sUNZ70Qp_BNQPK_FI35lmI6YhQDNwKiU_y0hFMXx8geEWHakpDAZjCQNAn0xCLj-uZx5JnDXe-rrl-PzdGL49_VfBY3LgWDqORPSM7K3LjX0OUHCtO-DkF286ztV_AsY-UUk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6h5kA5UChUmELZA-LmKLbXP3tso5TQJkFqUhFxWa131yVK8yMnQYETj8Az8iTMrB0jA4cKcdgoUnbs9WR2_M348wwhr3XLqDhWoWs8P3WZDzErj1LtgiOUylPa4ynmIfuDqHvNLsbhuGwHhO_CFPUhqoQb7gzrr3GDY0L6z13OIcDbcSIBmzcBUDZYBGELIqSrqpYUhAU22QdGHbhRwpM6reevR6rdqxqo9u2OtogcSrkCNWZF_4saQG3kZmlUHe7a-9X5AbndXWlBU5k2N-u0qb7-VgTyP6niEXlY4lp6WhjiY3LPzA_Jg35VFHZ1SPYR2BZ1oZ-Q6WAx__HtO1Yen2FTL0X7cjuZbWa0N5nCcrDaMu3A5OLVSgrYmrYXW3plbgrm7pxiCpmC48NMEhxqCMpA3hPt_0p70k6eL_Kn5Pq8M2p33bLxg6sYj0M3UWkr0q2E6STWWoVhmqjQxIFR2O5dekmmwdNkgLwyg0-KAqZ9nxtmEsOY8rLgiOzNF3PzjFCmU5UFygf1cJZIxpWUYUtqw4MoMiZ1SLz7i4Uqq6Jjc45bUYuOYoG6LXt2om7F1iFeJbksKoPcQeaNtaJKQOZTZNbFofgweCsuz4LxKDn7KLhDjqyZVRMZPofxue-Qk5rdVROw16rPw5ZDjneGKEp3tMIfAfjDShzStrZZiaUQoyk4lRSfRSCDED6-wLCLDuQEBoOxhAG4T0R-Ij6tZw6JrDne-brF8OL9EL49_1fBV-R-d9Tvid67weUx2bekHcspekH21vnGvARkuE5P7I7_CeSoVHE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hRkLlwE-hwhTKHhA3R7G9tnePNE0obRNQ04qIy2q9u4YojRM5CQqceASekSdhxnaMDBwqxGGjSNmx15PZ8TfjzzOEvDAdq-NYh671_MRlPsSsIkqMC45QaU8bTySYhxwMo5MrdjoOx1U7IHwXpqwPUSfccGcU_ho3uF2Y9M9dLiDA23IiAZu3AVC2WCg48vuOL-paUhAWFMk-MOrAjbjgTVrPX4_UuFe1UO2bLW0ROZRqCWpMy_4XDYDayu3C6ibcLe5X_XvkenulJU1l2l6vkrb--lsRyP-kivvkboVr6avSEB-QWzbbI3cGdVHY5R7ZRWBb1oV-SKbDefbj23esPD7Dpl6aDtRmMlvP6PlkCsvBasu0B5PLVyspYGvanW_ohf1YMncziilkCo4PM0lwqBEoA3lPdPAr7Ul7eT7PH5Grfu-ye-JWjR9czUQculwnnch0ODM8NkaHYcJ1aOPAamz3rjyeGvA0KSCv1OKTooAZ3xeWWW4Z014a7JOdbJ7Zx4Qyk-g00D6oRzCumNBKhR1lrAiiyNrEIfH2L5a6qoqOzTmuZSM6iiXqturZibqVG4d4teSirAxyA5mXhRXVAiqfIrMuDuX74Wt5dhSML_nRBykcsl-YWT2R4XMYX_gOOWzYXT0Be636Iuw45GBriLJyR0v8EYA_rMQh3cI2a7EEYjQNp1LyswxUEMLHFxjFogM1gcFgLGAA7pORz-Wn1cwhUWGON75uOTp9O4JvT_5V8Dm5_e64L8_fDM8OyG7B2SkoRU_Jzipf22cADFfJYbHhfwIZr1P1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-parametric+Maximum+Likelihood+Estimation+for+Cox+Regression+with+Subject-Specific+Measurement+Error&rft.jtitle=Scandinavian+journal+of+statistics&rft.au=WANG%2C+C.+Y.&rft.date=2008-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0303-6898&rft.eissn=1467-9469&rft.volume=35&rft.issue=4&rft.spage=613&rft.epage=628&rft_id=info:doi/10.1111%2Fj.1467-9469.2008.00605.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_KB3XT8BZ_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6898&client=summon