An Optimized Ex Vivo n–3 PUFA Supplementation Strategy for Primary Human Macrophages Shows That DHA Suppresses Prostaglandin E2 Formation

ABSTRACT Evidence suggests beneficial effects of long‐chain n–3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n–3 PUFA supplementation strategy. M2‐like macrophages were supple...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 69; no. 1; pp. e202400716 - n/a
Main Authors Kirchhoff, Rebecca, Kampschulte, Nadja, Rothweiler, Carina, Rohwer, Nadine, Weylandt, Karsten‐Henrich, Schebb, Nils Helge
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1613-4125
1613-4133
1613-4133
DOI10.1002/mnfr.202400716

Cover

Abstract ABSTRACT Evidence suggests beneficial effects of long‐chain n–3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n–3 PUFA supplementation strategy. M2‐like macrophages were supplemented for 2–3 days with 20–40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA‐preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n–3 PUFA <0.25 mM for the selection of donors of plasma as well as %n–6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n–3 and lower n–6 PUFAs. This was accompanied by a decrease of arachidonic acid‐derived oxylipins in a dose‐ and time‐dependent manner in favor of n–3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro‐inflammatory prostaglandins in the DHA‐supplemented cells, but no changes in cytokines. In vitro supplementation studies with n–3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n–3 PUFAs in primary human immune cells, offering an alternative for intervention studies. This presented ex vivo n–3 polyunsaturated fatty acid (PUFA) supplementation strategy is an important tool for the mechanistic investigation of n–3 PUFA mediated effects in human immune cells. Fatty acid (FA) pattern from monocytes derived from subjects with a low n–3 PUFA status was shifted toward one reflecting the pattern of subjects with a high n–3 PUFA status, accompanied by remarkable changes in the oxylipin profile. Lower levels of pro‐inflammatory prostaglandins were found in the supplemented macrophages, which may be one of the major mechanisms of how the anti‐inflammatory effect of n–3 PUFA is mediated.
AbstractList Evidence suggests beneficial effects of long-chain n-3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n-3 PUFA supplementation strategy. M2-like macrophages were supplemented for 2-3 days with 20-40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA-preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n-3 PUFA <0.25 mM for the selection of donors of plasma as well as %n-6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n-3 and lower n-6 PUFAs. This was accompanied by a decrease of arachidonic acid-derived oxylipins in a dose- and time-dependent manner in favor of n-3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro-inflammatory prostaglandins in the DHA-supplemented cells, but no changes in cytokines. In vitro supplementation studies with n-3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n-3 PUFAs in primary human immune cells, offering an alternative for intervention studies.Evidence suggests beneficial effects of long-chain n-3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n-3 PUFA supplementation strategy. M2-like macrophages were supplemented for 2-3 days with 20-40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA-preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n-3 PUFA <0.25 mM for the selection of donors of plasma as well as %n-6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n-3 and lower n-6 PUFAs. This was accompanied by a decrease of arachidonic acid-derived oxylipins in a dose- and time-dependent manner in favor of n-3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro-inflammatory prostaglandins in the DHA-supplemented cells, but no changes in cytokines. In vitro supplementation studies with n-3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n-3 PUFAs in primary human immune cells, offering an alternative for intervention studies.
Evidence suggests beneficial effects of long‐chain n –3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n –3 PUFA supplementation strategy. M2‐like macrophages were supplemented for 2–3 days with 20–40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA‐preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n –3 PUFA <0.25 mM for the selection of donors of plasma as well as % n –6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n –3 and lower n –6 PUFAs. This was accompanied by a decrease of arachidonic acid‐derived oxylipins in a dose‐ and time‐dependent manner in favor of n –3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro‐inflammatory prostaglandins in the DHA‐supplemented cells, but no changes in cytokines. In vitro supplementation studies with n –3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n –3 PUFAs in primary human immune cells, offering an alternative for intervention studies.
Evidence suggests beneficial effects of long-chain n-3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n-3 PUFA supplementation strategy. M2-like macrophages were supplemented for 2-3 days with 20-40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA-preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n-3 PUFA <0.25 mM for the selection of donors of plasma as well as %n-6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n-3 and lower n-6 PUFAs. This was accompanied by a decrease of arachidonic acid-derived oxylipins in a dose- and time-dependent manner in favor of n-3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro-inflammatory prostaglandins in the DHA-supplemented cells, but no changes in cytokines. In vitro supplementation studies with n-3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n-3 PUFAs in primary human immune cells, offering an alternative for intervention studies.
ABSTRACT Evidence suggests beneficial effects of long‐chain n–3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n–3 PUFA supplementation strategy. M2‐like macrophages were supplemented for 2–3 days with 20–40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA‐preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n–3 PUFA <0.25 mM for the selection of donors of plasma as well as %n–6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n–3 and lower n–6 PUFAs. This was accompanied by a decrease of arachidonic acid‐derived oxylipins in a dose‐ and time‐dependent manner in favor of n–3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro‐inflammatory prostaglandins in the DHA‐supplemented cells, but no changes in cytokines. In vitro supplementation studies with n–3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n–3 PUFAs in primary human immune cells, offering an alternative for intervention studies. This presented ex vivo n–3 polyunsaturated fatty acid (PUFA) supplementation strategy is an important tool for the mechanistic investigation of n–3 PUFA mediated effects in human immune cells. Fatty acid (FA) pattern from monocytes derived from subjects with a low n–3 PUFA status was shifted toward one reflecting the pattern of subjects with a high n–3 PUFA status, accompanied by remarkable changes in the oxylipin profile. Lower levels of pro‐inflammatory prostaglandins were found in the supplemented macrophages, which may be one of the major mechanisms of how the anti‐inflammatory effect of n–3 PUFA is mediated.
Evidence suggests beneficial effects of long‐chain n–3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n–3 PUFA supplementation strategy. M2‐like macrophages were supplemented for 2–3 days with 20–40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA‐preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n–3 PUFA <0.25 mM for the selection of donors of plasma as well as %n–6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n–3 and lower n–6 PUFAs. This was accompanied by a decrease of arachidonic acid‐derived oxylipins in a dose‐ and time‐dependent manner in favor of n–3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro‐inflammatory prostaglandins in the DHA‐supplemented cells, but no changes in cytokines. In vitro supplementation studies with n–3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n–3 PUFAs in primary human immune cells, offering an alternative for intervention studies.
Evidence suggests beneficial effects of long‐chain n –3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n –3 PUFA supplementation strategy. M2‐like macrophages were supplemented for 2–3 days with 20–40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA‐preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n –3 PUFA <0.25 mM for the selection of donors of plasma as well as % n –6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n –3 and lower n –6 PUFAs. This was accompanied by a decrease of arachidonic acid‐derived oxylipins in a dose‐ and time‐dependent manner in favor of n –3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro‐inflammatory prostaglandins in the DHA‐supplemented cells, but no changes in cytokines. In vitro supplementation studies with n –3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n –3 PUFAs in primary human immune cells, offering an alternative for intervention studies. This presented ex vivo n –3 polyunsaturated fatty acid (PUFA) supplementation strategy is an important tool for the mechanistic investigation of n –3 PUFA mediated effects in human immune cells. Fatty acid (FA) pattern from monocytes derived from subjects with a low n –3 PUFA status was shifted toward one reflecting the pattern of subjects with a high n –3 PUFA status, accompanied by remarkable changes in the oxylipin profile. Lower levels of pro‐inflammatory prostaglandins were found in the supplemented macrophages, which may be one of the major mechanisms of how the anti‐inflammatory effect of n –3 PUFA is mediated.
Author Kampschulte, Nadja
Rothweiler, Carina
Kirchhoff, Rebecca
Schebb, Nils Helge
Rohwer, Nadine
Weylandt, Karsten‐Henrich
AuthorAffiliation 3 Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Brandenburg Medical School and University of Potsdam Potsdam Germany
2 Division of Medicine, Department of Gastroenterology, Metabolism and Oncology University Hospital Ruppin‐Brandenburg, Brandenburg Medical School Neuruppin Germany
1 Chair of Food Chemistry, School of Mathematics and Natural Sciences University of Wuppertal Wuppertal Germany
4 Department of Molecular Toxicology German Institute of Human Nutrition Potsdam‐Rehbruecke, Nuthetal Germany
AuthorAffiliation_xml – name: 3 Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Brandenburg Medical School and University of Potsdam Potsdam Germany
– name: 4 Department of Molecular Toxicology German Institute of Human Nutrition Potsdam‐Rehbruecke, Nuthetal Germany
– name: 1 Chair of Food Chemistry, School of Mathematics and Natural Sciences University of Wuppertal Wuppertal Germany
– name: 2 Division of Medicine, Department of Gastroenterology, Metabolism and Oncology University Hospital Ruppin‐Brandenburg, Brandenburg Medical School Neuruppin Germany
Author_xml – sequence: 1
  givenname: Rebecca
  orcidid: 0009-0003-7196-9943
  surname: Kirchhoff
  fullname: Kirchhoff, Rebecca
  organization: University of Wuppertal
– sequence: 2
  givenname: Nadja
  orcidid: 0000-0002-6253-9939
  surname: Kampschulte
  fullname: Kampschulte, Nadja
  organization: University of Wuppertal
– sequence: 3
  givenname: Carina
  surname: Rothweiler
  fullname: Rothweiler, Carina
  organization: University of Wuppertal
– sequence: 4
  givenname: Nadine
  orcidid: 0000-0001-6170-1327
  surname: Rohwer
  fullname: Rohwer, Nadine
  organization: German Institute of Human Nutrition
– sequence: 5
  givenname: Karsten‐Henrich
  orcidid: 0000-0002-5361-4327
  surname: Weylandt
  fullname: Weylandt, Karsten‐Henrich
  organization: University Hospital Ruppin‐Brandenburg, Brandenburg Medical School
– sequence: 6
  givenname: Nils Helge
  orcidid: 0000-0003-1299-6629
  surname: Schebb
  fullname: Schebb, Nils Helge
  email: nils@schebb-web.de
  organization: University of Wuppertal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39676434$$D View this record in MEDLINE/PubMed
BookMark eNqNks9v0zAUxyM0xH7AlSOyxIVLi-1nO8kJVaNdkTZW0Y2r5SRO6ymxg51sdCfuHPkP-Uvw6Khgl3Gypfd5X7-vv-8w2bPO6iR5SfCYYEzftrb2Y4opwzgl4klyQASBESMAe7s75fvJYQhXGAOhDJ4l-5CLVDBgB8n3iUXnXW9ac6srNP2KPptrh-zPbz8ALS5nE7Qcuq7Rrba96o2zaNl71evVBtXOo4U3rfIbNB9aZdGZKr3r1mqlA1qu3U1AF2vVo_fzrYrXIcTKwrvQq1WjbGUsmlI0c779rf08eVqrJugX9-dRcjmbXhzPR6fnJx-OJ6ejkuUpHeVVWoqCK8oLXitdZ5QSwLQGUZKUQ80VxkQxjusyJ3lecaCgikIRonSmoYCj5N1WtxuKVldl9OZVI7utGemUkf9WrFnLlbuWhKSYZZRHhTf3Ct59GXToZWtCqZtoSrshSCCCZykIIP-BMpFxkgoR0dcP0Cs3eBu_IlKc4hheCpF69ff0u7H_ZBqB8RaIaYTgdb1DCJZ3SyPvlkbuliY2sAcNpdmmHd2b5tG2G9PozSOPyLOPs08spxR-Ac4o1xw
CitedBy_id crossref_primary_10_1016_j_jlr_2024_100694
Cites_doi 10.1139/H07-034
10.1093/ajcn/86.1.74
10.1016/j.bbalip.2020.158702
10.1007/s10741-023-10327-0
10.1016/j.plefa.2017.06.007
10.1039/D0FO01976C
10.1016/S0753-3322(02)00253-6
10.1093/jn/121.4.547
10.1016/j.atherosclerosis.2017.05.007
10.1093/ajcn/62.1.68
10.1016/j.freeradbiomed.2009.05.032
10.1016/j.plefa.2015.01.001
10.1093/jn/126.12.3032
10.1161/JAHA.113.000513
10.1177/0148607115595980
10.1017/S0007114509231758
10.3389/fphar.2019.00745
10.1093/ajcn/78.3.376
10.3945/ajcn.112.041343
10.3390/molecules29081745
10.1016/j.ypmed.2004.02.030
10.3390/nu9050424
10.1016/j.plefa.2017.03.008
10.1007/s00216-021-03525-y
10.1111/j.1432-1033.1990.tb19113.x
10.1371/journal.pone.0184470
10.1021/cr200084z
10.1016/j.jlr.2021.100088
10.1016/j.plefa.2013.12.008
10.1073/pnas.71.10.3824
10.1007/s11745-997-0043-y
10.1096/fj.202002340RR
10.1016/j.plefa.2014.10.002
10.1016/S0021-9258(18)41766-8
10.1007/s00216-022-04489-3
10.1172/JCI115110
10.1093/carcin/bgr049
10.1161/01.ATV.0000057393.97337.AE
10.1093/ajcn/nqz097
10.1194/jlr.R900004-JLR200
10.3945/an.114.007732
10.1016/S0022-2275(20)37865-2
10.3389/fphar.2019.00169
10.1016/j.plefa.2022.102418
10.1017/jns.2021.73
10.1016/0005-2760(93)90085-N
10.1016/j.jlr.2024.100548
10.1056/NEJM198902023200501
10.1016/j.plefa.2009.01.004
10.1002/lipd.12355
10.1016/0003-2697(85)90442-7
10.1016/j.prostaglandins.2014.05.002
10.1016/j.atherosclerosis.2012.12.036
10.1016/j.intimp.2022.109104
10.1016/j.aca.2017.11.002
10.1039/C9AN01880H
10.1017/S0029665107005472
10.1016/j.plefa.2019.01.002
10.3389/fphar.2022.838782
10.1194/jlr.M006007
10.1016/j.plefa.2016.10.005
10.1152/ajpheart.00452.2014
10.1038/ejcn.2010.239
10.1016/j.bbalip.2014.10.002
10.1016/j.bbalip.2017.04.001
10.1093/ajcn/64.4.577
10.1016/j.plipres.2007.12.001
10.1093/ajcn/63.1.116
10.1016/j.jlr.2024.100694
10.3945/ajcn.2010.29457
10.1096/fj.06-6250fje
10.1016/j.talanta.2020.121074
10.1007/BF02540830
10.1079/NRR2005113
10.1016/j.biopha.2006.07.080
10.1007/BF02536034
10.1093/ajcn/71.1.179S
10.1016/j.plefa.2017.01.012
10.1016/j.plipres.2016.05.001
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH
2024 The Author(s). Molecular Nutrition & Food Research published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Molecular Nutrition & Food Research published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7T5
7T7
7TK
8FD
C1K
FR3
H94
K9.
NAPCQ
P64
7X8
7S9
L.6
5PM
DOI 10.1002/mnfr.202400716
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Nursing & Allied Health Premium

AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage n/a
ExternalDocumentID PMC11704825
39676434
10_1002_mnfr_202400716
MNFR4922
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  funderid: SCHE 1801
– fundername: Friedrich‐Ebert‐Stiftung
– fundername: PhD fellowship
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: SCHE 1801
– fundername: Friedrich-Ebert-Stiftung
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7QP
7T5
7T7
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
NAPCQ
P64
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4972-9d7c6b5a25b5faef8221302f36c1753f5a001a450fc9199d5323abba11ae8e3b3
IEDL.DBID 24P
ISSN 1613-4125
1613-4133
IngestDate Thu Aug 21 18:28:23 EDT 2025
Thu Sep 04 19:38:10 EDT 2025
Thu Sep 04 16:52:08 EDT 2025
Wed Aug 13 08:40:09 EDT 2025
Wed Feb 19 02:02:04 EST 2025
Thu Apr 24 23:06:36 EDT 2025
Tue Jul 01 04:01:56 EDT 2025
Wed Jan 22 17:11:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords arachidonic acid cascade
lipid mediators
oxylipins
fatty acids
inflammation
Language English
License Attribution-NonCommercial
2024 The Author(s). Molecular Nutrition & Food Research published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4972-9d7c6b5a25b5faef8221302f36c1753f5a001a450fc9199d5323abba11ae8e3b3
Notes This work was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) (SCHE 1801) to N.H.S. and a Ph.D. fellowship from the Friedrich‐Ebert‐Stiftung to R.K.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding: This work was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) (SCHE 1801) to N.H.S. and a Ph.D. fellowship from the Friedrich‐Ebert‐Stiftung to R.K.
ORCID 0000-0003-1299-6629
0009-0003-7196-9943
0000-0001-6170-1327
0000-0002-5361-4327
0000-0002-6253-9939
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202400716
PMID 39676434
PQID 3152012473
PQPubID 2045123
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11704825
proquest_miscellaneous_3165873631
proquest_miscellaneous_3146851766
proquest_journals_3152012473
pubmed_primary_39676434
crossref_primary_10_1002_mnfr_202400716
crossref_citationtrail_10_1002_mnfr_202400716
wiley_primary_10_1002_mnfr_202400716_MNFR4922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol Nutr Food Res
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1984; 61
1995; 30
2009; 47
2015; 39
2018; 1037
2013; 2
2009; 80
2017; 1862
1981; 104
2019; 10
2002; 56
2024
2007; 32
1989; 49
2014; 113–115
2017; 9
2011; 111
2012; 96
2022; 179
2021; 35
2006; 60
1995; 62
2006; 20
2023; 28
2009; 50
1991; 87
2004; 39
2018; 136
2020; 217
1996; 63
2011; 65
2024; 65
2016; 115
2017; 120
2023; 415
2017; 121
2007; 66
2024; 29
1983; 24
2020; 1865
1996; 64
1993; 1169
2019; 110
2022; 111
2015; 6
2014; 91
2014; 90
2015; 95
1974; 71
1992; 267
2013; 227
2015; 1851
2000; 71
2006; 19
2011; 32
2020; 145
1996; 126
2019; 142
2003; 78
1991; 121
2021; 10
2021; 12
2014; 307
1997; 32
2021; 413
2017; 12
1989; 320
2008; 47
2022; 57
2022; 13
2016; 63
1990; 191
2009; 102
2017; 262
2010; 92
2007; 86
1985; 150
2021; 62
2010; 51
2003; 23
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
Grossi I. M. (e_1_2_11_50_1) 1989; 49
O'Flaherty J. T. (e_1_2_11_48_1) 1981; 104
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 96
  start-page: 748
  year: 2012
  end-page: 758
  article-title: Incorporation of Eicosapentaenoic and Docosahexaenoic Acids Into Lipid Pools When Given as Supplements Providing Doses Equivalent to Typical Intakes of Oily Fish
  publication-title: American Journal of Clinical Nutrition
– volume: 56
  start-page: 365
  year: 2002
  end-page: 379
  article-title: The Importance of the Ratio of Omega‐6/Omega‐3 Essential Fatty Acids
  publication-title: Biomedicine & Pharmacotherapy
– volume: 307
  start-page: H1547
  year: 2014
  end-page: H1558
  article-title: Resolvin D1 Reverses Reactivity and Ca 2+ Sensitivity Induced by ET‐1, TNF‐α, and IL‐6 in the Human Pulmonary Artery
  publication-title: American Journal of Physiology – Heart and Circulatory Physiology
– volume: 19
  start-page: 26
  year: 2006
  end-page: 52
  article-title: Dietary α‐Linolenic Acid and Health‐Related Outcomes: A Metabolic Perspective
  publication-title: Nutrition Research Reviews
– volume: 191
  start-page: 221
  year: 1990
  end-page: 227
  article-title: Subcellular Distribution of Lipoxygenase Products in Rabbit Reticulocyte Membranes
  publication-title: European Journal of Biochemistry
– volume: 10
  year: 2019
  article-title: Development of an Optimized LC‐MS Method for the Detection of Specialized Pro‐Resolving Mediators in Biological Samples
  publication-title: Frontiers in Pharmacology
– volume: 57
  start-page: 267
  year: 2022
  end-page: 287
  article-title: α‐Linolenic Acid Interconversion Is Sufficient as a Source of Longer Chain ω‐3 Polyunsaturated Fatty Acids in Humans: An Opinion
  publication-title: Lipids
– volume: 110
  start-page: 823
  year: 2019
  end-page: 831
  article-title: Compound‐Specific Isotope Analysis Reveals no Retroconversion of DHA to EPA but Substantial Conversion of EPA to DHA Following Supplementation: A Randomized Control Trial
  publication-title: American Journal of Clinical Nutrition
– volume: 113–115
  start-page: 21
  year: 2014
  end-page: 29
  article-title: Comparison of the Effects of Long‐Chain Omega‐3 Fatty Acid Supplementation on Plasma Levels of Free and Esterified Oxylipins
  publication-title: Prostaglandins Other Lipid Mediators
– volume: 66
  start-page: 237
  year: 2007
  end-page: 259
  article-title: Differential Immunomodulation With Long‐Chain n ‐3 PUFA in Health and Chronic Disease
  publication-title: Proceedings of the Nutrition Society
– volume: 415
  start-page: 913
  year: 2023
  end-page: 933
  article-title: Development of a Quantitative Proteomics Approach for Cyclooxygenases and Lipoxygenases in Parallel to Quantitative Oxylipin Analysis Allowing the Comprehensive Investigation of the Arachidonic Acid Cascade
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 102
  start-page: 497
  year: 2009
  end-page: 501
  article-title: In Vitro Fatty Acid Enrichment of Macrophages Alters Inflammatory Response and Net Cholesterol Accumulation
  publication-title: British Journal of Nutrition
– volume: 32
  start-page: 897
  year: 2011
  end-page: 903
  article-title: Suppressed Liver Tumorigenesis in Fat‐1 Mice With Elevated Omega‐3 Fatty Acids Is Associated With Increased Omega‐3 Derived Lipid Mediators and Reduced TNF‐α
  publication-title: Carcinogenesis
– volume: 217
  year: 2020
  article-title: Stability of Oxylipins During Plasma Generation and Long‐Term Storage
  publication-title: Talanta
– volume: 62
  year: 2021
  article-title: Analysis of 12/15‐Lipoxygenase Metabolism of EPA and DHA With Special Attention to Authentication of Docosatrienes
  publication-title: Journal of Lipid Research
– volume: 86
  start-page: 74
  year: 2007
  end-page: 81
  article-title: Comparison Between Plasma and Erythrocyte Fatty Acid Content as Biomarkers of Fatty Acid Intake in US Women
  publication-title: American Journal of Clinical Nutrition
– volume: 9
  start-page: 424
  year: 2017
  article-title: A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp‐1 Macrophages
  publication-title: Nutrients
– volume: 1169
  start-page: 80
  year: 1993
  end-page: 89
  article-title: Overexpression, Purification and Characterization of Human Recombinant 15‐Lipoxygenase
  publication-title: Biochimica et Biophysica Acta – Lipids and Lipid Metabolism
– volume: 121
  start-page: 547
  year: 1991
  end-page: 555
  article-title: Oral (n‐3) Fatty Acid Supplementation Suppresses Cytokine Production and Lymphocyte Proliferation: Comparison Between Young and Older Women
  publication-title: Journal of Nutrition
– volume: 115
  start-page: 12
  year: 2016
  end-page: 23
  article-title: Effects of Docosahexaenoic Acid Supplementation on PUFA Levels in Red Blood Cells and Plasma
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 179
  year: 2022
  article-title: Red Blood Cell Fatty Acid Patterns From 7 Countries: Focus on the Omega‐3 Index
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 1862
  start-page: 666
  year: 2017
  end-page: 675
  article-title: Mammalian ALOX15 Orthologs Exhibit Pronounced Dual Positional Specificity With Docosahexaenoic Acid
  publication-title: Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids
– volume: 65
  start-page: 247
  year: 2011
  end-page: 254
  article-title: Enhanced Increase of Omega‐3 Index in Response to Long‐Term n‐3 Fatty Acid Supplementation From Triacylglycerides Versus Ethyl Esters
  publication-title: European Journal of Clinical Nutrition
– volume: 104
  start-page: 55
  year: 1981
  end-page: 62
  article-title: Neutrophil‐aggregating Activity of Monohydroxyeicosatetraenoic Acids
  publication-title: American Journal of Pathology
– volume: 111
  year: 2022
  article-title: Efficacy of the Omega‐3 Fatty Acids Supplementation on Inflammatory Biomarkers: An Umbrella Meta‐Analysis
  publication-title: International Immunopharmacology
– volume: 87
  start-page: 1139
  year: 1991
  end-page: 1145
  article-title: Immunocytochemical Localization of Arachidonate 15‐Lipoxygenase in Erythrocytes, Leukocytes, and Airway Cells
  publication-title: Journal of Clinical Investigation
– volume: 65
  year: 2024
  article-title: Dietary Docosahexaenoic Acid (DHA) Downregulates Liver DHA Synthesis by Inhibiting Eicosapentaenoic Acid Elongation
  publication-title: Journal of Lipid Research
– volume: 262
  start-page: 51
  year: 2017
  end-page: 54
  article-title: The Omega‐3 Index and Relative Risk for Coronary Heart Disease Mortality: Estimation From 10 Cohort Studies
  publication-title: Atherosclerosis
– volume: 267
  start-page: 19233
  year: 1992
  end-page: 19241
  article-title: Metabolism of 5(S)‐Hydroxy‐6,8,11,14‐Eicosatetraenoic Acid and Other 5(S)‐Hydroxyeicosanoids by a Specific Dehydrogenase in human Polymorphonuclear Leukocytes
  publication-title: Journal of Biological Chemistry
– volume: 13
  year: 2022
  article-title: Formation, Signaling and Occurrence of Specialized Pro‐Resolving Lipid Mediators—What is the Evidence so far?
  publication-title: Frontiers in Pharmacology
– volume: 24
  start-page: 1419
  year: 1983
  end-page: 1428
  article-title: Characterization of 11‐HETE and 15‐HETE, Together With Prostacyclin, as Major Products of the Cyclooxygenase Pathway in Cultured Rat Aorta Smooth Muscle Cells
  publication-title: Journal of Lipid Research
– volume: 20
  start-page: 2537
  year: 2006
  end-page: 2539
  article-title: Docosahexaenoic Acid (DHA) Blunts Liver Injury by Conversion to Protective Lipid Mediators: Protectin D1 and 17S‐Hydroxy‐DHA
  publication-title: The FASEB Journal
– volume: 39
  start-page: 212
  year: 2004
  end-page: 220
  article-title: The Omega‐3 Index: A New Risk Factor for Death From Coronary Heart Disease?
  publication-title: Preventive Medicine
– volume: 64
  start-page: 577
  year: 1996
  end-page: 586
  article-title: Retroconversion and Metabolism of [13C]22:6n−3 in Humans and Rats After Intake of a Single Dose of [13C]22:6n−3‐Triacylglycerols
  publication-title: American Journal of Clinical Nutrition
– volume: 126
  start-page: 3032
  year: 1996
  end-page: 3039
  article-title: Supplementation With an Algae Source of Docosahexaenoic Acid Increases (n‐3) Fatty Acid Status and Alters Selected Risk Factors for Heart Disease in Vegetarian Subjects
  publication-title: Journal of Nutrition
– volume: 80
  start-page: 85
  year: 2009
  end-page: 91
  article-title: α‐Linolenic Acid Supplementation and Conversion to n‐3 Long‐chain Polyunsaturated Fatty Acids in Humans
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 413
  start-page: 5439
  year: 2021
  end-page: 5451
  article-title: Rapid Quantification of Fatty Acids in Plant Oils and Biological Samples by LC‐MS
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 78
  start-page: 376
  year: 2003
  end-page: 382
  article-title: Prostaglandin E2 Production and T Cell Function After Fish‐Oil Supplementation: Response to Antioxidant Cosupplementation
  publication-title: American Journal of Clinical Nutrition
– volume: 111
  start-page: 5944
  year: 2011
  end-page: 5972
  article-title: Free Radical Lipid Peroxidation: Mechanisms and Analysis
  publication-title: Chemical Reviews
– volume: 227
  start-page: 289
  year: 2013
  end-page: 296
  article-title: Eicosapentaenoic Acid Suppresses Palmitate‐Induced Cytokine Production by Modulating Long‐Chain Acyl‐CoA Synthetase 1 Expression in human THP‐1 Macrophages
  publication-title: Atherosclerosis
– volume: 2
  start-page: e000513
  year: 2013
  end-page: e000513
  article-title: Determinants of Erythrocyte Omega‐3 Fatty Acid Content in Response to Fish Oil Supplementation: A Dose–Response Randomized Controlled Trial
  publication-title: Journal of the American Heart Association
– volume: 121
  start-page: 76
  year: 2017
  end-page: 87
  article-title: Effect of DHA Supplementation on Oxylipin Levels in Plasma and Immune Cell Stimulated Blood
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 1037
  start-page: 63
  year: 2018
  end-page: 74
  article-title: Development of an LC‐ESI(‐)‐MS/MS Method for the Simultaneous Quantification of 35 Isoprostanes and Isofurans Derived From the Major n3‐ and n6‐PUFAs
  publication-title: Analytica Chimica Acta
– volume: 145
  start-page: 2378
  year: 2020
  end-page: 2388
  article-title: Clinical Blood Sampling for Oxylipin Analysis—Effect of Storage and Pneumatic Tube Transport of Blood on Free and Total Oxylipin Profile in Human Plasma and Serum
  publication-title: Analyst
– volume: 150
  start-page: 76
  year: 1985
  end-page: 85
  article-title: Measurement of Protein Using Bicinchoninic Acid
  publication-title: Analytical Biochemistry
– volume: 35
  year: 2021
  article-title: Omega‐3 Fatty Acids Protect from Colitis via an Alox15‐derived Eicosanoid
  publication-title: The FASEB Journal
– year: 2024
  publication-title: Journal of Lipid Research
– volume: 47
  start-page: 77
  year: 2008
  end-page: 106
  article-title: A Critique of Paradoxes in Current Advice on Dietary Lipids
  publication-title: Progress in Lipid Research
– volume: 91
  start-page: 235
  year: 2014
  end-page: 241
  article-title: Determining the Fatty Acid Composition in Plasma and Tissues as Fatty Acid Methyl Esters Using Gas Chromatography—A Comparison of Different Derivatization and Extraction Procedures
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 71
  start-page: 3824
  year: 1974
  end-page: 3828
  article-title: Prostaglandin Endoperoxides. A New Concept Concerning the Mode of Action and Release of Prostaglandins
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 60
  start-page: 502
  year: 2006
  end-page: 507
  article-title: Evolutionary Aspects of Diet, the Omega‐6/Omega‐3 Ratio and Genetic Variation: Nutritional Implications for Chronic Diseases
  publication-title: Biomedicine & Pharmacotherapy
– volume: 47
  start-page: 469
  year: 2009
  end-page: 484
  article-title: Lipid Peroxidation: Physiological Levels and Dual Biological Effects
  publication-title: Free Radical Biology & Medicine
– volume: 10
  year: 2019
  article-title: Resolvin D5 Inhibits Neuropathic and Inflammatory Pain in Male But Not Female Mice: Distinct Actions of D‐Series Resolvins in Chemotherapy‐Induced Peripheral Neuropathy
  publication-title: Frontiers in Pharmacology
– volume: 23
  start-page: 151
  year: 2003
  article-title: Omega‐3 Fatty Acids and Cardiovascular Disease
  publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology
– volume: 61
  start-page: 1908
  year: 1984
  end-page: 1917
  article-title: Lipid Oxidation: Mechanisms, Products and Biological Significance
  publication-title: Journal of the American Oil Chemists Society
– volume: 10
  year: 2021
  article-title: Fasting, Non‐fasting and Postprandial Triglycerides for Screening Cardiometabolic Risk
  publication-title: Journal of Nutritional Science
– volume: 142
  start-page: 4
  year: 2019
  end-page: 10
  article-title: Association of Reported Fish Intake and Supplementation Status With the Omega‐3 Index
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 12
  start-page: 30
  year: 2021
  end-page: 40
  article-title: The Effects of Low‐Ratio n‐6/n‐3 PUFA on Biomarkers of Inflammation: A Systematic Review and Meta‐Analysis
  publication-title: Food & Function
– volume: 1865
  year: 2020
  article-title: Long‐Term Stimulation of Toll‐Like Receptor‐2 and ‐4 Upregulates 5‐LO and 15‐LO‐2 Expression Thereby Inducing a Lipid Mediator Shift in Human Monocyte‐Derived Macrophages
  publication-title: Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids
– volume: 71
  start-page: 179S
  year: 2000
  end-page: 188S
  article-title: Polyunsaturated Fatty Acids in the Food Chain in the United States
  publication-title: American Journal of Clinical Nutrition
– volume: 90
  start-page: 27
  year: 2014
  end-page: 37
  article-title: Modulation of Blood Oxylipin Levels by Long‐Chain Omega‐3 Fatty Acid Supplementation in Hyper‐ and Normolipidemic Men
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 136
  start-page: 15
  year: 2018
  end-page: 21
  article-title: Dynamic Interactions of n‐3 and n‐6 Fatty Acid Nutrients
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 12
  year: 2017
  article-title: Modulation of the Endogenous Omega‐3 Fatty Acid and Oxylipin Profile In Vivo—A Comparison of the Fat‐1 Transgenic Mouse With C57BL/6 Wildtype Mice on an Omega‐3 Fatty Acid Enriched Diet
  publication-title: PLoS ONE
– volume: 95
  start-page: 47
  year: 2015
  end-page: 55
  article-title: The Effect of Modifying Dietary LA and ALA Intakes on Omega‐3 Long Chain Polyunsaturated Fatty Acid (n‐3 LCPUFA) Status in Human Adults: A Systematic Review and Commentary
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 32
  start-page: 341
  year: 1997
  end-page: 345
  article-title: Dietary Docosahexaenoic Acid as a Source of Eicosapentaenoic Acid in Vegetarians and Omnivores
  publication-title: Lipids
– volume: 39
  start-page: 18S
  year: 2015
  article-title: Functional Roles of Fatty Acids and Their Effects on Human Health
  publication-title: Journal of Parenteral and Enteral Nutrition
– volume: 32
  start-page: 619
  year: 2007
  end-page: 634
  article-title: Extremely Limited Synthesis of Long Chain Polyunsaturates in Adults: Implications for Their Dietary Essentiality and Use as Supplements
  publication-title: Applied Physiology, Nutrition, and Metabolism
– volume: 49
  start-page: 1029
  year: 1989
  end-page: 1037
  article-title: Bidirectional Control of Membrane Expression and/or Activation of the Tumor Cell IRGpIIb/IIIa Receptor and Tumor Cell Adhesion by Lipoxygenase Products of Arachidonic Acid and Linoleic Acid
  publication-title: Cancer Research
– volume: 6
  start-page: 513
  year: 2015
  end-page: 540
  article-title: Advances in Our Understanding of Oxylipins Derived From Dietary PUFAs
  publication-title: Advances in Nutrition
– volume: 30
  start-page: 277
  year: 1995
  end-page: 290
  article-title: Mechanisms of Free Radical Oxidation of Unsaturated Lipids
  publication-title: Lipids
– volume: 29
  start-page: 1745
  year: 2024
  article-title: Sterol Derivatives Specifically Increase Anti‐Inflammatory Oxylipin Formation in M2‐Like Macrophages by LXR‐Mediated Induction of 15‐LOX
  publication-title: Molecules (Basel, Switzerland)
– volume: 92
  start-page: 1040
  year: 2010
  end-page: 1051
  article-title: Dietary Intake and Status of n–3 Polyunsaturated Fatty Acids in a Population of Fish‐Eating and Non‐Fish‐Eating Meat‐Eaters, Vegetarians, and Vegans and the Precursor‐Product Ratio of α‐Linolenic Acid to Long‐Chain n–3 Polyunsaturated Fatty Acids: Results From the EPIC‐Norfolk Cohort
  publication-title: American Journal of Clinical Nutrition
– volume: 120
  start-page: 8
  year: 2017
  end-page: 14
  article-title: Supplementation With High‐Dose Docosahexaenoic Acid Increases the Omega‐3 Index More Than High‐Dose Eicosapentaenoic Acid
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 63
  start-page: 132
  year: 2016
  end-page: 152
  article-title: Global Survey of the Omega‐3 Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid in the Blood Stream of Healthy Adults
  publication-title: Progress in Lipid Research
– volume: 320
  start-page: 265
  year: 1989
  end-page: 271
  article-title: The Effect of Dietary Supplementation With n–3 Polyunsaturated Fatty Acids on the Synthesis of Interleukin‐1 and Tumor Necrosis Factor by Mononuclear Cells
  publication-title: New England Journal of Medicine
– volume: 62
  start-page: 68
  year: 1995
  end-page: 73
  article-title: Incorporation of Dietary n‐3 Fatty Acids Into the Fatty Acids of human Adipose Tissue and Plasma Lipid Classes
  publication-title: American Journal of Clinical Nutrition
– volume: 1851
  start-page: 308
  year: 2015
  end-page: 330
  article-title: Mammalian Lipoxygenases and Their Biological Relevance
  publication-title: Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids
– volume: 63
  start-page: 116
  year: 1996
  end-page: 122
  article-title: The Effect on Human Tumor Necrosis Factor Alpha and Interleukin 1 Beta Production of Diets Enriched in n‐3 Fatty Acids From Vegetable Oil or Fish Oil
  publication-title: American Journal of Clinical Nutrition
– volume: 28
  start-page: 1417
  year: 2023
  end-page: 1425
  article-title: Does Omega‐3 Supplementation Improve the Inflammatory Profile of Patients With Heart Failure? A Systematic Review and Meta‐Analysis
  publication-title: Cardiac Failure Review
– volume: 50
  start-page: 1015
  year: 2009
  end-page: 1038
  article-title: Thematic Review Series: Proteomics. An Integrated Omics Analysis of Eicosanoid Biology
  publication-title: Journal of Lipid Research
– volume: 51
  start-page: 3481
  year: 2010
  article-title: Naturally Occurring Monoepoxides of Eicosapentaenoic Acid and Docosahexaenoic Acid Are Bioactive Antihyperalgesic Lipids
  publication-title: Journal of Lipid Research
– ident: e_1_2_11_5_1
  doi: 10.1139/H07-034
– ident: e_1_2_11_55_1
  doi: 10.1093/ajcn/86.1.74
– ident: e_1_2_11_27_1
  doi: 10.1016/j.bbalip.2020.158702
– ident: e_1_2_11_14_1
  doi: 10.1007/s10741-023-10327-0
– ident: e_1_2_11_65_1
  doi: 10.1016/j.plefa.2017.06.007
– ident: e_1_2_11_12_1
  doi: 10.1039/D0FO01976C
– volume: 49
  start-page: 1029
  year: 1989
  ident: e_1_2_11_50_1
  article-title: Bidirectional Control of Membrane Expression and/or Activation of the Tumor Cell IRGpIIb/IIIa Receptor and Tumor Cell Adhesion by Lipoxygenase Products of Arachidonic Acid and Linoleic Acid
  publication-title: Cancer Research
– ident: e_1_2_11_9_1
  doi: 10.1016/S0753-3322(02)00253-6
– ident: e_1_2_11_81_1
  doi: 10.1093/jn/121.4.547
– ident: e_1_2_11_37_1
  doi: 10.1016/j.atherosclerosis.2017.05.007
– ident: e_1_2_11_42_1
  doi: 10.1093/ajcn/62.1.68
– ident: e_1_2_11_18_1
  doi: 10.1016/j.freeradbiomed.2009.05.032
– ident: e_1_2_11_6_1
  doi: 10.1016/j.plefa.2015.01.001
– ident: e_1_2_11_64_1
  doi: 10.1093/jn/126.12.3032
– ident: e_1_2_11_24_1
  doi: 10.1161/JAHA.113.000513
– ident: e_1_2_11_15_1
  doi: 10.1177/0148607115595980
– ident: e_1_2_11_78_1
  doi: 10.1017/S0007114509231758
– ident: e_1_2_11_21_1
  doi: 10.3389/fphar.2019.00745
– ident: e_1_2_11_82_1
  doi: 10.1093/ajcn/78.3.376
– ident: e_1_2_11_43_1
  doi: 10.3945/ajcn.112.041343
– ident: e_1_2_11_28_1
  doi: 10.3390/molecules29081745
– ident: e_1_2_11_39_1
  doi: 10.1016/j.ypmed.2004.02.030
– ident: e_1_2_11_76_1
  doi: 10.3390/nu9050424
– ident: e_1_2_11_63_1
  doi: 10.1016/j.plefa.2017.03.008
– ident: e_1_2_11_35_1
  doi: 10.1007/s00216-021-03525-y
– ident: e_1_2_11_54_1
  doi: 10.1111/j.1432-1033.1990.tb19113.x
– ident: e_1_2_11_41_1
  doi: 10.1371/journal.pone.0184470
– ident: e_1_2_11_53_1
  doi: 10.1021/cr200084z
– ident: e_1_2_11_70_1
  doi: 10.1016/j.jlr.2021.100088
– ident: e_1_2_11_67_1
  doi: 10.1016/j.plefa.2013.12.008
– ident: e_1_2_11_49_1
  doi: 10.1073/pnas.71.10.3824
– ident: e_1_2_11_61_1
  doi: 10.1007/s11745-997-0043-y
– ident: e_1_2_11_20_1
  doi: 10.1096/fj.202002340RR
– ident: e_1_2_11_36_1
  doi: 10.1016/j.plefa.2014.10.002
– ident: e_1_2_11_47_1
  doi: 10.1016/S0021-9258(18)41766-8
– ident: e_1_2_11_32_1
  doi: 10.1007/s00216-022-04489-3
– ident: e_1_2_11_51_1
  doi: 10.1172/JCI115110
– ident: e_1_2_11_72_1
  doi: 10.1093/carcin/bgr049
– ident: e_1_2_11_38_1
  doi: 10.1161/01.ATV.0000057393.97337.AE
– ident: e_1_2_11_57_1
  doi: 10.1093/ajcn/nqz097
– ident: e_1_2_11_16_1
  doi: 10.1194/jlr.R900004-JLR200
– ident: e_1_2_11_19_1
  doi: 10.3945/an.114.007732
– ident: e_1_2_11_52_1
  doi: 10.1016/S0022-2275(20)37865-2
– ident: e_1_2_11_31_1
  doi: 10.3389/fphar.2019.00169
– ident: e_1_2_11_45_1
  doi: 10.1016/j.plefa.2022.102418
– ident: e_1_2_11_56_1
  doi: 10.1017/jns.2021.73
– ident: e_1_2_11_69_1
  doi: 10.1016/0005-2760(93)90085-N
– ident: e_1_2_11_62_1
  doi: 10.1016/j.jlr.2024.100548
– ident: e_1_2_11_79_1
  doi: 10.1056/NEJM198902023200501
– ident: e_1_2_11_4_1
  doi: 10.1016/j.plefa.2009.01.004
– volume: 104
  start-page: 55
  year: 1981
  ident: e_1_2_11_48_1
  article-title: Neutrophil‐aggregating Activity of Monohydroxyeicosatetraenoic Acids
  publication-title: American Journal of Pathology
– ident: e_1_2_11_7_1
  doi: 10.1002/lipd.12355
– ident: e_1_2_11_33_1
  doi: 10.1016/0003-2697(85)90442-7
– ident: e_1_2_11_66_1
  doi: 10.1016/j.prostaglandins.2014.05.002
– ident: e_1_2_11_77_1
  doi: 10.1016/j.atherosclerosis.2012.12.036
– ident: e_1_2_11_13_1
  doi: 10.1016/j.intimp.2022.109104
– ident: e_1_2_11_29_1
  doi: 10.1016/j.aca.2017.11.002
– ident: e_1_2_11_26_1
  doi: 10.1039/C9AN01880H
– ident: e_1_2_11_25_1
  doi: 10.1017/S0029665107005472
– ident: e_1_2_11_40_1
  doi: 10.1016/j.plefa.2019.01.002
– ident: e_1_2_11_71_1
  doi: 10.3389/fphar.2022.838782
– ident: e_1_2_11_74_1
  doi: 10.1194/jlr.M006007
– ident: e_1_2_11_22_1
  doi: 10.1016/j.plefa.2016.10.005
– ident: e_1_2_11_75_1
  doi: 10.1152/ajpheart.00452.2014
– ident: e_1_2_11_23_1
  doi: 10.1038/ejcn.2010.239
– ident: e_1_2_11_17_1
  doi: 10.1016/j.bbalip.2014.10.002
– ident: e_1_2_11_68_1
  doi: 10.1016/j.bbalip.2017.04.001
– ident: e_1_2_11_60_1
  doi: 10.1093/ajcn/64.4.577
– ident: e_1_2_11_11_1
  doi: 10.1016/j.plipres.2007.12.001
– ident: e_1_2_11_80_1
  doi: 10.1093/ajcn/63.1.116
– ident: e_1_2_11_34_1
  doi: 10.1016/j.jlr.2024.100694
– ident: e_1_2_11_3_1
  doi: 10.3945/ajcn.2010.29457
– ident: e_1_2_11_73_1
  doi: 10.1096/fj.06-6250fje
– ident: e_1_2_11_30_1
  doi: 10.1016/j.talanta.2020.121074
– ident: e_1_2_11_59_1
  doi: 10.1007/BF02540830
– ident: e_1_2_11_8_1
  doi: 10.1079/NRR2005113
– ident: e_1_2_11_44_1
  doi: 10.1016/j.biopha.2006.07.080
– ident: e_1_2_11_46_1
  doi: 10.1007/BF02536034
– ident: e_1_2_11_2_1
  doi: 10.1093/ajcn/71.1.179S
– ident: e_1_2_11_10_1
  doi: 10.1016/j.plefa.2017.01.012
– ident: e_1_2_11_58_1
  doi: 10.1016/j.plipres.2016.05.001
SSID ssj0031243
Score 2.4432516
Snippet ABSTRACT Evidence suggests beneficial effects of long‐chain n–3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying...
Evidence suggests beneficial effects of long‐chain n –3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are...
Evidence suggests beneficial effects of long-chain n-3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are...
Evidence suggests beneficial effects of long‐chain n–3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202400716
SubjectTerms Adult
Arachidonic acid
arachidonic acid cascade
blood
Cells, Cultured
cytokines
Cytokines - metabolism
Dietary Supplements
Dinoprostone - metabolism
Docosahexaenoic acid
Docosahexaenoic Acids - pharmacology
Fatty acids
Fatty Acids, Omega-3 - pharmacology
Female
food research
Humans
Immune system
inflammation
Inflammatory diseases
lipid mediators
Lipopolysaccharides - pharmacology
Macrophages
Macrophages - drug effects
Macrophages - metabolism
Male
nutrition
omega-3 fatty acids
omega-6 fatty acids
oxylipins
Oxylipins - pharmacology
Polyunsaturated fatty acids
Prostaglandin E2
Prostaglandins
Supplements
Title An Optimized Ex Vivo n–3 PUFA Supplementation Strategy for Primary Human Macrophages Shows That DHA Suppresses Prostaglandin E2 Formation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202400716
https://www.ncbi.nlm.nih.gov/pubmed/39676434
https://www.proquest.com/docview/3152012473
https://www.proquest.com/docview/3146851766
https://www.proquest.com/docview/3165873631
https://pubmed.ncbi.nlm.nih.gov/PMC11704825
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLig8g4UNEgITlET27GT44rdaIW0y6p0UW-Rk9jaSG1SkW15nLhz5B_ySxg7D7qqAHHJxWMn8Xg8n-3xN4S8lDqQihvhG24in-dl6CtRlj4rcc1seG60OzFdLMV8zd-eRCdXbvF3_BDjhpu1DDdfWwNXeXv4mzT0rDaWz9PGQCLmv0luIbJndoxTvhrmYobey4XYo9PyOfrygbYxoIe79Xfd0jWseT1k8iqUdb4o3Sd3ehAJk07rd8kNXd8j3rTSW3gFPdPnKSwHov375Pukhnc4OZxVX3UJs8_wobpsoP757QeD1TqdgEvu2QWS2xrQk9Z-AcS0sOoYKcBt-MNC2axfG5yHWni_aT61cLxRW5jOu1YcGXmLdRrEnS5BSFXDjEI63JJ8QNbp7PjN3O_TMPgFTyT1k1IWIo8UjfLIKG0QUtjTTsNEYWk-TaTQ1SkeBaZIwiQpI0aZynMVhkrHmuXsIdmrm1o_JmBMgg1owZUJeC4DFVt8GcWxkkUkdeERf9BCVvQc5TZVxmnWsSvTzGotG7Xmkdej_HnXF3-UPBiUmvVW2mb4asQ_lEvmkRdjMdqXPTRRtW4urAwXiEqlEH-TQRwnmWChRx5142T8HJYIiaiPeyTeGUGjgOX33i2pq43j-bZJgTiu4LFX3GD7xy9mi2V6xBNKn_yn_FNym9qsxm5j6YDsbT9e6GcItbb5c2dN-Jwe0V-JsiYR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgOcCF9yOwwCAhOGW39TM5VmyrAtuyWlrELbITW63YTRFteeyJO0f-Ib-EsfOAsgKEOHvsxJOx54tn_A0hD5XtKM2djB13Iuam6MZaFkXMCvxndtw4GyKmo7EcTvmz16LJJvR3YSp-iPbAza-MsF_7Be4PpHd_sIYel84TevokSAT9Z8m5EKTzuOiwZZBi6L5Cjj16rZijM294Gzt0d7P_pl86BTZP50z-jGWDMxpcIqaZRpWD8mZnvTI7-ckvDI__Nc_L5GINVaFX2dYVcsaWV0m0N7creAQ1n-gRjBs6_2vkS6-EF7gFHc9PbAH9j_Bq_n4B5bfPXxkcTAc9CCVEq3R13wNqatxPgMgZDireCwhhBRhpX1tshrvdEl7OFh-WMJnpFewNq1EC5fkS-ywQ3YYyJPMS-hQGzV3M62Q66E-eDOO62EOc81TROC1ULo3QVBjhtHUIXHxM1TGZezJRJzQ6VM1Fx-VpN00LwSjTxuhuV9vEMsNukK1yUdpbBJxLcQAruXYdblRHJx7FiiTRKhfK5hGJm0-d5TUTui_IcZRVHM408yrPWpVH5HEr_7bSxW8ltxvLyeq9YJnhoxFlUa5YRB60zbiKfWhGl3ax9jJcIvZVUv5JBtGiYpJ1I3KzMsb2dVgqFWJLHpFkw0xbAc8ivtlSzmeBTdyXHuIJFaiVYIZ_mWI2Gg8OeUrp7X-Uv0_ODyej_Wz_6fj5HXKB-jrK4Shrm2yt3q3tXQR3K3MvLN_vEXZKiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4k1ogUFCcIqa2I6dHFfsRstjlxV0UW-Rk9jaSG1SsdvyOHHnyD_klzB2HnRVAeLssZN4Zjxf7PE3hDyVOpCKG-EbbiKf52XoK1GWPivxn9nw3Gh3Yjqbi-mSvzqMDs_d4m_5IYYNN-sZbr22Dn5Smv3fpKHHtbF8njYHEjH_ZXKFo_FZG6d80a_FDKOXS7HHoOVzjOU9bWNA97f7b4elC1jzYsrkeSjrYlF6g1zvQCSMWq3fJJd0fYt440pv4Bl0TJ9HMO-J9m-T76Ma3uLicFx91SVMPsOH6qyB-ue3HwwWy3QErrhnm0hue0BHWvsFENPComWkALfhDzNlq36tcB1aw_tV82kNByu1gfG0HcWRka-xT4O40xUIqWqYUEj7W5J3yDKdHLyY-l0ZBr_giaR-UspC5JGiUR4ZpQ1CCnvaaZgoLM2niRSGOsWjwBRJmCRlxChTea7CUOlYs5zdJTt1U-v7BIxJcAAtuDIBz2WgYosvozhWsoikLjzi91rIio6j3JbKOMpadmWaWa1lg9Y88nyQP2nn4o-Se71Ss85L1xk-GvEP5ZJ55MnQjP5lD01UrZtTK8MFolIpxN9kEMdJJljokXutnQyvwxIhEfVxj8RbFjQIWH7v7Za6Wjmeb1sUiOMfPM6KM7Z_fGI2m6fveELpg_-Uf0yuLsZp9ubl_PUuuUZtgWO3x7RHdjYfT_VDRF2b_JFzrF-cVCfJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Ex+Vivo+n+%E2%80%933+PUFA+Supplementation+Strategy+for+Primary+Human+Macrophages+Shows+That+DHA+Suppresses+Prostaglandin+E2+Formation&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Kirchhoff%2C+Rebecca&rft.au=Kampschulte%2C+Nadja&rft.au=Rothweiler%2C+Carina&rft.au=Rohwer%2C+Nadine&rft.date=2025-01-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=69&rft.issue=1&rft_id=info:doi/10.1002%2Fmnfr.202400716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mnfr_202400716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon