Effects of folic acid withdrawal on transcriptomic profiles in murine triple-negative breast cancer cell lines

We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines w...

Full description

Saved in:
Bibliographic Details
Published inBiochimie Vol. 173; pp. 114 - 122
Main Authors Kok, Dieuwertje E., O’Flanagan, Ciara H., Coleman, Michael F., Ashkavand, Zahra, Hursting, Stephen D., Krupenko, Sergey A.
Format Journal Article
LanguageEnglish
Published France Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN0300-9084
1638-6183
1638-6183
DOI10.1016/j.biochi.2020.04.005

Cover

Abstract We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines were originally derived from a pool of spontaneous mammary tumors grown in MMTV-Wnt1 transgenic mice. Based on their differential molecular characteristics and metastatic potential, these cell lines were previously characterized as non-metastatic epithelial (E-Wnt), non-metastatic mesenchymal (M-Wnt) and metastatic mesenchymal (metM-Wntliver) cells. Using custom two-color 180K Agilent microarrays, we have determined gene expression profiles for three biological replicates of each subtype kept on standard medium (2.2 μM folic acid) or folic acid-free medium for 72 h. The analyses revealed that more genes were differentially expressed upon folic acid withdrawal in M-Wnt cells (1884 genes; Benjamini-Hochberg-adjusted P-value <0.05) compared to E-Wnt and metM-Wntliver cells (108 and 222 genes, respectively). Pathway analysis has identified that type I interferon signaling was strongly affected by folic acid withdrawal, with interferon-responsive genes consistently being upregulated upon folic acid withdrawal in M-Wnt cells. Of note, repressed interferon signaling has been established as one of the characteristics of aggressive human TNBC, and hence reactivation of this pathway may be a promising therapeutic approach. Overall, while our study indicates that the response to folic acid withdrawal varies by molecular subtype and cellular phenotype, it also underscores the necessity to further investigate one-carbon metabolism as a potential therapeutic means in the treatment of advanced TNBC. •Folic acid withdrawal alters gene expression in mouse mammary cancer cell lines.•Changes are most pronounced in non-metastatic mesenchymal cells.•Interferon signaling pathway genes are upregulated by folic acid withdrawal.•Reactivation of the type I interferon pathway may have clinical utility.
AbstractList We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines were originally derived from a pool of spontaneous mammary tumors grown in MMTV-Wnt1 transgenic mice. Based on their differential molecular characteristics and metastatic potential, these cell lines were previously characterized as non-metastatic epithelial (E-Wnt), non-metastatic mesenchymal (M-Wnt) and metastatic mesenchymal (metM-Wntliver) cells. Using custom two-color 180K Agilent microarrays, we have determined gene expression profiles for three biological replicates of each subtype kept on standard medium (2.2 μM folic acid) or folic acid-free medium for 72 h. The analyses revealed that more genes were differentially expressed upon folic acid withdrawal in M-Wnt cells (1884 genes; Benjamini-Hochberg-adjusted P-value <0.05) compared to E-Wnt and metM-Wntliver cells (108 and 222 genes, respectively). Pathway analysis has identified that type I interferon signaling was strongly affected by folic acid withdrawal, with interferon-responsive genes consistently being upregulated upon folic acid withdrawal in M-Wnt cells. Of note, repressed interferon signaling has been established as one of the characteristics of aggressive human TNBC, and hence reactivation of this pathway may be a promising therapeutic approach. Overall, while our study indicates that the response to folic acid withdrawal varies by molecular subtype and cellular phenotype, it also underscores the necessity to further investigate one-carbon metabolism as a potential therapeutic means in the treatment of advanced TNBC.We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines were originally derived from a pool of spontaneous mammary tumors grown in MMTV-Wnt1 transgenic mice. Based on their differential molecular characteristics and metastatic potential, these cell lines were previously characterized as non-metastatic epithelial (E-Wnt), non-metastatic mesenchymal (M-Wnt) and metastatic mesenchymal (metM-Wntliver) cells. Using custom two-color 180K Agilent microarrays, we have determined gene expression profiles for three biological replicates of each subtype kept on standard medium (2.2 μM folic acid) or folic acid-free medium for 72 h. The analyses revealed that more genes were differentially expressed upon folic acid withdrawal in M-Wnt cells (1884 genes; Benjamini-Hochberg-adjusted P-value <0.05) compared to E-Wnt and metM-Wntliver cells (108 and 222 genes, respectively). Pathway analysis has identified that type I interferon signaling was strongly affected by folic acid withdrawal, with interferon-responsive genes consistently being upregulated upon folic acid withdrawal in M-Wnt cells. Of note, repressed interferon signaling has been established as one of the characteristics of aggressive human TNBC, and hence reactivation of this pathway may be a promising therapeutic approach. Overall, while our study indicates that the response to folic acid withdrawal varies by molecular subtype and cellular phenotype, it also underscores the necessity to further investigate one-carbon metabolism as a potential therapeutic means in the treatment of advanced TNBC.
We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines were originally derived from a pool of spontaneous mammary tumors grown in MMTV-Wnt1 transgenic mice. Based on their differential molecular characteristics and metastatic potential, these cell lines were previously characterized as non-metastatic epithelial (E-Wnt), non-metastatic mesenchymal (M-Wnt) and metastatic mesenchymal (metM-Wnt ) cells. Using custom two-color 180K Agilent microarrays, we have determined gene expression profiles for three biological replicates of each subtype kept on standard medium (2.2 μM folic acid) or folic acid-free medium for 72 h. The analyses revealed that more genes were differentially expressed upon folic acid withdrawal in M-Wnt cells (1884 genes; Benjamini-Hochberg-adjusted P-value <0.05) compared to E-Wnt and metM-Wnt cells (108 and 222 genes, respectively). Pathway analysis has identified that type I interferon signaling was strongly affected by folic acid withdrawal, with interferon-responsive genes consistently being upregulated upon folic acid withdrawal in M-Wnt cells. Of note, repressed interferon signaling has been established as one of the characteristics of aggressive human TNBC, and hence reactivation of this pathway may be a promising therapeutic approach. Overall, while our study indicates that the response to folic acid withdrawal varies by molecular subtype and cellular phenotype, it also underscores the necessity to further investigate one-carbon metabolism as a potential therapeutic means in the treatment of advanced TNBC.
We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines were originally derived from a pool of spontaneous mammary tumors grown in MMTV-Wnt1 transgenic mice. Based on their differential molecular characteristics and metastatic potential, these cell lines were previously characterized as non-metastatic epithelial (E-Wnt), non-metastatic mesenchymal (M-Wnt) and metastatic mesenchymal (metM-Wntˡⁱᵛᵉʳ) cells. Using custom two-color 180K Agilent microarrays, we have determined gene expression profiles for three biological replicates of each subtype kept on standard medium (2.2 μM folic acid) or folic acid-free medium for 72 h. The analyses revealed that more genes were differentially expressed upon folic acid withdrawal in M-Wnt cells (1884 genes; Benjamini-Hochberg-adjusted P-value <0.05) compared to E-Wnt and metM-Wntˡⁱᵛᵉʳ cells (108 and 222 genes, respectively). Pathway analysis has identified that type I interferon signaling was strongly affected by folic acid withdrawal, with interferon-responsive genes consistently being upregulated upon folic acid withdrawal in M-Wnt cells. Of note, repressed interferon signaling has been established as one of the characteristics of aggressive human TNBC, and hence reactivation of this pathway may be a promising therapeutic approach. Overall, while our study indicates that the response to folic acid withdrawal varies by molecular subtype and cellular phenotype, it also underscores the necessity to further investigate one-carbon metabolism as a potential therapeutic means in the treatment of advanced TNBC.
We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines were originally derived from a pool of spontaneous mammary tumors grown in MMTV-Wnt1 transgenic mice. Based on their differential molecular characteristics and metastatic potential, these cell lines were previously characterized as non-metastatic epithelial (E-Wnt), non-metastatic mesenchymal (M-Wnt) and metastatic mesenchymal (metM-Wntliver) cells. Using custom two-color 180K Agilent microarrays, we have determined gene expression profiles for three biological replicates of each subtype kept on standard medium (2.2 μM folic acid) or folic acid-free medium for 72 h. The analyses revealed that more genes were differentially expressed upon folic acid withdrawal in M-Wnt cells (1884 genes; Benjamini-Hochberg-adjusted P-value <0.05) compared to E-Wnt and metM-Wntliver cells (108 and 222 genes, respectively). Pathway analysis has identified that type I interferon signaling was strongly affected by folic acid withdrawal, with interferon-responsive genes consistently being upregulated upon folic acid withdrawal in M-Wnt cells. Of note, repressed interferon signaling has been established as one of the characteristics of aggressive human TNBC, and hence reactivation of this pathway may be a promising therapeutic approach. Overall, while our study indicates that the response to folic acid withdrawal varies by molecular subtype and cellular phenotype, it also underscores the necessity to further investigate one-carbon metabolism as a potential therapeutic means in the treatment of advanced TNBC. •Folic acid withdrawal alters gene expression in mouse mammary cancer cell lines.•Changes are most pronounced in non-metastatic mesenchymal cells.•Interferon signaling pathway genes are upregulated by folic acid withdrawal.•Reactivation of the type I interferon pathway may have clinical utility.
We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines were originally derived from a pool of spontaneous mammary tumors grown in MMTV-Wnt1 transgenic mice. Based on their differential molecular characteristics and metastatic potential, these cell lines were previously characterized as non-metastatic epithelial (E-Wnt), non-metastatic mesenchymal (M-Wnt) and metastatic mesenchymal (metM-Wnt liver ) cells. Using custom two-color 180K Agilent microarrays, we have determined gene expression profiles for three biological replicates of each subtype kept on standard medium (2.2 μM folic acid) or folic acid-free medium for 72 hours. The analyses revealed that more genes were differentially expressed upon folic acid withdrawal in M-Wnt cells (1884 genes; Benjamini-Hochberg-adjusted P -value <0.05) compared to E-Wnt and metM-Wnt liver cells (108 and 222 genes, respectively). Pathway analysis has identified that type I interferon signaling was strongly affected by folic acid withdrawal, with interferon-responsive genes consistently being upregulated upon folic acid withdrawal in M-Wnt cells. Of note, repressed interferon signaling has been established as one of the characteristics of aggressive human TNBC, and hence reactivation of this pathway may be a promising therapeutic approach. Overall, while our study indicates that the response to folic acid withdrawal varies by molecular subtype and cellular phenotype, it also underscores the necessity to further investigate one-carbon metabolism as a potential therapeutic means in the treatment of advanced TNBC.
Author O’Flanagan, Ciara H.
Coleman, Michael F.
Kok, Dieuwertje E.
Hursting, Stephen D.
Ashkavand, Zahra
Krupenko, Sergey A.
AuthorAffiliation a Division of Human Nutrition and Health, Wageningen University & Research, The Netherlands
c Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, USA
b Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
d Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
AuthorAffiliation_xml – name: d Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
– name: a Division of Human Nutrition and Health, Wageningen University & Research, The Netherlands
– name: b Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
– name: c Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, USA
Author_xml – sequence: 1
  givenname: Dieuwertje E.
  surname: Kok
  fullname: Kok, Dieuwertje E.
  email: dieuwertje.kok@wur.nl
  organization: Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
– sequence: 2
  givenname: Ciara H.
  surname: O’Flanagan
  fullname: O’Flanagan, Ciara H.
  email: oflanach@gmail.com
  organization: Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
– sequence: 3
  givenname: Michael F.
  surname: Coleman
  fullname: Coleman, Michael F.
  email: mcoleman@unc.edu
  organization: Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
– sequence: 4
  givenname: Zahra
  surname: Ashkavand
  fullname: Ashkavand, Zahra
  email: ashkavz@amc.edu
  organization: Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, USA
– sequence: 5
  givenname: Stephen D.
  surname: Hursting
  fullname: Hursting, Stephen D.
  email: hursting@email.unc.edu
  organization: Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
– sequence: 6
  givenname: Sergey A.
  surname: Krupenko
  fullname: Krupenko, Sergey A.
  email: sergey_krupenko@unc.edu
  organization: Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32304770$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhS1URNPCGyDkJZtJ_TMzHrNAQlX5kSqxgbXlsa-bG03sYE9S9e1xlFABi3blhb9zdK8_X5CzmCIQ8pazJWe8v1ovR0xuhUvBBFuydslY94IseC-HpueDPCMLJhlrNBvac3JRyppVggn9ipxLIVmrFFuQeBMCuLnQFGhIEzpqHXp6j_PKZ3tvJ5oinbONxWXczmlTiW1OAScoFCPd7DJGqARuJ2gi3NkZ90DHDLbM1NnoIFMH00SnypXX5GWwU4E3p_OS_Px88-P6a3P7_cu360-3jWt1Pzc-iMF7y61QIVjRi961IP0gPITAYXCylW7o1NiCCkor0fadHEapO99xq0Z5ST4ee7e7cQPeQaw7TGabcWPzg0kWzb83EVfmLu2NGrqh17IWvD8V5PRrB2U2GyyHPWyEtCtGdB3XnRC6fx6VmmuleqYr-u7vsR7n-eOjAu0RcDmVkiE8IpyZg3azNkft5qDdsNZUqTX24b-Yw7maSIflcHoufHorqEL2CNkUh1DFecz1axif8OmC31x-zX4
CitedBy_id crossref_primary_10_3390_ijms25158175
crossref_primary_10_1016_j_cofs_2021_03_008
crossref_primary_10_1016_j_jnutbio_2022_109000
crossref_primary_10_3390_nu12113380
crossref_primary_10_3390_nu13051637
crossref_primary_10_1016_j_biochi_2020_04_018
crossref_primary_10_1186_s40246_020_00291_3
crossref_primary_10_1016_j_anifeedsci_2022_115551
Cites_doi 10.1124/mol.60.6.1288
10.1002/cpbi.86
10.1017/S0007114515002688
10.1001/jama.2019.11058
10.4161/jkst.23353
10.1093/carcin/bgp152
10.1089/dna.2018.4247
10.1093/annonc/mdm551
10.1001/jama.285.23.2981
10.1371/journal.pone.0084635
10.1038/nrc865
10.1093/nar/gkv007
10.1016/j.jnutbio.2007.05.003
10.1038/nrc.2017.118
10.1093/carcin/bgs138
10.1017/S0007114508911557
10.1038/nature13236
10.18632/oncotarget.8910
10.1016/j.jnutbio.2015.12.006
10.1111/j.1753-4887.2009.00190.x
10.1093/jn/136.1.189
10.1002/jnr.23030
10.1016/j.jnutbio.2017.10.001
10.1042/BSR20170772
10.1152/physrev.00009.2014
10.1146/annurev.nutr.012809.104810
10.1093/nar/gkw377
10.1093/jn/136.7.1774
10.1002/ijc.2910540118
10.1038/nature15726
10.1158/1541-7786.MCR-16-0317
10.1002/ijc.31008
10.3390/nu3030370
10.1634/theoncologist.2014-0241
10.1016/j.cmet.2016.08.009
10.1158/1078-0432.CCR-14-0432
10.1038/nrc3447
10.1111/j.2517-6161.1995.tb02031.x
10.4049/jimmunol.173.5.3186
10.1016/S0140-6736(13)60110-5
10.1038/nm.2830
10.1038/nrc2229
10.1056/NEJMoa1801005
10.3390/cancers9100134
10.1073/pnas.1713728114
10.1371/journal.pone.0047201
10.1017/S0029665112000717
10.1038/bjc.2017.11
10.1186/1471-2105-14-128
10.1038/nrc3125
10.1158/0008-5472.CAN-16-0266
10.1158/1940-6207.CAPR-11-0140
10.1001/jama.2009.1622
10.3945/jn.117.247445
10.1093/ajcn/nqx019
10.1038/s41523-017-0027-5
10.1158/1078-0432.CCR-18-3524
10.1093/ajcn/nqx076
10.1073/pnas.91.9.4067
10.1016/j.ccr.2013.12.004
10.1007/s10555-007-9049-z
10.1002/jcp.25989
10.1074/jbc.M114.569657
10.1002/pros.21346
10.1158/1078-0432.CCR-05-0295
10.15252/emmm.201404824
10.1038/s41580-018-0080-4
10.1111/j.1753-4887.2004.tb00070.x
10.1515/cclm-2012-0561
10.1093/jn/134.1.162
10.3389/fimmu.2017.00029
10.1200/JCO.2009.25.9549
10.1214/16-AOAS920
10.1038/onc.2010.356
10.1136/bmj.i734
10.1093/carcin/bgg150
10.1111/febs.14090
ContentType Journal Article
Copyright 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM)
Copyright © 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM)
– notice: Copyright © 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.biochi.2020.04.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1638-6183
EndPage 122
ExternalDocumentID PMC7858693
32304770
10_1016_j_biochi_2020_04_005
S0300908420300754
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK117854
– fundername: NIDDK NIH HHS
  grantid: P30 DK056350
– fundername: NCI NIH HHS
  grantid: R35 CA197627
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
H~9
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SSU
SSZ
T5K
TWZ
VH1
WUQ
Y6R
ZGI
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c496t-df28dda1a27ffa2626c4e3d82deff1e8c343c857b4e7f797246538b395d51a7b3
IEDL.DBID AIKHN
ISSN 0300-9084
1638-6183
IngestDate Thu Aug 21 13:57:53 EDT 2025
Thu Sep 04 16:07:38 EDT 2025
Thu Sep 04 23:03:09 EDT 2025
Sun Jul 20 01:30:38 EDT 2025
Tue Jul 01 00:39:18 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Fri Feb 23 02:47:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Interferon signaling
Metastasis
Transcriptomics
Epithelial-to-mesenchymal transition
Folic acid
Triple-negative breast cancer
Language English
License Copyright © 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-df28dda1a27ffa2626c4e3d82deff1e8c343c857b4e7f797246538b395d51a7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHORS CONTRIBUTIONS
These authors contributed equally
Dieuwertje E. Kok: Formal analysis, Writing - original draft, Writing - review & editing. Ciara H. O’Flanagan: Data curation, Writing - review & editing. Michael F. Coleman: Data curation, Writing - review & editing. Zahra Ashkavand: Data curation, Writing - review & editing. Stephen D. Hursting: Conceptualization, Supervision, Writing - review & editing. Sergey A. Krupenko: Conceptualization, Supervision, Writing - original draft, Writing - review & editing.
OpenAccessLink https://research.wur.nl/en/publications/effects-of-folic-acid-withdrawal-on-transcriptomic-profiles-in-mu
PMID 32304770
PQID 2391977609
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7858693
proquest_miscellaneous_2551952296
proquest_miscellaneous_2391977609
pubmed_primary_32304770
crossref_primary_10_1016_j_biochi_2020_04_005
crossref_citationtrail_10_1016_j_biochi_2020_04_005
elsevier_sciencedirect_doi_10_1016_j_biochi_2020_04_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Biochimie
PublicationTitleAlternate Biochimie
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ebbing, Bonaa, Nygard, Arnesen, Ueland, Nordrehaug, Rasmussen, Njolstad, Refsum, Nilsen, Tverdal, Meyer, Vollset (bib24) 2009; 302
Chen, Huang (bib61) 2018; 53
Niemann, Nemitz, Werner, Mai, Steinberg, Lampen, Ehlers (bib70) 2017
Fan, Ye, Kamphorst, Shlomi, Thompson, Rabinowitz (bib8) 2014; 510
Lindzon, Medline, Sohn, Depeint, Croxford, Kim (bib31) 2009; 30
Sahai (bib3) 2007; 7
Lamm, Maoz, Bester, Im, Shewach, Karni, Kerem (bib22) 2015; 7
Tomaszewski, Cummings, Parwani, Dhir, Mason, Nelson, Bacich, O’Keefe (bib32) 2011; 71
Chong, Wishart, Xia (bib58) 2019; 68
Chen, Wang, Xie, Guo, Tang, Wang, Yang, Chen, Niu, Ji (bib20) 2012; 90
Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann, McDermott, Monteiro, Gundersen, Ma’ayan, Enrichr (bib57) 2016; 44
Miller, Ulrich (bib35) 2013; 381
Dunlap, Chiao, Nogueira, Usary, Perou, Varticovski, Hursting (bib51) 2012; vol. 5
Gluz, Nitz, Harbeck, Ting, Kates, Herr, Lindemann, Jackisch, Berdel, Kirchner, Metzner, Werner, Schutt, Frick, Poremba, Diallo-Danebrock, Mohrmann, West German Study (bib77) 2008; 19
Thomson, Balcells, Cascante (bib4) 2019; 8
Smith, Refsum, Selhub, Rosenberg (bib36) 2016; 352
Sciacovelli, Frezza (bib6) 2017; 284
Koromilas, Sexl (bib65) 2013; 2
Mason (bib26) 2009; 67
Courtemanche, Elson-Schwab, Mashiyama, Kerry, Ames (bib17) 2004; 173
Shan, Liu, Wang, Shi (bib81) 2018; 16
Kim (bib13) 2018; 107
Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib53) 2015; 43
Assaraf (bib80) 2007; 26
Moussa, Ross, Jolette, MacFarlane (bib21) 2015; 114
Gandhi, Rodriguez-Abreu, Gadgeel, Esteban, Felip, De Angelis, Domine, Clingan, Hochmair, Powell, Cheng, Bischoff, Peled, Grossi, Jennens, Reck, Hui, Garon, Boyer, Rubio-Viqueira, Novello, Kurata, Gray, Vida, Wei, Yang, Raftopoulos, Pietanza, Garassino, Investigators (bib46) 2018; 378
O’Flanagan, Rossi, McDonell, Chen, Tsai, Parker, Usary, Perou, Hursting (bib52) 2017; 3
Sethi, Kang (bib2) 2011; 11
Jhaveri, Wagner, Trepel (bib37) 2001; 60
Liu, Jin, Pi, Liu (bib49) 2017; 37
Feng, Lin, Hsu, Lan, Kuo, Tian, Sun, Huang (bib62) 2017; 141
Gomez, Santillana, Vallejos, Velarde, Sanchez, Wang, Bauer, Hockett, Chen, Niyikiza, Hanauske (bib78) 2006; 12
Majoros, Platanitis, Kernbauer-Holzl, Rosebrock, Muller, Decker (bib66) 2017; 8
Doherty, Jackson (bib72) 2018; 37
Su, Huang, Huang, Huang, Sue, Huynh, Hsiao, Liu, Wu, Lin (bib47) 2016; 7
Crider, Bailey, Berry (bib25) 2011; 3
Ashkavand, O’Flanagan, Hennig, Du, Hursting, Krupenko (bib50) 2017; 15
Arbour, Riely (bib45) 2019; 322
Dongre, Weinberg (bib63) 2019; 20
Terzis, Fiskerstrand, Refsum, Ueland, Arnold, Bjerkvig (bib40) 1993; 54
Bistulfi, Foster, Karasik, Gillard, Miecznikowski, Dhiman, Smiraglia (bib29) 2011; 4
Tu, Dinney, Ye, Grossman, Lerner, Wu (bib33) 2018; 107
Motta, Soares, Sun, Philpott (bib67) 2015; 95
Yang, Zhang, Fu, Weichselbaum, Gajewski, Guo, Fu (bib73) 2014; 25
Honein, Paulozzi, Mathews, Erickson, Wong (bib15) 2001; 285
Lehuede, Dupuy, Rabinovitch, Jones, Siegel (bib5) 2016; 76
Crott, Liu, Keyes, Choi, Jang, Moyer, Mason (bib39) 2008; 19
Burstein, Tsimelzon, Poage, Covington, Contreras, Fuqua, Savage, Osborne, Hilsenbeck, Chang, Mills, Lau, Brown (bib74) 2015; 21
Zhou, Shi, Jia, Tong (bib79) 2015; 1
Stover (bib12) 2004; 62
Kuo, Lin, Wu, Lu, Huang (bib34) 2008; 100
Hwang, Kang, Sung, Jang, Hwang, Oh, Ahn, Kim, Shin, Yoo, Kim, Chung, Kim (bib23) 2018; 233
Chambers, Groom, MacDonald (bib1) 2002; 2
Hansen, Jensen, Fuchtbauer, Martensen (bib27) 2017; 116
Deghan Manshadi, Ishiguro, Sohn, Medline, Renlund, Croxford, Kim (bib30) 2014; 9
Piskounova, Agathocleous, Murphy, Hu, Huddlestun, Zhao, Leitch, Johnson, DeBerardinis, Morrison (bib43) 2015; 527
Phipson, Lee, Majewski, Alexander, Smyth (bib54) 2016; 10
Doherty, Cheon, Junk, Vinayak, Varadan, Telli, Ford, Stark, Jackson (bib59) 2017; 114
Paniz, Bertinato, Lucena, De Carli, Amorim, Gomes, Palchetti, Figueiredo, Pfeiffer, Fazili, Green, Guerra-Shinohara (bib68) 2017; 147
Xiao, Ma, Zhao, Suo, Shi, Xue, Ruan, Wang, Zhao, Li, Wang, Shi, Yang, Huang, Hu, Yu, Huang, Bertucci, Jiang, Shao (bib75) 2019; 25
Tibbetts, Appling (bib9) 2010; 30
Li, Rozen (bib19) 2006; 136
Kazandjian, Blumenthal, Chen, He, Patel, Justice, Keegan, Pazdur (bib44) 2014; 19
Bidwell, Slaney, Withana, Forster, Cao, Loi, Andrews, Mikeska, Mangan, Samarajiwa, de Weerd, Gould, Argani, Moller, Smyth, Anderson, Hertzog, Parker (bib82) 2012; 18
Oleinik, Helke, Kistner-Griffin, Krupenko, Krupenko (bib28) 2014; 289
Benjamini, Hochberg (bib55) 1995; 57
Koury, Horne (bib16) 1994; 91
Crott, Choi, Ordovas, Ditelberg, Mason (bib38) 2004; 25
Brabletz, Kalluri, Nieto, Weinberg (bib60) 2018; 18
Williams (bib14) 2012; 71
Oleinik, Krupenko, Krupenko (bib42) 2010; 29
Craciunescu, Brown, Mar, Albright, Nadeau, Zeisel (bib18) 2004; 134
Strickland, Krupenko, Krupenko (bib11) 2013; 51
Troen, Mitchell, Sorensen, Wener, Johnston, Wood, Selhub, McTiernan, Yasui, Oral, Potter, Ulrich (bib69) 2006; 136
Fedele, Cerchia, Chiappetta (bib64) 2017; 9
Colleoni, Cole, Viale, Regan, Price, Maiorano, Mastropasqua, Crivellari, Gelber, Goldhirsch, Coates, Gusterson (bib76) 2010; 28
Wang, Hsu, Feng, Huang (bib48) 2012; 33
Sawaengsri, Wang, Reginaldo, Steluti, Wu, Meydani, Selhub, Paul (bib71) 2016; 30
De Craene, Berx (bib7) 2013; 13
Ducker, Rabinowitz (bib10) 2017; 25
Siu, Kong, Chan, Wong, Ip, Jiang, Ngan, Le, Cheung (bib41) 2012; 7
Chen, Tan, Kou, Duan, Wang, Meirelles, Clark, Ma’ayan, Enrichr (bib56) 2013; 14
Sahai (10.1016/j.biochi.2020.04.005_bib3) 2007; 7
Hwang (10.1016/j.biochi.2020.04.005_bib23) 2018; 233
Miller (10.1016/j.biochi.2020.04.005_bib35) 2013; 381
Lamm (10.1016/j.biochi.2020.04.005_bib22) 2015; 7
Zhou (10.1016/j.biochi.2020.04.005_bib79) 2015; 1
Thomson (10.1016/j.biochi.2020.04.005_bib4) 2019; 8
De Craene (10.1016/j.biochi.2020.04.005_bib7) 2013; 13
Ebbing (10.1016/j.biochi.2020.04.005_bib24) 2009; 302
Sethi (10.1016/j.biochi.2020.04.005_bib2) 2011; 11
Ducker (10.1016/j.biochi.2020.04.005_bib10) 2017; 25
Wang (10.1016/j.biochi.2020.04.005_bib48) 2012; 33
Lehuede (10.1016/j.biochi.2020.04.005_bib5) 2016; 76
Sciacovelli (10.1016/j.biochi.2020.04.005_bib6) 2017; 284
Burstein (10.1016/j.biochi.2020.04.005_bib74) 2015; 21
Bistulfi (10.1016/j.biochi.2020.04.005_bib29) 2011; 4
Motta (10.1016/j.biochi.2020.04.005_bib67) 2015; 95
Paniz (10.1016/j.biochi.2020.04.005_bib68) 2017; 147
Colleoni (10.1016/j.biochi.2020.04.005_bib76) 2010; 28
Chen (10.1016/j.biochi.2020.04.005_bib61) 2018; 53
Chong (10.1016/j.biochi.2020.04.005_bib58) 2019; 68
Arbour (10.1016/j.biochi.2020.04.005_bib45) 2019; 322
Feng (10.1016/j.biochi.2020.04.005_bib62) 2017; 141
Brabletz (10.1016/j.biochi.2020.04.005_bib60) 2018; 18
Assaraf (10.1016/j.biochi.2020.04.005_bib80) 2007; 26
Honein (10.1016/j.biochi.2020.04.005_bib15) 2001; 285
Kuleshov (10.1016/j.biochi.2020.04.005_bib57) 2016; 44
Majoros (10.1016/j.biochi.2020.04.005_bib66) 2017; 8
Yang (10.1016/j.biochi.2020.04.005_bib73) 2014; 25
Tomaszewski (10.1016/j.biochi.2020.04.005_bib32) 2011; 71
Kim (10.1016/j.biochi.2020.04.005_bib13) 2018; 107
Troen (10.1016/j.biochi.2020.04.005_bib69) 2006; 136
Jhaveri (10.1016/j.biochi.2020.04.005_bib37) 2001; 60
Shan (10.1016/j.biochi.2020.04.005_bib81) 2018; 16
Hansen (10.1016/j.biochi.2020.04.005_bib27) 2017; 116
Piskounova (10.1016/j.biochi.2020.04.005_bib43) 2015; 527
Courtemanche (10.1016/j.biochi.2020.04.005_bib17) 2004; 173
Oleinik (10.1016/j.biochi.2020.04.005_bib42) 2010; 29
Ashkavand (10.1016/j.biochi.2020.04.005_bib50) 2017; 15
Fedele (10.1016/j.biochi.2020.04.005_bib64) 2017; 9
Chambers (10.1016/j.biochi.2020.04.005_bib1) 2002; 2
Lindzon (10.1016/j.biochi.2020.04.005_bib31) 2009; 30
Chen (10.1016/j.biochi.2020.04.005_bib20) 2012; 90
Gandhi (10.1016/j.biochi.2020.04.005_bib46) 2018; 378
Phipson (10.1016/j.biochi.2020.04.005_bib54) 2016; 10
Koury (10.1016/j.biochi.2020.04.005_bib16) 1994; 91
Crott (10.1016/j.biochi.2020.04.005_bib39) 2008; 19
Niemann (10.1016/j.biochi.2020.04.005_bib70) 2017
O’Flanagan (10.1016/j.biochi.2020.04.005_bib52) 2017; 3
Kazandjian (10.1016/j.biochi.2020.04.005_bib44) 2014; 19
Deghan Manshadi (10.1016/j.biochi.2020.04.005_bib30) 2014; 9
Crider (10.1016/j.biochi.2020.04.005_bib25) 2011; 3
Crott (10.1016/j.biochi.2020.04.005_bib38) 2004; 25
Fan (10.1016/j.biochi.2020.04.005_bib8) 2014; 510
Oleinik (10.1016/j.biochi.2020.04.005_bib28) 2014; 289
Xiao (10.1016/j.biochi.2020.04.005_bib75) 2019; 25
Ritchie (10.1016/j.biochi.2020.04.005_bib53) 2015; 43
Dongre (10.1016/j.biochi.2020.04.005_bib63) 2019; 20
Bidwell (10.1016/j.biochi.2020.04.005_bib82) 2012; 18
Gomez (10.1016/j.biochi.2020.04.005_bib78) 2006; 12
Li (10.1016/j.biochi.2020.04.005_bib19) 2006; 136
Benjamini (10.1016/j.biochi.2020.04.005_bib55) 1995; 57
Liu (10.1016/j.biochi.2020.04.005_bib49) 2017; 37
Craciunescu (10.1016/j.biochi.2020.04.005_bib18) 2004; 134
Koromilas (10.1016/j.biochi.2020.04.005_bib65) 2013; 2
Su (10.1016/j.biochi.2020.04.005_bib47) 2016; 7
Kuo (10.1016/j.biochi.2020.04.005_bib34) 2008; 100
Tibbetts (10.1016/j.biochi.2020.04.005_bib9) 2010; 30
Smith (10.1016/j.biochi.2020.04.005_bib36) 2016; 352
Siu (10.1016/j.biochi.2020.04.005_bib41) 2012; 7
Sawaengsri (10.1016/j.biochi.2020.04.005_bib71) 2016; 30
Dunlap (10.1016/j.biochi.2020.04.005_bib51) 2012; vol. 5
Doherty (10.1016/j.biochi.2020.04.005_bib72) 2018; 37
Doherty (10.1016/j.biochi.2020.04.005_bib59) 2017; 114
Tu (10.1016/j.biochi.2020.04.005_bib33) 2018; 107
Strickland (10.1016/j.biochi.2020.04.005_bib11) 2013; 51
Mason (10.1016/j.biochi.2020.04.005_bib26) 2009; 67
Chen (10.1016/j.biochi.2020.04.005_bib56) 2013; 14
Stover (10.1016/j.biochi.2020.04.005_bib12) 2004; 62
Williams (10.1016/j.biochi.2020.04.005_bib14) 2012; 71
Moussa (10.1016/j.biochi.2020.04.005_bib21) 2015; 114
Terzis (10.1016/j.biochi.2020.04.005_bib40) 1993; 54
Gluz (10.1016/j.biochi.2020.04.005_bib77) 2008; 19
References_xml – volume: 25
  start-page: 5002
  year: 2019
  end-page: 5014
  ident: bib75
  article-title: Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer
  publication-title: Clin. Canc. Res.
– volume: 13
  start-page: 97
  year: 2013
  end-page: 110
  ident: bib7
  article-title: Regulatory networks defining EMT during cancer initiation and progression
  publication-title: Nat. Rev. Canc.
– volume: 25
  start-page: 37
  year: 2014
  end-page: 48
  ident: bib73
  article-title: Targeting the tumor microenvironment with interferon-β bridges innate and adaptive immune responses
  publication-title: Canc. Cell
– volume: 1
  start-page: 27
  year: 2015
  end-page: 35
  ident: bib79
  article-title: Potential role of pemetrexed in metastatic breast cancer patients pre-treated with anthracycline or taxane
  publication-title: Chronic Dis Transl Med
– volume: 136
  start-page: 1774
  year: 2006
  end-page: 1778
  ident: bib19
  article-title: Maternal folate deficiency affects proliferation, but not apoptosis, in embryonic mouse heart
  publication-title: J. Nutr.
– volume: 136
  start-page: 189
  year: 2006
  end-page: 194
  ident: bib69
  article-title: Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women
  publication-title: J. Nutr.
– volume: 19
  start-page: 328
  year: 2008
  end-page: 335
  ident: bib39
  article-title: Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling and folate uptake in human colonic epithelial cell lines
  publication-title: J. Nutr. Biochem.
– volume: 7
  start-page: 737
  year: 2007
  end-page: 749
  ident: bib3
  article-title: Illuminating the metastatic process
  publication-title: Nat. Rev. Canc.
– volume: 76
  start-page: 5201
  year: 2016
  end-page: 5208
  ident: bib5
  article-title: Metabolic plasticity as a determinant of tumor growth and metastasis
  publication-title: Canc. Res.
– volume: 527
  start-page: 186
  year: 2015
  end-page: 191
  ident: bib43
  article-title: Oxidative stress inhibits distant metastasis by human melanoma cells
  publication-title: Nature
– volume: 25
  start-page: 27
  year: 2017
  end-page: 42
  ident: bib10
  article-title: One-carbon metabolism in health and disease
  publication-title: Cell Metabol.
– volume: 68
  start-page: e86
  year: 2019
  ident: bib58
  article-title: Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis
  publication-title: Curr Protoc Bioinformatics
– volume: 51
  start-page: 607
  year: 2013
  end-page: 616
  ident: bib11
  article-title: Molecular mechanisms underlying the potentially adverse effects of folate
  publication-title: Clin. Chem. Lab. Med.
– volume: 91
  start-page: 4067
  year: 1994
  end-page: 4071
  ident: bib16
  article-title: Apoptosis mediates and thymidine prevents erythroblast destruction in folate deficiency anemia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 26
  year: 2017
  ident: bib52
  article-title: Metabolic reprogramming underlies metastatic potential in an obesity-responsive murine model of metastatic triple negative breast cancer
  publication-title: NPJ breast cancer
– volume: 29
  start-page: 6233
  year: 2010
  end-page: 6244
  ident: bib42
  article-title: ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A
  publication-title: Oncogene
– volume: 14
  start-page: 128
  year: 2013
  ident: bib56
  article-title: Interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinf.
– volume: 30
  start-page: 57
  year: 2010
  end-page: 81
  ident: bib9
  article-title: Compartmentalization of Mammalian folate-mediated one-carbon metabolism
  publication-title: Annu. Rev. Nutr.
– volume: 284
  start-page: 3132
  year: 2017
  end-page: 3144
  ident: bib6
  article-title: Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer
  publication-title: FEBS J.
– volume: 2
  start-page: 563
  year: 2002
  end-page: 572
  ident: bib1
  article-title: Dissemination and growth of cancer cells in metastatic sites
  publication-title: Nat. Rev. Canc.
– volume: 11
  start-page: 735
  year: 2011
  end-page: 748
  ident: bib2
  article-title: Unravelling the complexity of metastasis - molecular understanding and targeted therapies
  publication-title: Nat. Rev. Canc.
– volume: 43
  year: 2015
  ident: bib53
  article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 370
  year: 2011
  end-page: 384
  ident: bib25
  article-title: Folic acid food fortification-its history, effect, concerns, and future directions
  publication-title: Nutrients
– volume: 25
  start-page: 69
  year: 2004
  end-page: 76
  ident: bib38
  article-title: Effects of dietary folate and aging on gene expression in the colonic mucosa of rats: implications for carcinogenesis
  publication-title: Carcinogenesis
– volume: 15
  start-page: 189
  year: 2017
  end-page: 200
  ident: bib50
  article-title: Metabolic reprogramming by folate restriction leads to a less aggressive cancer phenotype
  publication-title: Mol. Canc. Res.
– volume: 26
  start-page: 153
  year: 2007
  end-page: 181
  ident: bib80
  article-title: Molecular basis of antifolate resistance
  publication-title: Canc. Metastasis Rev.
– volume: 322
  start-page: 764
  year: 2019
  end-page: 774
  ident: bib45
  article-title: Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review
  publication-title: J. Am. Med. Assoc.
– volume: 107
  start-page: 139
  year: 2018
  end-page: 142
  ident: bib13
  article-title: Folate and cancer: a tale of Dr. Jekyll and mr. Hyde?
  publication-title: Am. J. Clin. Nutr.
– volume: 107
  start-page: 208
  year: 2018
  end-page: 216
  ident: bib33
  article-title: Is folic acid safe for non-muscle-invasive bladder cancer patients? An evidence-based cohort study
  publication-title: Am. J. Clin. Nutr.
– volume: 378
  start-page: 2078
  year: 2018
  end-page: 2092
  ident: bib46
  article-title: Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
– volume: 289
  start-page: 26383
  year: 2014
  end-page: 26394
  ident: bib28
  article-title: Rho GTPases RhoA and Rac1 mediate effects of dietary folate on metastatic potential of A549 cancer cells through the control of cofilin phosphorylation
  publication-title: J. Biol. Chem.
– volume: 19
  start-page: 861
  year: 2008
  end-page: 870
  ident: bib77
  article-title: Triple-negative high-risk breast cancer derives particular benefit from dose intensification of adjuvant chemotherapy: results of WSG AM-01 trial
  publication-title: Ann. Oncol.
– volume: 233
  start-page: 736
  year: 2018
  end-page: 747
  ident: bib23
  article-title: Folic acid is necessary for proliferation and differentiation of C2C12 myoblasts
  publication-title: J. Cell. Physiol.
– volume: 100
  start-page: 596
  year: 2008
  end-page: 602
  ident: bib34
  article-title: Relationship between folate status and tumour progression in patients with hepatocellular carcinoma
  publication-title: Br. J. Nutr.
– volume: 20
  start-page: 69
  year: 2019
  end-page: 84
  ident: bib63
  article-title: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 147
  start-page: 1677
  year: 2017
  end-page: 1685
  ident: bib68
  article-title: A daily dose of 5 mg folic acid for 90 Days is associated with increased serum unmetabolized folic acid and reduced natural killer cell cytotoxicity in healthy Brazilian adults
  publication-title: J. Nutr.
– volume: 352
  start-page: i734
  year: 2016
  ident: bib36
  article-title: Decision on folic acid fortification in Europe must consider both risks and benefits
  publication-title: BMJ
– volume: 9
  year: 2017
  ident: bib64
  article-title: The epithelial-to-mesenchymal transition in breast cancer: focus on basal-like carcinomas
  publication-title: Cancers
– volume: 71
  start-page: 1287
  year: 2011
  end-page: 1293
  ident: bib32
  article-title: Increased cancer cell proliferation in prostate cancer patients with high levels of serum folate
  publication-title: Prostate
– volume: 8
  year: 2019
  ident: bib4
  article-title: Metabolic plasticity and epithelial-mesenchymal transition
  publication-title: J. Clin. Med.
– volume: 134
  start-page: 162
  year: 2004
  end-page: 166
  ident: bib18
  article-title: Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain
  publication-title: J. Nutr.
– volume: 510
  start-page: 298
  year: 2014
  end-page: 302
  ident: bib8
  article-title: Quantitative flux analysis reveals folate-dependent NADPH production
  publication-title: Nature
– volume: 30
  start-page: 1536
  year: 2009
  end-page: 1543
  ident: bib31
  article-title: Effect of folic acid supplementation on the progression of colorectal aberrant crypt foci
  publication-title: Carcinogenesis
– volume: 62
  start-page: S3
  year: 2004
  end-page: S12
  ident: bib12
  article-title: Physiology of folate and vitamin B12 in health and disease
  publication-title: Nutr. Rev.
– volume: 116
  start-page: 752
  year: 2017
  end-page: 761
  ident: bib27
  article-title: High folic acid diet enhances tumour growth in PyMT-induced breast cancer
  publication-title: Br. J. Canc.
– volume: 28
  start-page: 2966
  year: 2010
  end-page: 2973
  ident: bib76
  article-title: Classical cyclophosphamide, methotrexate, and fluorouracil chemotherapy is more effective in triple-negative, node-negative breast cancer: results from two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer
  publication-title: J. Clin. Oncol.
– volume: 4
  start-page: 1825
  year: 2011
  end-page: 1834
  ident: bib29
  article-title: Dietary folate deficiency blocks prostate cancer progression in the TRAMP model
  publication-title: Canc. Prev. Res.
– volume: 7
  start-page: 1138
  year: 2015
  end-page: 1152
  ident: bib22
  article-title: Folate levels modulate oncogene-induced replication stress and tumorigenicity
  publication-title: EMBO Mol. Med.
– volume: 114
  start-page: 13792
  year: 2017
  end-page: 13797
  ident: bib59
  article-title: Interferon-beta represses cancer stem cell properties in triple-negative breast cancer
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 61
  year: 2017
  ident: bib70
  article-title: Folic acid modulates cancer-associated micro RNAs and inflammatory mediators in neoplastic and non-neoplastic colonic cells in a different way
  publication-title: Mol. Nutr. Food Res.
– volume: 10
  start-page: 946
  year: 2016
  end-page: 963
  ident: bib54
  article-title: Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression
  publication-title: Ann. Appl. Stat.
– volume: 30
  start-page: 102
  year: 2016
  end-page: 107
  ident: bib71
  article-title: High folic acid intake reduces natural killer cell cytotoxicity in aged mice
  publication-title: J. Nutr. Biochem.
– volume: 381
  start-page: 974
  year: 2013
  end-page: 976
  ident: bib35
  article-title: Folic acid and cancer--where are we today?
  publication-title: Lancet
– volume: 2
  year: 2013
  ident: bib65
  article-title: The tumor suppressor function of STAT1 in breast cancer
  publication-title: JAK-STAT
– volume: 7
  year: 2012
  ident: bib41
  article-title: Paradoxical impact of two folate receptors, FRalpha and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome
  publication-title: PloS One
– volume: 54
  start-page: 112
  year: 1993
  end-page: 118
  ident: bib40
  article-title: Proliferation, migration and invasion of human glioma cells exposed to antifolate drugs
  publication-title: Int. J. Canc.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib55
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. Roy. Stat. Soc. B
– volume: 44
  start-page: W90
  year: 2016
  end-page: W97
  ident: bib57
  article-title: A comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
– volume: 285
  start-page: 2981
  year: 2001
  end-page: 2986
  ident: bib15
  article-title: Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects
  publication-title: J. Am. Med. Assoc.
– volume: 7
  start-page: 33246
  year: 2016
  end-page: 33256
  ident: bib47
  article-title: Folate deficient tumor microenvironment promotes epithelial-to-mesenchymal transition and cancer stem-like phenotypes
  publication-title: Oncotarget
– volume: 18
  start-page: 1224
  year: 2012
  end-page: 1231
  ident: bib82
  article-title: Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape
  publication-title: Nat. Med.
– volume: 141
  start-page: 2537
  year: 2017
  end-page: 2550
  ident: bib62
  article-title: Low folate metabolic stress reprograms DNA methylation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers
  publication-title: Int. J. Canc.
– volume: 21
  start-page: 1688
  year: 2015
  end-page: 1698
  ident: bib74
  article-title: Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer
  publication-title: Clin. Canc. Res.
– volume: 60
  start-page: 1288
  year: 2001
  end-page: 1295
  ident: bib37
  article-title: Impact of extracellular folate levels on global gene expression
  publication-title: Mol. Pharmacol.
– volume: 90
  start-page: 1382
  year: 2012
  end-page: 1391
  ident: bib20
  article-title: Folic acid deficiency inhibits neural rosette formation and neuronal differentiation from rhesus monkey embryonic stem cells
  publication-title: J. Neurosci. Res.
– volume: 67
  start-page: 206
  year: 2009
  end-page: 212
  ident: bib26
  article-title: Folate, cancer risk, and the Greek god, Proteus: a tale of two chameleons
  publication-title: Nutr. Rev.
– volume: 33
  start-page: 1158
  year: 2012
  end-page: 1168
  ident: bib48
  article-title: Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway
  publication-title: Carcinogenesis
– volume: 19
  start-page: e5
  year: 2014
  end-page: 11
  ident: bib44
  article-title: FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements
  publication-title: Oncol.
– volume: 12
  start-page: 832
  year: 2006
  end-page: 838
  ident: bib78
  article-title: A phase II trial of pemetrexed in advanced breast cancer: clinical response and association with molecular target expression
  publication-title: Clin. Canc. Res.
– volume: 114
  start-page: 844
  year: 2015
  end-page: 852
  ident: bib21
  article-title: Altered folate metabolism modifies cell proliferation and progesterone secretion in human placental choriocarcinoma JEG-3 cells
  publication-title: Br. J. Nutr.
– volume: vol. 5
  start-page: 930
  year: 2012
  end-page: 942
  ident: bib51
  publication-title: Dietary Energy Balance Modulates Epithelial-To-Mesenchymal Transition and Tumor Progression in Murine Claudin-Low and Basal-like Mammary Tumor Models
– volume: 8
  start-page: 29
  year: 2017
  ident: bib66
  article-title: Canonical and non-canonical aspects of JAK-STAT signaling: lessons from interferons for cytokine responses
  publication-title: Front. Immunol.
– volume: 302
  start-page: 2119
  year: 2009
  end-page: 2126
  ident: bib24
  article-title: Cancer incidence and mortality after treatment with folic acid and vitamin B12
  publication-title: J. Am. Med. Assoc.
– volume: 71
  start-page: 592
  year: 2012
  end-page: 597
  ident: bib14
  article-title: Folate, colorectal cancer and the involvement of DNA methylation
  publication-title: Proc. Nutr. Soc.
– volume: 16
  start-page: 3274
  year: 2018
  end-page: 3280
  ident: bib81
  article-title: Thymidylate synthase predicts poor response to pemetrexed chemotherapy in patients with advanced breast cancer
  publication-title: Oncol Lett
– volume: 9
  year: 2014
  ident: bib30
  article-title: Folic acid supplementation promotes mammary tumor progression in a rat model
  publication-title: PloS One
– volume: 37
  start-page: 513
  year: 2018
  end-page: 516
  ident: bib72
  article-title: The critical, clinical role of interferon-beta in regulating cancer stem cell properties in triple-negative breast cancer
  publication-title: DNA Cell Biol.
– volume: 173
  start-page: 3186
  year: 2004
  end-page: 3192
  ident: bib17
  article-title: Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro
  publication-title: J. Immunol.
– volume: 37
  year: 2017
  ident: bib49
  article-title: Folic acid inhibits nasopharyngeal cancer cell proliferation and invasion via activation of FRalpha/ERK1/2/TSLC1 pathway
  publication-title: Biosci. Rep.
– volume: 53
  start-page: 28
  year: 2018
  end-page: 38
  ident: bib61
  article-title: Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers
  publication-title: J. Nutr. Biochem.
– volume: 95
  start-page: 149
  year: 2015
  end-page: 178
  ident: bib67
  article-title: NOD-like receptors: versatile cytosolic sentinels
  publication-title: Physiol. Rev.
– volume: 18
  start-page: 128
  year: 2018
  end-page: 134
  ident: bib60
  article-title: EMT in cancer
  publication-title: Nat. Rev. Canc.
– volume: 60
  start-page: 1288
  year: 2001
  ident: 10.1016/j.biochi.2020.04.005_bib37
  article-title: Impact of extracellular folate levels on global gene expression
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.60.6.1288
– volume: 68
  start-page: e86
  year: 2019
  ident: 10.1016/j.biochi.2020.04.005_bib58
  article-title: Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis
  publication-title: Curr Protoc Bioinformatics
  doi: 10.1002/cpbi.86
– volume: 114
  start-page: 844
  year: 2015
  ident: 10.1016/j.biochi.2020.04.005_bib21
  article-title: Altered folate metabolism modifies cell proliferation and progesterone secretion in human placental choriocarcinoma JEG-3 cells
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114515002688
– volume: 322
  start-page: 764
  year: 2019
  ident: 10.1016/j.biochi.2020.04.005_bib45
  article-title: Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2019.11058
– volume: 2
  year: 2013
  ident: 10.1016/j.biochi.2020.04.005_bib65
  article-title: The tumor suppressor function of STAT1 in breast cancer
  publication-title: JAK-STAT
  doi: 10.4161/jkst.23353
– volume: 30
  start-page: 1536
  year: 2009
  ident: 10.1016/j.biochi.2020.04.005_bib31
  article-title: Effect of folic acid supplementation on the progression of colorectal aberrant crypt foci
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp152
– volume: 37
  start-page: 513
  year: 2018
  ident: 10.1016/j.biochi.2020.04.005_bib72
  article-title: The critical, clinical role of interferon-beta in regulating cancer stem cell properties in triple-negative breast cancer
  publication-title: DNA Cell Biol.
  doi: 10.1089/dna.2018.4247
– volume: 19
  start-page: 861
  year: 2008
  ident: 10.1016/j.biochi.2020.04.005_bib77
  article-title: Triple-negative high-risk breast cancer derives particular benefit from dose intensification of adjuvant chemotherapy: results of WSG AM-01 trial
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdm551
– volume: 285
  start-page: 2981
  year: 2001
  ident: 10.1016/j.biochi.2020.04.005_bib15
  article-title: Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.285.23.2981
– volume: 9
  year: 2014
  ident: 10.1016/j.biochi.2020.04.005_bib30
  article-title: Folic acid supplementation promotes mammary tumor progression in a rat model
  publication-title: PloS One
  doi: 10.1371/journal.pone.0084635
– volume: 2
  start-page: 563
  year: 2002
  ident: 10.1016/j.biochi.2020.04.005_bib1
  article-title: Dissemination and growth of cancer cells in metastatic sites
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc865
– volume: 43
  year: 2015
  ident: 10.1016/j.biochi.2020.04.005_bib53
  article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 19
  start-page: 328
  year: 2008
  ident: 10.1016/j.biochi.2020.04.005_bib39
  article-title: Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling and folate uptake in human colonic epithelial cell lines
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2007.05.003
– volume: 18
  start-page: 128
  year: 2018
  ident: 10.1016/j.biochi.2020.04.005_bib60
  article-title: EMT in cancer
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc.2017.118
– volume: 33
  start-page: 1158
  year: 2012
  ident: 10.1016/j.biochi.2020.04.005_bib48
  article-title: Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs138
– volume: 100
  start-page: 596
  year: 2008
  ident: 10.1016/j.biochi.2020.04.005_bib34
  article-title: Relationship between folate status and tumour progression in patients with hepatocellular carcinoma
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114508911557
– volume: 510
  start-page: 298
  year: 2014
  ident: 10.1016/j.biochi.2020.04.005_bib8
  article-title: Quantitative flux analysis reveals folate-dependent NADPH production
  publication-title: Nature
  doi: 10.1038/nature13236
– volume: 7
  start-page: 33246
  year: 2016
  ident: 10.1016/j.biochi.2020.04.005_bib47
  article-title: Folate deficient tumor microenvironment promotes epithelial-to-mesenchymal transition and cancer stem-like phenotypes
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8910
– volume: 30
  start-page: 102
  year: 2016
  ident: 10.1016/j.biochi.2020.04.005_bib71
  article-title: High folic acid intake reduces natural killer cell cytotoxicity in aged mice
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2015.12.006
– volume: 67
  start-page: 206
  year: 2009
  ident: 10.1016/j.biochi.2020.04.005_bib26
  article-title: Folate, cancer risk, and the Greek god, Proteus: a tale of two chameleons
  publication-title: Nutr. Rev.
  doi: 10.1111/j.1753-4887.2009.00190.x
– volume: 136
  start-page: 189
  year: 2006
  ident: 10.1016/j.biochi.2020.04.005_bib69
  article-title: Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women
  publication-title: J. Nutr.
  doi: 10.1093/jn/136.1.189
– volume: 90
  start-page: 1382
  year: 2012
  ident: 10.1016/j.biochi.2020.04.005_bib20
  article-title: Folic acid deficiency inhibits neural rosette formation and neuronal differentiation from rhesus monkey embryonic stem cells
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.23030
– volume: 53
  start-page: 28
  year: 2018
  ident: 10.1016/j.biochi.2020.04.005_bib61
  article-title: Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2017.10.001
– start-page: 61
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib70
  article-title: Folic acid modulates cancer-associated micro RNAs and inflammatory mediators in neoplastic and non-neoplastic colonic cells in a different way
  publication-title: Mol. Nutr. Food Res.
– volume: 37
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib49
  article-title: Folic acid inhibits nasopharyngeal cancer cell proliferation and invasion via activation of FRalpha/ERK1/2/TSLC1 pathway
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20170772
– volume: 95
  start-page: 149
  year: 2015
  ident: 10.1016/j.biochi.2020.04.005_bib67
  article-title: NOD-like receptors: versatile cytosolic sentinels
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00009.2014
– volume: 30
  start-page: 57
  year: 2010
  ident: 10.1016/j.biochi.2020.04.005_bib9
  article-title: Compartmentalization of Mammalian folate-mediated one-carbon metabolism
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev.nutr.012809.104810
– volume: 44
  start-page: W90
  year: 2016
  ident: 10.1016/j.biochi.2020.04.005_bib57
  article-title: A comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 1
  start-page: 27
  year: 2015
  ident: 10.1016/j.biochi.2020.04.005_bib79
  article-title: Potential role of pemetrexed in metastatic breast cancer patients pre-treated with anthracycline or taxane
  publication-title: Chronic Dis Transl Med
– volume: 136
  start-page: 1774
  year: 2006
  ident: 10.1016/j.biochi.2020.04.005_bib19
  article-title: Maternal folate deficiency affects proliferation, but not apoptosis, in embryonic mouse heart
  publication-title: J. Nutr.
  doi: 10.1093/jn/136.7.1774
– volume: 54
  start-page: 112
  year: 1993
  ident: 10.1016/j.biochi.2020.04.005_bib40
  article-title: Proliferation, migration and invasion of human glioma cells exposed to antifolate drugs
  publication-title: Int. J. Canc.
  doi: 10.1002/ijc.2910540118
– volume: 527
  start-page: 186
  year: 2015
  ident: 10.1016/j.biochi.2020.04.005_bib43
  article-title: Oxidative stress inhibits distant metastasis by human melanoma cells
  publication-title: Nature
  doi: 10.1038/nature15726
– volume: 15
  start-page: 189
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib50
  article-title: Metabolic reprogramming by folate restriction leads to a less aggressive cancer phenotype
  publication-title: Mol. Canc. Res.
  doi: 10.1158/1541-7786.MCR-16-0317
– volume: 141
  start-page: 2537
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib62
  article-title: Low folate metabolic stress reprograms DNA methylation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers
  publication-title: Int. J. Canc.
  doi: 10.1002/ijc.31008
– volume: 3
  start-page: 370
  year: 2011
  ident: 10.1016/j.biochi.2020.04.005_bib25
  article-title: Folic acid food fortification-its history, effect, concerns, and future directions
  publication-title: Nutrients
  doi: 10.3390/nu3030370
– volume: 19
  start-page: e5
  year: 2014
  ident: 10.1016/j.biochi.2020.04.005_bib44
  article-title: FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements
  publication-title: Oncol.
  doi: 10.1634/theoncologist.2014-0241
– volume: 25
  start-page: 27
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib10
  article-title: One-carbon metabolism in health and disease
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2016.08.009
– volume: 21
  start-page: 1688
  year: 2015
  ident: 10.1016/j.biochi.2020.04.005_bib74
  article-title: Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-14-0432
– volume: 13
  start-page: 97
  year: 2013
  ident: 10.1016/j.biochi.2020.04.005_bib7
  article-title: Regulatory networks defining EMT during cancer initiation and progression
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc3447
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.biochi.2020.04.005_bib55
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 16
  start-page: 3274
  year: 2018
  ident: 10.1016/j.biochi.2020.04.005_bib81
  article-title: Thymidylate synthase predicts poor response to pemetrexed chemotherapy in patients with advanced breast cancer
  publication-title: Oncol Lett
– volume: 173
  start-page: 3186
  year: 2004
  ident: 10.1016/j.biochi.2020.04.005_bib17
  article-title: Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.5.3186
– volume: 381
  start-page: 974
  year: 2013
  ident: 10.1016/j.biochi.2020.04.005_bib35
  article-title: Folic acid and cancer--where are we today?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)60110-5
– volume: 18
  start-page: 1224
  year: 2012
  ident: 10.1016/j.biochi.2020.04.005_bib82
  article-title: Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape
  publication-title: Nat. Med.
  doi: 10.1038/nm.2830
– volume: 7
  start-page: 737
  year: 2007
  ident: 10.1016/j.biochi.2020.04.005_bib3
  article-title: Illuminating the metastatic process
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2229
– volume: 378
  start-page: 2078
  year: 2018
  ident: 10.1016/j.biochi.2020.04.005_bib46
  article-title: Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1801005
– volume: 9
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib64
  article-title: The epithelial-to-mesenchymal transition in breast cancer: focus on basal-like carcinomas
  publication-title: Cancers
  doi: 10.3390/cancers9100134
– volume: 114
  start-page: 13792
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib59
  article-title: Interferon-beta represses cancer stem cell properties in triple-negative breast cancer
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1713728114
– volume: 7
  year: 2012
  ident: 10.1016/j.biochi.2020.04.005_bib41
  article-title: Paradoxical impact of two folate receptors, FRalpha and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome
  publication-title: PloS One
  doi: 10.1371/journal.pone.0047201
– volume: 71
  start-page: 592
  year: 2012
  ident: 10.1016/j.biochi.2020.04.005_bib14
  article-title: Folate, colorectal cancer and the involvement of DNA methylation
  publication-title: Proc. Nutr. Soc.
  doi: 10.1017/S0029665112000717
– volume: 116
  start-page: 752
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib27
  article-title: High folic acid diet enhances tumour growth in PyMT-induced breast cancer
  publication-title: Br. J. Canc.
  doi: 10.1038/bjc.2017.11
– volume: 14
  start-page: 128
  year: 2013
  ident: 10.1016/j.biochi.2020.04.005_bib56
  article-title: Interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-128
– volume: 11
  start-page: 735
  year: 2011
  ident: 10.1016/j.biochi.2020.04.005_bib2
  article-title: Unravelling the complexity of metastasis - molecular understanding and targeted therapies
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc3125
– volume: 76
  start-page: 5201
  year: 2016
  ident: 10.1016/j.biochi.2020.04.005_bib5
  article-title: Metabolic plasticity as a determinant of tumor growth and metastasis
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-16-0266
– volume: vol. 5
  start-page: 930
  year: 2012
  ident: 10.1016/j.biochi.2020.04.005_bib51
– volume: 4
  start-page: 1825
  year: 2011
  ident: 10.1016/j.biochi.2020.04.005_bib29
  article-title: Dietary folate deficiency blocks prostate cancer progression in the TRAMP model
  publication-title: Canc. Prev. Res.
  doi: 10.1158/1940-6207.CAPR-11-0140
– volume: 302
  start-page: 2119
  year: 2009
  ident: 10.1016/j.biochi.2020.04.005_bib24
  article-title: Cancer incidence and mortality after treatment with folic acid and vitamin B12
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2009.1622
– volume: 147
  start-page: 1677
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib68
  article-title: A daily dose of 5 mg folic acid for 90 Days is associated with increased serum unmetabolized folic acid and reduced natural killer cell cytotoxicity in healthy Brazilian adults
  publication-title: J. Nutr.
  doi: 10.3945/jn.117.247445
– volume: 107
  start-page: 208
  year: 2018
  ident: 10.1016/j.biochi.2020.04.005_bib33
  article-title: Is folic acid safe for non-muscle-invasive bladder cancer patients? An evidence-based cohort study
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/nqx019
– volume: 3
  start-page: 26
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib52
  article-title: Metabolic reprogramming underlies metastatic potential in an obesity-responsive murine model of metastatic triple negative breast cancer
  publication-title: NPJ breast cancer
  doi: 10.1038/s41523-017-0027-5
– volume: 25
  start-page: 5002
  year: 2019
  ident: 10.1016/j.biochi.2020.04.005_bib75
  article-title: Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-18-3524
– volume: 107
  start-page: 139
  year: 2018
  ident: 10.1016/j.biochi.2020.04.005_bib13
  article-title: Folate and cancer: a tale of Dr. Jekyll and mr. Hyde?
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/nqx076
– volume: 91
  start-page: 4067
  year: 1994
  ident: 10.1016/j.biochi.2020.04.005_bib16
  article-title: Apoptosis mediates and thymidine prevents erythroblast destruction in folate deficiency anemia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.91.9.4067
– volume: 25
  start-page: 37
  year: 2014
  ident: 10.1016/j.biochi.2020.04.005_bib73
  article-title: Targeting the tumor microenvironment with interferon-β bridges innate and adaptive immune responses
  publication-title: Canc. Cell
  doi: 10.1016/j.ccr.2013.12.004
– volume: 26
  start-page: 153
  year: 2007
  ident: 10.1016/j.biochi.2020.04.005_bib80
  article-title: Molecular basis of antifolate resistance
  publication-title: Canc. Metastasis Rev.
  doi: 10.1007/s10555-007-9049-z
– volume: 233
  start-page: 736
  year: 2018
  ident: 10.1016/j.biochi.2020.04.005_bib23
  article-title: Folic acid is necessary for proliferation and differentiation of C2C12 myoblasts
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25989
– volume: 289
  start-page: 26383
  year: 2014
  ident: 10.1016/j.biochi.2020.04.005_bib28
  article-title: Rho GTPases RhoA and Rac1 mediate effects of dietary folate on metastatic potential of A549 cancer cells through the control of cofilin phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.569657
– volume: 71
  start-page: 1287
  year: 2011
  ident: 10.1016/j.biochi.2020.04.005_bib32
  article-title: Increased cancer cell proliferation in prostate cancer patients with high levels of serum folate
  publication-title: Prostate
  doi: 10.1002/pros.21346
– volume: 12
  start-page: 832
  year: 2006
  ident: 10.1016/j.biochi.2020.04.005_bib78
  article-title: A phase II trial of pemetrexed in advanced breast cancer: clinical response and association with molecular target expression
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-05-0295
– volume: 7
  start-page: 1138
  year: 2015
  ident: 10.1016/j.biochi.2020.04.005_bib22
  article-title: Folate levels modulate oncogene-induced replication stress and tumorigenicity
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201404824
– volume: 20
  start-page: 69
  year: 2019
  ident: 10.1016/j.biochi.2020.04.005_bib63
  article-title: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0080-4
– volume: 62
  start-page: S3
  year: 2004
  ident: 10.1016/j.biochi.2020.04.005_bib12
  article-title: Physiology of folate and vitamin B12 in health and disease
  publication-title: Nutr. Rev.
  doi: 10.1111/j.1753-4887.2004.tb00070.x
– volume: 51
  start-page: 607
  year: 2013
  ident: 10.1016/j.biochi.2020.04.005_bib11
  article-title: Molecular mechanisms underlying the potentially adverse effects of folate
  publication-title: Clin. Chem. Lab. Med.
  doi: 10.1515/cclm-2012-0561
– volume: 134
  start-page: 162
  year: 2004
  ident: 10.1016/j.biochi.2020.04.005_bib18
  article-title: Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain
  publication-title: J. Nutr.
  doi: 10.1093/jn/134.1.162
– volume: 8
  start-page: 29
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib66
  article-title: Canonical and non-canonical aspects of JAK-STAT signaling: lessons from interferons for cytokine responses
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00029
– volume: 28
  start-page: 2966
  year: 2010
  ident: 10.1016/j.biochi.2020.04.005_bib76
  article-title: Classical cyclophosphamide, methotrexate, and fluorouracil chemotherapy is more effective in triple-negative, node-negative breast cancer: results from two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2009.25.9549
– volume: 10
  start-page: 946
  year: 2016
  ident: 10.1016/j.biochi.2020.04.005_bib54
  article-title: Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/16-AOAS920
– volume: 29
  start-page: 6233
  year: 2010
  ident: 10.1016/j.biochi.2020.04.005_bib42
  article-title: ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A
  publication-title: Oncogene
  doi: 10.1038/onc.2010.356
– volume: 8
  year: 2019
  ident: 10.1016/j.biochi.2020.04.005_bib4
  article-title: Metabolic plasticity and epithelial-mesenchymal transition
  publication-title: J. Clin. Med.
– volume: 352
  start-page: i734
  year: 2016
  ident: 10.1016/j.biochi.2020.04.005_bib36
  article-title: Decision on folic acid fortification in Europe must consider both risks and benefits
  publication-title: BMJ
  doi: 10.1136/bmj.i734
– volume: 25
  start-page: 69
  year: 2004
  ident: 10.1016/j.biochi.2020.04.005_bib38
  article-title: Effects of dietary folate and aging on gene expression in the colonic mucosa of rats: implications for carcinogenesis
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgg150
– volume: 284
  start-page: 3132
  year: 2017
  ident: 10.1016/j.biochi.2020.04.005_bib6
  article-title: Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer
  publication-title: FEBS J.
  doi: 10.1111/febs.14090
SSID ssj0005029
Score 2.3446333
Snippet We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a mouse cell model of triple-negative...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms Animals
breast neoplasms
Cell Line, Tumor
Culture Media
Epithelial-Mesenchymal Transition
Epithelial-to-mesenchymal transition
epithelium
Female
Folic acid
Folic Acid - administration & dosage
gene expression
humans
Interferon signaling
interferons
metabolism
Metastasis
Mice
Mice, Transgenic
microarray technology
neoplasm cells
phenotype
therapeutics
Transcriptome
Transcriptomics
Triple Negative Breast Neoplasms - metabolism
Triple-negative breast cancer
Wnt Signaling Pathway
Title Effects of folic acid withdrawal on transcriptomic profiles in murine triple-negative breast cancer cell lines
URI https://dx.doi.org/10.1016/j.biochi.2020.04.005
https://www.ncbi.nlm.nih.gov/pubmed/32304770
https://www.proquest.com/docview/2391977609
https://www.proquest.com/docview/2551952296
https://pubmed.ncbi.nlm.nih.gov/PMC7858693
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QE4INjyWB6VkRC3sI7txM5xtaJaQPQClXqz_AoNok61mwpx4bfjcZKlC4hK3PIYK05m4nl45huEXgJgTLTTXUY0ZdFBKXQmOaORIaWDjSFjUyHth5NydcrfnRVne2g51sJAWuWw9vdrelqthyvz4WvOL5tm_jGKJ6mI5BQORMH30QGN2l5O0MHi7fvVya9MD5KalQFZBgPGCrqU5mWa1p430VGkJGGeQh-7v2uoPy3Q3xMpr2mm43vo7mBS4kU_6_toz4cpOlyE6E5ffMevcEryTNHzKbq1HBu8TdGda1iEhyj0OMYb3Na4BrBgrG3jMMRp3Vp_iw9oA-5As6V1BoqZ8dDwe4ObgC8gbO8jBUTus-A_J0RxbCDpvcMWhGuNYZsAg2G7eYBOj998Wq6yoRlDZnlVdpmrqXRO55qKutY0-kGWe-Ykdb6ucy8t48zKQhjuRS0qQQG4TRpWFa7ItTDsIZqENvjHCOfRRNTRTalNbqP7mhtJjCkJY0Xlrc75DLGRAcoOSOXQMOOrGlPSvqiebQrYpghXkW0zlG1HXfZIHTfQi5G3akfiVFQmN4x8MYqCiiyDT6eDb682KspfHg3qklT_oCkA0IfSqpyhR734bOfL0i6oIHFuO4K1JQAw8N07oTlPoOBCFrKs2JP_fqun6Dac9Wlwz9CkW1_559Hg6swR2n_9Iz8afqufdjIr2A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9zD2gKDjo3waCfEW1bGd2HmsKqaObX1hk_Zm2Y7DgpgztZkm_nt8TlJWQEziLUrOiuO7nO_Od79D6AMAxgQ7vUyIpiw4KJlOJGc0MCQv4WDI2FhIe7rMF-f880V2sYPmQy0MpFX2ur_T6VFb93em_WpOr-t6-iWIJymI5BQuRMYfoF0OTa1HaHd2dLxY_sr0ILFZGZAlMGCooItpXqZu7GUdHEVKIuYp9LH7-w71pwX6eyLlnZ3p8DF61JuUeNbN-gnacX6MDmY-uNNXP_BHHJM8Y_R8jPbmQ4O3Mdq_g0V4gHyHY7zGTYUrAAvG2tYlhjhtudK34QWNxy3sbFHPQDEz7ht-r3Ht8RWE7V2ggMh94t3XiCiODSS9t9iCcK0wHBNgMGzXT9H54aez-SLpmzEklhd5m5QVlWWpU01FVWka_CDLHSslLV1VpU5axpmVmTDciUoUggJwmzSsyMos1cKwZ2jkG-9eIJwGE1EHN6UyqQ3ua2okMSYnjGWFszrlE8QGBijbI5VDw4zvakhJ-6Y6tilgmyJcBbZNULIZdd0hddxDLwbeqi2JU2EzuWfk-0EUVGAZLJ32rrlZK8qKNBjUOSn-QZMBoA-lRT5Bzzvx2cyXxVNQQcLctgRrQwBg4NtPfH0ZQcGFzGResJf__VXv0N7i7PREnRwtj1-hh_CkS4l7jUbt6sa9CcZXa972P9dPgf8tvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EFFECTS+OF+FOLIC+ACID+WITHDRAWAL+ON+TRANSCRIPTOMIC+PROFILES+IN+MURINE+TRIPLE-NEGATIVE+BREAST+CANCER+CELL+LINES&rft.jtitle=Biochimie&rft.au=Kok%2C+Dieuwertje+E.&rft.au=O%E2%80%99Flanagan%2C+Ciara+H.&rft.au=Coleman%2C+Michael+F.&rft.au=Ashkavand%2C+Zahra&rft.date=2020-06-01&rft.issn=0300-9084&rft.eissn=1638-6183&rft.volume=173&rft.spage=114&rft.epage=122&rft_id=info:doi/10.1016%2Fj.biochi.2020.04.005&rft_id=info%3Apmid%2F32304770&rft.externalDocID=PMC7858693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9084&client=summon