Image fusion algorithm in Integrated Space-Ground-Sea Wireless Networks of B5G

In recent years, in Space-Ground-Sea Wireless Networks, the rapid development of image recognition also promotes the development of images fusion. For example, the content of a single-mode medical image is very single, and the fused image contains more image information, which provides a more reliab...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on advances in signal processing Vol. 2021; no. 1; pp. 1 - 10
Main Authors Yu, Xiaobing, Cui, Yingliu, Wang, Xin, Zhang, Jinjin
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 31.07.2021
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-6180
1687-6172
1687-6180
DOI10.1186/s13634-021-00771-1

Cover

Abstract In recent years, in Space-Ground-Sea Wireless Networks, the rapid development of image recognition also promotes the development of images fusion. For example, the content of a single-mode medical image is very single, and the fused image contains more image information, which provides a more reliable basis for diagnosis. However, in wireless communication and medical image processing, the image fusion effect is poor and the efficiency is low. To solve this problem, an image fusion algorithm based on fast finite shear wave transform and convolutional neural network is proposed for wireless communication in this paper. This algorithm adopts the methods such as fast finite shear wave transform (FFST), reducing the dimension of the convolution layer, and the inverse process of fast finite shear wave transform. The experimental results show that the algorithm has a very good effect in both objective indicators and subjective vision, and it is also very feasible in wireless communication.
AbstractList In recent years, in Space-Ground-Sea Wireless Networks, the rapid development of image recognition also promotes the development of images fusion. For example, the content of a single-mode medical image is very single, and the fused image contains more image information, which provides a more reliable basis for diagnosis. However, in wireless communication and medical image processing, the image fusion effect is poor and the efficiency is low. To solve this problem, an image fusion algorithm based on fast finite shear wave transform and convolutional neural network is proposed for wireless communication in this paper. This algorithm adopts the methods such as fast finite shear wave transform (FFST), reducing the dimension of the convolution layer, and the inverse process of fast finite shear wave transform. The experimental results show that the algorithm has a very good effect in both objective indicators and subjective vision, and it is also very feasible in wireless communication.
Abstract In recent years, in Space-Ground-Sea Wireless Networks, the rapid development of image recognition also promotes the development of images fusion. For example, the content of a single-mode medical image is very single, and the fused image contains more image information, which provides a more reliable basis for diagnosis. However, in wireless communication and medical image processing, the image fusion effect is poor and the efficiency is low. To solve this problem, an image fusion algorithm based on fast finite shear wave transform and convolutional neural network is proposed for wireless communication in this paper. This algorithm adopts the methods such as fast finite shear wave transform (FFST), reducing the dimension of the convolution layer, and the inverse process of fast finite shear wave transform. The experimental results show that the algorithm has a very good effect in both objective indicators and subjective vision, and it is also very feasible in wireless communication.
ArticleNumber 55
Audience Academic
Author Yu, Xiaobing
Cui, Yingliu
Wang, Xin
Zhang, Jinjin
Author_xml – sequence: 1
  givenname: Xiaobing
  surname: Yu
  fullname: Yu, Xiaobing
  email: cosine@nau.edu.cn
  organization: School of Information Engineering, Nanjing Audit University
– sequence: 2
  givenname: Yingliu
  surname: Cui
  fullname: Cui, Yingliu
  organization: School of Information Engineering, Nanjing Audit University
– sequence: 3
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: School of Information Engineering, Nanjing Audit University
– sequence: 4
  givenname: Jinjin
  orcidid: 0000-0001-6521-979X
  surname: Zhang
  fullname: Zhang, Jinjin
  organization: School of Information Engineering, Nanjing Audit University
BookMark eNqNkU9rFTEUxQepYFv9Aq4GXE9NMvk3y1r0-aDURQsuw00mGfOcSZ5JHqXfvrFTrIoUySLhcn6He05OmqMQg22atxidYSz5-4x73tMOEdwhJATu8IvmGHMpOo4lOvrt_ao5yXmHEOMEkePmarvAZFt3yD6GFuYpJl--La0P7TYUOyUodmyv92Bst0nxEMbu2kL71Sc725zbK1tuY_qe2-jaD2zzunnpYM72zeN92tx8-nhz8bm7_LLZXpxfdoYOvHTGjo5KgbWWI3AqR0J174jugQ3jYCjUMJoSXAUacSsFMKkFcpoiQgfbnzbb1XaMsFP75BdIdyqCVw-DmCYFqXgzW8WHUTONHREaUQMUnK7BuZCCI9ZjVr361esQ9nB3C_P8yxAj9bNdtbararvqoV2FK_VupfYp_jjYXNQuHlKomRVhjA-ICdE_qSaoq_jgYklgFp-NOheI9ohyIqrq7B-qeka7eFM_2vk6_wOQK2BSzDlZp4wvUOoPVtDPz-9N_kL_K-xjRbmKw2TTU9hnqHt-5sZ9
CitedBy_id crossref_primary_10_3390_electronics12173557
Cites_doi 10.1016/j.ijleo.2020.164903
10.1007/s10915-020-01399-3
10.1016/j.ymssp.2020.107003
10.1016/j.ijcce.2020.12.004
10.1007/s11045-015-0343-6
10.1007/s11053-020-09742-z
10.1016/j.patrec.2020.01.011
10.1007/s11042-020-08662-7
10.1007/s12652-020-02065-0
10.1088/1755-1315/660/1/012062
10.1016/j.adhoc.2020.102258
10.1007/s11760-019-01537-x
10.1016/j.compbiomed.2020.104179
10.1007/s12083-020-01019-9
10.1016/j.adhoc.2019.101935
10.21629/JSEE.2019.05.02
10.2991/mbdasm-19.2019.4
10.1007/s11042-018-6174-3
10.1016/j.comnet.2021.107893
10.1016/j.neucom.2021.01.094
10.1016/j.apnum.2019.11.018
10.1080/15623599.2018.1526630
10.1515/jag-2019-0066
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1186/s13634-021-00771-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 10
ExternalDocumentID oai_doaj_org_article_69db5b1f27b04ca4afb2026787605315
10.1186/s13634-021-00771-1
A704304627
10_1186_s13634_021_00771_1
GrantInformation_xml – fundername: Young Scientists Fund
  grantid: 61602249
  funderid: http://dx.doi.org/10.13039/501100010909
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
CITATION
OVT
PUEGO
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
2VQ
ADTOC
AFWIH
AHSBF
C1A
EJD
HGAVV
HZ~
IL9
IPNFZ
O9-
RIG
UNPAY
ID FETCH-LOGICAL-c496t-cedf4871bb8da648d24b3f2b3a59d9c4a634b4211bbb06e87a58b70fb40249e3
IEDL.DBID BENPR
ISSN 1687-6180
1687-6172
IngestDate Fri Oct 03 12:53:08 EDT 2025
Tue Aug 19 20:26:08 EDT 2025
Sat Oct 11 05:53:47 EDT 2025
Mon Oct 20 22:17:01 EDT 2025
Mon Oct 20 16:24:00 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Wed Oct 01 02:37:55 EDT 2025
Fri Feb 21 02:48:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Space-Ground-Sea Wireless Networks
Image recognition
Neural network
Fast finite shear wave transform
Image fusion
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-cedf4871bb8da648d24b3f2b3a59d9c4a634b4211bbb06e87a58b70fb40249e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6521-979X
OpenAccessLink https://www.proquest.com/docview/2556905773?pq-origsite=%requestingapplication%&accountid=15518
PQID 2556905773
PQPubID 237299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_69db5b1f27b04ca4afb2026787605315
unpaywall_primary_10_1186_s13634_021_00771_1
proquest_journals_2556905773
gale_infotracmisc_A704304627
gale_infotracacademiconefile_A704304627
crossref_citationtrail_10_1186_s13634_021_00771_1
crossref_primary_10_1186_s13634_021_00771_1
springer_journals_10_1186_s13634_021_00771_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-31
PublicationDateYYYYMMDD 2021-07-31
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-31
  day: 31
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2021
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References YonedaNAnalysis of circular-to-rectangular waveguide T-junction using mode-matching techniqueElectron. Commun. Japan20158073746
Lan, R. , et al. Image denoising via deep residual convolutional neural networks. Signal Image. Video Process. 9, 1-8 (2019).
XiaoqiangTLingfuKDemingKYongqiangCUsing discrete stationary wavelet transform to improve NURBS quadric surface fitting methodActa metrologica Sinica20204106662668(2020)
FawazHEl HelouMLahoudSKhawamKA reinforcement learning approach to queue-aware scheduling in full-duplex wireless networksComput. Netw.202118910789310.1016/j.comnet.2021.107893
XuepingSResearch on image fusion method based on NSCT and PCNN [D]2016Tianjin University of technology
Ma, C. , et al. Single image super resolution via wavelet transform fusion and SRFeat network. J. Ambient Intell. Human. Comput. 2(2020).
SaltariFDessiDMastroddiFMechanical systems virtual sensing by proportional observer and multi-resolution analysisMech. Syst. Signal Process202114610700310.1016/j.ymssp.2020.107003
VarshneyMSinghPOptimizing nonlinear activation function for convolutional neural networksSignal Image Video Process.2021818
Y. Zhang, An Improved Algorithm of Parameter Kernel Cutting Based on Complex Fusion Image [C]. Science and Engineering Research Center.Proceedings of 2019 International Conference on Mathematics, Big Data Analysis and Simulation and Modeling (MBDASM 2019). Sci. Eng. Res. Center, 22–26 (2019, 2019)
Wang Guofen,Li Weisheng,Huang Yuping. Medical image fusion based on hybrid three-layer decomposition model and nuclear norm. Comp. Biol. Med. 2020,129: 104179 (2020).
Panou, G. , and R. Korakitis . The direct geodesic problem and an approximate analytical solution in Cartesian coordinates on a triaxial ellipsoid. J. Appl. Geodesy 14.2, 205-213 (2020).
N. Saeed, A. Celik, T.Y. Al-Naffouri, M.-S. Alouini, Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Netw. 94, 101935 (2019)
SinghRChakrabortyAManojBSGraph Fourier Transform based on Directed LaplacianInt. Confer. Signal Process. Commun. IEEE2016201615
Lvarez, D. , P González-Rodríguez, and M. Kindelan . A Local Radial Basis Function Method for the Laplace–Beltrami Operator. J. Sci. Comput. 86.3(2021).
XuXAtrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural NetworksJ. Healthcare Eng.2018201818
Li, T. , et al. Random-Drop Data Augmentation of Deep Convolutional Neural Network for Mineral Prospectivity Mapping. Nat. Resources Res: 30, 1-12(2020).
AichSMulti-Scale Weight Sharing Network for Image RecognitionPattern Recogn. Lett.202013134835410.1016/j.patrec.2020.01.011
Luong, D. L. , D. H. Tran , and P. T. Nguyen. Optimizing multi-mode time-cost-quality trade-off of construction project using opposition multiple objective difference evolution. Int. J. Construct. Manage. 21(3) 1-13(2018).
YonghaoPA Multi-scale Inversion Method Based on Convolutional Wavelet Transform Applied in Cross-Hole Resistivity Electrical TomographyIOP Conf. Series Earth Environ. Sci.2021660101206210.1088/1755-1315/660/1/012062
LiQMedical Image Fusion Using Segment Graph Filter and Sparse RepresentationComput. Biol. Med.20211104239
H. Louati et al., Deep Convolutional Neural Network Architecture Design as a Bi-level Optimization Problem. Neurocomputing 439, 44-62 (2021)
RoutraySA new image denoising framework using bilateral filtering based non-subsampled shearlet transformOptik – Int. J. Light. Electron. Optics202021616490310.1016/j.ijleo.2020.164903
JianWKeYPingRChunxiaQXiufeiZMulti-source image fusion algorithm based on fast weighted guided filterJ. Syst. Eng. Electron2019300583184010.21629/JSEE.2019.05.02
Malekzadeh, M. . Developing new connectivity architectures for local sensing and control IoT systems. Peer-to-Peer Netw. Appl. 4, 609–626 (2020).
M. Li, Y. Wang, Z. Wang, H. Zheng, A deep learning method based on an attention mechanism for wireless network traffic prediction. Ad Hoc Netw. 107(102258), 102258 (2020)
Y. Li et al., Medical Image Fusion Method by Deep Learning. Int. J. Cogn. Comput. Eng. 2, 21-29 (2021)
Hariharan, K. , and N. R. Raajan . Performance enhanced hyperspectral and multispectral image fusion technique using ripplet type-II transform and deep neural networks for multimedia applications. Multimedia Tools Appl. 79, 1-10(2018).
Akhtarkavan, E. , et al. Fragile high capacity data hiding in digital images using integer-to-integer DWT and lattice vector quantization. Multimedia Tools. Appl. 79.8, 13427–13447 (2020).
Shuaiqi Liu,Mingzhu Shi,Zhihui Zhu,Jie Zhao. Image fusion based on complex-shearlet domain with guided filtering Multidimensional Systems and Signal Processing, 28(1), 207-224 (2017).
LiuDJChenZRThe adaptive finite element method for the P-Laplace problem$1Appl. Num. Math.2020152323337406738110.1016/j.apnum.2019.11.018
Q Li (771_CR11) 2021; 1
DJ Liu (771_CR7) 2020; 152
N Yoneda (771_CR9) 2015; 80
S Aich (771_CR18) 2020; 131
771_CR19
F Saltari (771_CR13) 2021; 146
771_CR17
771_CR16
771_CR24
T Xiaoqiang (771_CR27) 2020; 41
771_CR20
771_CR6
771_CR5
771_CR4
771_CR3
771_CR2
771_CR1
M Varshney (771_CR21) 2021; 8
771_CR29
771_CR28
W Jian (771_CR8) 2019; 30
771_CR25
X Xu (771_CR15) 2018; 2018
771_CR12
771_CR10
H Fawaz (771_CR30) 2021; 189
S Xueping (771_CR26) 2016
S Routray (771_CR22) 2020; 216
R Singh (771_CR23) 2016; 2016
P Yonghao (771_CR14) 2021; 660
References_xml – reference: JianWKeYPingRChunxiaQXiufeiZMulti-source image fusion algorithm based on fast weighted guided filterJ. Syst. Eng. Electron2019300583184010.21629/JSEE.2019.05.02
– reference: LiQMedical Image Fusion Using Segment Graph Filter and Sparse RepresentationComput. Biol. Med.20211104239
– reference: Y. Li et al., Medical Image Fusion Method by Deep Learning. Int. J. Cogn. Comput. Eng. 2, 21-29 (2021)
– reference: Malekzadeh, M. . Developing new connectivity architectures for local sensing and control IoT systems. Peer-to-Peer Netw. Appl. 4, 609–626 (2020).
– reference: Akhtarkavan, E. , et al. Fragile high capacity data hiding in digital images using integer-to-integer DWT and lattice vector quantization. Multimedia Tools. Appl. 79.8, 13427–13447 (2020).
– reference: Ma, C. , et al. Single image super resolution via wavelet transform fusion and SRFeat network. J. Ambient Intell. Human. Comput. 2(2020).
– reference: SinghRChakrabortyAManojBSGraph Fourier Transform based on Directed LaplacianInt. Confer. Signal Process. Commun. IEEE2016201615
– reference: H. Louati et al., Deep Convolutional Neural Network Architecture Design as a Bi-level Optimization Problem. Neurocomputing 439, 44-62 (2021)
– reference: Lan, R. , et al. Image denoising via deep residual convolutional neural networks. Signal Image. Video Process. 9, 1-8 (2019).
– reference: Shuaiqi Liu,Mingzhu Shi,Zhihui Zhu,Jie Zhao. Image fusion based on complex-shearlet domain with guided filtering Multidimensional Systems and Signal Processing, 28(1), 207-224 (2017).
– reference: Lvarez, D. , P González-Rodríguez, and M. Kindelan . A Local Radial Basis Function Method for the Laplace–Beltrami Operator. J. Sci. Comput. 86.3(2021).
– reference: M. Li, Y. Wang, Z. Wang, H. Zheng, A deep learning method based on an attention mechanism for wireless network traffic prediction. Ad Hoc Netw. 107(102258), 102258 (2020)
– reference: XiaoqiangTLingfuKDemingKYongqiangCUsing discrete stationary wavelet transform to improve NURBS quadric surface fitting methodActa metrologica Sinica20204106662668(2020)
– reference: XuepingSResearch on image fusion method based on NSCT and PCNN [D]2016Tianjin University of technology
– reference: FawazHEl HelouMLahoudSKhawamKA reinforcement learning approach to queue-aware scheduling in full-duplex wireless networksComput. Netw.202118910789310.1016/j.comnet.2021.107893
– reference: Y. Zhang, An Improved Algorithm of Parameter Kernel Cutting Based on Complex Fusion Image [C]. Science and Engineering Research Center.Proceedings of 2019 International Conference on Mathematics, Big Data Analysis and Simulation and Modeling (MBDASM 2019). Sci. Eng. Res. Center, 22–26 (2019, 2019)
– reference: RoutraySA new image denoising framework using bilateral filtering based non-subsampled shearlet transformOptik – Int. J. Light. Electron. Optics202021616490310.1016/j.ijleo.2020.164903
– reference: Wang Guofen,Li Weisheng,Huang Yuping. Medical image fusion based on hybrid three-layer decomposition model and nuclear norm. Comp. Biol. Med. 2020,129: 104179 (2020).
– reference: YonghaoPA Multi-scale Inversion Method Based on Convolutional Wavelet Transform Applied in Cross-Hole Resistivity Electrical TomographyIOP Conf. Series Earth Environ. Sci.2021660101206210.1088/1755-1315/660/1/012062
– reference: Li, T. , et al. Random-Drop Data Augmentation of Deep Convolutional Neural Network for Mineral Prospectivity Mapping. Nat. Resources Res: 30, 1-12(2020).
– reference: SaltariFDessiDMastroddiFMechanical systems virtual sensing by proportional observer and multi-resolution analysisMech. Syst. Signal Process202114610700310.1016/j.ymssp.2020.107003
– reference: XuXAtrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural NetworksJ. Healthcare Eng.2018201818
– reference: AichSMulti-Scale Weight Sharing Network for Image RecognitionPattern Recogn. Lett.202013134835410.1016/j.patrec.2020.01.011
– reference: Luong, D. L. , D. H. Tran , and P. T. Nguyen. Optimizing multi-mode time-cost-quality trade-off of construction project using opposition multiple objective difference evolution. Int. J. Construct. Manage. 21(3) 1-13(2018).
– reference: VarshneyMSinghPOptimizing nonlinear activation function for convolutional neural networksSignal Image Video Process.2021818
– reference: LiuDJChenZRThe adaptive finite element method for the P-Laplace problem$1Appl. Num. Math.2020152323337406738110.1016/j.apnum.2019.11.018
– reference: YonedaNAnalysis of circular-to-rectangular waveguide T-junction using mode-matching techniqueElectron. Commun. Japan20158073746
– reference: N. Saeed, A. Celik, T.Y. Al-Naffouri, M.-S. Alouini, Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Netw. 94, 101935 (2019)
– reference: Panou, G. , and R. Korakitis . The direct geodesic problem and an approximate analytical solution in Cartesian coordinates on a triaxial ellipsoid. J. Appl. Geodesy 14.2, 205-213 (2020).
– reference: Hariharan, K. , and N. R. Raajan . Performance enhanced hyperspectral and multispectral image fusion technique using ripplet type-II transform and deep neural networks for multimedia applications. Multimedia Tools Appl. 79, 1-10(2018).
– volume: 216
  start-page: 164903
  year: 2020
  ident: 771_CR22
  publication-title: Optik – Int. J. Light. Electron. Optics
  doi: 10.1016/j.ijleo.2020.164903
– ident: 771_CR4
  doi: 10.1007/s10915-020-01399-3
– volume: 41
  start-page: 662
  issue: 06
  year: 2020
  ident: 771_CR27
  publication-title: Acta metrologica Sinica
– volume: 146
  start-page: 107003
  year: 2021
  ident: 771_CR13
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2020.107003
– ident: 771_CR2
  doi: 10.1016/j.ijcce.2020.12.004
– ident: 771_CR28
  doi: 10.1007/s11045-015-0343-6
– ident: 771_CR16
  doi: 10.1007/s11053-020-09742-z
– volume: 131
  start-page: 348
  year: 2020
  ident: 771_CR18
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2020.01.011
– ident: 771_CR5
  doi: 10.1007/s11042-020-08662-7
– ident: 771_CR12
  doi: 10.1007/s12652-020-02065-0
– volume: 660
  start-page: 012062
  issue: 1
  year: 2021
  ident: 771_CR14
  publication-title: IOP Conf. Series Earth Environ. Sci.
  doi: 10.1088/1755-1315/660/1/012062
– ident: 771_CR24
  doi: 10.1016/j.adhoc.2020.102258
– ident: 771_CR17
  doi: 10.1007/s11760-019-01537-x
– volume: 8
  start-page: 1
  year: 2021
  ident: 771_CR21
  publication-title: Signal Image Video Process.
– volume: 2016
  start-page: 1
  year: 2016
  ident: 771_CR23
  publication-title: Int. Confer. Signal Process. Commun. IEEE
– volume-title: Research on image fusion method based on NSCT and PCNN [D]
  year: 2016
  ident: 771_CR26
– ident: 771_CR3
  doi: 10.1016/j.compbiomed.2020.104179
– volume: 1
  start-page: 104
  year: 2021
  ident: 771_CR11
  publication-title: Comput. Biol. Med.
– ident: 771_CR19
  doi: 10.1007/s12083-020-01019-9
– ident: 771_CR1
  doi: 10.1016/j.adhoc.2019.101935
– volume: 30
  start-page: 831
  issue: 05
  year: 2019
  ident: 771_CR8
  publication-title: J. Syst. Eng. Electron
  doi: 10.21629/JSEE.2019.05.02
– ident: 771_CR29
  doi: 10.2991/mbdasm-19.2019.4
– ident: 771_CR6
  doi: 10.1007/s11042-018-6174-3
– volume: 189
  start-page: 107893
  year: 2021
  ident: 771_CR30
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107893
– ident: 771_CR20
  doi: 10.1016/j.neucom.2021.01.094
– volume: 152
  start-page: 323
  year: 2020
  ident: 771_CR7
  publication-title: Appl. Num. Math.
  doi: 10.1016/j.apnum.2019.11.018
– ident: 771_CR10
  doi: 10.1080/15623599.2018.1526630
– ident: 771_CR25
  doi: 10.1515/jag-2019-0066
– volume: 2018
  start-page: 1
  year: 2018
  ident: 771_CR15
  publication-title: J. Healthcare Eng.
– volume: 80
  start-page: 37
  issue: 7
  year: 2015
  ident: 771_CR9
  publication-title: Electron. Commun. Japan
SSID ssj0056202
Score 2.3076272
Snippet In recent years, in Space-Ground-Sea Wireless Networks, the rapid development of image recognition also promotes the development of images fusion. For example,...
Abstract In recent years, in Space-Ground-Sea Wireless Networks, the rapid development of image recognition also promotes the development of images fusion. For...
SourceID doaj
unpaywall
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Computer vision
Engineering
Fast finite shear wave transform
Image fusion
Image processing
Image recognition
Integrated Space-Ground-Sea Wireless Networks for B5G
Medical imaging
Medical imaging equipment
Neural network
Neural networks
Object recognition
Quantum Information Technology
Shear
Signal,Image and Speech Processing
Space-Ground-Sea Wireless Networks
Spintronics
Telecommunication systems
Wireless communications
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL9AD4ikCBfmAxIFaXceP2McWUVok9tIi9WZ57ASQ0mzF7grx75nJY9kVUuHANXYe_vyN7XHG3zD2GilRyui8AGOU0DZ74WMlRVYmoz-UQPdC2p_m9uyz_nhlrrZSfVFM2CAPPAB3ZH0GA7IpK5jpFHVsoKSsSWjFxJ9evXTm_ORMDWMwTuoUtzMckXH2aCmVVVpQOALp10ghd6ahXq3_zzF56-foPru77m7izx-xbbfmn9MH7P64cOTHwwc_ZHfq7hHb35ITfMzm59c4OvBmTTtgPLZfFuj5f73m3zp-PqlCZH6BXnItaM-py-KijpwCYFsc8Ph8CAlf8kXDT8yHJ-zy9P3luzMx5ksQSXu7EqnODfofEsDlaLXLpQbVlKCi8dknHRED0OjxAcDM1q6KxkE1a0CTbmCtnrK9btHVz-ggtwNv0BUpAZ_YGGdV8tqCyviGFGPB5IReSKOWOKW0aEPvUzgbBsQDIh56xIMs2NvNPTeDksattU-oUzY1SQW7v4DcCCM3wt-4UbA31KWBbBU_L8XxyAE2klSvwnFFimfallXBDnZqoo2l3eKJFGG08WUg8TaPy91KFexwIsrv4tvadrgh0z9A8fx_QPGC3St7-tOu9AHbW31f1y9xObWCV73l_AIoTxPo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOUAPqLxE2oJ8QOJALTZ-JT62FaVFYi8tUm-Wx04KUpqturtC_fedyWPZFaKCa_yIPZ4Ze-yZbxh7jywh81A6AcYooW1ywoUiF0mZhPZQBN0BaX-b2tPv-uuluRyCwuajt_v4JNlp6k6sS_tpniurtCCXAsKgyQXaPI_x_CEpYcMxxTj0-hc3dPLZ2f17u40tqEPq_1Mfrz2MbrMny_Ym3P0KTbO295zssGfDoZEf9qv8nD2q2hdsew1K8CWbnl2jZuD1km6_eGiuZmj1_7jmP1t-NiJCJH6OFnIl6L6pTeK8CpycXxtUdnzau4PP-azmR-bLK3Zx8vni-FQMuRJE1M4uRKxSjbZHDlCmYHWZpAZVS1DBuOSiDkgD0GjtAcDEVmURTAnFpAZNmIGVes222llbvaEg7hKcQTNEAvZYm9Kq6LQFlfAPMYSM5SP1fBxwxCmdReM7e6K0vqe4R4r7juI-z9jHVZubHkXjwdpHtCirmoSA3X2Y3V75QaC8dQkM5LUsYILD0qEGSdm0ULuTXjEZ-0BL6klOcXgxDOEGOElCvPKHBaGdaSuLjO1v1ET5ipvFI1P4Qb7nnoDbHB51C5Wxg5FRfhc_NLeDFTP9Ayl2_6_3PfZUdoxOd8_7bGtxu6ze4qFpAe86GbkHce8Iyg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq7QF64I0IFJQDEgfq7SZ-xDluEaVFYgVqK5WT5YmTdtVtNspDCH49njy2u4AqkLhFsePY48_jGdvzmZDXDhJhYFRMQQhGubQxjU0UUMuEdf5QArwl0v40k0dn_OO5ON8iX4ZYGFMVNG1KU82LXpjVeNihxPukWuVdlya52i9s1o15JfergEnGKZ43QIKagDqHaFsKZ56PyPbZ7PP0KzpeUrUhceHNs5oMgTR_LGRjsmo5_X_X3GtbqDvkTpMX5vs3s1iszVKH90k5tK87nHI1bmoYJz9-oX78rwJ4QO71Nq0_7UD4kGyl-SOys8Z0-JjMjq-d4vKzBhfnfLO4WJbz-vLan-f-8UBYYf0T58CnFJfDcktPUuPj2dyF08X-rDutXvnLzD8QH56Q08P3p--OaH-VA014LGuapDZzrlEAoKyRXNmQA8tCYEbENk64cZUH7pxRAJjIVEVGKIgmGXCkNEzZUzLKl3n6DGPMFcTCeUkhuBIzoSRLYi6BWfeHxBiPBEOX6aSnOcfbNha6dXeU1J2otBOVbkWlA4-8XX1TdCQft-Y-QCSsciJBd_tiWV7ofrxrGVsQEGRhBBNXLW4yCPGyLzf5oNoTHnmDONKoRrA3TR8N4RqJhFx6GiEZG5dh5JHdjZxu-CebyQMS9QAYjbxysbPEI-aRvQE9N8m3tW1vheC_EMXzf8v-gtwNW4Ti0vguGdVlk750Nl0Nr_pR-hMp0z6Y
  priority: 102
  providerName: Unpaywall
Title Image fusion algorithm in Integrated Space-Ground-Sea Wireless Networks of B5G
URI https://link.springer.com/article/10.1186/s13634-021-00771-1
https://www.proquest.com/docview/2556905773
https://asp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13634-021-00771-1
https://doaj.org/article/69db5b1f27b04ca4afb2026787605315
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: 8FG
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: C6C
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: U2A
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe29gH2gPjUAqPKAxIPzFrj2I7zgFBb1m2IRRNdpfFk2XEykLK0rK0Q_z13-ehaIVW83IPjfPh8Pvsud78j5B2IBAuMiqkVIqRcupjGJgqoC4UDeyi1vALSvkzk-ZR_uRE3eyRpc2EwrLLViZWidrMUfeQnCJUVw-EiCj_Nf1GsGoV_V9sSGqYpreA-VhBj-6TLEBmrQ7rD0-TqW6ubYbOvoxClqpLjWJtGo-TJIghlyCmGLCDGTUCDra2qQvT_V29v_EA9II9W5dz8-W2KYmOPGj8lT5rDpT-opeEZ2cvK5-RgA3LwBUku7kCD-PkKvWS-KW5hjMsfd_7P0r9okSOcPwFLOqPolyodnWTGxyDZApSin9Rh4wt_lvtDcfaSXI9Pr0fntKmpQFMeyyVNM5eDjRJYq5yRXDnGbZgzGxoRuzjlBnhgOViF1tq-zFRkhLJRP7ccsQWz8BXplLMyO8Rkb2VjAeYKs_DEXCgZpjGXNnTwhtQYjwQt93Ta4I1j2YtCV3aHkrrmuAaO64rjOvDIh_U98xptY2fvIU7KuiciZVcNs_tb3Sw8LWNnhQ1yFtk-fBY3uWVYdQt2AdQ_wiPvcUo1rmf4vNQ0aQkwSETG0oMIUdG4ZJFHjrZ6wjpMty-3QqEbPbDQD1LrkeNWUB4u7xrb8VqY_oMVr3e__A15zCrBRp_0Eeks71fZWzhMLW2P7PP-GVA1BtodfL78Ouk1qwZaR4wjlaNe5awAOmVAu9PkavD9L3jtHRI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGdhg7THyKwgAfQByYtcZfiQ8TWmGjZVuFWJF2s-w4GUhZWtZW0_64_W-8lyZdK6SKy66J48TP79N57_cIeQcswSOXGOaVEkzqYJhxccSCUAHiodTLCkj7tK-7P-W3c3W-Rm6bWhhMq2x0YqWowzDFM_I9hMoy4FzE4tPoD8OuUfh3tWmh4erWCmG_ghirCzuOs5trCOHG-70vsN_vOT86HHzusrrLAEul0ROWZiEHrz3yPglOyyRw6UXOvXDKBJNKp4X0EuIk731bZ0nsVOLjdu4lou1lAqZ9QDakkAZiv43OYf_7j8YUgG8xS3rUSVWLx5uqnUTvjSMBEzPMkEBInYhFS5axaiDwr5lY-F-7RTan5cjdXLuiWDCJR4_Idu3L0oMZ8z0ma1n5hGwtIBw-Jf3eJSgsmk_xUI664gJIOvl1SX-XtNcAVQR6BoF7xvAYrAzsLHMUc3IL0MG0P8tSH9NhTjvq6zMyuA_iPifr5bDMXmBteeKNguiIe5gxV4kWqZHaiwBvSJ1rkaihnk1reHPsslHYKsxJtJ1R3ALFbUVxG7XIx_kzoxm4x8rRHdyU-UgE5q4uDK8ubC3nVpvglY9yHvs2fJZ0uefY5AuMDqo71SIfcEstqg_4vNTVVRCwSATisgcxgrBJzeMW2VkaCWKfLt9umMLWamds74SkRXYbRrm7vWptu3Nm-g9SvFz98rdkszs4PbEnvf7xK_KQV0yOx-E7ZH1yNc1egx838W9qaaHE3rN8_gX4F1Gl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGkIAdEJ8iMMAHEAdmtXFsxz4gtDG6lUGFtCHtZtlxMpCytKytpv1p_He8l4-uFVLFZdfEceLn9-m893uEvAGW4LHThnkpEyZUMMy4NGYhkQHiocyLGkj720gd_hBfTuXpBvnT1cJgWmWnE2tFHcYZnpH3ECrLgHORJr2iTYv4vj_4OPnNsIMU_mnt2mk0LHKUX11C-Db9MNyHvX7L-eDzyadD1nYYYJkwasayPBTgscfe6-CU0IELnxTcJ06aYDLhVCK8gBjJe99XuU6d1D7tF14g0l6ewLS3yO0UQdyxSH1w0BkB8CqadEel6yo83tXraNWbxglMyzA3AsF0Yhav2MS6dcC_BmLpT-0WuTuvJu7q0pXlkjEcPCD3Wy-W7jZs95Bs5NUjsrWEbfiYjIbnoKpoMcfjOOrKMyDg7Oc5_VXRYQdREegxhOw5wwOwKrDj3FHMxi1B-9JRk58-peOC7smDJ-TkJkj7lGxW4yp_hlXl2hsJcRH3MGMhtUoyI5RPArwhcy4icUc9m7XA5thfo7R1gKOVbShugeK2priNI_J-8cykgfVYO3oPN2UxEiG56wvjizPbSrhVJnjp44Knvg-fJVzhObb3AnODik5G5B1uqUXFAZ-Xubb-ARaJEFx2N0X4NaF4GpHtlZEg8Nnq7Y4pbKtwpvZaPCKy0zHK9e11a9tZMNN_kOL5-pe_JndAKu3X4ejoBbnHax7Hc_Btsjm7mOcvwYGb-Ve1qFBib1g0_wKeL08_
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq7QF64I0IFJQDEgfq7SZ-xDluEaVFYgVqK5WT5YmTdtVtNspDCH49njy2u4AqkLhFsePY48_jGdvzmZDXDhJhYFRMQQhGubQxjU0UUMuEdf5QArwl0v40k0dn_OO5ON8iX4ZYGFMVNG1KU82LXpjVeNihxPukWuVdlya52i9s1o15JfergEnGKZ43QIKagDqHaFsKZ56PyPbZ7PP0KzpeUrUhceHNs5oMgTR_LGRjsmo5_X_X3GtbqDvkTpMX5vs3s1iszVKH90k5tK87nHI1bmoYJz9-oX78rwJ4QO71Nq0_7UD4kGyl-SOys8Z0-JjMjq-d4vKzBhfnfLO4WJbz-vLan-f-8UBYYf0T58CnFJfDcktPUuPj2dyF08X-rDutXvnLzD8QH56Q08P3p--OaH-VA014LGuapDZzrlEAoKyRXNmQA8tCYEbENk64cZUH7pxRAJjIVEVGKIgmGXCkNEzZUzLKl3n6DGPMFcTCeUkhuBIzoSRLYi6BWfeHxBiPBEOX6aSnOcfbNha6dXeU1J2otBOVbkWlA4-8XX1TdCQft-Y-QCSsciJBd_tiWV7ofrxrGVsQEGRhBBNXLW4yCPGyLzf5oNoTHnmDONKoRrA3TR8N4RqJhFx6GiEZG5dh5JHdjZxu-CebyQMS9QAYjbxysbPEI-aRvQE9N8m3tW1vheC_EMXzf8v-gtwNW4Ti0vguGdVlk750Nl0Nr_pR-hMp0z6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+fusion+algorithm+in+Integrated+Space-Ground-Sea+Wireless+Networks+of+B5G&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Yu%2C+Xiaobing&rft.au=Cui%2C+Yingliu&rft.au=Wang%2C+Xin&rft.au=Zhang%2C+Jinjin&rft.date=2021-07-31&rft.issn=1687-6180&rft.eissn=1687-6180&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-021-00771-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13634_021_00771_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon