Time of day, but not sleep restriction, affects markers of hemostasis following heavy exercise

We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal c...

Full description

Saved in:
Bibliographic Details
Published inApplied physiology, nutrition, and metabolism Vol. 44; no. 2; pp. 148 - 152
Main Authors Roberson, Paul A, Chase, John D, Bigman, Matthew B, Saunders, Michael J, Luden, Nicholas D, Womack, Christopher J
Format Journal Article
LanguageEnglish
Published Canada NRC Research Press 01.02.2019
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN1715-5312
1715-5320
1715-5320
DOI10.1139/apnm-2018-0147

Cover

Abstract We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power (W max ), 10 min at 60% W max ), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 ± 0.14, postexercise = 1.89 ± 0.60 AU/mL) versus morning (pre-exercise = 0.27 ± 0.13 AU/mL, postexercise = 0.69 ± 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 ± 0.26 AU/mL, postexercise = 0.69 ± 0.29 AU/mL) versus morning (pre-exercise = 7.06 ± 2.66, postexercise = 5.40 ± 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.
AbstractList We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power (W max ), 10 min at 60% W max ), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 ± 0.14, postexercise = 1.89 ± 0.60 AU/mL) versus morning (pre-exercise = 0.27 ± 0.13 AU/mL, postexercise = 0.69 ± 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 ± 0.26 AU/mL, postexercise = 0.69 ± 0.29 AU/mL) versus morning (pre-exercise = 7.06 ± 2.66, postexercise = 5.40 ± 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.
We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power (W max ), 10 min at 60% W max ), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 ± 0.14, postexercise = 1.89 ± 0.60 AU/mL) versus morning (pre-exercise = 0.27 ± 0.13 AU/mL, postexercise = 0.69 ± 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 ± 0.26 AU/mL, postexercise = 0.69 ± 0.29 AU/mL) versus morning (pre-exercise = 7.06 ± 2.66, postexercise = 5.40 ± 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.
We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power (W ), 10 min at 60% W ), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 ± 0.14, postexercise = 1.89 ± 0.60 AU/mL) versus morning (pre-exercise = 0.27 ± 0.13 AU/mL, postexercise = 0.69 ± 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 ± 0.26 AU/mL, postexercise = 0.69 ± 0.29 AU/mL) versus morning (pre-exercise = 7.06 ± 2.66, postexercise = 5.40 ± 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.
We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power (Wmax), 10 min at 60% Wmax), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 ± 0.14, postexercise = 1.89 ± 0.60 AU/mL) versus morning (pre-exercise = 0.27 ± 0.13 AU/mL, postexercise = 0.69 ± 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 ± 0.26 AU/mL, postexercise = 0.69 ± 0.29 AU/mL) versus morning (pre-exercise = 7.06 ± 2.66, postexercise = 5.40 ± 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power (Wmax), 10 min at 60% Wmax), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 ± 0.14, postexercise = 1.89 ± 0.60 AU/mL) versus morning (pre-exercise = 0.27 ± 0.13 AU/mL, postexercise = 0.69 ± 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 ± 0.26 AU/mL, postexercise = 0.69 ± 0.29 AU/mL) versus morning (pre-exercise = 7.06 ± 2.66, postexercise = 5.40 ± 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.
We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power (Wmax), 10 min at 60% Wmax), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 ± 0.14, postexercise = 1.89 ± 0.60 AU/mL) versus morning (pre-exercise = 0.27 ± 0.13 AU/mL, postexercise = 0.69 ± 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 ± 0.26 AU/mL, postexercise = 0.69 ± 0.29 AU/mL) versus morning (pre-exercise = 7.06 ± 2.66, postexercise = 5.40 ± 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.
We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power ([W.sub.max]), 10 min at 60% [W.sub.max]), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 [+ or -] 0.14, postexercise = 1.89 [+ or -] 0.60 AU/mL) versus morning (pre-exercise = 0.27 [+ or -] 0.13 AU/mL, postexercise = 0.69 [+ or -] 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 [+ or -] 0.26 AU/mL, postexercise = 0.69 [+ or -] 0.29 AU/mL) versus morning (pre-exercise = 7.06 [+ or -] 2.66, postexercise = 5.40 [+ or -] 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.
We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power ([W.sub.max]), 10 min at 60% [W.sub.max]), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 [+ or -] 0.14, postexercise = 1.89 [+ or -] 0.60 AU/mL) versus morning (pre-exercise = 0.27 [+ or -] 0.13 AU/mL, postexercise = 0.69 [+ or -] 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 [+ or -] 0.26 AU/mL, postexercise = 0.69 [+ or -] 0.29 AU/mL) versus morning (pre-exercise = 7.06 [+ or -] 2.66, postexercise = 5.40 [+ or -] 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.Key words: exercise, recovery, fatigue.Cette etude a pour objectif de determiner les effets de la restriction de sommeil sur des marqueurs de l'hemostase le lendemain matin suivant un exercice en soiree. Sept sujets effectuent un exercice en soiree et un exercice le matin suivant avec ou sans restriction de sommeil. L'exercice du soir comprend 20 min de pedalage sous-maximal (10 min a 50 % travail maximal (<<[W.sub.max] >>), 10 min a 60 % [W.sub.max]), un contre-la-montre de 3 km, 60 min de pedalage par intervalle et trois series de developpe des jambes. L'exercice du lendemain matin est le meme, mais sans les intervalles et le developpe des jambes. On preleve des echantillons de sang au repos et apres la seance de 20 min de pedalage sous-maximal afin d'evaluer l'antigene du facteur VIII, l'activite de l'activateur tissulaire du plasminogene (<< tPA >>) et l'activite de l'inhibiteur 1 de l'activateur du plasminogene (<<PAI-1>>). La restriction du sommeil n'affecte pas ces variables. L'antigene du facteur VIII est plus eleve et l'activite de tPA est plus basse le matin comparativement au soir respectivement (P < 0,05). On observe des reponses plus fortes a l'exercice (P < 0,05) en ce qui concerne l'activite tPA le soir (pre-exercice = 0,32 [+ or -] 0,14, post-exercice = 1,89 [+ or -] 0,60 UA/mL) comparativement au matin (pre-exercice = 0,27 [+ or -] 0,13 UA/mL, post-exercice = 0,69 [+ or -] 0,18 UA/mL). PAI-1 presente des valeurs plus faibles (P < 0,05) le soir (pre = 0,78 [+ or -] 0,26 UA/mL, post-exercice = 0,69 [+ or -] 0,29 UA/mL) comparativement au matin (pre-exercice = 7,06 [+ or -] 2,66, post-exercice = 5,40 [+ or -] 2,31 UA/mL). Meme si on detecte un milieu prothrombotique le lendemain matin suivant un exercice du soir, la restriction du sommeil ne l'aggrave pas. [Traduit par la Redaction]Mots-cles: exercice physique, recuperation, fatigue.
We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening exercise followed by an exercise session the next morning, both with and without sleep restriction. Evening exercise included a 20-min submaximal cycling trial (10 min at 50% maximal power (Wₘₐₓ), 10 min at 60% Wₘₐₓ), a 3-km cycling time trial, 60 min of cycling intervals, and 3 sets of leg press. Subsequent morning exercise was the same, excluding intervals and leg press. Blood samples were collected at rest and following the 20-min submaximal trial for factor VIII antigen, tissue plasminogen activator (tPA) activity, and plasminogen activator inhibitor-1 (PAI-1) activity. Sleep restriction had no effect on the variables. Factor VIII antigen was higher and tPA activity lower in the morning versus evening, respectively (P < 0.05). There were larger (P < 0.05) exercise responses for tPA activity in the evening (pre-exercise = 0.32 ± 0.14, postexercise = 1.89 ± 0.60 AU/mL) versus morning (pre-exercise = 0.27 ± 0.13 AU/mL, postexercise = 0.69 ± 0.18 AU/mL). PAI-1 exhibited lower (P < 0.05) responses in the evening (pre-exercise = 0.78 ± 0.26 AU/mL, postexercise = 0.69 ± 0.29 AU/mL) versus morning (pre-exercise = 7.06 ± 2.66, postexercise = 5.40 ± 2.31 AU/mL). Although a prothrombotic environment was observed the morning following an evening exercise session, it was not exacerbated by sleep restriction.
Abstract_FL Cette étude a pour objectif de déterminer les effets de la restriction de sommeil sur des marqueurs de l’hémostase le lendemain matin suivant un exercice en soirée. Sept sujets effectuent un exercice en soirée et un exercice le matin suivant avec ou sans restriction de sommeil. L’exercice du soir comprend 20 min de pédalage sous-maximal (10 min à 50 % travail maximal (« W max »), 10 min à 60 % W max ), un contre-la-montre de 3 km, 60 min de pédalage par intervalle et trois séries de développé des jambes. L’exercice du lendemain matin est le même, mais sans les intervalles et le développé des jambes. On prélève des échantillons de sang au repos et après la séance de 20 min de pédalage sous-maximal afin d’évaluer l’antigène du facteur VIII, l’activité de l’activateur tissulaire du plasminogène (« tPA ») et l’activité de l’inhibiteur 1 de l’activateur du plasminogène (« PAI-1 »). La restriction du sommeil n’affecte pas ces variables. L’antigène du facteur VIII est plus élevé et l’activité de tPA est plus basse le matin comparativement au soir respectivement (P < 0,05). On observe des réponses plus fortes à l’exercice (P < 0,05) en ce qui concerne l’activité tPA le soir (pré-exercice = 0,32 ± 0,14, post-exercice = 1,89 ± 0,60 UA/mL) comparativement au matin (pré-exercice = 0,27 ± 0,13 UA/mL, post-exercice = 0,69 ± 0,18 UA/mL). PAI-1 présente des valeurs plus faibles (P < 0,05) le soir (pré = 0,78 ± 0,26 UA/mL, post-exercice = 0,69 ± 0,29 UA/mL) comparativement au matin (pré-exercice = 7,06 ± 2,66, post-exercice = 5,40 ± 2,31 UA/mL). Même si on détecte un milieu prothrombotique le lendemain matin suivant un exercice du soir, la restriction du sommeil ne l’aggrave pas. [Traduit par la Rédaction]
Audience Academic
Author Bigman, Matthew B
Saunders, Michael J
Womack, Christopher J
Luden, Nicholas D
Chase, John D
Roberson, Paul A
Author_xml – sequence: 1
  givenname: Paul A
  surname: Roberson
  fullname: Roberson, Paul A
  organization: Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA
– sequence: 2
  givenname: John D
  surname: Chase
  fullname: Chase, John D
  organization: Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA
– sequence: 3
  givenname: Matthew B
  surname: Bigman
  fullname: Bigman, Matthew B
  organization: Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA
– sequence: 4
  givenname: Michael J
  surname: Saunders
  fullname: Saunders, Michael J
  organization: Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA
– sequence: 5
  givenname: Nicholas D
  surname: Luden
  fullname: Luden, Nicholas D
  organization: Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA
– sequence: 6
  givenname: Christopher J
  surname: Womack
  fullname: Womack, Christopher J
  organization: Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30058360$$D View this record in MEDLINE/PubMed
BookMark eNqNks1vFSEUxYmpsbV269KQmBgXnQrM8GCWTVM_kiZu6lbCMJc-lIEnMOr778vk9cMajYYF5OZ3bs7lnqdoL8QACD2n5ITStn-jN2FqGKGyIbQTj9ABFZQ3vGVk7-5N2T46ytkNhBDJpBTsCdpvCeGyXZED9PnSTYCjxaPeHuNhLjjEgrMH2OAEuSRniovhGGtrwZSMJ52-QsqLZA1TzEVnl7GN3scfLlzVov6-xfATknEZnqHHVvsMRzf3Ifr09vzy7H1z8fHdh7PTi8Z0_ao0Ax-1ZqwfQYpedwCGUtYPdBxGGEwdVdhqnHdSj7K1RDBLgAjbCiCaM9m3h-j1ru8mxW9z9a0mlw14rwPEOSvG6q9w1pP_QIno-06KFavoy9_QL3FOoQ6iGO07Lgjl_J660h6UCzaWpM3SVJ1y0Ypqn5FKnfyBqmeEyZm6V-tq_YHg1S-C-q2-rHP087KO_BB8ceNyHiYY1Sa5uqStul1yBbodYFLMOYFVxhW99KkWnFeUqCVOaomTWuKkljjdO76T3Xb-q4DuBCGZmh3Qyaz_pbkGk5zZiQ
CitedBy_id crossref_primary_10_1007_s40279_022_01706_y
crossref_primary_10_3390_ijerph18073655
crossref_primary_10_3390_su13168769
Cites_doi 10.1055/s-0038-1647324
10.2165/00007256-200636060-00003
10.5604/20831862.1044457
10.1016/0049-3848(92)90222-V
10.1161/01.STR.20.4.473
10.1161/ATVBAHA.110.206987
10.1056/NEJM199110033251402
10.1249/01.MSS.0000145447.61736.ED
10.1001/archinte.153.7.833
10.1055/s-2007-971109
10.1161/01.CIR.79.1.101
10.1152/jappl.1992.73.6.2499
10.1159/000264654
10.1097/00005768-200106000-00006
10.3324/haematol.2010.022475
10.1055/s-0038-1653765
10.1016/j.sleep.2014.04.005
10.5665/sleep.2368
10.1161/01.CIR.81.2.528
10.1001/jama.282.18.1731
10.1097/00001721-199204000-00006
10.1210/jc.2004-0598
10.1093/ajcn/51.2.241
10.1249/00005768-199409000-00006
10.1056/NEJM198511213132103
10.1007/s11239-008-0240-z
10.1123/ijsnem.2012-0226
10.1139/apnm-2016-0698
10.1016/0049-3848(93)90013-E
10.1007/s00421-004-1098-1
ContentType Journal Article
Copyright COPYRIGHT 2019 NRC Research Press
2019 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2019 NRC Research Press
– notice: 2019 Published by NRC Research Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7X8
7S9
L.6
DOI 10.1139/apnm-2018-0147
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Physical Education Index
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Physical Education Index
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Physical Education Index



AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
Recreation & Sports
EISSN 1715-5320
EndPage 152
ExternalDocumentID A573713920
30058360
10_1139_apnm_2018_0147
apnm-2018-0147
Genre Journal Article
GroupedDBID 0R
186
23M
2QV
4.4
53G
5GY
5RP
AAIKC
AAWTL
ABDBF
ABFLS
ABFSI
ABPTK
ACGFS
ADHUB
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
CAG
COF
CS3
D8U
DL
DXH
E.L
EAD
EAP
EAS
EBD
EBS
EJD
EMK
ESX
F5P
HZ
H~9
IAO
IEA
IFM
IHR
IHW
INH
INR
ITC
NRXXU
O9-
OHT
PQEST
PQQKQ
PV9
RIG
RRP
RZL
TUS
UKR
UPT
X
XFK
-~X
00T
0R~
36B
AAFWJ
AAHBH
AAMNW
AAYXX
ABJNI
ACGFO
ACUHS
CITATION
DATHI
HZ~
IPNFZ
IPT
VQG
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7X8
7S9
L.6
ID FETCH-LOGICAL-c496t-b5daa229de879a4eec1129b1dbdebc1397f872548ad83f072f0e07f37e0a52893
ISSN 1715-5312
1715-5320
IngestDate Fri Jul 11 05:03:50 EDT 2025
Thu Jul 10 22:18:50 EDT 2025
Sun Jun 29 12:21:21 EDT 2025
Wed Mar 19 00:53:03 EDT 2025
Sat Mar 08 18:28:17 EST 2025
Thu May 22 21:22:32 EDT 2025
Thu Jan 02 22:59:42 EST 2025
Thu Apr 24 23:09:01 EDT 2025
Thu Jul 10 09:00:40 EDT 2025
Wed Nov 11 00:33:13 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords récupération
exercise
fatigue
recovery
exercice physique
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c496t-b5daa229de879a4eec1129b1dbdebc1397f872548ad83f072f0e07f37e0a52893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30058360
PQID 2194570155
PQPubID 28783
PageCount 5
ParticipantIDs proquest_miscellaneous_2253252909
pubmed_primary_30058360
proquest_miscellaneous_2079948762
gale_infotracmisc_A573713920
gale_healthsolutions_A573713920
proquest_journals_2194570155
crossref_citationtrail_10_1139_apnm_2018_0147
crossref_primary_10_1139_apnm_2018_0147
nrcresearch_primary_10_1139_apnm_2018_0147
gale_infotracacademiconefile_A573713920
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
PublicationTitle Applied physiology, nutrition, and metabolism
PublicationTitleAlternate Appl Physiol Nutr Metab
PublicationYear 2019
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg18/ref18
refg20/ref20
refg22/ref22
refg31/ref31
refg9/ref9
Szymanski L.M. (refg25/ref25) 1994; 26
refg11/ref11
refg6/ref6
refg15/ref15
refg29/ref29
refg14/ref14
refg8/ref8
refg5/ref5
refg2/ref2
refg23/ref23
refg17/ref17
refg19/ref19
refg30/ref30
refg21/ref21
refg7/ref7
refg4/ref4
refg10/ref10
refg12/ref12
refg1/ref1
refg28/ref28
refg3/ref3
refg24/ref24
refg16/ref16
refg13/ref13
refg27/ref27
References_xml – ident: refg9/ref9
  doi: 10.1055/s-0038-1647324
– ident: refg2/ref2
  doi: 10.2165/00007256-200636060-00003
– ident: refg24/ref24
  doi: 10.5604/20831862.1044457
– ident: refg3/ref3
  doi: 10.1016/0049-3848(92)90222-V
– ident: refg14/ref14
  doi: 10.1161/01.STR.20.4.473
– ident: refg16/ref16
  doi: 10.1161/ATVBAHA.110.206987
– ident: refg19/ref19
  doi: 10.1056/NEJM199110033251402
– ident: refg5/ref5
  doi: 10.1249/01.MSS.0000145447.61736.ED
– ident: refg18/ref18
  doi: 10.1001/archinte.153.7.833
– ident: refg12/ref12
  doi: 10.1055/s-2007-971109
– ident: refg1/ref1
  doi: 10.1161/01.CIR.79.1.101
– ident: refg11/ref11
  doi: 10.1152/jappl.1992.73.6.2499
– ident: refg29/ref29
  doi: 10.1159/000264654
– ident: refg10/ref10
  doi: 10.1097/00005768-200106000-00006
– ident: refg21/ref21
  doi: 10.3324/haematol.2010.022475
– ident: refg23/ref23
  doi: 10.1055/s-0038-1653765
– ident: refg27/ref27
  doi: 10.1016/j.sleep.2014.04.005
– ident: refg30/ref30
  doi: 10.5665/sleep.2368
– ident: refg28/ref28
  doi: 10.1161/01.CIR.81.2.528
– ident: refg7/ref7
  doi: 10.1001/jama.282.18.1731
– ident: refg8/ref8
  doi: 10.1097/00001721-199204000-00006
– ident: refg6/ref6
  doi: 10.1210/jc.2004-0598
– ident: refg15/ref15
  doi: 10.1093/ajcn/51.2.241
– volume: 26
  start-page: 1102
  issue: 9
  year: 1994
  ident: refg25/ref25
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/00005768-199409000-00006
– ident: refg17/ref17
  doi: 10.1056/NEJM198511213132103
– ident: refg13/ref13
  doi: 10.1007/s11239-008-0240-z
– ident: refg31/ref31
  doi: 10.1123/ijsnem.2012-0226
– ident: refg4/ref4
  doi: 10.1139/apnm-2016-0698
– ident: refg22/ref22
  doi: 10.1016/0049-3848(93)90013-E
– ident: refg20/ref20
  doi: 10.1007/s00421-004-1098-1
SSID ssib000828872
ssj0045063
Score 2.2301674
Snippet We sought to determine the effects of sleep restriction on markers of hemostasis the morning after an exercise session. Seven subjects performed evening...
SourceID proquest
gale
pubmed
crossref
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 148
SubjectTerms Adult
Anaerobic Threshold - physiology
Antigens
blood sampling
Chronobiology
Circadian rhythm
Diet
exercice physique
Exercise
Exercise - physiology
Factor VIII
Factor VIII - analysis
Fatigue
Fatigue - physiopathology
Female
Health aspects
Hemodynamics
hemostasis
Hemostasis - physiology
Humans
Male
Physiological aspects
Physiological research
Plasminogen Activator Inhibitor 1 - blood
plasminogen activator inhibitors
recovery
Recovery (Medical)
récupération
Sleep
Sleep deprivation
Sleep Deprivation - physiopathology
t-plasminogen activator
Time Factors
Tissue plasminogen activator
Tissue Plasminogen Activator - blood
Young Adult
Title Time of day, but not sleep restriction, affects markers of hemostasis following heavy exercise
URI http://www.nrcresearchpress.com/doi/abs/10.1139/apnm-2018-0147
https://www.ncbi.nlm.nih.gov/pubmed/30058360
https://www.proquest.com/docview/2194570155
https://www.proquest.com/docview/2079948762
https://www.proquest.com/docview/2253252909
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1715-5320
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0045063
  issn: 1715-5312
  databaseCode: ABDBF
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tj9JAEN4g90U_GMU3FHVNzJnI9Wy3b_QjcEcu5sTEg4RPNtvt1iOBglA0-v_8X85st6WN3vnyhRA6tJvOw_DMduYZQl4GUiS22RNGIpPYcBLHM6LEg8Q1lhaXHCgyx27kd2PvbOq8nbmzRuNHpWppl0XH4vtv-0r-x6vwGfgVu2T_wbPlSeEDeA_-hVfwMLz-nY_nS5Xyx1zdqmiXddNV1t0upFx3cejGZq7aFlSJpi7cWGI9zmabk8TlCsghSpIkAIfVV9w2gOD85Vs5ianKXQvCqjZDyiaXtJDzL-pAlzIDYC0KacK8x0zx-qIScb9_OrzkW1lUBO-LjwfzT3pjVo8j38-GvuA71Y5TKfnXT7b01gV2S9XKQEr9hSKMVXbexh-GZe1hrRoFg7RvuQbEjloUz1UkNVpZJSRbuZKn_ne3cr3cX_84bNRd5et0CQizsL4vFwKtK3SP34ej6fl5ODmdTQ7Xnw0cXoYP-fUklxvkgPmex5rkoD84GYwKSuC4-Ui_cuFaPRQu-qZ-yRo70hzhVroRWvnp8uo8SPGhyR1yWycytJ-j8i5pyLRF2idzmdFDqtVmF3RcoKNFWvsMBSwu1KOqe-QjYpiuEgoYPqKAYAoIpgrBtILgI6rxSzV-8St7_NISv1Thlxb4vU-mo9PJ8MzQMz8M4QReZkRuzDljQSx7fsAdKQUmBJEVR7GMBKYrSc9nkGbzuGcnps8SU5p-YvvS5C4D8v2ANNNVKh8R2pNmJIDPC8sVTmxHEQ96cN5YMs9C4cQ2MYp7HQotiI9zWRahSoztIETfhOibEH3TJq9K-3UuBXOl5XN0XZi3MpeRJuy7vu2DOTPhXMoCMQjXFFw3w8DKUY-tZtmpWUL0F7XDryvw-OO6OgV6Qh3GtiFQFsf1MXVqkxflYbwMll-mcrUDG9MPAgeJ0zU2zLWZywIzaJOHOTLL5eBMDOwWe3z9Ap6Qm_sw0SHNbLOTT4HzZ9Ez_Yv6CSy_Byk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+of+day%2C+but+not+sleep+restriction%2C+affects+markers+of+hemostasis+following+heavy+exercise&rft.jtitle=Applied+physiology%2C+nutrition%2C+and+metabolism&rft.au=Roberson%2C+Paul+A&rft.au=Chase%2C+John+D&rft.au=Bigman%2C+Matthew+B&rft.au=Saunders%2C+Michael+J&rft.date=2019-02-01&rft.pub=Canadian+Science+Publishing+NRC+Research+Press&rft.issn=1715-5312&rft.volume=44&rft.issue=2&rft.spage=148&rft.epage=152&rft_id=info:doi/10.1139%2Fapnm-2018-0147&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1715-5312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1715-5312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1715-5312&client=summon