The yeast Cyc8–Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene

We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstre...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1839; no. 11; pp. 1242 - 1255
Main Authors Fleming, Alastair B., Beggs, Suzanne, Church, Michael, Tsukihashi, Yoshihiro, Pennings, Sari
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2014
Elsevier
Subjects
Online AccessGet full text
ISSN1874-9399
0006-3002
1876-4320
DOI10.1016/j.bbagrm.2014.07.022

Cover

Abstract We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8–Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around −700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8–Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi–Snf occupies the site vacated by Cyc8–Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8–Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi–Snf binding and prevent transcription. •Cyc8–Tup1 repression activity is enriched at chromosome subtelomeric regions.•The subtelomeric FLO1 gene is subject to chromatin-mediated repression by Cyc8–Tup1.•Cyc8–Tup1 promotes long-range nucleosome positioning and histone deacetylation.•Hda1p and Rpd3p cooperate with Cyc8–Tup1 to facilitate this repressive chromatin.•Swi–Snf directs extensive nucleosome remodelling when Cyc8–Tup1 is absent.
AbstractList We demonstrate that the yeast flocculation gene, FLO1 , is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8–Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around − 700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8–Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi–Snf occupies the site vacated by Cyc8–Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8–Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi–Snf binding and prevent transcription. • Cyc8–Tup1 repression activity is enriched at chromosome subtelomeric regions. • The subtelomeric FLO1 gene is subject to chromatin-mediated repression by Cyc8–Tup1. • Cyc8–Tup1 promotes long-range nucleosome positioning and histone deacetylation. • Hda1p and Rpd3p cooperate with Cyc8–Tup1 to facilitate this repressive chromatin. • Swi–Snf directs extensive nucleosome remodelling when Cyc8–Tup1 is absent.
We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8-Tup1 complex. We have examined Cyc8-Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8-Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around -700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8-Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi-Snf occupies the site vacated by Cyc8-Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8-Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi-Snf binding and prevent transcription.We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8-Tup1 complex. We have examined Cyc8-Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8-Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around -700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8-Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi-Snf occupies the site vacated by Cyc8-Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8-Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi-Snf binding and prevent transcription.
We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8–Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around −700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8–Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi–Snf occupies the site vacated by Cyc8–Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8–Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi–Snf binding and prevent transcription. •Cyc8–Tup1 repression activity is enriched at chromosome subtelomeric regions.•The subtelomeric FLO1 gene is subject to chromatin-mediated repression by Cyc8–Tup1.•Cyc8–Tup1 promotes long-range nucleosome positioning and histone deacetylation.•Hda1p and Rpd3p cooperate with Cyc8–Tup1 to facilitate this repressive chromatin.•Swi–Snf directs extensive nucleosome remodelling when Cyc8–Tup1 is absent.
We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8-Tup1 complex. We have examined Cyc8-Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8-Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around -700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8-Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi-Snf occupies the site vacated by Cyc8-Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8-Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi-Snf binding and prevent transcription.
We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8-Tup1 complex. We have examined Cyc8-Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8-Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around - 700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8-Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi-Snf occupies the site vacated by Cyc8-Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8-Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi-Snf binding and prevent transcription. times Cyc8-Tup1 repression activity is enriched at chromosome subtelomeric regions.
Author Church, Michael
Pennings, Sari
Beggs, Suzanne
Tsukihashi, Yoshihiro
Fleming, Alastair B.
Author_xml – sequence: 1
  givenname: Alastair B.
  surname: Fleming
  fullname: Fleming, Alastair B.
  email: alastair.fleming@tcd.ie
  organization: School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
– sequence: 2
  givenname: Suzanne
  surname: Beggs
  fullname: Beggs, Suzanne
  organization: School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
– sequence: 3
  givenname: Michael
  surname: Church
  fullname: Church, Michael
  organization: School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
– sequence: 4
  givenname: Yoshihiro
  surname: Tsukihashi
  fullname: Tsukihashi, Yoshihiro
  organization: School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
– sequence: 5
  givenname: Sari
  orcidid: 0000-0002-2744-1055
  surname: Pennings
  fullname: Pennings, Sari
  organization: School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25106892$$D View this record in MEDLINE/PubMed
BookMark eNqNUs2O0zAYjNAi9gfeACEfuSTYjuMkHJBQxbJIlVZCvVv--dK6SuJgOwu58QzwhjwJLi0r4ACcPsueGY89c5mdjW6ELHtKcEEw4S_2hVJy64eCYsIKXBeY0gfZBWlqnrOS4rMfa5a3ZdueZ5ch7DHmhGL8KDunFcG8aelF9mWzA7SADBGtFt18-_x1M08EaTdMPXxK003gZYSAPtq4QzdGkgnJ0aD3kykntLMhJlvIgNQQl16GhIwOeafmEPsFeZg8hLTn5Ri0t1O0bkSuQzHdG2YVoXcDeKvR9fqWoC2M8Dh72Mk-wJPTvMo21282q5t8ffv23er1Otes5TGXCrNKVbUseWk6kKqiihHMmkarjjNSGsJZhTWrq0aq0lDgHVelNkZR1rXlVfbqKDvNagCjYUweezF5O0i_CCet-P1ktDuxdXeClYSTuk4Cz08C3n2YIUQx2KCh7-UIbg6CcN7Qqqmr6j-gtG2rpsU8QZ_9auvez8_IEoAdAdq7EDx09xCCxaEZYi-OzRCHZghci9SMRHv5B03bKA9ppMfZ_l_k019ByuPOghdBWxg1GOtBR2Gc_bvAd1DS2pQ
CitedBy_id crossref_primary_10_1093_mutage_geab019
crossref_primary_10_15252_msb_20167412
crossref_primary_10_1007_s12550_019_00361_z
crossref_primary_10_1021_acs_jafc_3c06585
crossref_primary_10_1534_genetics_119_302359
crossref_primary_10_1371_journal_pgen_1008990
crossref_primary_10_1016_j_gene_2015_07_066
crossref_primary_10_1128_AEM_00095_17
crossref_primary_10_1371_journal_pgen_1006863
crossref_primary_10_1038_s41467_019_12077_w
crossref_primary_10_1534_genetics_116_198895
crossref_primary_10_1038_s41467_020_16107_w
crossref_primary_10_1080_09168451_2018_1536514
crossref_primary_10_3389_fgene_2021_630506
crossref_primary_10_1007_s00294_018_0883_z
crossref_primary_10_1099_mgen_0_001216
crossref_primary_10_1038_s41467_021_22257_2
crossref_primary_10_1128_mBio_00626_18
crossref_primary_10_1371_journal_pgen_1010559
crossref_primary_10_1080_21541264_2017_1394423
crossref_primary_10_1093_mutage_gex009
crossref_primary_10_1186_s13072_019_0303_8
crossref_primary_10_1016_j_febslet_2015_09_006
crossref_primary_10_1371_journal_pgen_1007495
crossref_primary_10_1016_j_febslet_2015_01_011
crossref_primary_10_1093_nar_gkx028
crossref_primary_10_1371_journal_pgen_1010876
crossref_primary_10_1042_BST20231141
crossref_primary_10_1111_febs_17137
crossref_primary_10_1007_s00294_020_01114_7
crossref_primary_10_1111_mmi_14375
crossref_primary_10_1093_femsle_fnx221
crossref_primary_10_1016_j_jhazmat_2022_128367
crossref_primary_10_1002_1873_3468_14366
Cites_doi 10.1002/yea.1142
10.1038/369758a0
10.1016/j.molcel.2011.01.015
10.1128/MCB.20.5.1478-1488.2000
10.1093/nar/gkm573
10.1074/jbc.M105596200
10.1093/emboj/19.21.5875
10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
10.1101/gad.10.10.1247
10.1016/S0968-0004(00)01592-9
10.1002/yea.320110506
10.1002/yea.320111102
10.1074/jbc.M104220200
10.1128/EC.2.6.1288-1303.2003
10.1073/pnas.081560698
10.1016/j.cell.2008.09.037
10.1093/genetics/144.3.967
10.1016/S0092-8674(02)01005-X
10.1074/jbc.M602851200
10.1093/emboj/20.18.5219
10.1101/gad.939601
10.1006/jmbi.2001.4742
10.1128/MCB.00887-07
10.1371/journal.pgen.1003479
10.1128/MCB.22.3.693-703.2002
10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
10.1093/nar/gkr557
10.1073/pnas.250477697
10.1093/genetics/160.2.799
10.1074/jbc.M008668200
10.1093/emboj/19.3.400
10.1074/jbc.M407159200
10.1007/s00294-009-0281-7
10.1074/jbc.M309753200
10.1111/j.1365-2958.2006.05072.x
10.1038/nature02800
10.1128/EC.00165-06
10.1016/0092-8674(92)90146-4
10.1101/gad.8.12.1400
10.1016/S0092-8674(02)00746-8
10.1371/journal.pone.0019060
10.1016/j.molcel.2012.09.019
10.1128/MCB.00238-07
10.1093/emboj/19.24.6845
10.1146/annurev-genet-102108-134156
10.1002/yea.1643
10.1016/j.bbrc.2008.01.033
10.1128/MCB.16.12.6707
10.1074/jbc.M112.369652
10.1128/MCB.25.17.7399-7411.2005
10.1091/mbc.E04-05-0412
10.1073/pnas.92.8.3132
10.2144/000112297
10.1038/nature07728
10.1016/S1097-2765(02)00545-2
10.1101/gad.9.7.821
10.1126/science.1075090
10.1016/S1097-2765(01)00160-5
10.1016/S0076-6879(99)04022-7
10.1101/gad.829100
10.1038/sj.emboj.7600227
10.1016/S1097-2765(02)00557-9
10.1016/j.molcel.2008.04.025
10.1186/gb-2009-10-10-r109
10.1038/sj.emboj.7600043
10.1093/genetics/155.4.1535
10.1101/gad.179275.111
10.1007/s00253-002-1200-8
10.1016/S0092-8674(01)00279-3
ContentType Journal Article
Copyright 2014
Copyright © 2014. Published by Elsevier B.V.
2014 The Authors. Published by Elsevier B.V. 2014
Copyright_xml – notice: 2014
– notice: Copyright © 2014. Published by Elsevier B.V.
– notice: 2014 The Authors. Published by Elsevier B.V. 2014
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
M7N
P64
RC3
5PM
DOI 10.1016/j.bbagrm.2014.07.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1876-4320
EndPage 1255
ExternalDocumentID PMC4316177
25106892
10_1016_j_bbagrm_2014_07_022
S1874939914002107
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 092533/Z/10/Z
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AGCQF
AGRNS
AIIUN
ANKPU
BNPGV
CITATION
SSH
-~X
.55
.GJ
1RT
3O-
5RE
AAQXK
AAYJJ
ABEFU
ABJNI
AGQPQ
AHHHB
AI.
AKRWK
ASPBG
AVWKF
AZFZN
CGR
CUY
CVF
ECM
EIF
F5P
FGOYB
G-2
HLW
H~9
K-O
LX3
MVM
NPM
OHT
R2-
RIG
SBG
TWZ
UHS
VH1
WH7
WUQ
X7M
XJT
Y6R
YYP
ZE2
ZGI
~KM
7X8
8FD
FR3
M7N
P64
RC3
5PM
EFKBS
ID FETCH-LOGICAL-c496t-ab045b57a363dfeab52b410488cbf6413d16450c4758ab3d2e6f6b3cddb24f93
IEDL.DBID AIKHN
ISSN 1874-9399
0006-3002
IngestDate Thu Aug 21 17:58:32 EDT 2025
Thu Sep 04 23:41:56 EDT 2025
Thu Sep 04 21:53:23 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Tue Jul 01 03:02:25 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Fri Feb 23 02:25:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Cyc8 (Ssn6)-Tup1
Chromatin
Histone acetylation
Gene repression
Saccharomyces cerevisiae
Swi–Snf
Language English
License http://creativecommons.org/licenses/by/3.0
Copyright © 2014. Published by Elsevier B.V.
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-ab045b57a363dfeab52b410488cbf6413d16450c4758ab3d2e6f6b3cddb24f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-2744-1055
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1874939914002107
PMID 25106892
PQID 1629958906
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4316177
proquest_miscellaneous_1668258755
proquest_miscellaneous_1629958906
pubmed_primary_25106892
crossref_primary_10_1016_j_bbagrm_2014_07_022
crossref_citationtrail_10_1016_j_bbagrm_2014_07_022
elsevier_sciencedirect_doi_10_1016_j_bbagrm_2014_07_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tzamarias, Struhl (bb0015) 1994; 369
Fleming, Pennings (bb0250) 2007; 35
Gregory, Horz (bb0235) 1999; 304
Brachmann, Davies, Cost, Caputo, Li, Hieter, Boeke (bb0210) 1998; 14
Kobayashi, Inai, Mizunuma, Okada, Shitamukai, Hirata, Miyakawa (bb0320) 2008; 368
Smith, Johnson (bb0040) 2000; 25
Zhang, Reese (bb0280) 2004; 23
Papamichos-Chronakis, Petrakis, Ktistaki, Topalidou, Tzamarias (bb0050) 2002; 9
Lee, Rinaldi, Robert, Odom, Bar-Joseph, Gerber, Hannett, Harbison, Thompson, Simon, Zeitlinger, Jennings, Murray, Gordon, Ren, Wyrick, Tagne, Volkert, Fraenkel, Gifford, Young (bb0335) 2002; 298
Matsumura, Kusaka, Nakamura, Tanaka, Sagegami, Uegaki, Inoue, Mukai (bb0025) 2012; 287
Verstrepen, Derdelinckx, Verachtert, Delvaux (bb0190) 2003; 61
Jiang, Pugh (bb0295) 2009; 10
Dietvorst, Brandt (bb0300) 2010; 56
Fleming, Pennings (bb0205) 2001; 20
Geisberg, Struhl (bb0100) 2000; 20
Zhang, Emmons (bb0085) 2002; 160
Cooper, Roth, Simpson (bb0125) 1994; 8
Wu, Carmen, Kobayashi, Suka, Grunstein (bb0165) 2001; 98
van Bakel, Tsui, Gebbia, Mnaimneh, Hughes, Nislow (bb0265) 2013; 9
Hanlon, Rizzo, Tatomer, Lieb, Buck, Nislow (bb0270) 2011; 6
Chen, Wilson, Hirsch, Watson, Liang, Lu, Li, Dent (bb0120) 2013
Wu, Suka, Carlson, Grunstein (bb0145) 2001; 7
Wach (bb0215) 1996; 12
Bernstein, Tong, Schreiber (bb0305) 2000; 97
Zhang, Reese (bb0285) 2004; 279
Malave, Dent (bb0035) 2006; 84
Zeng, Vakoc, Chen, Blobel, Berger (bb0230) 2006; 41
Davie, Trumbly, Dent (bb0150) 2002; 22
Janke, Magiera, Rathfelder, Taxis, Reber, Maekawa, Moreno-Borchart, Doenges, Schwob, Schiebel, Knop (bb0220) 2004; 21
Hassan, Prochasson, Neely, Galasinski, Chandy, Carrozza, Workman (bb0350) 2002; 111
Venters, Wachi, Mavrich, Andersen, Jena, Sinnamon, Jain, Rolleri, Jiang, Hemeryck-Walsh, Pugh (bb0260) 2011; 41
Wong, Struhl (bb0115) 2011; 25
Davie, Edmondson, Coco, Dent (bb0160) 2003; 278
Gavin, Kladde, Simpson (bb0105) 2000; 19
Keleher, Redd, Schultz, Carlson, Johnson (bb0010) 1992; 68
Edmondson, Smith, Roth (bb0135) 1996; 10
Dietvorst, Brandt (bb0255) 2008; 25
Watson, Edmondson, Bone, Mukai, Yu, Du, Stillman, Roth (bb0155) 2000; 14
Proft, Struhl (bb0055) 2002; 9
Verstrepen, Fink (bb0175) 2009; 43
Fleming, Kao, Hillyer, Pikaart, Osley (bb0225) 2008; 31
Tzamarias, Struhl (bb0020) 1995; 9
Fragiadakis, Tzamarias, Alexandraki (bb0065) 2004; 23
Verstrepen, Klis (bb0185) 2006; 60
Han, Lee, Kang, Kim (bb0090) 2001; 276
Liu, Styles, Fink (bb0200) 1996; 144
Conlan, Tzamarias (bb0045) 2001; 309
Gligoris, Thireos, Tzamarias (bb0130) 2007; 27
Green, Johnson (bb0310) 2004; 15
Trujillo, Osley (bb0245) 2012; 48
Zhang, Reese (bb0070) 2005; 25
Gromoller, Lehming (bb0095) 2000; 19
Harbison, Gordon, Lee, Rinaldi, Macisaac, Danford, Hannett, Tagne, Reynolds, Yoo, Jennings, Zeitlinger, Pokholok, Kellis, Rolfe, Takusagawa, Lander, Gifford, Fraenkel, Young (bb0330) 2004; 431
Mennella, Klinkenberg, Zitomer (bb0060) 2003; 2
Treitel, Carlson (bb0110) 1995; 92
Smukalla, Caldara, Pochet, Beauvais, Guadagnini, Yan, Vinces, Jansen, Prevost, Latge, Fink, Foster, Verstrepen (bb0195) 2008; 135
Courey, Jia (bb0030) 2001; 15
Xu, Wei, Gagneur, Perocchi, Clauder-Munster, Camblong, Guffanti, Stutz, Huber, Steinmetz (bb0340) 2009; 457
Ducker, Simpson (bb0325) 2000; 19
Chandy, Gutierrez, Prochasson, Workman (bb0360) 2006; 5
Varanasi, Klis, Mikesell, Trumbly (bb0005) 1996; 16
Bone, Roth (bb0140) 2001; 276
Li, Reese (bb0290) 2001; 276
Hassan, Neely, Workman (bb0355) 2001; 104
Teunissen, van den Berg, Steensma (bb0170) 1995; 11
Rizzo, Mieczkowski, Buck (bb0275) 2011; 39
Gregory, Barbaric, Horz (bb0240) 1999; 119
Lee, Chatterjee, Struhl (bb0080) 2000; 155
Teunissen, Steensma (bb0180) 1995; 11
Hassan, Awad, Prochasson (bb0345) 2006; 281
Robyr, Suka, Xenarios, Kurdistani, Wang, Suka, Grunstein (bb0315) 2002; 109
Hickman, Winston (bb0075) 2007; 27
Trujillo (10.1016/j.bbagrm.2014.07.022_bb0245) 2012; 48
Lee (10.1016/j.bbagrm.2014.07.022_bb0335) 2002; 298
Teunissen (10.1016/j.bbagrm.2014.07.022_bb0180) 1995; 11
Fleming (10.1016/j.bbagrm.2014.07.022_bb0250) 2007; 35
Venters (10.1016/j.bbagrm.2014.07.022_bb0260) 2011; 41
Rizzo (10.1016/j.bbagrm.2014.07.022_bb0275) 2011; 39
Matsumura (10.1016/j.bbagrm.2014.07.022_bb0025) 2012; 287
Fleming (10.1016/j.bbagrm.2014.07.022_bb0205) 2001; 20
Dietvorst (10.1016/j.bbagrm.2014.07.022_bb0300) 2010; 56
Dietvorst (10.1016/j.bbagrm.2014.07.022_bb0255) 2008; 25
Hassan (10.1016/j.bbagrm.2014.07.022_bb0345) 2006; 281
Hanlon (10.1016/j.bbagrm.2014.07.022_bb0270) 2011; 6
Wu (10.1016/j.bbagrm.2014.07.022_bb0145) 2001; 7
Geisberg (10.1016/j.bbagrm.2014.07.022_bb0100) 2000; 20
Green (10.1016/j.bbagrm.2014.07.022_bb0310) 2004; 15
Smith (10.1016/j.bbagrm.2014.07.022_bb0040) 2000; 25
Janke (10.1016/j.bbagrm.2014.07.022_bb0220) 2004; 21
Davie (10.1016/j.bbagrm.2014.07.022_bb0150) 2002; 22
Zhang (10.1016/j.bbagrm.2014.07.022_bb0085) 2002; 160
Hickman (10.1016/j.bbagrm.2014.07.022_bb0075) 2007; 27
Wong (10.1016/j.bbagrm.2014.07.022_bb0115) 2011; 25
Zhang (10.1016/j.bbagrm.2014.07.022_bb0285) 2004; 279
Teunissen (10.1016/j.bbagrm.2014.07.022_bb0170) 1995; 11
Brachmann (10.1016/j.bbagrm.2014.07.022_bb0210) 1998; 14
van Bakel (10.1016/j.bbagrm.2014.07.022_bb0265) 2013; 9
Gregory (10.1016/j.bbagrm.2014.07.022_bb0240) 1999; 119
Hassan (10.1016/j.bbagrm.2014.07.022_bb0350) 2002; 111
Edmondson (10.1016/j.bbagrm.2014.07.022_bb0135) 1996; 10
Tzamarias (10.1016/j.bbagrm.2014.07.022_bb0015) 1994; 369
Bone (10.1016/j.bbagrm.2014.07.022_bb0140) 2001; 276
Mennella (10.1016/j.bbagrm.2014.07.022_bb0060) 2003; 2
Chen (10.1016/j.bbagrm.2014.07.022_bb0120) 2013
Davie (10.1016/j.bbagrm.2014.07.022_bb0160) 2003; 278
Xu (10.1016/j.bbagrm.2014.07.022_bb0340) 2009; 457
Lee (10.1016/j.bbagrm.2014.07.022_bb0080) 2000; 155
Fragiadakis (10.1016/j.bbagrm.2014.07.022_bb0065) 2004; 23
Treitel (10.1016/j.bbagrm.2014.07.022_bb0110) 1995; 92
Conlan (10.1016/j.bbagrm.2014.07.022_bb0045) 2001; 309
Gromoller (10.1016/j.bbagrm.2014.07.022_bb0095) 2000; 19
Courey (10.1016/j.bbagrm.2014.07.022_bb0030) 2001; 15
Malave (10.1016/j.bbagrm.2014.07.022_bb0035) 2006; 84
Hassan (10.1016/j.bbagrm.2014.07.022_bb0355) 2001; 104
Bernstein (10.1016/j.bbagrm.2014.07.022_bb0305) 2000; 97
Cooper (10.1016/j.bbagrm.2014.07.022_bb0125) 1994; 8
Verstrepen (10.1016/j.bbagrm.2014.07.022_bb0190) 2003; 61
Jiang (10.1016/j.bbagrm.2014.07.022_bb0295) 2009; 10
Wu (10.1016/j.bbagrm.2014.07.022_bb0165) 2001; 98
Gavin (10.1016/j.bbagrm.2014.07.022_bb0105) 2000; 19
Watson (10.1016/j.bbagrm.2014.07.022_bb0155) 2000; 14
Verstrepen (10.1016/j.bbagrm.2014.07.022_bb0175) 2009; 43
Keleher (10.1016/j.bbagrm.2014.07.022_bb0010) 1992; 68
Han (10.1016/j.bbagrm.2014.07.022_bb0090) 2001; 276
Smukalla (10.1016/j.bbagrm.2014.07.022_bb0195) 2008; 135
Liu (10.1016/j.bbagrm.2014.07.022_bb0200) 1996; 144
Tzamarias (10.1016/j.bbagrm.2014.07.022_bb0020) 1995; 9
Gligoris (10.1016/j.bbagrm.2014.07.022_bb0130) 2007; 27
Ducker (10.1016/j.bbagrm.2014.07.022_bb0325) 2000; 19
Varanasi (10.1016/j.bbagrm.2014.07.022_bb0005) 1996; 16
Fleming (10.1016/j.bbagrm.2014.07.022_bb0225) 2008; 31
Li (10.1016/j.bbagrm.2014.07.022_bb0290) 2001; 276
Papamichos-Chronakis (10.1016/j.bbagrm.2014.07.022_bb0050) 2002; 9
Zhang (10.1016/j.bbagrm.2014.07.022_bb0280) 2004; 23
Proft (10.1016/j.bbagrm.2014.07.022_bb0055) 2002; 9
Robyr (10.1016/j.bbagrm.2014.07.022_bb0315) 2002; 109
Harbison (10.1016/j.bbagrm.2014.07.022_bb0330) 2004; 431
Chandy (10.1016/j.bbagrm.2014.07.022_bb0360) 2006; 5
Verstrepen (10.1016/j.bbagrm.2014.07.022_bb0185) 2006; 60
Zhang (10.1016/j.bbagrm.2014.07.022_bb0070) 2005; 25
Gregory (10.1016/j.bbagrm.2014.07.022_bb0235) 1999; 304
Zeng (10.1016/j.bbagrm.2014.07.022_bb0230) 2006; 41
Kobayashi (10.1016/j.bbagrm.2014.07.022_bb0320) 2008; 368
Wach (10.1016/j.bbagrm.2014.07.022_bb0215) 1996; 12
11566885 - EMBO J. 2001 Sep 17;20(18):5219-31
16648632 - J Biol Chem. 2006 Jun 30;281(26):18126-34
19013280 - Cell. 2008 Nov 14;135(4):726-37
11691830 - Genes Dev. 2001 Nov 1;15(21):2786-96
14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62
19160454 - Yeast. 2008 Dec;25(12):891-901
14739928 - EMBO J. 2004 Jan 28;23(2):333-42
11069890 - Genes Dev. 2000 Nov 1;14(21):2737-44
15334558 - Yeast. 2004 Aug;21(11):947-62
16556216 - Mol Microbiol. 2006 Apr;60(1):5-15
11095743 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13708-13
11287668 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4391-6
18614047 - Mol Cell. 2008 Jul 11;31(1):57-66
10804529 - Methods Mol Biol. 1999;119:417-25
11290320 - Cell. 2001 Mar 23;104(6):817-27
7502576 - Yeast. 1995 Sep 15;11(11):1001-13
12086626 - Mol Cell. 2002 Jun;9(6):1297-305
9483801 - Yeast. 1998 Jan 30;14(2):115-32
17704134 - Nucleic Acids Res. 2007;35(16):5520-31
21785133 - Nucleic Acids Res. 2011 Nov 1;39(20):8803-19
7926740 - Genes Dev. 1994 Jun 15;8(12):1400-10
12419247 - Cell. 2002 Nov 1;111(3):369-79
23124522 - Genome Res. 2013 Feb;23(2):312-22
15343339 - Nature. 2004 Sep 2;431(7004):99-104
19169243 - Nature. 2009 Feb 19;457(7232):1033-7
12086627 - Mol Cell. 2002 Jun;9(6):1307-17
17030999 - Eukaryot Cell. 2006 Oct;5(10):1738-47
21329885 - Mol Cell. 2011 Feb 18;41(4):480-92
17387147 - Mol Cell Biol. 2007 Jun;27(11):4198-205
15116071 - EMBO J. 2004 Jun 2;23(11):2246-57
11172717 - Mol Cell. 2001 Jan;7(1):117-26
7705659 - Genes Dev. 1995 Apr 1;9(7):821-31
22156212 - Genes Dev. 2011 Dec 1;25(23):2525-39
1739976 - Cell. 1992 Feb 21;68(4):709-19
15254041 - J Biol Chem. 2004 Sep 17;279(38):39240-50
14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303
12399584 - Science. 2002 Oct 25;298(5594):799-804
19640229 - Annu Rev Genet. 2009;43:1-24
8943325 - Mol Cell Biol. 1996 Dec;16(12):6707-14
11118219 - EMBO J. 2000 Dec 15;19(24):6845-52
8008070 - Nature. 1994 Jun 30;369(6483):758-61
11861580 - Genetics. 2002 Feb;160(2):799-803
12698276 - Appl Microbiol Biotechnol. 2003 May;61(3):197-205
23103252 - Mol Cell. 2012 Dec 14;48(5):734-46
8675011 - Genes Dev. 1996 May 15;10(10):1247-59
11060038 - EMBO J. 2000 Nov 1;19(21):5875-83
16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43
11470794 - J Biol Chem. 2001 Oct 5;276(40):37020-6
7597847 - Yeast. 1995 Apr 30;11(5):435-46
8913742 - Genetics. 1996 Nov;144(3):967-78
10924455 - Genetics. 2000 Aug;155(4):1535-42
16107689 - Mol Cell Biol. 2005 Sep;25(17):7399-411
11784848 - Mol Cell Biol. 2002 Feb;22(3):693-703
7724528 - Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3132-6
22707714 - J Biol Chem. 2012 Aug 3;287(32):26528-38
10654939 - EMBO J. 2000 Feb 1;19(3):400-9
20012864 - Curr Genet. 2010 Feb;56(1):75-85
10871883 - Trends Biochem Sci. 2000 Jul;25(7):325-30
12086601 - Cell. 2002 May 17;109(4):437-46
23658529 - PLoS Genet. 2013 May;9(5):e1003479
10372371 - Methods Enzymol. 1999;304:365-76
21552514 - PLoS One. 2011;6(4):e19060
17191611 - Biotechniques. 2006 Dec;41(6):694, 696, 698
11448965 - J Biol Chem. 2001 Sep 7;276(36):33788-97
18201562 - Biochem Biophys Res Commun. 2008 Mar 28;368(1):50-5
10669725 - Mol Cell Biol. 2000 Mar;20(5):1478-88
8904338 - Yeast. 1996 Mar 15;12(3):259-65
17785431 - Mol Cell Biol. 2007 Nov;27(21):7414-24
11056171 - J Biol Chem. 2001 Jan 19;276(3):1808-13
11399075 - J Mol Biol. 2001 Jun 22;309(5):1007-15
15240822 - Mol Biol Cell. 2004 Sep;15(9):4191-202
19814794 - Genome Biol. 2009;10(10):R109
References_xml – volume: 22
  start-page: 693
  year: 2002
  end-page: 703
  ident: bb0150
  article-title: Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo
  publication-title: Mol. Cell. Biol.
– volume: 276
  start-page: 33788
  year: 2001
  end-page: 33797
  ident: bb0290
  article-title: Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence
  publication-title: J. Biol. Chem.
– volume: 281
  start-page: 18126
  year: 2006
  end-page: 18134
  ident: bb0345
  article-title: The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 4198
  year: 2007
  end-page: 4205
  ident: bb0130
  article-title: The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation
  publication-title: Mol. Cell. Biol.
– volume: 8
  start-page: 1400
  year: 1994
  end-page: 1410
  ident: bb0125
  article-title: The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure
  publication-title: Genes Dev.
– volume: 14
  start-page: 2737
  year: 2000
  end-page: 2744
  ident: bb0155
  article-title: Ssn6-Tup1 interacts with class I histone deacetylases required for repression
  publication-title: Genes Dev.
– volume: 144
  start-page: 967
  year: 1996
  end-page: 978
  ident: bb0200
  article-title: S288C has a mutation in FLO8, a gene required for filamentous growth
  publication-title: Genetics
– volume: 9
  start-page: 821
  year: 1995
  end-page: 831
  ident: bb0020
  article-title: Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8–Tup1 corepressor complex to differentially regulated promoters
  publication-title: Genes Dev.
– volume: 276
  start-page: 1808
  year: 2001
  end-page: 1813
  ident: bb0140
  article-title: Recruitment of the yeast Tup1p-Ssn6p repressor is associated with localized decreases in histone acetylation
  publication-title: J. Biol. Chem.
– volume: 135
  start-page: 726
  year: 2008
  end-page: 737
  ident: bb0195
  article-title: FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast
  publication-title: Cell
– volume: 14
  start-page: 115
  year: 1998
  end-page: 132
  ident: bb0210
  article-title: Designer deletion strains derived from
  publication-title: Yeast
– volume: 92
  start-page: 3132
  year: 1995
  end-page: 3136
  ident: bb0110
  article-title: Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 431
  start-page: 99
  year: 2004
  end-page: 104
  ident: bb0330
  article-title: Transcriptional regulatory code of a eukaryotic genome
  publication-title: Nature
– volume: 304
  start-page: 365
  year: 1999
  end-page: 376
  ident: bb0235
  article-title: Mapping chromatin structure in yeast
  publication-title: Methods Enzymol.
– volume: 19
  start-page: 6845
  year: 2000
  end-page: 6852
  ident: bb0095
  article-title: Srb7p is a physical and physiological target of Tup1p
  publication-title: EMBO J.
– volume: 43
  start-page: 1
  year: 2009
  end-page: 24
  ident: bb0175
  article-title: Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi
  publication-title: Annu. Rev. Genet.
– volume: 35
  start-page: 5520
  year: 2007
  end-page: 5531
  ident: bb0250
  article-title: Tup1-Ssn6 and Swi–Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene
  publication-title: Nucleic Acids Res.
– volume: 287
  start-page: 26528
  year: 2012
  end-page: 26538
  ident: bb0025
  article-title: Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications
  publication-title: J Biol Chem
– volume: 5
  start-page: 1738
  year: 2006
  end-page: 1747
  ident: bb0360
  article-title: SWI/SNF displaces SAGA-acetylated nucleosomes
  publication-title: Eukaryot. Cell
– volume: 369
  start-page: 758
  year: 1994
  end-page: 761
  ident: bb0015
  article-title: Functional dissection of the yeast Cyc8–Tup1 transcriptional co-repressor complex
  publication-title: Nature
– volume: 23
  start-page: 2246
  year: 2004
  end-page: 2257
  ident: bb0280
  article-title: Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in
  publication-title: EMBO J.
– volume: 27
  start-page: 7414
  year: 2007
  end-page: 7424
  ident: bb0075
  article-title: Heme levels switch the function of Hap1 of
  publication-title: Mol. Cell. Biol.
– volume: 279
  start-page: 39240
  year: 2004
  end-page: 39250
  ident: bb0285
  article-title: Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in
  publication-title: J. Biol. Chem.
– volume: 97
  start-page: 13708
  year: 2000
  end-page: 13713
  ident: bb0305
  article-title: Genomewide studies of histone deacetylase function in yeast
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 15
  start-page: 4191
  year: 2004
  end-page: 4202
  ident: bb0310
  article-title: Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in
  publication-title: Mol. Biol. Cell
– volume: 10
  start-page: 1247
  year: 1996
  end-page: 1259
  ident: bb0135
  article-title: Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4
  publication-title: Genes Dev.
– volume: 111
  start-page: 369
  year: 2002
  end-page: 379
  ident: bb0350
  article-title: Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
  publication-title: Cell
– volume: 9
  start-page: 1307
  year: 2002
  end-page: 1317
  ident: bb0055
  article-title: Hog1 kinase converts the Sko1-Cyc8–Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress
  publication-title: Mol. Cell
– volume: 9
  start-page: e1003479
  year: 2013
  ident: bb0265
  article-title: A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription
  publication-title: PLoS Genet
– volume: 155
  start-page: 1535
  year: 2000
  end-page: 1542
  ident: bb0080
  article-title: Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8–Tup1 corepressor in yeast
  publication-title: Genetics
– volume: 21
  start-page: 947
  year: 2004
  end-page: 962
  ident: bb0220
  article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
  publication-title: Yeast
– volume: 41
  start-page: 480
  year: 2011
  end-page: 492
  ident: bb0260
  article-title: A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces
  publication-title: Mol Cell
– volume: 6
  start-page: e19060
  year: 2011
  ident: bb0270
  article-title: The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae
  publication-title: PLoS One
– volume: 15
  start-page: 2786
  year: 2001
  end-page: 2796
  ident: bb0030
  article-title: Transcriptional repression: the long and the short of it
  publication-title: Genes Dev.
– volume: 19
  start-page: 400
  year: 2000
  end-page: 409
  ident: bb0325
  article-title: The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome
  publication-title: EMBO J.
– volume: 68
  start-page: 709
  year: 1992
  end-page: 719
  ident: bb0010
  article-title: Ssn6-Tup1 is a general repressor of transcription in yeast
  publication-title: Cell
– volume: 19
  start-page: 5875
  year: 2000
  end-page: 5883
  ident: bb0105
  article-title: Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene
  publication-title: EMBO J.
– volume: 25
  start-page: 7399
  year: 2005
  end-page: 7411
  ident: bb0070
  article-title: Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism
  publication-title: Mol. Cell. Biol.
– volume: 11
  start-page: 1001
  year: 1995
  end-page: 1013
  ident: bb0180
  article-title: Review: the dominant flocculation genes of
  publication-title: Yeast
– volume: 56
  start-page: 75
  year: 2010
  end-page: 85
  ident: bb0300
  article-title: Histone modifying proteins Gcn5 and Hda1 affect flocculation in
  publication-title: Curr Genet
– volume: 298
  start-page: 799
  year: 2002
  end-page: 804
  ident: bb0335
  article-title: Transcriptional regulatory networks in
  publication-title: Science
– volume: 84
  start-page: 437
  year: 2006
  end-page: 443
  ident: bb0035
  article-title: Transcriptional repression by Tup1-Ssn6
  publication-title: Biochem. Cell Biol.
– volume: 104
  start-page: 817
  year: 2001
  end-page: 827
  ident: bb0355
  article-title: Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes
  publication-title: Cell
– volume: 25
  start-page: 891
  year: 2008
  end-page: 901
  ident: bb0255
  article-title: Flocculation in
  publication-title: Yeast
– volume: 109
  start-page: 437
  year: 2002
  end-page: 446
  ident: bb0315
  article-title: Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases
  publication-title: Cell
– volume: 61
  start-page: 197
  year: 2003
  end-page: 205
  ident: bb0190
  article-title: Yeast flocculation: what brewers should know
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 10
  start-page: R109
  year: 2009
  ident: bb0295
  article-title: A compiled and systematic reference map of nucleosome positions across the
  publication-title: Genome Biol.
– volume: 60
  start-page: 5
  year: 2006
  end-page: 15
  ident: bb0185
  article-title: Flocculation, adhesion and biofilm formation in yeasts
  publication-title: Mol. Microbiol.
– volume: 11
  start-page: 435
  year: 1995
  end-page: 446
  ident: bb0170
  article-title: Transcriptional regulation of flocculation genes in
  publication-title: Yeast
– volume: 41
  year: 2006
  ident: bb0230
  article-title: In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation
  publication-title: Biotechniques
– volume: 457
  start-page: 1033
  year: 2009
  end-page: 1037
  ident: bb0340
  article-title: Bidirectional promoters generate pervasive transcription in yeast
  publication-title: Nature
– volume: 309
  start-page: 1007
  year: 2001
  end-page: 1015
  ident: bb0045
  article-title: Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2
  publication-title: J. Mol. Biol.
– volume: 276
  start-page: 37020
  year: 2001
  end-page: 37026
  ident: bb0090
  article-title: Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes
  publication-title: J. Biol. Chem.
– volume: 278
  start-page: 50158
  year: 2003
  end-page: 50162
  ident: bb0160
  article-title: Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 325
  year: 2000
  end-page: 330
  ident: bb0040
  article-title: Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes
  publication-title: Trends Biochem. Sci.
– volume: 98
  start-page: 4391
  year: 2001
  end-page: 4396
  ident: bb0165
  article-title: HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 119
  start-page: 417
  year: 1999
  end-page: 425
  ident: bb0240
  article-title: Restriction nucleases as probes for chromatin structure
  publication-title: Methods Mol. Biol.
– volume: 16
  start-page: 6707
  year: 1996
  end-page: 6714
  ident: bb0005
  article-title: The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits
  publication-title: Mol. Cell. Biol.
– volume: 12
  start-page: 259
  year: 1996
  end-page: 265
  ident: bb0215
  article-title: PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae
  publication-title: Yeast
– volume: 2
  start-page: 1288
  year: 2003
  end-page: 1303
  ident: bb0060
  article-title: Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein
  publication-title: Eukaryot. Cell
– volume: 20
  start-page: 1478
  year: 2000
  end-page: 1488
  ident: bb0100
  article-title: TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo
  publication-title: Mol. Cell. Biol.
– volume: 23
  start-page: 333
  year: 2004
  end-page: 342
  ident: bb0065
  article-title: Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation
  publication-title: EMBO J.
– year: 2013
  ident: bb0120
  article-title: Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8–Tup1 corepressor, Genome Res
– volume: 48
  start-page: 734
  year: 2012
  end-page: 746
  ident: bb0245
  article-title: A role for H2B ubiquitylation in DNA replication
  publication-title: Mol Cell
– volume: 368
  start-page: 50
  year: 2008
  end-page: 55
  ident: bb0320
  article-title: Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 20
  start-page: 5219
  year: 2001
  end-page: 5231
  ident: bb0205
  article-title: Antagonistic remodelling by Swi–Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation
  publication-title: EMBO J.
– volume: 7
  start-page: 117
  year: 2001
  end-page: 126
  ident: bb0145
  article-title: TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
  publication-title: Mol. Cell
– volume: 31
  start-page: 57
  year: 2008
  end-page: 66
  ident: bb0225
  article-title: H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation
  publication-title: Mol. Cell
– volume: 9
  start-page: 1297
  year: 2002
  end-page: 1305
  ident: bb0050
  article-title: Cti6, a PHD domain protein, bridges the Cyc8–Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1
  publication-title: Mol. Cell
– volume: 160
  start-page: 799
  year: 2002
  end-page: 803
  ident: bb0085
  article-title: Caenorhabditis elegans unc-37/groucho interacts genetically with components of the transcriptional mediator complex
  publication-title: Genetics
– volume: 25
  start-page: 2525
  year: 2011
  end-page: 2539
  ident: bb0115
  article-title: The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
  publication-title: Genes Dev
– volume: 39
  start-page: 8803
  year: 2011
  end-page: 8819
  ident: bb0275
  article-title: Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes
  publication-title: Nucleic Acids Res
– volume: 21
  start-page: 947
  year: 2004
  ident: 10.1016/j.bbagrm.2014.07.022_bb0220
  article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
  publication-title: Yeast
  doi: 10.1002/yea.1142
– volume: 369
  start-page: 758
  year: 1994
  ident: 10.1016/j.bbagrm.2014.07.022_bb0015
  article-title: Functional dissection of the yeast Cyc8–Tup1 transcriptional co-repressor complex
  publication-title: Nature
  doi: 10.1038/369758a0
– volume: 41
  start-page: 480
  year: 2011
  ident: 10.1016/j.bbagrm.2014.07.022_bb0260
  article-title: A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.01.015
– volume: 20
  start-page: 1478
  year: 2000
  ident: 10.1016/j.bbagrm.2014.07.022_bb0100
  article-title: TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.5.1478-1488.2000
– volume: 35
  start-page: 5520
  year: 2007
  ident: 10.1016/j.bbagrm.2014.07.022_bb0250
  article-title: Tup1-Ssn6 and Swi–Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm573
– volume: 276
  start-page: 37020
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0090
  article-title: Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M105596200
– volume: 19
  start-page: 5875
  year: 2000
  ident: 10.1016/j.bbagrm.2014.07.022_bb0105
  article-title: Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.21.5875
– volume: 14
  start-page: 115
  year: 1998
  ident: 10.1016/j.bbagrm.2014.07.022_bb0210
  article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
– volume: 10
  start-page: 1247
  year: 1996
  ident: 10.1016/j.bbagrm.2014.07.022_bb0135
  article-title: Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.10.1247
– volume: 25
  start-page: 325
  year: 2000
  ident: 10.1016/j.bbagrm.2014.07.022_bb0040
  article-title: Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(00)01592-9
– volume: 11
  start-page: 435
  year: 1995
  ident: 10.1016/j.bbagrm.2014.07.022_bb0170
  article-title: Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.320110506
– volume: 11
  start-page: 1001
  year: 1995
  ident: 10.1016/j.bbagrm.2014.07.022_bb0180
  article-title: Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family
  publication-title: Yeast
  doi: 10.1002/yea.320111102
– volume: 276
  start-page: 33788
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0290
  article-title: Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M104220200
– volume: 2
  start-page: 1288
  year: 2003
  ident: 10.1016/j.bbagrm.2014.07.022_bb0060
  article-title: Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.2.6.1288-1303.2003
– volume: 98
  start-page: 4391
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0165
  article-title: HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.081560698
– volume: 135
  start-page: 726
  year: 2008
  ident: 10.1016/j.bbagrm.2014.07.022_bb0195
  article-title: FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.037
– volume: 144
  start-page: 967
  year: 1996
  ident: 10.1016/j.bbagrm.2014.07.022_bb0200
  article-title: Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth
  publication-title: Genetics
  doi: 10.1093/genetics/144.3.967
– volume: 111
  start-page: 369
  year: 2002
  ident: 10.1016/j.bbagrm.2014.07.022_bb0350
  article-title: Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01005-X
– volume: 281
  start-page: 18126
  year: 2006
  ident: 10.1016/j.bbagrm.2014.07.022_bb0345
  article-title: The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602851200
– volume: 20
  start-page: 5219
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0205
  article-title: Antagonistic remodelling by Swi–Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.18.5219
– volume: 15
  start-page: 2786
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0030
  article-title: Transcriptional repression: the long and the short of it
  publication-title: Genes Dev.
  doi: 10.1101/gad.939601
– volume: 309
  start-page: 1007
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0045
  article-title: Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4742
– volume: 27
  start-page: 7414
  year: 2007
  ident: 10.1016/j.bbagrm.2014.07.022_bb0075
  article-title: Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00887-07
– volume: 9
  start-page: e1003479
  year: 2013
  ident: 10.1016/j.bbagrm.2014.07.022_bb0265
  article-title: A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003479
– volume: 22
  start-page: 693
  year: 2002
  ident: 10.1016/j.bbagrm.2014.07.022_bb0150
  article-title: Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.3.693-703.2002
– volume: 12
  start-page: 259
  year: 1996
  ident: 10.1016/j.bbagrm.2014.07.022_bb0215
  article-title: PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
– volume: 39
  start-page: 8803
  year: 2011
  ident: 10.1016/j.bbagrm.2014.07.022_bb0275
  article-title: Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr557
– volume: 97
  start-page: 13708
  year: 2000
  ident: 10.1016/j.bbagrm.2014.07.022_bb0305
  article-title: Genomewide studies of histone deacetylase function in yeast
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.250477697
– volume: 160
  start-page: 799
  year: 2002
  ident: 10.1016/j.bbagrm.2014.07.022_bb0085
  article-title: Caenorhabditis elegans unc-37/groucho interacts genetically with components of the transcriptional mediator complex
  publication-title: Genetics
  doi: 10.1093/genetics/160.2.799
– volume: 276
  start-page: 1808
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0140
  article-title: Recruitment of the yeast Tup1p-Ssn6p repressor is associated with localized decreases in histone acetylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M008668200
– volume: 19
  start-page: 400
  year: 2000
  ident: 10.1016/j.bbagrm.2014.07.022_bb0325
  article-title: The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.3.400
– volume: 279
  start-page: 39240
  year: 2004
  ident: 10.1016/j.bbagrm.2014.07.022_bb0285
  article-title: Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M407159200
– volume: 56
  start-page: 75
  year: 2010
  ident: 10.1016/j.bbagrm.2014.07.022_bb0300
  article-title: Histone modifying proteins Gcn5 and Hda1 affect flocculation in Saccharomyces cerevisiae during high-gravity fermentation
  publication-title: Curr Genet
  doi: 10.1007/s00294-009-0281-7
– volume: 278
  start-page: 50158
  year: 2003
  ident: 10.1016/j.bbagrm.2014.07.022_bb0160
  article-title: Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M309753200
– volume: 60
  start-page: 5
  year: 2006
  ident: 10.1016/j.bbagrm.2014.07.022_bb0185
  article-title: Flocculation, adhesion and biofilm formation in yeasts
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05072.x
– volume: 431
  start-page: 99
  year: 2004
  ident: 10.1016/j.bbagrm.2014.07.022_bb0330
  article-title: Transcriptional regulatory code of a eukaryotic genome
  publication-title: Nature
  doi: 10.1038/nature02800
– volume: 5
  start-page: 1738
  year: 2006
  ident: 10.1016/j.bbagrm.2014.07.022_bb0360
  article-title: SWI/SNF displaces SAGA-acetylated nucleosomes
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00165-06
– volume: 68
  start-page: 709
  year: 1992
  ident: 10.1016/j.bbagrm.2014.07.022_bb0010
  article-title: Ssn6-Tup1 is a general repressor of transcription in yeast
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90146-4
– volume: 8
  start-page: 1400
  year: 1994
  ident: 10.1016/j.bbagrm.2014.07.022_bb0125
  article-title: The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.12.1400
– volume: 109
  start-page: 437
  year: 2002
  ident: 10.1016/j.bbagrm.2014.07.022_bb0315
  article-title: Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00746-8
– volume: 6
  start-page: e19060
  year: 2011
  ident: 10.1016/j.bbagrm.2014.07.022_bb0270
  article-title: The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019060
– volume: 48
  start-page: 734
  year: 2012
  ident: 10.1016/j.bbagrm.2014.07.022_bb0245
  article-title: A role for H2B ubiquitylation in DNA replication
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.09.019
– volume: 27
  start-page: 4198
  year: 2007
  ident: 10.1016/j.bbagrm.2014.07.022_bb0130
  article-title: The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00238-07
– volume: 19
  start-page: 6845
  year: 2000
  ident: 10.1016/j.bbagrm.2014.07.022_bb0095
  article-title: Srb7p is a physical and physiological target of Tup1p
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.24.6845
– volume: 43
  start-page: 1
  year: 2009
  ident: 10.1016/j.bbagrm.2014.07.022_bb0175
  article-title: Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-102108-134156
– volume: 25
  start-page: 891
  year: 2008
  ident: 10.1016/j.bbagrm.2014.07.022_bb0255
  article-title: Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation
  publication-title: Yeast
  doi: 10.1002/yea.1643
– volume: 368
  start-page: 50
  year: 2008
  ident: 10.1016/j.bbagrm.2014.07.022_bb0320
  article-title: Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.01.033
– volume: 16
  start-page: 6707
  year: 1996
  ident: 10.1016/j.bbagrm.2014.07.022_bb0005
  article-title: The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.12.6707
– volume: 119
  start-page: 417
  year: 1999
  ident: 10.1016/j.bbagrm.2014.07.022_bb0240
  article-title: Restriction nucleases as probes for chromatin structure
  publication-title: Methods Mol. Biol.
– volume: 287
  start-page: 26528
  year: 2012
  ident: 10.1016/j.bbagrm.2014.07.022_bb0025
  article-title: Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.369652
– volume: 25
  start-page: 7399
  year: 2005
  ident: 10.1016/j.bbagrm.2014.07.022_bb0070
  article-title: Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.17.7399-7411.2005
– volume: 15
  start-page: 4191
  year: 2004
  ident: 10.1016/j.bbagrm.2014.07.022_bb0310
  article-title: Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E04-05-0412
– year: 2013
  ident: 10.1016/j.bbagrm.2014.07.022_bb0120
– volume: 92
  start-page: 3132
  year: 1995
  ident: 10.1016/j.bbagrm.2014.07.022_bb0110
  article-title: Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.92.8.3132
– volume: 41
  year: 2006
  ident: 10.1016/j.bbagrm.2014.07.022_bb0230
  article-title: In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation
  publication-title: Biotechniques
  doi: 10.2144/000112297
– volume: 457
  start-page: 1033
  year: 2009
  ident: 10.1016/j.bbagrm.2014.07.022_bb0340
  article-title: Bidirectional promoters generate pervasive transcription in yeast
  publication-title: Nature
  doi: 10.1038/nature07728
– volume: 9
  start-page: 1297
  year: 2002
  ident: 10.1016/j.bbagrm.2014.07.022_bb0050
  article-title: Cti6, a PHD domain protein, bridges the Cyc8–Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00545-2
– volume: 9
  start-page: 821
  year: 1995
  ident: 10.1016/j.bbagrm.2014.07.022_bb0020
  article-title: Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8–Tup1 corepressor complex to differentially regulated promoters
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.7.821
– volume: 84
  start-page: 437
  year: 2006
  ident: 10.1016/j.bbagrm.2014.07.022_bb0035
  article-title: Transcriptional repression by Tup1-Ssn6
  publication-title: Biochem. Cell Biol.
– volume: 298
  start-page: 799
  year: 2002
  ident: 10.1016/j.bbagrm.2014.07.022_bb0335
  article-title: Transcriptional regulatory networks in Saccharomyces cerevisiae
  publication-title: Science
  doi: 10.1126/science.1075090
– volume: 7
  start-page: 117
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0145
  article-title: TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00160-5
– volume: 304
  start-page: 365
  year: 1999
  ident: 10.1016/j.bbagrm.2014.07.022_bb0235
  article-title: Mapping chromatin structure in yeast
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(99)04022-7
– volume: 14
  start-page: 2737
  year: 2000
  ident: 10.1016/j.bbagrm.2014.07.022_bb0155
  article-title: Ssn6-Tup1 interacts with class I histone deacetylases required for repression
  publication-title: Genes Dev.
  doi: 10.1101/gad.829100
– volume: 23
  start-page: 2246
  year: 2004
  ident: 10.1016/j.bbagrm.2014.07.022_bb0280
  article-title: Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600227
– volume: 9
  start-page: 1307
  year: 2002
  ident: 10.1016/j.bbagrm.2014.07.022_bb0055
  article-title: Hog1 kinase converts the Sko1-Cyc8–Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00557-9
– volume: 31
  start-page: 57
  year: 2008
  ident: 10.1016/j.bbagrm.2014.07.022_bb0225
  article-title: H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.04.025
– volume: 10
  start-page: R109
  year: 2009
  ident: 10.1016/j.bbagrm.2014.07.022_bb0295
  article-title: A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-10-r109
– volume: 23
  start-page: 333
  year: 2004
  ident: 10.1016/j.bbagrm.2014.07.022_bb0065
  article-title: Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600043
– volume: 155
  start-page: 1535
  year: 2000
  ident: 10.1016/j.bbagrm.2014.07.022_bb0080
  article-title: Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8–Tup1 corepressor in yeast
  publication-title: Genetics
  doi: 10.1093/genetics/155.4.1535
– volume: 25
  start-page: 2525
  year: 2011
  ident: 10.1016/j.bbagrm.2014.07.022_bb0115
  article-title: The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
  publication-title: Genes Dev
  doi: 10.1101/gad.179275.111
– volume: 61
  start-page: 197
  year: 2003
  ident: 10.1016/j.bbagrm.2014.07.022_bb0190
  article-title: Yeast flocculation: what brewers should know
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-002-1200-8
– volume: 104
  start-page: 817
  year: 2001
  ident: 10.1016/j.bbagrm.2014.07.022_bb0355
  article-title: Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00279-3
– reference: 11566885 - EMBO J. 2001 Sep 17;20(18):5219-31
– reference: 10372371 - Methods Enzymol. 1999;304:365-76
– reference: 12399584 - Science. 2002 Oct 25;298(5594):799-804
– reference: 15343339 - Nature. 2004 Sep 2;431(7004):99-104
– reference: 11060038 - EMBO J. 2000 Nov 1;19(21):5875-83
– reference: 17191611 - Biotechniques. 2006 Dec;41(6):694, 696, 698
– reference: 7597847 - Yeast. 1995 Apr 30;11(5):435-46
– reference: 10654939 - EMBO J. 2000 Feb 1;19(3):400-9
– reference: 21552514 - PLoS One. 2011;6(4):e19060
– reference: 11470794 - J Biol Chem. 2001 Oct 5;276(40):37020-6
– reference: 20012864 - Curr Genet. 2010 Feb;56(1):75-85
– reference: 21785133 - Nucleic Acids Res. 2011 Nov 1;39(20):8803-19
– reference: 7724528 - Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3132-6
– reference: 10871883 - Trends Biochem Sci. 2000 Jul;25(7):325-30
– reference: 7926740 - Genes Dev. 1994 Jun 15;8(12):1400-10
– reference: 22707714 - J Biol Chem. 2012 Aug 3;287(32):26528-38
– reference: 14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303
– reference: 11069890 - Genes Dev. 2000 Nov 1;14(21):2737-44
– reference: 12419247 - Cell. 2002 Nov 1;111(3):369-79
– reference: 17030999 - Eukaryot Cell. 2006 Oct;5(10):1738-47
– reference: 11095743 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13708-13
– reference: 16556216 - Mol Microbiol. 2006 Apr;60(1):5-15
– reference: 15240822 - Mol Biol Cell. 2004 Sep;15(9):4191-202
– reference: 19814794 - Genome Biol. 2009;10(10):R109
– reference: 11784848 - Mol Cell Biol. 2002 Feb;22(3):693-703
– reference: 11290320 - Cell. 2001 Mar 23;104(6):817-27
– reference: 12698276 - Appl Microbiol Biotechnol. 2003 May;61(3):197-205
– reference: 15334558 - Yeast. 2004 Aug;21(11):947-62
– reference: 11056171 - J Biol Chem. 2001 Jan 19;276(3):1808-13
– reference: 17785431 - Mol Cell Biol. 2007 Nov;27(21):7414-24
– reference: 11287668 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4391-6
– reference: 14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62
– reference: 8913742 - Genetics. 1996 Nov;144(3):967-78
– reference: 23103252 - Mol Cell. 2012 Dec 14;48(5):734-46
– reference: 23124522 - Genome Res. 2013 Feb;23(2):312-22
– reference: 12086601 - Cell. 2002 May 17;109(4):437-46
– reference: 18614047 - Mol Cell. 2008 Jul 11;31(1):57-66
– reference: 17387147 - Mol Cell Biol. 2007 Jun;27(11):4198-205
– reference: 16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43
– reference: 8008070 - Nature. 1994 Jun 30;369(6483):758-61
– reference: 1739976 - Cell. 1992 Feb 21;68(4):709-19
– reference: 19013280 - Cell. 2008 Nov 14;135(4):726-37
– reference: 12086627 - Mol Cell. 2002 Jun;9(6):1307-17
– reference: 19169243 - Nature. 2009 Feb 19;457(7232):1033-7
– reference: 11861580 - Genetics. 2002 Feb;160(2):799-803
– reference: 16107689 - Mol Cell Biol. 2005 Sep;25(17):7399-411
– reference: 15116071 - EMBO J. 2004 Jun 2;23(11):2246-57
– reference: 11118219 - EMBO J. 2000 Dec 15;19(24):6845-52
– reference: 7705659 - Genes Dev. 1995 Apr 1;9(7):821-31
– reference: 18201562 - Biochem Biophys Res Commun. 2008 Mar 28;368(1):50-5
– reference: 9483801 - Yeast. 1998 Jan 30;14(2):115-32
– reference: 19640229 - Annu Rev Genet. 2009;43:1-24
– reference: 8675011 - Genes Dev. 1996 May 15;10(10):1247-59
– reference: 11448965 - J Biol Chem. 2001 Sep 7;276(36):33788-97
– reference: 19160454 - Yeast. 2008 Dec;25(12):891-901
– reference: 8904338 - Yeast. 1996 Mar 15;12(3):259-65
– reference: 21329885 - Mol Cell. 2011 Feb 18;41(4):480-92
– reference: 15254041 - J Biol Chem. 2004 Sep 17;279(38):39240-50
– reference: 7502576 - Yeast. 1995 Sep 15;11(11):1001-13
– reference: 23658529 - PLoS Genet. 2013 May;9(5):e1003479
– reference: 12086626 - Mol Cell. 2002 Jun;9(6):1297-305
– reference: 22156212 - Genes Dev. 2011 Dec 1;25(23):2525-39
– reference: 11399075 - J Mol Biol. 2001 Jun 22;309(5):1007-15
– reference: 11691830 - Genes Dev. 2001 Nov 1;15(21):2786-96
– reference: 14739928 - EMBO J. 2004 Jan 28;23(2):333-42
– reference: 17704134 - Nucleic Acids Res. 2007;35(16):5520-31
– reference: 10669725 - Mol Cell Biol. 2000 Mar;20(5):1478-88
– reference: 11172717 - Mol Cell. 2001 Jan;7(1):117-26
– reference: 8943325 - Mol Cell Biol. 1996 Dec;16(12):6707-14
– reference: 10924455 - Genetics. 2000 Aug;155(4):1535-42
– reference: 10804529 - Methods Mol Biol. 1999;119:417-25
– reference: 16648632 - J Biol Chem. 2006 Jun 30;281(26):18126-34
SSID ssj0061200
ssj0025309
Score 2.3000803
Snippet We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the...
We demonstrate that the yeast flocculation gene, FLO1 , is representative of a distinct subset of subtelomeric genes that are robustly repressed by the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1242
SubjectTerms Chromatin
Cyc8 (Ssn6)-Tup1
Down-Regulation - genetics
Gene Expression Regulation, Fungal
Gene repression
Histone acetylation
Histone Deacetylases - metabolism
Mannose-Binding Lectins - genetics
Mannose-Binding Lectins - metabolism
Nuclear Proteins - metabolism
Nuclear Proteins - physiology
Organisms, Genetically Modified
Protein Binding
Repressor Proteins - metabolism
Repressor Proteins - physiology
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Swi–Snf
Telomere - metabolism
Transcription, Genetic
Title The yeast Cyc8–Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene
URI https://dx.doi.org/10.1016/j.bbagrm.2014.07.022
https://www.ncbi.nlm.nih.gov/pubmed/25106892
https://www.proquest.com/docview/1629958906
https://www.proquest.com/docview/1668258755
https://pubmed.ncbi.nlm.nih.gov/PMC4316177
Volume 1839
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2u0JwQbC8ymNlJK6hcezYyXFVURUKi7QUsTfLduylqEqiNpHIBfEb4B_ySxjnUVEQrMQpSjyWnMxkvhl7Hgg9i53jSRzSIDJGByxSSaBEaoKEEe1MaEhk_X7HmzM-f89eXcQXB2g65ML4sMpe93c6vdXW_ZNJ_zUn5Wo1eee7yaWAr-AieMdFHKKjCNA-GaGj05eL-dmgkAHD20wUTx_4CUMGXRvmpbW63PiUdMLaKp5R9DeE-tMC_T2Q8hdkmt1CN3uTEp92q76NDmx-jK51TSabY3R9OvR0u4O-gVTgxrfrwdPGJD--fl_WJcFtXLn9DNei9EWW7Rb7_Vk8zxQpscozfF5mtMRtceLc4gz0qK0aMLyBsirwptD1tlo3eNPF1eLKI-Cgj3DhMJiZeFvryq6L9ogIz16_JRiE195Fy9mL5XQe9F0ZAsNSXgVKgxWoY6Eop5mzSseRZsQrAqMdB0zMwAOLQ8PAE1GaZpHljmtqskxHzKX0HhrlsNQHCCtAR0pdLJxgzNpQJVYBARiEaSJgYIzowAhp-orlvnHGWg6haZ9kxz7p2SdDIYF9YxTsZpVdxY4r6MXAY7kneRJA5YqZTweRkMBHf9KiclvUW0k4oHycpCH_Fw0H7xzcxXiM7nditFsvGJ0hT1K_tj0B2xH4ouD7I_nqY1sc3Jc2IEI8_O-3eoRu-Lsu3_IxGlWb2j4Bw6vSJ-jw-Rdy0v9e_ro4_7D4CfozMv4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWrtByQbC8ytNIXKMmseMkx1VF1WW7RYIi7c2yHRuKqiRqE4nc-A3wD_klzORRURCsxClSPJYmmcl8M848CHkVOSeSyGdeaIz2eKgST8Wp8RIeaGd8E4QWzzsul2L-gb-5iq6OyHSohcG0yt72dza9tdb9nUn_Niflej15j9PkUsBXCBEwcIlvkGOOQ61H5Pjs_GK-HAwyYHhbiYL0Hm4YKujaNC-t1cctlqQHvO3iGYZ_Q6g_PdDfEyl_QabZHXK7dynpWcf1XXJk81Nysxsy2ZySk-kw0-0e-QZaQRsc10OnjUl-fP2-qsuAtnnl9gtcixKbLNsdxfNZOs9UUFKVZ_RdmbGSts2Jc0szsKO2asDxBsqqoNtC17tq09Btl1dLK0TAwR7RwlFwM-mu1pXdFO0vIjpbvA0oKK-9T1az16vp3OunMniGp6LylAYvUEexYoJlziodhZoHaAiMdgIwMYMILPINh0hEaZaFVjihmckyHXKXsgdklAOrjwhVgI6MuSh2MefW-iqxCgjAIUyTGBbGhA2CkKbvWI6DMzZySE37LDvxSRSf9GMJ4hsTb7-r7Dp2XEMfDzKWB5onAVSu2flyUAkJcsQ_LSq3Rb2TgQCUj5LUF_-iERCdQ7gYjcnDTo32_ILT6YskRd4OFGxPgE3BD1fy9ae2OTi2Ngji-PF_P9ULcjJfXS7k4nx58YTcwpWu9vIpGVXb2j4DJ6zSz_uP7CeWmTNB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yeast+Cyc8%E2%80%93Tup1+complex+cooperates+with+Hda1p+and+Rpd3p+histone+deacetylases+to+robustly+repress+transcription+of+the+subtelomeric+FLO1+gene&rft.jtitle=Biochimica+et+biophysica+acta.+Gene+regulatory+mechanisms&rft.au=Fleming%2C+Alastair+B.&rft.au=Beggs%2C+Suzanne&rft.au=Church%2C+Michael&rft.au=Tsukihashi%2C+Yoshihiro&rft.date=2014-11-01&rft.pub=Elsevier+B.V&rft.issn=1874-9399&rft.eissn=1876-4320&rft.volume=1839&rft.issue=11&rft.spage=1242&rft.epage=1255&rft_id=info:doi/10.1016%2Fj.bbagrm.2014.07.022&rft.externalDocID=S1874939914002107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-9399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-9399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-9399&client=summon