The yeast Cyc8–Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene
We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstre...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1839; no. 11; pp. 1242 - 1255 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1874-9399 0006-3002 1876-4320 |
DOI | 10.1016/j.bbagrm.2014.07.022 |
Cover
Abstract | We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8–Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around −700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8–Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi–Snf occupies the site vacated by Cyc8–Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8–Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi–Snf binding and prevent transcription.
•Cyc8–Tup1 repression activity is enriched at chromosome subtelomeric regions.•The subtelomeric FLO1 gene is subject to chromatin-mediated repression by Cyc8–Tup1.•Cyc8–Tup1 promotes long-range nucleosome positioning and histone deacetylation.•Hda1p and Rpd3p cooperate with Cyc8–Tup1 to facilitate this repressive chromatin.•Swi–Snf directs extensive nucleosome remodelling when Cyc8–Tup1 is absent. |
---|---|
AbstractList | We demonstrate that the yeast flocculation gene,
FLO1
, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive
FLO1
upstream region. We show that Cyc8–Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around − 700 base pairs upstream of the transcription start site. In
cyc8
deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the
FLO1
promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed
FLO1
promoter region in a Cyc8–Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi–Snf occupies the site vacated by Cyc8–Tup1 in a
cyc8
mutant. These data suggest that distinctly bound Cyc8–Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the
FLO1
promoter and upstream region which inhibit histone acetylation, block Swi–Snf binding and prevent transcription.
•
Cyc8–Tup1 repression activity is enriched at chromosome subtelomeric regions.
•
The subtelomeric
FLO1
gene is subject to chromatin-mediated repression by Cyc8–Tup1.
•
Cyc8–Tup1 promotes long-range nucleosome positioning and histone deacetylation.
•
Hda1p and Rpd3p cooperate with Cyc8–Tup1 to facilitate this repressive chromatin.
•
Swi–Snf directs extensive nucleosome remodelling when Cyc8–Tup1 is absent. We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8-Tup1 complex. We have examined Cyc8-Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8-Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around -700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8-Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi-Snf occupies the site vacated by Cyc8-Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8-Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi-Snf binding and prevent transcription.We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8-Tup1 complex. We have examined Cyc8-Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8-Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around -700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8-Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi-Snf occupies the site vacated by Cyc8-Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8-Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi-Snf binding and prevent transcription. We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8–Tup1 complex. We have examined Cyc8–Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8–Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around −700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8–Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi–Snf occupies the site vacated by Cyc8–Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8–Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi–Snf binding and prevent transcription. •Cyc8–Tup1 repression activity is enriched at chromosome subtelomeric regions.•The subtelomeric FLO1 gene is subject to chromatin-mediated repression by Cyc8–Tup1.•Cyc8–Tup1 promotes long-range nucleosome positioning and histone deacetylation.•Hda1p and Rpd3p cooperate with Cyc8–Tup1 to facilitate this repressive chromatin.•Swi–Snf directs extensive nucleosome remodelling when Cyc8–Tup1 is absent. We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8-Tup1 complex. We have examined Cyc8-Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8-Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around -700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8-Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi-Snf occupies the site vacated by Cyc8-Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8-Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi-Snf binding and prevent transcription. We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the Cyc8-Tup1 complex. We have examined Cyc8-Tup1 localisation, histone acetylation and long-range chromatin remodelling within the extensive FLO1 upstream region. We show that Cyc8-Tup1 is localised in a DNase I hypersensitive site within an ordered array of strongly positioned nucleosomes around - 700 base pairs upstream of the transcription start site. In cyc8 deletion mutant strains, Tup1p localisation is absent, with concomitant histone hyperacetylation of adjacent regions at the FLO1 promoter. This is accompanied by extensive histone depletion across the upstream region and gene activation. The yeast histone deacetylases, Hda1p and Rpd3p, occupy the repressed FLO1 promoter region in a Cyc8-Tup1 dependent manner and coordinate histone deacetylation, nucleosome stabilisation and gene repression. Moreover, we show that the ATP-dependent chromatin remodelling complex Swi-Snf occupies the site vacated by Cyc8-Tup1 in a cyc8 mutant. These data suggest that distinctly bound Cyc8-Tup1 cooperates with Hda1p and Rpd3p to establish or maintain an extensive array of strongly positioned, deacetylated nucleosomes over the FLO1 promoter and upstream region which inhibit histone acetylation, block Swi-Snf binding and prevent transcription. times Cyc8-Tup1 repression activity is enriched at chromosome subtelomeric regions. |
Author | Church, Michael Pennings, Sari Beggs, Suzanne Tsukihashi, Yoshihiro Fleming, Alastair B. |
Author_xml | – sequence: 1 givenname: Alastair B. surname: Fleming fullname: Fleming, Alastair B. email: alastair.fleming@tcd.ie organization: School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland – sequence: 2 givenname: Suzanne surname: Beggs fullname: Beggs, Suzanne organization: School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland – sequence: 3 givenname: Michael surname: Church fullname: Church, Michael organization: School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland – sequence: 4 givenname: Yoshihiro surname: Tsukihashi fullname: Tsukihashi, Yoshihiro organization: School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK – sequence: 5 givenname: Sari orcidid: 0000-0002-2744-1055 surname: Pennings fullname: Pennings, Sari organization: School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25106892$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUs2O0zAYjNAi9gfeACEfuSTYjuMkHJBQxbJIlVZCvVv--dK6SuJgOwu58QzwhjwJLi0r4ACcPsueGY89c5mdjW6ELHtKcEEw4S_2hVJy64eCYsIKXBeY0gfZBWlqnrOS4rMfa5a3ZdueZ5ch7DHmhGL8KDunFcG8aelF9mWzA7SADBGtFt18-_x1M08EaTdMPXxK003gZYSAPtq4QzdGkgnJ0aD3kykntLMhJlvIgNQQl16GhIwOeafmEPsFeZg8hLTn5Ri0t1O0bkSuQzHdG2YVoXcDeKvR9fqWoC2M8Dh72Mk-wJPTvMo21282q5t8ffv23er1Otes5TGXCrNKVbUseWk6kKqiihHMmkarjjNSGsJZhTWrq0aq0lDgHVelNkZR1rXlVfbqKDvNagCjYUweezF5O0i_CCet-P1ktDuxdXeClYSTuk4Cz08C3n2YIUQx2KCh7-UIbg6CcN7Qqqmr6j-gtG2rpsU8QZ_9auvez8_IEoAdAdq7EDx09xCCxaEZYi-OzRCHZghci9SMRHv5B03bKA9ppMfZ_l_k019ByuPOghdBWxg1GOtBR2Gc_bvAd1DS2pQ |
CitedBy_id | crossref_primary_10_1093_mutage_geab019 crossref_primary_10_15252_msb_20167412 crossref_primary_10_1007_s12550_019_00361_z crossref_primary_10_1021_acs_jafc_3c06585 crossref_primary_10_1534_genetics_119_302359 crossref_primary_10_1371_journal_pgen_1008990 crossref_primary_10_1016_j_gene_2015_07_066 crossref_primary_10_1128_AEM_00095_17 crossref_primary_10_1371_journal_pgen_1006863 crossref_primary_10_1038_s41467_019_12077_w crossref_primary_10_1534_genetics_116_198895 crossref_primary_10_1038_s41467_020_16107_w crossref_primary_10_1080_09168451_2018_1536514 crossref_primary_10_3389_fgene_2021_630506 crossref_primary_10_1007_s00294_018_0883_z crossref_primary_10_1099_mgen_0_001216 crossref_primary_10_1038_s41467_021_22257_2 crossref_primary_10_1128_mBio_00626_18 crossref_primary_10_1371_journal_pgen_1010559 crossref_primary_10_1080_21541264_2017_1394423 crossref_primary_10_1093_mutage_gex009 crossref_primary_10_1186_s13072_019_0303_8 crossref_primary_10_1016_j_febslet_2015_09_006 crossref_primary_10_1371_journal_pgen_1007495 crossref_primary_10_1016_j_febslet_2015_01_011 crossref_primary_10_1093_nar_gkx028 crossref_primary_10_1371_journal_pgen_1010876 crossref_primary_10_1042_BST20231141 crossref_primary_10_1111_febs_17137 crossref_primary_10_1007_s00294_020_01114_7 crossref_primary_10_1111_mmi_14375 crossref_primary_10_1093_femsle_fnx221 crossref_primary_10_1016_j_jhazmat_2022_128367 crossref_primary_10_1002_1873_3468_14366 |
Cites_doi | 10.1002/yea.1142 10.1038/369758a0 10.1016/j.molcel.2011.01.015 10.1128/MCB.20.5.1478-1488.2000 10.1093/nar/gkm573 10.1074/jbc.M105596200 10.1093/emboj/19.21.5875 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 10.1101/gad.10.10.1247 10.1016/S0968-0004(00)01592-9 10.1002/yea.320110506 10.1002/yea.320111102 10.1074/jbc.M104220200 10.1128/EC.2.6.1288-1303.2003 10.1073/pnas.081560698 10.1016/j.cell.2008.09.037 10.1093/genetics/144.3.967 10.1016/S0092-8674(02)01005-X 10.1074/jbc.M602851200 10.1093/emboj/20.18.5219 10.1101/gad.939601 10.1006/jmbi.2001.4742 10.1128/MCB.00887-07 10.1371/journal.pgen.1003479 10.1128/MCB.22.3.693-703.2002 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C 10.1093/nar/gkr557 10.1073/pnas.250477697 10.1093/genetics/160.2.799 10.1074/jbc.M008668200 10.1093/emboj/19.3.400 10.1074/jbc.M407159200 10.1007/s00294-009-0281-7 10.1074/jbc.M309753200 10.1111/j.1365-2958.2006.05072.x 10.1038/nature02800 10.1128/EC.00165-06 10.1016/0092-8674(92)90146-4 10.1101/gad.8.12.1400 10.1016/S0092-8674(02)00746-8 10.1371/journal.pone.0019060 10.1016/j.molcel.2012.09.019 10.1128/MCB.00238-07 10.1093/emboj/19.24.6845 10.1146/annurev-genet-102108-134156 10.1002/yea.1643 10.1016/j.bbrc.2008.01.033 10.1128/MCB.16.12.6707 10.1074/jbc.M112.369652 10.1128/MCB.25.17.7399-7411.2005 10.1091/mbc.E04-05-0412 10.1073/pnas.92.8.3132 10.2144/000112297 10.1038/nature07728 10.1016/S1097-2765(02)00545-2 10.1101/gad.9.7.821 10.1126/science.1075090 10.1016/S1097-2765(01)00160-5 10.1016/S0076-6879(99)04022-7 10.1101/gad.829100 10.1038/sj.emboj.7600227 10.1016/S1097-2765(02)00557-9 10.1016/j.molcel.2008.04.025 10.1186/gb-2009-10-10-r109 10.1038/sj.emboj.7600043 10.1093/genetics/155.4.1535 10.1101/gad.179275.111 10.1007/s00253-002-1200-8 10.1016/S0092-8674(01)00279-3 |
ContentType | Journal Article |
Copyright | 2014 Copyright © 2014. Published by Elsevier B.V. 2014 The Authors. Published by Elsevier B.V. 2014 |
Copyright_xml | – notice: 2014 – notice: Copyright © 2014. Published by Elsevier B.V. – notice: 2014 The Authors. Published by Elsevier B.V. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 M7N P64 RC3 5PM |
DOI | 10.1016/j.bbagrm.2014.07.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1876-4320 |
EndPage | 1255 |
ExternalDocumentID | PMC4316177 25106892 10_1016_j_bbagrm_2014_07_022 S1874939914002107 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 092533/Z/10/Z |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AGCQF AGRNS AIIUN ANKPU BNPGV CITATION SSH -~X .55 .GJ 1RT 3O- 5RE AAQXK AAYJJ ABEFU ABJNI AGQPQ AHHHB AI. AKRWK ASPBG AVWKF AZFZN CGR CUY CVF ECM EIF F5P FGOYB G-2 HLW H~9 K-O LX3 MVM NPM OHT R2- RIG SBG TWZ UHS VH1 WH7 WUQ X7M XJT Y6R YYP ZE2 ZGI ~KM 7X8 8FD FR3 M7N P64 RC3 5PM EFKBS |
ID | FETCH-LOGICAL-c496t-ab045b57a363dfeab52b410488cbf6413d16450c4758ab3d2e6f6b3cddb24f93 |
IEDL.DBID | AIKHN |
ISSN | 1874-9399 0006-3002 |
IngestDate | Thu Aug 21 17:58:32 EDT 2025 Thu Sep 04 23:41:56 EDT 2025 Thu Sep 04 21:53:23 EDT 2025 Mon Jul 21 06:03:47 EDT 2025 Tue Jul 01 03:02:25 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Fri Feb 23 02:25:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Cyc8 (Ssn6)-Tup1 Chromatin Histone acetylation Gene repression Saccharomyces cerevisiae Swi–Snf |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 Copyright © 2014. Published by Elsevier B.V. This work is licensed under a Creative Commons Attribution 3.0 Unported License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-ab045b57a363dfeab52b410488cbf6413d16450c4758ab3d2e6f6b3cddb24f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-2744-1055 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1874939914002107 |
PMID | 25106892 |
PQID | 1629958906 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4316177 proquest_miscellaneous_1668258755 proquest_miscellaneous_1629958906 pubmed_primary_25106892 crossref_primary_10_1016_j_bbagrm_2014_07_022 crossref_citationtrail_10_1016_j_bbagrm_2014_07_022 elsevier_sciencedirect_doi_10_1016_j_bbagrm_2014_07_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tzamarias, Struhl (bb0015) 1994; 369 Fleming, Pennings (bb0250) 2007; 35 Gregory, Horz (bb0235) 1999; 304 Brachmann, Davies, Cost, Caputo, Li, Hieter, Boeke (bb0210) 1998; 14 Kobayashi, Inai, Mizunuma, Okada, Shitamukai, Hirata, Miyakawa (bb0320) 2008; 368 Smith, Johnson (bb0040) 2000; 25 Zhang, Reese (bb0280) 2004; 23 Papamichos-Chronakis, Petrakis, Ktistaki, Topalidou, Tzamarias (bb0050) 2002; 9 Lee, Rinaldi, Robert, Odom, Bar-Joseph, Gerber, Hannett, Harbison, Thompson, Simon, Zeitlinger, Jennings, Murray, Gordon, Ren, Wyrick, Tagne, Volkert, Fraenkel, Gifford, Young (bb0335) 2002; 298 Matsumura, Kusaka, Nakamura, Tanaka, Sagegami, Uegaki, Inoue, Mukai (bb0025) 2012; 287 Verstrepen, Derdelinckx, Verachtert, Delvaux (bb0190) 2003; 61 Jiang, Pugh (bb0295) 2009; 10 Dietvorst, Brandt (bb0300) 2010; 56 Fleming, Pennings (bb0205) 2001; 20 Geisberg, Struhl (bb0100) 2000; 20 Zhang, Emmons (bb0085) 2002; 160 Cooper, Roth, Simpson (bb0125) 1994; 8 Wu, Carmen, Kobayashi, Suka, Grunstein (bb0165) 2001; 98 van Bakel, Tsui, Gebbia, Mnaimneh, Hughes, Nislow (bb0265) 2013; 9 Hanlon, Rizzo, Tatomer, Lieb, Buck, Nislow (bb0270) 2011; 6 Chen, Wilson, Hirsch, Watson, Liang, Lu, Li, Dent (bb0120) 2013 Wu, Suka, Carlson, Grunstein (bb0145) 2001; 7 Wach (bb0215) 1996; 12 Bernstein, Tong, Schreiber (bb0305) 2000; 97 Zhang, Reese (bb0285) 2004; 279 Malave, Dent (bb0035) 2006; 84 Zeng, Vakoc, Chen, Blobel, Berger (bb0230) 2006; 41 Davie, Trumbly, Dent (bb0150) 2002; 22 Janke, Magiera, Rathfelder, Taxis, Reber, Maekawa, Moreno-Borchart, Doenges, Schwob, Schiebel, Knop (bb0220) 2004; 21 Hassan, Prochasson, Neely, Galasinski, Chandy, Carrozza, Workman (bb0350) 2002; 111 Venters, Wachi, Mavrich, Andersen, Jena, Sinnamon, Jain, Rolleri, Jiang, Hemeryck-Walsh, Pugh (bb0260) 2011; 41 Wong, Struhl (bb0115) 2011; 25 Davie, Edmondson, Coco, Dent (bb0160) 2003; 278 Gavin, Kladde, Simpson (bb0105) 2000; 19 Keleher, Redd, Schultz, Carlson, Johnson (bb0010) 1992; 68 Edmondson, Smith, Roth (bb0135) 1996; 10 Dietvorst, Brandt (bb0255) 2008; 25 Watson, Edmondson, Bone, Mukai, Yu, Du, Stillman, Roth (bb0155) 2000; 14 Proft, Struhl (bb0055) 2002; 9 Verstrepen, Fink (bb0175) 2009; 43 Fleming, Kao, Hillyer, Pikaart, Osley (bb0225) 2008; 31 Tzamarias, Struhl (bb0020) 1995; 9 Fragiadakis, Tzamarias, Alexandraki (bb0065) 2004; 23 Verstrepen, Klis (bb0185) 2006; 60 Han, Lee, Kang, Kim (bb0090) 2001; 276 Liu, Styles, Fink (bb0200) 1996; 144 Conlan, Tzamarias (bb0045) 2001; 309 Gligoris, Thireos, Tzamarias (bb0130) 2007; 27 Green, Johnson (bb0310) 2004; 15 Trujillo, Osley (bb0245) 2012; 48 Zhang, Reese (bb0070) 2005; 25 Gromoller, Lehming (bb0095) 2000; 19 Harbison, Gordon, Lee, Rinaldi, Macisaac, Danford, Hannett, Tagne, Reynolds, Yoo, Jennings, Zeitlinger, Pokholok, Kellis, Rolfe, Takusagawa, Lander, Gifford, Fraenkel, Young (bb0330) 2004; 431 Mennella, Klinkenberg, Zitomer (bb0060) 2003; 2 Treitel, Carlson (bb0110) 1995; 92 Smukalla, Caldara, Pochet, Beauvais, Guadagnini, Yan, Vinces, Jansen, Prevost, Latge, Fink, Foster, Verstrepen (bb0195) 2008; 135 Courey, Jia (bb0030) 2001; 15 Xu, Wei, Gagneur, Perocchi, Clauder-Munster, Camblong, Guffanti, Stutz, Huber, Steinmetz (bb0340) 2009; 457 Ducker, Simpson (bb0325) 2000; 19 Chandy, Gutierrez, Prochasson, Workman (bb0360) 2006; 5 Varanasi, Klis, Mikesell, Trumbly (bb0005) 1996; 16 Bone, Roth (bb0140) 2001; 276 Li, Reese (bb0290) 2001; 276 Hassan, Neely, Workman (bb0355) 2001; 104 Teunissen, van den Berg, Steensma (bb0170) 1995; 11 Rizzo, Mieczkowski, Buck (bb0275) 2011; 39 Gregory, Barbaric, Horz (bb0240) 1999; 119 Lee, Chatterjee, Struhl (bb0080) 2000; 155 Teunissen, Steensma (bb0180) 1995; 11 Hassan, Awad, Prochasson (bb0345) 2006; 281 Robyr, Suka, Xenarios, Kurdistani, Wang, Suka, Grunstein (bb0315) 2002; 109 Hickman, Winston (bb0075) 2007; 27 Trujillo (10.1016/j.bbagrm.2014.07.022_bb0245) 2012; 48 Lee (10.1016/j.bbagrm.2014.07.022_bb0335) 2002; 298 Teunissen (10.1016/j.bbagrm.2014.07.022_bb0180) 1995; 11 Fleming (10.1016/j.bbagrm.2014.07.022_bb0250) 2007; 35 Venters (10.1016/j.bbagrm.2014.07.022_bb0260) 2011; 41 Rizzo (10.1016/j.bbagrm.2014.07.022_bb0275) 2011; 39 Matsumura (10.1016/j.bbagrm.2014.07.022_bb0025) 2012; 287 Fleming (10.1016/j.bbagrm.2014.07.022_bb0205) 2001; 20 Dietvorst (10.1016/j.bbagrm.2014.07.022_bb0300) 2010; 56 Dietvorst (10.1016/j.bbagrm.2014.07.022_bb0255) 2008; 25 Hassan (10.1016/j.bbagrm.2014.07.022_bb0345) 2006; 281 Hanlon (10.1016/j.bbagrm.2014.07.022_bb0270) 2011; 6 Wu (10.1016/j.bbagrm.2014.07.022_bb0145) 2001; 7 Geisberg (10.1016/j.bbagrm.2014.07.022_bb0100) 2000; 20 Green (10.1016/j.bbagrm.2014.07.022_bb0310) 2004; 15 Smith (10.1016/j.bbagrm.2014.07.022_bb0040) 2000; 25 Janke (10.1016/j.bbagrm.2014.07.022_bb0220) 2004; 21 Davie (10.1016/j.bbagrm.2014.07.022_bb0150) 2002; 22 Zhang (10.1016/j.bbagrm.2014.07.022_bb0085) 2002; 160 Hickman (10.1016/j.bbagrm.2014.07.022_bb0075) 2007; 27 Wong (10.1016/j.bbagrm.2014.07.022_bb0115) 2011; 25 Zhang (10.1016/j.bbagrm.2014.07.022_bb0285) 2004; 279 Teunissen (10.1016/j.bbagrm.2014.07.022_bb0170) 1995; 11 Brachmann (10.1016/j.bbagrm.2014.07.022_bb0210) 1998; 14 van Bakel (10.1016/j.bbagrm.2014.07.022_bb0265) 2013; 9 Gregory (10.1016/j.bbagrm.2014.07.022_bb0240) 1999; 119 Hassan (10.1016/j.bbagrm.2014.07.022_bb0350) 2002; 111 Edmondson (10.1016/j.bbagrm.2014.07.022_bb0135) 1996; 10 Tzamarias (10.1016/j.bbagrm.2014.07.022_bb0015) 1994; 369 Bone (10.1016/j.bbagrm.2014.07.022_bb0140) 2001; 276 Mennella (10.1016/j.bbagrm.2014.07.022_bb0060) 2003; 2 Chen (10.1016/j.bbagrm.2014.07.022_bb0120) 2013 Davie (10.1016/j.bbagrm.2014.07.022_bb0160) 2003; 278 Xu (10.1016/j.bbagrm.2014.07.022_bb0340) 2009; 457 Lee (10.1016/j.bbagrm.2014.07.022_bb0080) 2000; 155 Fragiadakis (10.1016/j.bbagrm.2014.07.022_bb0065) 2004; 23 Treitel (10.1016/j.bbagrm.2014.07.022_bb0110) 1995; 92 Conlan (10.1016/j.bbagrm.2014.07.022_bb0045) 2001; 309 Gromoller (10.1016/j.bbagrm.2014.07.022_bb0095) 2000; 19 Courey (10.1016/j.bbagrm.2014.07.022_bb0030) 2001; 15 Malave (10.1016/j.bbagrm.2014.07.022_bb0035) 2006; 84 Hassan (10.1016/j.bbagrm.2014.07.022_bb0355) 2001; 104 Bernstein (10.1016/j.bbagrm.2014.07.022_bb0305) 2000; 97 Cooper (10.1016/j.bbagrm.2014.07.022_bb0125) 1994; 8 Verstrepen (10.1016/j.bbagrm.2014.07.022_bb0190) 2003; 61 Jiang (10.1016/j.bbagrm.2014.07.022_bb0295) 2009; 10 Wu (10.1016/j.bbagrm.2014.07.022_bb0165) 2001; 98 Gavin (10.1016/j.bbagrm.2014.07.022_bb0105) 2000; 19 Watson (10.1016/j.bbagrm.2014.07.022_bb0155) 2000; 14 Verstrepen (10.1016/j.bbagrm.2014.07.022_bb0175) 2009; 43 Keleher (10.1016/j.bbagrm.2014.07.022_bb0010) 1992; 68 Han (10.1016/j.bbagrm.2014.07.022_bb0090) 2001; 276 Smukalla (10.1016/j.bbagrm.2014.07.022_bb0195) 2008; 135 Liu (10.1016/j.bbagrm.2014.07.022_bb0200) 1996; 144 Tzamarias (10.1016/j.bbagrm.2014.07.022_bb0020) 1995; 9 Gligoris (10.1016/j.bbagrm.2014.07.022_bb0130) 2007; 27 Ducker (10.1016/j.bbagrm.2014.07.022_bb0325) 2000; 19 Varanasi (10.1016/j.bbagrm.2014.07.022_bb0005) 1996; 16 Fleming (10.1016/j.bbagrm.2014.07.022_bb0225) 2008; 31 Li (10.1016/j.bbagrm.2014.07.022_bb0290) 2001; 276 Papamichos-Chronakis (10.1016/j.bbagrm.2014.07.022_bb0050) 2002; 9 Zhang (10.1016/j.bbagrm.2014.07.022_bb0280) 2004; 23 Proft (10.1016/j.bbagrm.2014.07.022_bb0055) 2002; 9 Robyr (10.1016/j.bbagrm.2014.07.022_bb0315) 2002; 109 Harbison (10.1016/j.bbagrm.2014.07.022_bb0330) 2004; 431 Chandy (10.1016/j.bbagrm.2014.07.022_bb0360) 2006; 5 Verstrepen (10.1016/j.bbagrm.2014.07.022_bb0185) 2006; 60 Zhang (10.1016/j.bbagrm.2014.07.022_bb0070) 2005; 25 Gregory (10.1016/j.bbagrm.2014.07.022_bb0235) 1999; 304 Zeng (10.1016/j.bbagrm.2014.07.022_bb0230) 2006; 41 Kobayashi (10.1016/j.bbagrm.2014.07.022_bb0320) 2008; 368 Wach (10.1016/j.bbagrm.2014.07.022_bb0215) 1996; 12 11566885 - EMBO J. 2001 Sep 17;20(18):5219-31 16648632 - J Biol Chem. 2006 Jun 30;281(26):18126-34 19013280 - Cell. 2008 Nov 14;135(4):726-37 11691830 - Genes Dev. 2001 Nov 1;15(21):2786-96 14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62 19160454 - Yeast. 2008 Dec;25(12):891-901 14739928 - EMBO J. 2004 Jan 28;23(2):333-42 11069890 - Genes Dev. 2000 Nov 1;14(21):2737-44 15334558 - Yeast. 2004 Aug;21(11):947-62 16556216 - Mol Microbiol. 2006 Apr;60(1):5-15 11095743 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13708-13 11287668 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4391-6 18614047 - Mol Cell. 2008 Jul 11;31(1):57-66 10804529 - Methods Mol Biol. 1999;119:417-25 11290320 - Cell. 2001 Mar 23;104(6):817-27 7502576 - Yeast. 1995 Sep 15;11(11):1001-13 12086626 - Mol Cell. 2002 Jun;9(6):1297-305 9483801 - Yeast. 1998 Jan 30;14(2):115-32 17704134 - Nucleic Acids Res. 2007;35(16):5520-31 21785133 - Nucleic Acids Res. 2011 Nov 1;39(20):8803-19 7926740 - Genes Dev. 1994 Jun 15;8(12):1400-10 12419247 - Cell. 2002 Nov 1;111(3):369-79 23124522 - Genome Res. 2013 Feb;23(2):312-22 15343339 - Nature. 2004 Sep 2;431(7004):99-104 19169243 - Nature. 2009 Feb 19;457(7232):1033-7 12086627 - Mol Cell. 2002 Jun;9(6):1307-17 17030999 - Eukaryot Cell. 2006 Oct;5(10):1738-47 21329885 - Mol Cell. 2011 Feb 18;41(4):480-92 17387147 - Mol Cell Biol. 2007 Jun;27(11):4198-205 15116071 - EMBO J. 2004 Jun 2;23(11):2246-57 11172717 - Mol Cell. 2001 Jan;7(1):117-26 7705659 - Genes Dev. 1995 Apr 1;9(7):821-31 22156212 - Genes Dev. 2011 Dec 1;25(23):2525-39 1739976 - Cell. 1992 Feb 21;68(4):709-19 15254041 - J Biol Chem. 2004 Sep 17;279(38):39240-50 14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303 12399584 - Science. 2002 Oct 25;298(5594):799-804 19640229 - Annu Rev Genet. 2009;43:1-24 8943325 - Mol Cell Biol. 1996 Dec;16(12):6707-14 11118219 - EMBO J. 2000 Dec 15;19(24):6845-52 8008070 - Nature. 1994 Jun 30;369(6483):758-61 11861580 - Genetics. 2002 Feb;160(2):799-803 12698276 - Appl Microbiol Biotechnol. 2003 May;61(3):197-205 23103252 - Mol Cell. 2012 Dec 14;48(5):734-46 8675011 - Genes Dev. 1996 May 15;10(10):1247-59 11060038 - EMBO J. 2000 Nov 1;19(21):5875-83 16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43 11470794 - J Biol Chem. 2001 Oct 5;276(40):37020-6 7597847 - Yeast. 1995 Apr 30;11(5):435-46 8913742 - Genetics. 1996 Nov;144(3):967-78 10924455 - Genetics. 2000 Aug;155(4):1535-42 16107689 - Mol Cell Biol. 2005 Sep;25(17):7399-411 11784848 - Mol Cell Biol. 2002 Feb;22(3):693-703 7724528 - Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3132-6 22707714 - J Biol Chem. 2012 Aug 3;287(32):26528-38 10654939 - EMBO J. 2000 Feb 1;19(3):400-9 20012864 - Curr Genet. 2010 Feb;56(1):75-85 10871883 - Trends Biochem Sci. 2000 Jul;25(7):325-30 12086601 - Cell. 2002 May 17;109(4):437-46 23658529 - PLoS Genet. 2013 May;9(5):e1003479 10372371 - Methods Enzymol. 1999;304:365-76 21552514 - PLoS One. 2011;6(4):e19060 17191611 - Biotechniques. 2006 Dec;41(6):694, 696, 698 11448965 - J Biol Chem. 2001 Sep 7;276(36):33788-97 18201562 - Biochem Biophys Res Commun. 2008 Mar 28;368(1):50-5 10669725 - Mol Cell Biol. 2000 Mar;20(5):1478-88 8904338 - Yeast. 1996 Mar 15;12(3):259-65 17785431 - Mol Cell Biol. 2007 Nov;27(21):7414-24 11056171 - J Biol Chem. 2001 Jan 19;276(3):1808-13 11399075 - J Mol Biol. 2001 Jun 22;309(5):1007-15 15240822 - Mol Biol Cell. 2004 Sep;15(9):4191-202 19814794 - Genome Biol. 2009;10(10):R109 |
References_xml | – volume: 22 start-page: 693 year: 2002 end-page: 703 ident: bb0150 article-title: Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo publication-title: Mol. Cell. Biol. – volume: 276 start-page: 33788 year: 2001 end-page: 33797 ident: bb0290 article-title: Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence publication-title: J. Biol. Chem. – volume: 281 start-page: 18126 year: 2006 end-page: 18134 ident: bb0345 article-title: The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes publication-title: J. Biol. Chem. – volume: 27 start-page: 4198 year: 2007 end-page: 4205 ident: bb0130 article-title: The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation publication-title: Mol. Cell. Biol. – volume: 8 start-page: 1400 year: 1994 end-page: 1410 ident: bb0125 article-title: The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure publication-title: Genes Dev. – volume: 14 start-page: 2737 year: 2000 end-page: 2744 ident: bb0155 article-title: Ssn6-Tup1 interacts with class I histone deacetylases required for repression publication-title: Genes Dev. – volume: 144 start-page: 967 year: 1996 end-page: 978 ident: bb0200 article-title: S288C has a mutation in FLO8, a gene required for filamentous growth publication-title: Genetics – volume: 9 start-page: 821 year: 1995 end-page: 831 ident: bb0020 article-title: Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8–Tup1 corepressor complex to differentially regulated promoters publication-title: Genes Dev. – volume: 276 start-page: 1808 year: 2001 end-page: 1813 ident: bb0140 article-title: Recruitment of the yeast Tup1p-Ssn6p repressor is associated with localized decreases in histone acetylation publication-title: J. Biol. Chem. – volume: 135 start-page: 726 year: 2008 end-page: 737 ident: bb0195 article-title: FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast publication-title: Cell – volume: 14 start-page: 115 year: 1998 end-page: 132 ident: bb0210 article-title: Designer deletion strains derived from publication-title: Yeast – volume: 92 start-page: 3132 year: 1995 end-page: 3136 ident: bb0110 article-title: Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 431 start-page: 99 year: 2004 end-page: 104 ident: bb0330 article-title: Transcriptional regulatory code of a eukaryotic genome publication-title: Nature – volume: 304 start-page: 365 year: 1999 end-page: 376 ident: bb0235 article-title: Mapping chromatin structure in yeast publication-title: Methods Enzymol. – volume: 19 start-page: 6845 year: 2000 end-page: 6852 ident: bb0095 article-title: Srb7p is a physical and physiological target of Tup1p publication-title: EMBO J. – volume: 43 start-page: 1 year: 2009 end-page: 24 ident: bb0175 article-title: Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi publication-title: Annu. Rev. Genet. – volume: 35 start-page: 5520 year: 2007 end-page: 5531 ident: bb0250 article-title: Tup1-Ssn6 and Swi–Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene publication-title: Nucleic Acids Res. – volume: 287 start-page: 26528 year: 2012 end-page: 26538 ident: bb0025 article-title: Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications publication-title: J Biol Chem – volume: 5 start-page: 1738 year: 2006 end-page: 1747 ident: bb0360 article-title: SWI/SNF displaces SAGA-acetylated nucleosomes publication-title: Eukaryot. Cell – volume: 369 start-page: 758 year: 1994 end-page: 761 ident: bb0015 article-title: Functional dissection of the yeast Cyc8–Tup1 transcriptional co-repressor complex publication-title: Nature – volume: 23 start-page: 2246 year: 2004 end-page: 2257 ident: bb0280 article-title: Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in publication-title: EMBO J. – volume: 27 start-page: 7414 year: 2007 end-page: 7424 ident: bb0075 article-title: Heme levels switch the function of Hap1 of publication-title: Mol. Cell. Biol. – volume: 279 start-page: 39240 year: 2004 end-page: 39250 ident: bb0285 article-title: Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in publication-title: J. Biol. Chem. – volume: 97 start-page: 13708 year: 2000 end-page: 13713 ident: bb0305 article-title: Genomewide studies of histone deacetylase function in yeast publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 15 start-page: 4191 year: 2004 end-page: 4202 ident: bb0310 article-title: Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in publication-title: Mol. Biol. Cell – volume: 10 start-page: 1247 year: 1996 end-page: 1259 ident: bb0135 article-title: Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4 publication-title: Genes Dev. – volume: 111 start-page: 369 year: 2002 end-page: 379 ident: bb0350 article-title: Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes publication-title: Cell – volume: 9 start-page: 1307 year: 2002 end-page: 1317 ident: bb0055 article-title: Hog1 kinase converts the Sko1-Cyc8–Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress publication-title: Mol. Cell – volume: 9 start-page: e1003479 year: 2013 ident: bb0265 article-title: A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription publication-title: PLoS Genet – volume: 155 start-page: 1535 year: 2000 end-page: 1542 ident: bb0080 article-title: Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8–Tup1 corepressor in yeast publication-title: Genetics – volume: 21 start-page: 947 year: 2004 end-page: 962 ident: bb0220 article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes publication-title: Yeast – volume: 41 start-page: 480 year: 2011 end-page: 492 ident: bb0260 article-title: A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces publication-title: Mol Cell – volume: 6 start-page: e19060 year: 2011 ident: bb0270 article-title: The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae publication-title: PLoS One – volume: 15 start-page: 2786 year: 2001 end-page: 2796 ident: bb0030 article-title: Transcriptional repression: the long and the short of it publication-title: Genes Dev. – volume: 19 start-page: 400 year: 2000 end-page: 409 ident: bb0325 article-title: The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome publication-title: EMBO J. – volume: 68 start-page: 709 year: 1992 end-page: 719 ident: bb0010 article-title: Ssn6-Tup1 is a general repressor of transcription in yeast publication-title: Cell – volume: 19 start-page: 5875 year: 2000 end-page: 5883 ident: bb0105 article-title: Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene publication-title: EMBO J. – volume: 25 start-page: 7399 year: 2005 end-page: 7411 ident: bb0070 article-title: Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism publication-title: Mol. Cell. Biol. – volume: 11 start-page: 1001 year: 1995 end-page: 1013 ident: bb0180 article-title: Review: the dominant flocculation genes of publication-title: Yeast – volume: 56 start-page: 75 year: 2010 end-page: 85 ident: bb0300 article-title: Histone modifying proteins Gcn5 and Hda1 affect flocculation in publication-title: Curr Genet – volume: 298 start-page: 799 year: 2002 end-page: 804 ident: bb0335 article-title: Transcriptional regulatory networks in publication-title: Science – volume: 84 start-page: 437 year: 2006 end-page: 443 ident: bb0035 article-title: Transcriptional repression by Tup1-Ssn6 publication-title: Biochem. Cell Biol. – volume: 104 start-page: 817 year: 2001 end-page: 827 ident: bb0355 article-title: Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes publication-title: Cell – volume: 25 start-page: 891 year: 2008 end-page: 901 ident: bb0255 article-title: Flocculation in publication-title: Yeast – volume: 109 start-page: 437 year: 2002 end-page: 446 ident: bb0315 article-title: Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases publication-title: Cell – volume: 61 start-page: 197 year: 2003 end-page: 205 ident: bb0190 article-title: Yeast flocculation: what brewers should know publication-title: Appl. Microbiol. Biotechnol. – volume: 10 start-page: R109 year: 2009 ident: bb0295 article-title: A compiled and systematic reference map of nucleosome positions across the publication-title: Genome Biol. – volume: 60 start-page: 5 year: 2006 end-page: 15 ident: bb0185 article-title: Flocculation, adhesion and biofilm formation in yeasts publication-title: Mol. Microbiol. – volume: 11 start-page: 435 year: 1995 end-page: 446 ident: bb0170 article-title: Transcriptional regulation of flocculation genes in publication-title: Yeast – volume: 41 year: 2006 ident: bb0230 article-title: In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation publication-title: Biotechniques – volume: 457 start-page: 1033 year: 2009 end-page: 1037 ident: bb0340 article-title: Bidirectional promoters generate pervasive transcription in yeast publication-title: Nature – volume: 309 start-page: 1007 year: 2001 end-page: 1015 ident: bb0045 article-title: Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2 publication-title: J. Mol. Biol. – volume: 276 start-page: 37020 year: 2001 end-page: 37026 ident: bb0090 article-title: Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes publication-title: J. Biol. Chem. – volume: 278 start-page: 50158 year: 2003 end-page: 50162 ident: bb0160 article-title: Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo publication-title: J. Biol. Chem. – volume: 25 start-page: 325 year: 2000 end-page: 330 ident: bb0040 article-title: Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes publication-title: Trends Biochem. Sci. – volume: 98 start-page: 4391 year: 2001 end-page: 4396 ident: bb0165 article-title: HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 119 start-page: 417 year: 1999 end-page: 425 ident: bb0240 article-title: Restriction nucleases as probes for chromatin structure publication-title: Methods Mol. Biol. – volume: 16 start-page: 6707 year: 1996 end-page: 6714 ident: bb0005 article-title: The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits publication-title: Mol. Cell. Biol. – volume: 12 start-page: 259 year: 1996 end-page: 265 ident: bb0215 article-title: PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae publication-title: Yeast – volume: 2 start-page: 1288 year: 2003 end-page: 1303 ident: bb0060 article-title: Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein publication-title: Eukaryot. Cell – volume: 20 start-page: 1478 year: 2000 end-page: 1488 ident: bb0100 article-title: TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo publication-title: Mol. Cell. Biol. – volume: 23 start-page: 333 year: 2004 end-page: 342 ident: bb0065 article-title: Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation publication-title: EMBO J. – year: 2013 ident: bb0120 article-title: Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8–Tup1 corepressor, Genome Res – volume: 48 start-page: 734 year: 2012 end-page: 746 ident: bb0245 article-title: A role for H2B ubiquitylation in DNA replication publication-title: Mol Cell – volume: 368 start-page: 50 year: 2008 end-page: 55 ident: bb0320 article-title: Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress publication-title: Biochem. Biophys. Res. Commun. – volume: 20 start-page: 5219 year: 2001 end-page: 5231 ident: bb0205 article-title: Antagonistic remodelling by Swi–Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation publication-title: EMBO J. – volume: 7 start-page: 117 year: 2001 end-page: 126 ident: bb0145 article-title: TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast publication-title: Mol. Cell – volume: 31 start-page: 57 year: 2008 end-page: 66 ident: bb0225 article-title: H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation publication-title: Mol. Cell – volume: 9 start-page: 1297 year: 2002 end-page: 1305 ident: bb0050 article-title: Cti6, a PHD domain protein, bridges the Cyc8–Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1 publication-title: Mol. Cell – volume: 160 start-page: 799 year: 2002 end-page: 803 ident: bb0085 article-title: Caenorhabditis elegans unc-37/groucho interacts genetically with components of the transcriptional mediator complex publication-title: Genetics – volume: 25 start-page: 2525 year: 2011 end-page: 2539 ident: bb0115 article-title: The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein publication-title: Genes Dev – volume: 39 start-page: 8803 year: 2011 end-page: 8819 ident: bb0275 article-title: Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes publication-title: Nucleic Acids Res – volume: 21 start-page: 947 year: 2004 ident: 10.1016/j.bbagrm.2014.07.022_bb0220 article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes publication-title: Yeast doi: 10.1002/yea.1142 – volume: 369 start-page: 758 year: 1994 ident: 10.1016/j.bbagrm.2014.07.022_bb0015 article-title: Functional dissection of the yeast Cyc8–Tup1 transcriptional co-repressor complex publication-title: Nature doi: 10.1038/369758a0 – volume: 41 start-page: 480 year: 2011 ident: 10.1016/j.bbagrm.2014.07.022_bb0260 article-title: A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces publication-title: Mol Cell doi: 10.1016/j.molcel.2011.01.015 – volume: 20 start-page: 1478 year: 2000 ident: 10.1016/j.bbagrm.2014.07.022_bb0100 article-title: TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.5.1478-1488.2000 – volume: 35 start-page: 5520 year: 2007 ident: 10.1016/j.bbagrm.2014.07.022_bb0250 article-title: Tup1-Ssn6 and Swi–Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm573 – volume: 276 start-page: 37020 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0090 article-title: Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105596200 – volume: 19 start-page: 5875 year: 2000 ident: 10.1016/j.bbagrm.2014.07.022_bb0105 article-title: Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene publication-title: EMBO J. doi: 10.1093/emboj/19.21.5875 – volume: 14 start-page: 115 year: 1998 ident: 10.1016/j.bbagrm.2014.07.022_bb0210 article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 – volume: 10 start-page: 1247 year: 1996 ident: 10.1016/j.bbagrm.2014.07.022_bb0135 article-title: Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4 publication-title: Genes Dev. doi: 10.1101/gad.10.10.1247 – volume: 25 start-page: 325 year: 2000 ident: 10.1016/j.bbagrm.2014.07.022_bb0040 article-title: Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(00)01592-9 – volume: 11 start-page: 435 year: 1995 ident: 10.1016/j.bbagrm.2014.07.022_bb0170 article-title: Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/yea.320110506 – volume: 11 start-page: 1001 year: 1995 ident: 10.1016/j.bbagrm.2014.07.022_bb0180 article-title: Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family publication-title: Yeast doi: 10.1002/yea.320111102 – volume: 276 start-page: 33788 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0290 article-title: Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence publication-title: J. Biol. Chem. doi: 10.1074/jbc.M104220200 – volume: 2 start-page: 1288 year: 2003 ident: 10.1016/j.bbagrm.2014.07.022_bb0060 article-title: Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein publication-title: Eukaryot. Cell doi: 10.1128/EC.2.6.1288-1303.2003 – volume: 98 start-page: 4391 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0165 article-title: HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.081560698 – volume: 135 start-page: 726 year: 2008 ident: 10.1016/j.bbagrm.2014.07.022_bb0195 article-title: FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast publication-title: Cell doi: 10.1016/j.cell.2008.09.037 – volume: 144 start-page: 967 year: 1996 ident: 10.1016/j.bbagrm.2014.07.022_bb0200 article-title: Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth publication-title: Genetics doi: 10.1093/genetics/144.3.967 – volume: 111 start-page: 369 year: 2002 ident: 10.1016/j.bbagrm.2014.07.022_bb0350 article-title: Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes publication-title: Cell doi: 10.1016/S0092-8674(02)01005-X – volume: 281 start-page: 18126 year: 2006 ident: 10.1016/j.bbagrm.2014.07.022_bb0345 article-title: The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602851200 – volume: 20 start-page: 5219 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0205 article-title: Antagonistic remodelling by Swi–Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation publication-title: EMBO J. doi: 10.1093/emboj/20.18.5219 – volume: 15 start-page: 2786 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0030 article-title: Transcriptional repression: the long and the short of it publication-title: Genes Dev. doi: 10.1101/gad.939601 – volume: 309 start-page: 1007 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0045 article-title: Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4742 – volume: 27 start-page: 7414 year: 2007 ident: 10.1016/j.bbagrm.2014.07.022_bb0075 article-title: Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00887-07 – volume: 9 start-page: e1003479 year: 2013 ident: 10.1016/j.bbagrm.2014.07.022_bb0265 article-title: A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003479 – volume: 22 start-page: 693 year: 2002 ident: 10.1016/j.bbagrm.2014.07.022_bb0150 article-title: Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.3.693-703.2002 – volume: 12 start-page: 259 year: 1996 ident: 10.1016/j.bbagrm.2014.07.022_bb0215 article-title: PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C – volume: 39 start-page: 8803 year: 2011 ident: 10.1016/j.bbagrm.2014.07.022_bb0275 article-title: Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr557 – volume: 97 start-page: 13708 year: 2000 ident: 10.1016/j.bbagrm.2014.07.022_bb0305 article-title: Genomewide studies of histone deacetylase function in yeast publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.250477697 – volume: 160 start-page: 799 year: 2002 ident: 10.1016/j.bbagrm.2014.07.022_bb0085 article-title: Caenorhabditis elegans unc-37/groucho interacts genetically with components of the transcriptional mediator complex publication-title: Genetics doi: 10.1093/genetics/160.2.799 – volume: 276 start-page: 1808 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0140 article-title: Recruitment of the yeast Tup1p-Ssn6p repressor is associated with localized decreases in histone acetylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M008668200 – volume: 19 start-page: 400 year: 2000 ident: 10.1016/j.bbagrm.2014.07.022_bb0325 article-title: The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome publication-title: EMBO J. doi: 10.1093/emboj/19.3.400 – volume: 279 start-page: 39240 year: 2004 ident: 10.1016/j.bbagrm.2014.07.022_bb0285 article-title: Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M407159200 – volume: 56 start-page: 75 year: 2010 ident: 10.1016/j.bbagrm.2014.07.022_bb0300 article-title: Histone modifying proteins Gcn5 and Hda1 affect flocculation in Saccharomyces cerevisiae during high-gravity fermentation publication-title: Curr Genet doi: 10.1007/s00294-009-0281-7 – volume: 278 start-page: 50158 year: 2003 ident: 10.1016/j.bbagrm.2014.07.022_bb0160 article-title: Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M309753200 – volume: 60 start-page: 5 year: 2006 ident: 10.1016/j.bbagrm.2014.07.022_bb0185 article-title: Flocculation, adhesion and biofilm formation in yeasts publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05072.x – volume: 431 start-page: 99 year: 2004 ident: 10.1016/j.bbagrm.2014.07.022_bb0330 article-title: Transcriptional regulatory code of a eukaryotic genome publication-title: Nature doi: 10.1038/nature02800 – volume: 5 start-page: 1738 year: 2006 ident: 10.1016/j.bbagrm.2014.07.022_bb0360 article-title: SWI/SNF displaces SAGA-acetylated nucleosomes publication-title: Eukaryot. Cell doi: 10.1128/EC.00165-06 – volume: 68 start-page: 709 year: 1992 ident: 10.1016/j.bbagrm.2014.07.022_bb0010 article-title: Ssn6-Tup1 is a general repressor of transcription in yeast publication-title: Cell doi: 10.1016/0092-8674(92)90146-4 – volume: 8 start-page: 1400 year: 1994 ident: 10.1016/j.bbagrm.2014.07.022_bb0125 article-title: The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure publication-title: Genes Dev. doi: 10.1101/gad.8.12.1400 – volume: 109 start-page: 437 year: 2002 ident: 10.1016/j.bbagrm.2014.07.022_bb0315 article-title: Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases publication-title: Cell doi: 10.1016/S0092-8674(02)00746-8 – volume: 6 start-page: e19060 year: 2011 ident: 10.1016/j.bbagrm.2014.07.022_bb0270 article-title: The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae publication-title: PLoS One doi: 10.1371/journal.pone.0019060 – volume: 48 start-page: 734 year: 2012 ident: 10.1016/j.bbagrm.2014.07.022_bb0245 article-title: A role for H2B ubiquitylation in DNA replication publication-title: Mol Cell doi: 10.1016/j.molcel.2012.09.019 – volume: 27 start-page: 4198 year: 2007 ident: 10.1016/j.bbagrm.2014.07.022_bb0130 article-title: The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00238-07 – volume: 19 start-page: 6845 year: 2000 ident: 10.1016/j.bbagrm.2014.07.022_bb0095 article-title: Srb7p is a physical and physiological target of Tup1p publication-title: EMBO J. doi: 10.1093/emboj/19.24.6845 – volume: 43 start-page: 1 year: 2009 ident: 10.1016/j.bbagrm.2014.07.022_bb0175 article-title: Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-102108-134156 – volume: 25 start-page: 891 year: 2008 ident: 10.1016/j.bbagrm.2014.07.022_bb0255 article-title: Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation publication-title: Yeast doi: 10.1002/yea.1643 – volume: 368 start-page: 50 year: 2008 ident: 10.1016/j.bbagrm.2014.07.022_bb0320 article-title: Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.01.033 – volume: 16 start-page: 6707 year: 1996 ident: 10.1016/j.bbagrm.2014.07.022_bb0005 article-title: The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.12.6707 – volume: 119 start-page: 417 year: 1999 ident: 10.1016/j.bbagrm.2014.07.022_bb0240 article-title: Restriction nucleases as probes for chromatin structure publication-title: Methods Mol. Biol. – volume: 287 start-page: 26528 year: 2012 ident: 10.1016/j.bbagrm.2014.07.022_bb0025 article-title: Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications publication-title: J Biol Chem doi: 10.1074/jbc.M112.369652 – volume: 25 start-page: 7399 year: 2005 ident: 10.1016/j.bbagrm.2014.07.022_bb0070 article-title: Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.17.7399-7411.2005 – volume: 15 start-page: 4191 year: 2004 ident: 10.1016/j.bbagrm.2014.07.022_bb0310 article-title: Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E04-05-0412 – year: 2013 ident: 10.1016/j.bbagrm.2014.07.022_bb0120 – volume: 92 start-page: 3132 year: 1995 ident: 10.1016/j.bbagrm.2014.07.022_bb0110 article-title: Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.92.8.3132 – volume: 41 year: 2006 ident: 10.1016/j.bbagrm.2014.07.022_bb0230 article-title: In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation publication-title: Biotechniques doi: 10.2144/000112297 – volume: 457 start-page: 1033 year: 2009 ident: 10.1016/j.bbagrm.2014.07.022_bb0340 article-title: Bidirectional promoters generate pervasive transcription in yeast publication-title: Nature doi: 10.1038/nature07728 – volume: 9 start-page: 1297 year: 2002 ident: 10.1016/j.bbagrm.2014.07.022_bb0050 article-title: Cti6, a PHD domain protein, bridges the Cyc8–Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1 publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00545-2 – volume: 9 start-page: 821 year: 1995 ident: 10.1016/j.bbagrm.2014.07.022_bb0020 article-title: Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8–Tup1 corepressor complex to differentially regulated promoters publication-title: Genes Dev. doi: 10.1101/gad.9.7.821 – volume: 84 start-page: 437 year: 2006 ident: 10.1016/j.bbagrm.2014.07.022_bb0035 article-title: Transcriptional repression by Tup1-Ssn6 publication-title: Biochem. Cell Biol. – volume: 298 start-page: 799 year: 2002 ident: 10.1016/j.bbagrm.2014.07.022_bb0335 article-title: Transcriptional regulatory networks in Saccharomyces cerevisiae publication-title: Science doi: 10.1126/science.1075090 – volume: 7 start-page: 117 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0145 article-title: TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00160-5 – volume: 304 start-page: 365 year: 1999 ident: 10.1016/j.bbagrm.2014.07.022_bb0235 article-title: Mapping chromatin structure in yeast publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(99)04022-7 – volume: 14 start-page: 2737 year: 2000 ident: 10.1016/j.bbagrm.2014.07.022_bb0155 article-title: Ssn6-Tup1 interacts with class I histone deacetylases required for repression publication-title: Genes Dev. doi: 10.1101/gad.829100 – volume: 23 start-page: 2246 year: 2004 ident: 10.1016/j.bbagrm.2014.07.022_bb0280 article-title: Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae publication-title: EMBO J. doi: 10.1038/sj.emboj.7600227 – volume: 9 start-page: 1307 year: 2002 ident: 10.1016/j.bbagrm.2014.07.022_bb0055 article-title: Hog1 kinase converts the Sko1-Cyc8–Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00557-9 – volume: 31 start-page: 57 year: 2008 ident: 10.1016/j.bbagrm.2014.07.022_bb0225 article-title: H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.04.025 – volume: 10 start-page: R109 year: 2009 ident: 10.1016/j.bbagrm.2014.07.022_bb0295 article-title: A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-10-r109 – volume: 23 start-page: 333 year: 2004 ident: 10.1016/j.bbagrm.2014.07.022_bb0065 article-title: Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation publication-title: EMBO J. doi: 10.1038/sj.emboj.7600043 – volume: 155 start-page: 1535 year: 2000 ident: 10.1016/j.bbagrm.2014.07.022_bb0080 article-title: Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8–Tup1 corepressor in yeast publication-title: Genetics doi: 10.1093/genetics/155.4.1535 – volume: 25 start-page: 2525 year: 2011 ident: 10.1016/j.bbagrm.2014.07.022_bb0115 article-title: The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein publication-title: Genes Dev doi: 10.1101/gad.179275.111 – volume: 61 start-page: 197 year: 2003 ident: 10.1016/j.bbagrm.2014.07.022_bb0190 article-title: Yeast flocculation: what brewers should know publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-002-1200-8 – volume: 104 start-page: 817 year: 2001 ident: 10.1016/j.bbagrm.2014.07.022_bb0355 article-title: Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes publication-title: Cell doi: 10.1016/S0092-8674(01)00279-3 – reference: 11566885 - EMBO J. 2001 Sep 17;20(18):5219-31 – reference: 10372371 - Methods Enzymol. 1999;304:365-76 – reference: 12399584 - Science. 2002 Oct 25;298(5594):799-804 – reference: 15343339 - Nature. 2004 Sep 2;431(7004):99-104 – reference: 11060038 - EMBO J. 2000 Nov 1;19(21):5875-83 – reference: 17191611 - Biotechniques. 2006 Dec;41(6):694, 696, 698 – reference: 7597847 - Yeast. 1995 Apr 30;11(5):435-46 – reference: 10654939 - EMBO J. 2000 Feb 1;19(3):400-9 – reference: 21552514 - PLoS One. 2011;6(4):e19060 – reference: 11470794 - J Biol Chem. 2001 Oct 5;276(40):37020-6 – reference: 20012864 - Curr Genet. 2010 Feb;56(1):75-85 – reference: 21785133 - Nucleic Acids Res. 2011 Nov 1;39(20):8803-19 – reference: 7724528 - Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3132-6 – reference: 10871883 - Trends Biochem Sci. 2000 Jul;25(7):325-30 – reference: 7926740 - Genes Dev. 1994 Jun 15;8(12):1400-10 – reference: 22707714 - J Biol Chem. 2012 Aug 3;287(32):26528-38 – reference: 14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303 – reference: 11069890 - Genes Dev. 2000 Nov 1;14(21):2737-44 – reference: 12419247 - Cell. 2002 Nov 1;111(3):369-79 – reference: 17030999 - Eukaryot Cell. 2006 Oct;5(10):1738-47 – reference: 11095743 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13708-13 – reference: 16556216 - Mol Microbiol. 2006 Apr;60(1):5-15 – reference: 15240822 - Mol Biol Cell. 2004 Sep;15(9):4191-202 – reference: 19814794 - Genome Biol. 2009;10(10):R109 – reference: 11784848 - Mol Cell Biol. 2002 Feb;22(3):693-703 – reference: 11290320 - Cell. 2001 Mar 23;104(6):817-27 – reference: 12698276 - Appl Microbiol Biotechnol. 2003 May;61(3):197-205 – reference: 15334558 - Yeast. 2004 Aug;21(11):947-62 – reference: 11056171 - J Biol Chem. 2001 Jan 19;276(3):1808-13 – reference: 17785431 - Mol Cell Biol. 2007 Nov;27(21):7414-24 – reference: 11287668 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4391-6 – reference: 14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62 – reference: 8913742 - Genetics. 1996 Nov;144(3):967-78 – reference: 23103252 - Mol Cell. 2012 Dec 14;48(5):734-46 – reference: 23124522 - Genome Res. 2013 Feb;23(2):312-22 – reference: 12086601 - Cell. 2002 May 17;109(4):437-46 – reference: 18614047 - Mol Cell. 2008 Jul 11;31(1):57-66 – reference: 17387147 - Mol Cell Biol. 2007 Jun;27(11):4198-205 – reference: 16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43 – reference: 8008070 - Nature. 1994 Jun 30;369(6483):758-61 – reference: 1739976 - Cell. 1992 Feb 21;68(4):709-19 – reference: 19013280 - Cell. 2008 Nov 14;135(4):726-37 – reference: 12086627 - Mol Cell. 2002 Jun;9(6):1307-17 – reference: 19169243 - Nature. 2009 Feb 19;457(7232):1033-7 – reference: 11861580 - Genetics. 2002 Feb;160(2):799-803 – reference: 16107689 - Mol Cell Biol. 2005 Sep;25(17):7399-411 – reference: 15116071 - EMBO J. 2004 Jun 2;23(11):2246-57 – reference: 11118219 - EMBO J. 2000 Dec 15;19(24):6845-52 – reference: 7705659 - Genes Dev. 1995 Apr 1;9(7):821-31 – reference: 18201562 - Biochem Biophys Res Commun. 2008 Mar 28;368(1):50-5 – reference: 9483801 - Yeast. 1998 Jan 30;14(2):115-32 – reference: 19640229 - Annu Rev Genet. 2009;43:1-24 – reference: 8675011 - Genes Dev. 1996 May 15;10(10):1247-59 – reference: 11448965 - J Biol Chem. 2001 Sep 7;276(36):33788-97 – reference: 19160454 - Yeast. 2008 Dec;25(12):891-901 – reference: 8904338 - Yeast. 1996 Mar 15;12(3):259-65 – reference: 21329885 - Mol Cell. 2011 Feb 18;41(4):480-92 – reference: 15254041 - J Biol Chem. 2004 Sep 17;279(38):39240-50 – reference: 7502576 - Yeast. 1995 Sep 15;11(11):1001-13 – reference: 23658529 - PLoS Genet. 2013 May;9(5):e1003479 – reference: 12086626 - Mol Cell. 2002 Jun;9(6):1297-305 – reference: 22156212 - Genes Dev. 2011 Dec 1;25(23):2525-39 – reference: 11399075 - J Mol Biol. 2001 Jun 22;309(5):1007-15 – reference: 11691830 - Genes Dev. 2001 Nov 1;15(21):2786-96 – reference: 14739928 - EMBO J. 2004 Jan 28;23(2):333-42 – reference: 17704134 - Nucleic Acids Res. 2007;35(16):5520-31 – reference: 10669725 - Mol Cell Biol. 2000 Mar;20(5):1478-88 – reference: 11172717 - Mol Cell. 2001 Jan;7(1):117-26 – reference: 8943325 - Mol Cell Biol. 1996 Dec;16(12):6707-14 – reference: 10924455 - Genetics. 2000 Aug;155(4):1535-42 – reference: 10804529 - Methods Mol Biol. 1999;119:417-25 – reference: 16648632 - J Biol Chem. 2006 Jun 30;281(26):18126-34 |
SSID | ssj0061200 ssj0025309 |
Score | 2.3000803 |
Snippet | We demonstrate that the yeast flocculation gene, FLO1, is representative of a distinct subset of subtelomeric genes that are robustly repressed by the... We demonstrate that the yeast flocculation gene, FLO1 , is representative of a distinct subset of subtelomeric genes that are robustly repressed by the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1242 |
SubjectTerms | Chromatin Cyc8 (Ssn6)-Tup1 Down-Regulation - genetics Gene Expression Regulation, Fungal Gene repression Histone acetylation Histone Deacetylases - metabolism Mannose-Binding Lectins - genetics Mannose-Binding Lectins - metabolism Nuclear Proteins - metabolism Nuclear Proteins - physiology Organisms, Genetically Modified Protein Binding Repressor Proteins - metabolism Repressor Proteins - physiology Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - physiology Swi–Snf Telomere - metabolism Transcription, Genetic |
Title | The yeast Cyc8–Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene |
URI | https://dx.doi.org/10.1016/j.bbagrm.2014.07.022 https://www.ncbi.nlm.nih.gov/pubmed/25106892 https://www.proquest.com/docview/1629958906 https://www.proquest.com/docview/1668258755 https://pubmed.ncbi.nlm.nih.gov/PMC4316177 |
Volume | 1839 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2u0JwQbC8ymNlJK6hcezYyXFVURUKi7QUsTfLduylqEqiNpHIBfEb4B_ySxjnUVEQrMQpSjyWnMxkvhl7Hgg9i53jSRzSIDJGByxSSaBEaoKEEe1MaEhk_X7HmzM-f89eXcQXB2g65ML4sMpe93c6vdXW_ZNJ_zUn5Wo1eee7yaWAr-AieMdFHKKjCNA-GaGj05eL-dmgkAHD20wUTx_4CUMGXRvmpbW63PiUdMLaKp5R9DeE-tMC_T2Q8hdkmt1CN3uTEp92q76NDmx-jK51TSabY3R9OvR0u4O-gVTgxrfrwdPGJD--fl_WJcFtXLn9DNei9EWW7Rb7_Vk8zxQpscozfF5mtMRtceLc4gz0qK0aMLyBsirwptD1tlo3eNPF1eLKI-Cgj3DhMJiZeFvryq6L9ogIz16_JRiE195Fy9mL5XQe9F0ZAsNSXgVKgxWoY6Eop5mzSseRZsQrAqMdB0zMwAOLQ8PAE1GaZpHljmtqskxHzKX0HhrlsNQHCCtAR0pdLJxgzNpQJVYBARiEaSJgYIzowAhp-orlvnHGWg6haZ9kxz7p2SdDIYF9YxTsZpVdxY4r6MXAY7kneRJA5YqZTweRkMBHf9KiclvUW0k4oHycpCH_Fw0H7xzcxXiM7nditFsvGJ0hT1K_tj0B2xH4ouD7I_nqY1sc3Jc2IEI8_O-3eoRu-Lsu3_IxGlWb2j4Bw6vSJ-jw-Rdy0v9e_ro4_7D4CfozMv4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWrtByQbC8ytNIXKMmseMkx1VF1WW7RYIi7c2yHRuKqiRqE4nc-A3wD_klzORRURCsxClSPJYmmcl8M848CHkVOSeSyGdeaIz2eKgST8Wp8RIeaGd8E4QWzzsul2L-gb-5iq6OyHSohcG0yt72dza9tdb9nUn_Niflej15j9PkUsBXCBEwcIlvkGOOQ61H5Pjs_GK-HAwyYHhbiYL0Hm4YKujaNC-t1cctlqQHvO3iGYZ_Q6g_PdDfEyl_QabZHXK7dynpWcf1XXJk81Nysxsy2ZySk-kw0-0e-QZaQRsc10OnjUl-fP2-qsuAtnnl9gtcixKbLNsdxfNZOs9UUFKVZ_RdmbGSts2Jc0szsKO2asDxBsqqoNtC17tq09Btl1dLK0TAwR7RwlFwM-mu1pXdFO0vIjpbvA0oKK-9T1az16vp3OunMniGp6LylAYvUEexYoJlziodhZoHaAiMdgIwMYMILPINh0hEaZaFVjihmckyHXKXsgdklAOrjwhVgI6MuSh2MefW-iqxCgjAIUyTGBbGhA2CkKbvWI6DMzZySE37LDvxSRSf9GMJ4hsTb7-r7Dp2XEMfDzKWB5onAVSu2flyUAkJcsQ_LSq3Rb2TgQCUj5LUF_-iERCdQ7gYjcnDTo32_ILT6YskRd4OFGxPgE3BD1fy9ae2OTi2Ngji-PF_P9ULcjJfXS7k4nx58YTcwpWu9vIpGVXb2j4DJ6zSz_uP7CeWmTNB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yeast+Cyc8%E2%80%93Tup1+complex+cooperates+with+Hda1p+and+Rpd3p+histone+deacetylases+to+robustly+repress+transcription+of+the+subtelomeric+FLO1+gene&rft.jtitle=Biochimica+et+biophysica+acta.+Gene+regulatory+mechanisms&rft.au=Fleming%2C+Alastair+B.&rft.au=Beggs%2C+Suzanne&rft.au=Church%2C+Michael&rft.au=Tsukihashi%2C+Yoshihiro&rft.date=2014-11-01&rft.pub=Elsevier+B.V&rft.issn=1874-9399&rft.eissn=1876-4320&rft.volume=1839&rft.issue=11&rft.spage=1242&rft.epage=1255&rft_id=info:doi/10.1016%2Fj.bbagrm.2014.07.022&rft.externalDocID=S1874939914002107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-9399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-9399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-9399&client=summon |