A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent Variables and Covariates: Development, Evaluation, and Application to Family Processes

Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consi...

Full description

Saved in:
Bibliographic Details
Published inStructural equation modeling Vol. 27; no. 3; pp. 442 - 467
Main Authors Ji, Linying, Chen, Meng, Oravecz, Zita, Cummings, E. Mark, Lu, Zhao-Hua, Chow, Sy-Miin
Format Journal Article
LanguageEnglish
Published United States Routledge 03.05.2020
Psychology Press
Subjects
Online AccessGet full text
ISSN1070-5511
1532-8007
DOI10.1080/10705511.2019.1623681

Cover

Abstract Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consideration of nonignorable missingness. We introduce a Bayesian model that simultaneously represents the over-time dependencies in multivariate, multiple-subject time series data via a VAR model, and possible ignorable and nonignorable missingness in the data. We provide software code for implementing this model with application to an empirical data set. Moreover, simulation results comparing the joint approach with two-step multiple imputation procedures are included to shed light on the relative strengths and weaknesses of these approaches in practical data analytic scenarios.
AbstractList Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consideration of nonignorable missingness. We introduce a Bayesian model that simultaneously represents the over-time dependencies in multivariate, multiple-subject time series data via a VAR model, and possible ignorable and nonignorable missingness in the data. We provide software code for implementing this model with application to an empirical data set. Moreover, simulation results comparing the joint approach with two-step multiple imputation procedures are included to shed light on the relative strengths and weaknesses of these approaches in practical data analytic scenarios.
Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consideration of nonignorable missingness. We introduce a Bayesian model that simultaneously represents the over-time dependencies in multivariate, multiple-subject time series data via a VAR model, and possible ignorable and nonignorable missingness in the data. We provide software code for implementing this model with application to an empirical data set. Moreover, simulation results comparing the joint approach with two-step multiple imputation procedures are included to shed light on the relative strengths and weaknesses of these approaches in practical data analytic scenarios.Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consideration of nonignorable missingness. We introduce a Bayesian model that simultaneously represents the over-time dependencies in multivariate, multiple-subject time series data via a VAR model, and possible ignorable and nonignorable missingness in the data. We provide software code for implementing this model with application to an empirical data set. Moreover, simulation results comparing the joint approach with two-step multiple imputation procedures are included to shed light on the relative strengths and weaknesses of these approaches in practical data analytic scenarios.
Author Cummings, E. Mark
Lu, Zhao-Hua
Chen, Meng
Chow, Sy-Miin
Ji, Linying
Oravecz, Zita
AuthorAffiliation 1 The Pennsylvania State University
2 University of Notre Dame
3 St. Jude Children’s Research Hospital
AuthorAffiliation_xml – name: 1 The Pennsylvania State University
– name: 2 University of Notre Dame
– name: 3 St. Jude Children’s Research Hospital
Author_xml – sequence: 1
  givenname: Linying
  surname: Ji
  fullname: Ji, Linying
  email: lzj114@psu.edu
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Meng
  surname: Chen
  fullname: Chen, Meng
  organization: The Pennsylvania State University
– sequence: 3
  givenname: Zita
  surname: Oravecz
  fullname: Oravecz, Zita
  organization: The Pennsylvania State University
– sequence: 4
  givenname: E. Mark
  surname: Cummings
  fullname: Cummings, E. Mark
  organization: University of Notre Dame
– sequence: 5
  givenname: Zhao-Hua
  surname: Lu
  fullname: Lu, Zhao-Hua
  organization: St. Jude Children's Research Hospital
– sequence: 6
  givenname: Sy-Miin
  surname: Chow
  fullname: Chow, Sy-Miin
  organization: The Pennsylvania State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32601517$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURC_wCCBLbFh0Bt-SOFRCTIcWkMplAd1ajnMydeXYwU6mmjfqY-K5IegCNr4cf-ec3_Z_nB047yDLnhM8JVjg1wSXOM8JmVJMqikpKCsEeZQdkZzRicC4PEjrxEzW0GF2HOMtxkQQKp5kh4wWmOSkPMruZ-hcrSAa5dA16MEHNBvTCIsAMZoloM--AYvuzHCDvnhnFs4HVdsUN-ncLVzCkHHoPfTgGnADulbBrImIlGvQ3C_X-wHim8Qswfq-S9QpulgqO6rBeHe6AWd9b43eBNDg0aXqjF2hb8Hr1AHi0-xxq2yEZ7v5JPtxefF9_nFy9fXDp_nsaqJ5VQwTJeqmzfOiLlheQMkh51pzUEJjXZScUGCa4Zqxsm1pSzgRbV3QglZtq3mtK3aSvd3W7ce6g0YnrUFZ2QfTqbCSXhn594kzN3Lhl7JklFWUpwKvdgWC_zlCHGRnogZrlQM_Rkk5qbDIRUES-vIBeuvH4NL1EoUZEZxwlqgXfyr6LWX_iQk42wI6-BgDtFKbYfOQSaCxkmC5tozcW0auLSN3lknZ-YPsfYP_5b3b5hnX-tCpOx9sIwe1sj60QTltomT_LvELJDPbAg
CitedBy_id crossref_primary_10_2196_16072
crossref_primary_10_1007_s11336_021_09831_9
crossref_primary_10_1080_00273171_2024_2371816
crossref_primary_10_1080_10705511_2023_2287967
crossref_primary_10_1080_00273171_2024_2347959
crossref_primary_10_1080_10705511_2021_1911657
crossref_primary_10_1111_bmsp_12318
crossref_primary_10_2196_66637
Cites_doi 10.1177/0049124104270220
10.1037/1082-989X.7.2.147
10.1007/978-1-4614-4018-5
10.1037/0003-066X.44.2.321
10.1037/1082-989X.6.4.317
10.1007/978-3-540-27752-1
10.1016/j.newideapsych.2011.02.007
10.1109/TIT.1965.1053737
10.1080/00273171.2013.763012
10.1093/biomet/81.3.471
10.2307/2531905
10.1080/10705511003661553
10.1214/aos/1176348139
10.1207/s15327906mbr4002_3
10.1080/01621459.1996.10476680
10.1108/S0731-9053(2013)0000031012
10.1016/j.biopsycho.2013.10.011
10.1002/(ISSN)1097-0258
10.1037/a0017824
10.1111/jep.2012.18.issue-2
10.1111/joes.2011.25.issue-1
10.1080/10705511.2017.1417046
10.3758/s13428-014-0443-5
10.1207/s15328007sem1104_4
10.1037/a0019662
10.1080/10705510701758265
10.2307/1130295
10.1186/s12874-017-0372-y
10.1080/01621459.1993.10594302
10.1093/biomet/63.3.581
10.1017/S0954579412000995
10.1080/00273170701340953
10.1080/01621459.1964.10480730
10.1080/01621459.1996.10476908
10.1093/biostatistics/4.4.495
10.1175/1520-0450(1987)026<1339:AAMTCB>2.0.CO;2
10.1201/b11826
10.2307/271029
10.1214/06-BA122
10.1093/biostatistics/1.4.465
10.1037/0021-843X.112.4.545
10.1037/0033-2909.108.2.267
10.1037/0882-7974.22.4.765
10.1002/9780470024737
10.1037/0033-295X.83.2.141
10.1146/annurev-clinpsy-050212-185608
10.1201/9781420011180
10.2307/2986113
10.1002/cjs.v43.2
10.1177/0962280215598665
10.1002/sim.v31.6
10.1037/met0000145
10.1198/jasa.2010.ap09321
10.1037/0033-2909.116.3.387
10.2307/1912352
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
2019 Taylor & Francis Group, LLC
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
– notice: 2019 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
AHOVV
7X8
5PM
DOI 10.1080/10705511.2019.1623681
DatabaseName CrossRef
PubMed
Education Research Index
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-8007
EndPage 467
ExternalDocumentID PMC7323924
32601517
10_1080_10705511_2019_1623681
1623681
Genre Other
Journal Article
GrantInformation_xml – fundername: Penn State Quantitative Social Sciences Initiative
  grantid: not applicable
– fundername: ntensive Longitudinal Health Behavior Cooperative Agreement Program funded by the National Institutes of Health
  grantid: Award Number U24AA027684
– fundername: National Center for Advancing Translational Sciences
  grantid: UL TR000127
  funderid: 10.13039/100006108
– fundername: National Science Foundation
  grantid: IGE-1806874
– fundername: National Institutes of Health
  grantid: R01GM105004
  funderid: 10.13039/100000002
– fundername: NIAAA NIH HHS
  grantid: U24 AA027684
– fundername: NIGMS NIH HHS
  grantid: R01 GM105004
GroupedDBID .7I
.QK
0BK
0R~
123
4.4
5VS
AAGZJ
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AGDLA
AGMYJ
AGRBW
AIJEM
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CJ0
CQ1
DGFLZ
DKSSO
EBS
E~B
E~C
F5P
FXNIP
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
NA5
NW-
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
XSW
~01
~S~
AAGDL
AAHIA
AAYXX
AEFOU
AFRVT
AIYEW
CITATION
TASJS
07M
4B3
AAAVZ
AANPH
ABVXC
ABWZE
ACIKQ
ACPKE
ACRBO
ADEWX
ADIUE
ADXAZ
ADYSH
AEXSR
AIXGP
ALLRG
AMVHM
C5A
CAG
CBZAQ
CKOZC
COF
C~T
DGXZK
EFRLQ
EGDCR
EJD
JLMOS
L7Y
NPM
OHT
QZZOY
RBICI
ROL
TBH
UA1
YHZ
AHOVV
7X8
5PM
ID FETCH-LOGICAL-c496t-a8bdf556b6356e74e54cc4ea8c0c67412e3c30b337ff2f1418fb62629ffc4bc93
ISSN 1070-5511
IngestDate Thu Aug 21 18:19:53 EDT 2025
Thu Sep 04 23:38:25 EDT 2025
Sun Jul 27 14:18:31 EDT 2025
Mon Jul 21 06:02:22 EDT 2025
Wed Jul 30 11:47:47 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Wed Dec 25 09:08:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Intensive longitudinal data
Bayesian vector autoregressive model
Multiple imputation
Nonignorable missing data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c496t-a8bdf556b6356e74e54cc4ea8c0c67412e3c30b337ff2f1418fb62629ffc4bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These two authors contributed equally to the work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7323924
PMID 32601517
PQID 2403184143
PQPubID 46559
PageCount 26
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7323924
proquest_miscellaneous_2419085861
pubmed_primary_32601517
crossref_primary_10_1080_10705511_2019_1623681
proquest_journals_2403184143
crossref_citationtrail_10_1080_10705511_2019_1623681
informaworld_taylorfrancis_310_1080_10705511_2019_1623681
PublicationCentury 2000
PublicationDate 2020-05-03
PublicationDateYYYYMMDD 2020-05-03
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hove
PublicationTitle Structural equation modeling
PublicationTitleAlternate Struct Equ Modeling
PublicationYear 2020
Publisher Routledge
Psychology Press
Publisher_xml – name: Routledge
– name: Psychology Press
References CIT0072
CIT0071
CIT0030
CIT0073
CIT0032
CIT0031
CIT0034
CIT0033
Fahrenberg J. (CIT0019) 2001
CIT0070
Nesselroade J. R., & Baltes, P.B. (CIT0047) 1979
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
Schweppe F. C. (CIT0063) 1973
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
Ou L. (CIT0048) 2016
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0052
CIT0051
CIT0010
CIT0054
Harvey A. C. (CIT0028) 2001
CIT0012
CIT0056
CIT0011
CIT0055
Stone A. (CIT0065) 2008
R Core Team (CIT0053) 2016
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
van Buuren S. (CIT0068) 2011; 45
CIT0061
CIT0060
CIT0062
CIT0021
CIT0020
CIT0064
CIT0023
CIT0067
CIT0022
CIT0066
Bolger N. (CIT0003) 2013
CIT0025
CIT0069
CIT0024
CIT0027
CIT0026
CIT0029
References_xml – volume-title: Progress in Ambulatory Assessment: Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies
  year: 2001
  ident: CIT0019
– ident: CIT0026
  doi: 10.1177/0049124104270220
– ident: CIT0058
  doi: 10.1037/1082-989X.7.2.147
– volume-title: Forecasting, structural time series models and the Kalman filter
  year: 2001
  ident: CIT0028
– ident: CIT0024
  doi: 10.1007/978-1-4614-4018-5
– ident: CIT0018
  doi: 10.1037/0003-066X.44.2.321
– ident: CIT0054
– volume-title: Uncertain dynamic systems
  year: 1973
  ident: CIT0063
– ident: CIT0064
  doi: 10.1037/1082-989X.6.4.317
– ident: CIT0044
  doi: 10.1007/978-3-540-27752-1
– ident: CIT0061
  doi: 10.1016/j.newideapsych.2011.02.007
– year: 2016
  ident: CIT0048
  publication-title: Multivariate Behavioral Research
– ident: CIT0062
  doi: 10.1109/TIT.1965.1053737
– ident: CIT0073
  doi: 10.1080/00273171.2013.763012
– ident: CIT0040
  doi: 10.1093/biomet/81.3.471
– ident: CIT0016
– ident: CIT0071
  doi: 10.2307/2531905
– ident: CIT0009
  doi: 10.1080/10705511003661553
– ident: CIT0013
  doi: 10.1214/aos/1176348139
– ident: CIT0027
  doi: 10.1207/s15327906mbr4002_3
– ident: CIT0036
  doi: 10.1080/01621459.1996.10476680
– ident: CIT0020
  doi: 10.1108/S0731-9053(2013)0000031012
– ident: CIT0005
  doi: 10.1016/j.biopsycho.2013.10.011
– ident: CIT0021
  doi: 10.1002/(ISSN)1097-0258
– ident: CIT0057
– ident: CIT0007
  doi: 10.1037/a0017824
– ident: CIT0031
  doi: 10.1111/jep.2012.18.issue-2
– ident: CIT0052
  doi: 10.1111/joes.2011.25.issue-1
– ident: CIT0035
  doi: 10.1080/10705511.2017.1417046
– ident: CIT0041
  doi: 10.3758/s13428-014-0443-5
– ident: CIT0010
  doi: 10.1207/s15328007sem1104_4
– volume: 45
  start-page: 1
  issue: 3
  year: 2011
  ident: CIT0068
  publication-title: Journal of Statistical Software
– ident: CIT0060
  doi: 10.1037/a0019662
– ident: CIT0070
  doi: 10.1080/10705510701758265
– ident: CIT0046
  doi: 10.2307/1130295
– ident: CIT0033
  doi: 10.1002/(ISSN)1097-0258
– ident: CIT0014
  doi: 10.1186/s12874-017-0372-y
– ident: CIT0039
  doi: 10.1080/01621459.1993.10594302
– volume-title: Intensive longitudinal methods: An introduction to diary and experience sampling research
  year: 2013
  ident: CIT0003
– ident: CIT0055
  doi: 10.1093/biomet/63.3.581
– ident: CIT0023
  doi: 10.1017/S0954579412000995
– ident: CIT0017
  doi: 10.1080/00273170701340953
– ident: CIT0022
  doi: 10.1080/01621459.1964.10480730
– ident: CIT0056
  doi: 10.1080/01621459.1996.10476908
– ident: CIT0059
  doi: 10.1093/biostatistics/4.4.495
– ident: CIT0029
  doi: 10.1175/1520-0450(1987)026<1339:AAMTCB>2.0.CO;2
– ident: CIT0067
  doi: 10.1201/b11826
– ident: CIT0001
  doi: 10.2307/271029
– volume-title: R foundation for statistical computing
  year: 2016
  ident: CIT0053
– volume-title: Longitudinal research in the study of behavior and development
  year: 1979
  ident: CIT0047
– ident: CIT0006
  doi: 10.1214/06-BA122
– ident: CIT0032
  doi: 10.1093/biostatistics/1.4.465
– ident: CIT0045
– ident: CIT0002
  doi: 10.1037/0021-843X.112.4.545
– ident: CIT0049
– ident: CIT0025
  doi: 10.1037/0033-2909.108.2.267
– ident: CIT0008
  doi: 10.1037/0882-7974.22.4.765
– volume-title: The science of real-time data capture: Self-reports in health research
  year: 2008
  ident: CIT0065
– ident: CIT0038
  doi: 10.1002/9780470024737
– ident: CIT0051
– ident: CIT0066
  doi: 10.1037/0033-295X.83.2.141
– ident: CIT0004
  doi: 10.1146/annurev-clinpsy-050212-185608
– ident: CIT0011
  doi: 10.1201/9781420011180
– ident: CIT0015
  doi: 10.2307/2986113
– ident: CIT0037
  doi: 10.1002/cjs.v43.2
– ident: CIT0072
  doi: 10.1177/0962280215598665
– ident: CIT0042
  doi: 10.1002/sim.v31.6
– ident: CIT0034
– ident: CIT0043
  doi: 10.1037/met0000145
– ident: CIT0069
  doi: 10.1198/jasa.2010.ap09321
– ident: CIT0012
  doi: 10.1037/0033-2909.116.3.387
– ident: CIT0030
  doi: 10.2307/1912352
SSID ssj0018128
Score 2.336907
Snippet Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 442
SubjectTerms Bayesian analysis
Bayesian vector autoregressive model
Dependent variables
Intensive longitudinal data
Missing data
Multiple imputation
Nonignorable missing data
Time series
Title A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent Variables and Covariates: Development, Evaluation, and Application to Family Processes
URI https://www.tandfonline.com/doi/abs/10.1080/10705511.2019.1623681
https://www.ncbi.nlm.nih.gov/pubmed/32601517
https://www.proquest.com/docview/2403184143
https://www.proquest.com/docview/2419085861
https://pubmed.ncbi.nlm.nih.gov/PMC7323924
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJ6HxgPhPYSAj8dalNLHzx7yVClRN6h6gmyZeosZxRiVIh5YhjU_EN-DrcWc7jjuKBrxUbeKcrN4v5zv77neEvEwLiHviUgRlKaKAV4kIYNHLAsZVJZngooqwwHl-mMyO-MFJfNLr_fSyli6aYiS_b60r-R-twjXQK1bJ_oNmnVC4AN9Bv_AJGobPv9LxZPhmeal0GeSx3n0fTpCSQOkYGlOCsNOZTUM_hJf3tAaFY6nUHP5uWLO0mVvVYHRMJ9xmeAyhM44wzM3T9Tf83Zi8OS-_SFtQxxPeZoBOusNwdGltTw1bimBzFa0f_EHT1mrKD_XVSDFNedqVFJN6VnbT4NK7OLXVJJiN6zaIsYWS1DvhH1dNl3oEmsBzAD3ZrijJbnFE-nR-zDyrDHYpANcu9M22oRSw8GSeDeaGruu3tcEkU6IsFIVZfWIUgveXmJ4xHl7OvmjAMKRbi01p6RVS7vbWDbITpeC09cnO4v3BbOYOsMBvMlWYduZt8Vg2frV1BrvkZitzw0Pa4M_dFgVdTeb1vKPFHXLbhjV0YjB6l_RUfY_cmjtO4PP75MeEtmilBq10E61Uo5UiWqmPVuqhla5q6tBKHVopwI92aH1NPazu0w6p-3qgh1ParKnBKXU4fUCO3r1dTGeB7RMSSC6SJlhmRVnFcVIg16JKuYq5lFwtMzmWCXjMkWKSjcEopRVYnpCHWVVAHB-JqpK8kII9JP16XavHhEqISEqIoCueRbxYSsFZwUNRprKE0KMcDwhvdZNLS6KPvVw-56Hl2m21m6N2c6vdARm5x84Mi8x1Dwhf8Xmjt-8q02snZ9c8u9eiJLfG6jxH2s0w4xAdDcgLdxuWEjwfXNZqfYFjIDrI4iwBEY8MqNxsW3AOSLoBNzcAaeo379SrT5quPmURBGH8yR9lPiW73Vu_R_pggdQzcPWb4rl9rX4BIZ39gg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h7QE4tLy7UMBIHJtVEjsPc1tKq1C6e0DbqrcodmyoWGURm0Vqf1F_JjOJE3YrUA89RUnsyJYnM9_YM98AvE8U-j1RKb2ylKEnbCw9NHqpx4WxmkshbUgJzpNpnJ2K4_PofC0XhsIqyYe2LVFEo6vp56bN6C4kDq_EAROQexfIUYAWPKbs660Iba0_gK3Z1-Ms688S0IS1CXGJ71GvLo_nfx_asFAb_KX_QqE3gynXrNPRDuhuXm1Qyo_RqlYjfXWD8vFuE38E2w68snErbY_hnqmewMNJz_y6fArXY_axuDSUmsnOmhMBNiaaBNP49ahaGVVfmzPa_2VTVCjfKhRCNcfnKAJoR0n1souKfXLVeWt2hu48tVgyHDg7WPyme0TIH9haxNM-O-x5y_ebhuO_R_OsXrC2wgdziRFm-QxOjw5nB5nnqkF4Wsi49opUlTaKYkWMeiYRJhJaC1Ok2tcx4qLQcM19FL3EonwFIkitQm8tlNZqobTkz2FQLSqzC0wj7izRT7IiDYUqtBRciUCWiS4RYJb-EEQnAbl2VOlUsWOeB45RtVuInBYidwsxhFHf7WfLFXJbB7kuXnndbNLYtqJKzm_pu9fJYu7UzjInckV02REDD-Fd_xoVBp0CFZVZrKgNYsA0SmP8xItWdPvRciKYi4JkCMmGUPcNiIx880118b0hJU94iFBbvLzDlN7C_Ww2OclPPk-_vIIHIe1sUGgp34NB_WtlXiP8q9Ub93__AdstT3U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKyE4QHmVhRYGiWOz2sTOw9y2j9VS6AqhtuJmxY4NFatsRbJI8Iv4mZ1JnLBbgXroKUpiR7b8ZR72zDeMvU01-j1xIYOikFEgXCIDVHpZwIV1hkshXUQJziezZHomjr_EXTRh5cMqyYd2LVFEI6vp574sXBcRh1eigAnJuwvlMEQFnlDy9Sb6FjECe_P08_F02h8loAZr8-HSUUC9ujSe_31oTUGt0Zf-ywi9Hku5opwmD5nuptXGpHwfLms9NL-vMT7eat5b7IE3XWHcYu0Ru2PLx-z-Sc_7Wj1hf8awn_-ylJgJ5815AIyJJME2Xj0KVqDaa3Og3V-YoTj5WiIE9RyfIwBQi5LghYsSDn1t3hrO0ZmnFhXguOFg8ZPu0T5-ByvxTntw1LOW7zUNx38P5qFeQFvfA3xahK2esrPJ0enBNPC1IAIjZFIHeaYLF8eJJj49mwobC2OEzTMzMglaRZHlho8QeKlDdIUizJxGXy2SzhmhjeTP2Ea5KO1zBgatzgK9JCeySOjcSMG1CGWRmgLNy2I0YKIDgDKeKJ3qdcxV6PlUu4VQtBDKL8SADftuly1TyE0d5Cq6VN1s0bi2noriN_Td6aCovNCpFFErosOOFvCAvelfo7igM6C8tIsltUELMIuzBD-x3SK3Hy0nerk4TAcsXcN034CoyNfflBffGkrylEdoaIsXt5jSa3b30-FEfXw_-_CS3YtoW4PiSvkO26h_LO0u2n61fuX_7iudpE4i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Vector+Autoregressive+Model+with+Nonignorable+Missingness+in+Dependent+Variables+and+Covariates%3A+Development%2C+Evaluation%2C+and+Application+to+Family+Processes&rft.jtitle=Structural+equation+modeling&rft.au=Ji%2C+Linying&rft.au=Chen%2C+Meng&rft.au=Oravecz%2C+Zita&rft.au=Cummings%2C+E+Mark&rft.date=2020-05-03&rft.issn=1070-5511&rft.volume=27&rft.issue=3&rft.spage=442&rft_id=info:doi/10.1080%2F10705511.2019.1623681&rft_id=info%3Apmid%2F32601517&rft.externalDocID=32601517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5511&client=summon