A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent Variables and Covariates: Development, Evaluation, and Application to Family Processes
Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consi...
Saved in:
Published in | Structural equation modeling Vol. 27; no. 3; pp. 442 - 467 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Routledge
03.05.2020
Psychology Press |
Subjects | |
Online Access | Get full text |
ISSN | 1070-5511 1532-8007 |
DOI | 10.1080/10705511.2019.1623681 |
Cover
Abstract | Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consideration of nonignorable missingness. We introduce a Bayesian model that simultaneously represents the over-time dependencies in multivariate, multiple-subject time series data via a VAR model, and possible ignorable and nonignorable missingness in the data. We provide software code for implementing this model with application to an empirical data set. Moreover, simulation results comparing the joint approach with two-step multiple imputation procedures are included to shed light on the relative strengths and weaknesses of these approaches in practical data analytic scenarios. |
---|---|
AbstractList | Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consideration of nonignorable missingness. We introduce a Bayesian model that simultaneously represents the over-time dependencies in multivariate, multiple-subject time series data via a VAR model, and possible ignorable and nonignorable missingness in the data. We provide software code for implementing this model with application to an empirical data set. Moreover, simulation results comparing the joint approach with two-step multiple imputation procedures are included to shed light on the relative strengths and weaknesses of these approaches in practical data analytic scenarios. Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consideration of nonignorable missingness. We introduce a Bayesian model that simultaneously represents the over-time dependencies in multivariate, multiple-subject time series data via a VAR model, and possible ignorable and nonignorable missingness in the data. We provide software code for implementing this model with application to an empirical data set. Moreover, simulation results comparing the joint approach with two-step multiple imputation procedures are included to shed light on the relative strengths and weaknesses of these approaches in practical data analytic scenarios.Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of responses on particular occasions. However, time series models, such as vector autoregressive (VAR) models, are often fit to these data without consideration of nonignorable missingness. We introduce a Bayesian model that simultaneously represents the over-time dependencies in multivariate, multiple-subject time series data via a VAR model, and possible ignorable and nonignorable missingness in the data. We provide software code for implementing this model with application to an empirical data set. Moreover, simulation results comparing the joint approach with two-step multiple imputation procedures are included to shed light on the relative strengths and weaknesses of these approaches in practical data analytic scenarios. |
Author | Cummings, E. Mark Lu, Zhao-Hua Chen, Meng Chow, Sy-Miin Ji, Linying Oravecz, Zita |
AuthorAffiliation | 1 The Pennsylvania State University 2 University of Notre Dame 3 St. Jude Children’s Research Hospital |
AuthorAffiliation_xml | – name: 1 The Pennsylvania State University – name: 2 University of Notre Dame – name: 3 St. Jude Children’s Research Hospital |
Author_xml | – sequence: 1 givenname: Linying surname: Ji fullname: Ji, Linying email: lzj114@psu.edu organization: The Pennsylvania State University – sequence: 2 givenname: Meng surname: Chen fullname: Chen, Meng organization: The Pennsylvania State University – sequence: 3 givenname: Zita surname: Oravecz fullname: Oravecz, Zita organization: The Pennsylvania State University – sequence: 4 givenname: E. Mark surname: Cummings fullname: Cummings, E. Mark organization: University of Notre Dame – sequence: 5 givenname: Zhao-Hua surname: Lu fullname: Lu, Zhao-Hua organization: St. Jude Children's Research Hospital – sequence: 6 givenname: Sy-Miin surname: Chow fullname: Chow, Sy-Miin organization: The Pennsylvania State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32601517$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNURC_wCCBLbFh0Bt-SOFRCTIcWkMplAd1ajnMydeXYwU6mmjfqY-K5IegCNr4cf-ec3_Z_nB047yDLnhM8JVjg1wSXOM8JmVJMqikpKCsEeZQdkZzRicC4PEjrxEzW0GF2HOMtxkQQKp5kh4wWmOSkPMruZ-hcrSAa5dA16MEHNBvTCIsAMZoloM--AYvuzHCDvnhnFs4HVdsUN-ncLVzCkHHoPfTgGnADulbBrImIlGvQ3C_X-wHim8Qswfq-S9QpulgqO6rBeHe6AWd9b43eBNDg0aXqjF2hb8Hr1AHi0-xxq2yEZ7v5JPtxefF9_nFy9fXDp_nsaqJ5VQwTJeqmzfOiLlheQMkh51pzUEJjXZScUGCa4Zqxsm1pSzgRbV3QglZtq3mtK3aSvd3W7ce6g0YnrUFZ2QfTqbCSXhn594kzN3Lhl7JklFWUpwKvdgWC_zlCHGRnogZrlQM_Rkk5qbDIRUES-vIBeuvH4NL1EoUZEZxwlqgXfyr6LWX_iQk42wI6-BgDtFKbYfOQSaCxkmC5tozcW0auLSN3lknZ-YPsfYP_5b3b5hnX-tCpOx9sIwe1sj60QTltomT_LvELJDPbAg |
CitedBy_id | crossref_primary_10_2196_16072 crossref_primary_10_1007_s11336_021_09831_9 crossref_primary_10_1080_00273171_2024_2371816 crossref_primary_10_1080_10705511_2023_2287967 crossref_primary_10_1080_00273171_2024_2347959 crossref_primary_10_1080_10705511_2021_1911657 crossref_primary_10_1111_bmsp_12318 crossref_primary_10_2196_66637 |
Cites_doi | 10.1177/0049124104270220 10.1037/1082-989X.7.2.147 10.1007/978-1-4614-4018-5 10.1037/0003-066X.44.2.321 10.1037/1082-989X.6.4.317 10.1007/978-3-540-27752-1 10.1016/j.newideapsych.2011.02.007 10.1109/TIT.1965.1053737 10.1080/00273171.2013.763012 10.1093/biomet/81.3.471 10.2307/2531905 10.1080/10705511003661553 10.1214/aos/1176348139 10.1207/s15327906mbr4002_3 10.1080/01621459.1996.10476680 10.1108/S0731-9053(2013)0000031012 10.1016/j.biopsycho.2013.10.011 10.1002/(ISSN)1097-0258 10.1037/a0017824 10.1111/jep.2012.18.issue-2 10.1111/joes.2011.25.issue-1 10.1080/10705511.2017.1417046 10.3758/s13428-014-0443-5 10.1207/s15328007sem1104_4 10.1037/a0019662 10.1080/10705510701758265 10.2307/1130295 10.1186/s12874-017-0372-y 10.1080/01621459.1993.10594302 10.1093/biomet/63.3.581 10.1017/S0954579412000995 10.1080/00273170701340953 10.1080/01621459.1964.10480730 10.1080/01621459.1996.10476908 10.1093/biostatistics/4.4.495 10.1175/1520-0450(1987)026<1339:AAMTCB>2.0.CO;2 10.1201/b11826 10.2307/271029 10.1214/06-BA122 10.1093/biostatistics/1.4.465 10.1037/0021-843X.112.4.545 10.1037/0033-2909.108.2.267 10.1037/0882-7974.22.4.765 10.1002/9780470024737 10.1037/0033-295X.83.2.141 10.1146/annurev-clinpsy-050212-185608 10.1201/9781420011180 10.2307/2986113 10.1002/cjs.v43.2 10.1177/0962280215598665 10.1002/sim.v31.6 10.1037/met0000145 10.1198/jasa.2010.ap09321 10.1037/0033-2909.116.3.387 10.2307/1912352 |
ContentType | Journal Article |
Copyright | 2019 Taylor & Francis Group, LLC 2019 2019 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2019 Taylor & Francis Group, LLC 2019 – notice: 2019 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION NPM AHOVV 7X8 5PM |
DOI | 10.1080/10705511.2019.1623681 |
DatabaseName | CrossRef PubMed Education Research Index MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-8007 |
EndPage | 467 |
ExternalDocumentID | PMC7323924 32601517 10_1080_10705511_2019_1623681 1623681 |
Genre | Other Journal Article |
GrantInformation_xml | – fundername: Penn State Quantitative Social Sciences Initiative grantid: not applicable – fundername: ntensive Longitudinal Health Behavior Cooperative Agreement Program funded by the National Institutes of Health grantid: Award Number U24AA027684 – fundername: National Center for Advancing Translational Sciences grantid: UL TR000127 funderid: 10.13039/100006108 – fundername: National Science Foundation grantid: IGE-1806874 – fundername: National Institutes of Health grantid: R01GM105004 funderid: 10.13039/100000002 – fundername: NIAAA NIH HHS grantid: U24 AA027684 – fundername: NIGMS NIH HHS grantid: R01 GM105004 |
GroupedDBID | .7I .QK 0BK 0R~ 123 4.4 5VS AAGZJ AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEISY AEKEX AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AGDLA AGMYJ AGRBW AIJEM AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CJ0 CQ1 DGFLZ DKSSO EBS E~B E~C F5P FXNIP G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM LJTGL M4Z NA5 NW- O9- P2P PQQKQ RIG RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TEH TFH TFL TFW TNTFI TRJHH TUROJ UT5 UT9 VAE XSW ~01 ~S~ AAGDL AAHIA AAYXX AEFOU AFRVT AIYEW CITATION TASJS 07M 4B3 AAAVZ AANPH ABVXC ABWZE ACIKQ ACPKE ACRBO ADEWX ADIUE ADXAZ ADYSH AEXSR AIXGP ALLRG AMVHM C5A CAG CBZAQ CKOZC COF C~T DGXZK EFRLQ EGDCR EJD JLMOS L7Y NPM OHT QZZOY RBICI ROL TBH UA1 YHZ AHOVV 7X8 5PM |
ID | FETCH-LOGICAL-c496t-a8bdf556b6356e74e54cc4ea8c0c67412e3c30b337ff2f1418fb62629ffc4bc93 |
ISSN | 1070-5511 |
IngestDate | Thu Aug 21 18:19:53 EDT 2025 Thu Sep 04 23:38:25 EDT 2025 Sun Jul 27 14:18:31 EDT 2025 Mon Jul 21 06:02:22 EDT 2025 Wed Jul 30 11:47:47 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Wed Dec 25 09:08:09 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Intensive longitudinal data Bayesian vector autoregressive model Multiple imputation Nonignorable missing data |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c496t-a8bdf556b6356e74e54cc4ea8c0c67412e3c30b337ff2f1418fb62629ffc4bc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These two authors contributed equally to the work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7323924 |
PMID | 32601517 |
PQID | 2403184143 |
PQPubID | 46559 |
PageCount | 26 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7323924 proquest_miscellaneous_2419085861 pubmed_primary_32601517 crossref_primary_10_1080_10705511_2019_1623681 proquest_journals_2403184143 crossref_citationtrail_10_1080_10705511_2019_1623681 informaworld_taylorfrancis_310_1080_10705511_2019_1623681 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-03 |
PublicationDateYYYYMMDD | 2020-05-03 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hove |
PublicationTitle | Structural equation modeling |
PublicationTitleAlternate | Struct Equ Modeling |
PublicationYear | 2020 |
Publisher | Routledge Psychology Press |
Publisher_xml | – name: Routledge – name: Psychology Press |
References | CIT0072 CIT0071 CIT0030 CIT0073 CIT0032 CIT0031 CIT0034 CIT0033 Fahrenberg J. (CIT0019) 2001 CIT0070 Nesselroade J. R., & Baltes, P.B. (CIT0047) 1979 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 Schweppe F. C. (CIT0063) 1973 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 Ou L. (CIT0048) 2016 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0052 CIT0051 CIT0010 CIT0054 Harvey A. C. (CIT0028) 2001 CIT0012 CIT0056 CIT0011 CIT0055 Stone A. (CIT0065) 2008 R Core Team (CIT0053) 2016 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 van Buuren S. (CIT0068) 2011; 45 CIT0061 CIT0060 CIT0062 CIT0021 CIT0020 CIT0064 CIT0023 CIT0067 CIT0022 CIT0066 Bolger N. (CIT0003) 2013 CIT0025 CIT0069 CIT0024 CIT0027 CIT0026 CIT0029 |
References_xml | – volume-title: Progress in Ambulatory Assessment: Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies year: 2001 ident: CIT0019 – ident: CIT0026 doi: 10.1177/0049124104270220 – ident: CIT0058 doi: 10.1037/1082-989X.7.2.147 – volume-title: Forecasting, structural time series models and the Kalman filter year: 2001 ident: CIT0028 – ident: CIT0024 doi: 10.1007/978-1-4614-4018-5 – ident: CIT0018 doi: 10.1037/0003-066X.44.2.321 – ident: CIT0054 – volume-title: Uncertain dynamic systems year: 1973 ident: CIT0063 – ident: CIT0064 doi: 10.1037/1082-989X.6.4.317 – ident: CIT0044 doi: 10.1007/978-3-540-27752-1 – ident: CIT0061 doi: 10.1016/j.newideapsych.2011.02.007 – year: 2016 ident: CIT0048 publication-title: Multivariate Behavioral Research – ident: CIT0062 doi: 10.1109/TIT.1965.1053737 – ident: CIT0073 doi: 10.1080/00273171.2013.763012 – ident: CIT0040 doi: 10.1093/biomet/81.3.471 – ident: CIT0016 – ident: CIT0071 doi: 10.2307/2531905 – ident: CIT0009 doi: 10.1080/10705511003661553 – ident: CIT0013 doi: 10.1214/aos/1176348139 – ident: CIT0027 doi: 10.1207/s15327906mbr4002_3 – ident: CIT0036 doi: 10.1080/01621459.1996.10476680 – ident: CIT0020 doi: 10.1108/S0731-9053(2013)0000031012 – ident: CIT0005 doi: 10.1016/j.biopsycho.2013.10.011 – ident: CIT0021 doi: 10.1002/(ISSN)1097-0258 – ident: CIT0057 – ident: CIT0007 doi: 10.1037/a0017824 – ident: CIT0031 doi: 10.1111/jep.2012.18.issue-2 – ident: CIT0052 doi: 10.1111/joes.2011.25.issue-1 – ident: CIT0035 doi: 10.1080/10705511.2017.1417046 – ident: CIT0041 doi: 10.3758/s13428-014-0443-5 – ident: CIT0010 doi: 10.1207/s15328007sem1104_4 – volume: 45 start-page: 1 issue: 3 year: 2011 ident: CIT0068 publication-title: Journal of Statistical Software – ident: CIT0060 doi: 10.1037/a0019662 – ident: CIT0070 doi: 10.1080/10705510701758265 – ident: CIT0046 doi: 10.2307/1130295 – ident: CIT0033 doi: 10.1002/(ISSN)1097-0258 – ident: CIT0014 doi: 10.1186/s12874-017-0372-y – ident: CIT0039 doi: 10.1080/01621459.1993.10594302 – volume-title: Intensive longitudinal methods: An introduction to diary and experience sampling research year: 2013 ident: CIT0003 – ident: CIT0055 doi: 10.1093/biomet/63.3.581 – ident: CIT0023 doi: 10.1017/S0954579412000995 – ident: CIT0017 doi: 10.1080/00273170701340953 – ident: CIT0022 doi: 10.1080/01621459.1964.10480730 – ident: CIT0056 doi: 10.1080/01621459.1996.10476908 – ident: CIT0059 doi: 10.1093/biostatistics/4.4.495 – ident: CIT0029 doi: 10.1175/1520-0450(1987)026<1339:AAMTCB>2.0.CO;2 – ident: CIT0067 doi: 10.1201/b11826 – ident: CIT0001 doi: 10.2307/271029 – volume-title: R foundation for statistical computing year: 2016 ident: CIT0053 – volume-title: Longitudinal research in the study of behavior and development year: 1979 ident: CIT0047 – ident: CIT0006 doi: 10.1214/06-BA122 – ident: CIT0032 doi: 10.1093/biostatistics/1.4.465 – ident: CIT0045 – ident: CIT0002 doi: 10.1037/0021-843X.112.4.545 – ident: CIT0049 – ident: CIT0025 doi: 10.1037/0033-2909.108.2.267 – ident: CIT0008 doi: 10.1037/0882-7974.22.4.765 – volume-title: The science of real-time data capture: Self-reports in health research year: 2008 ident: CIT0065 – ident: CIT0038 doi: 10.1002/9780470024737 – ident: CIT0051 – ident: CIT0066 doi: 10.1037/0033-295X.83.2.141 – ident: CIT0004 doi: 10.1146/annurev-clinpsy-050212-185608 – ident: CIT0011 doi: 10.1201/9781420011180 – ident: CIT0015 doi: 10.2307/2986113 – ident: CIT0037 doi: 10.1002/cjs.v43.2 – ident: CIT0072 doi: 10.1177/0962280215598665 – ident: CIT0042 doi: 10.1002/sim.v31.6 – ident: CIT0034 – ident: CIT0043 doi: 10.1037/met0000145 – ident: CIT0069 doi: 10.1198/jasa.2010.ap09321 – ident: CIT0012 doi: 10.1037/0033-2909.116.3.387 – ident: CIT0030 doi: 10.2307/1912352 |
SSID | ssj0018128 |
Score | 2.336907 |
Snippet | Intensive longitudinal designs involving repeated assessments of constructs often face the problems of nonignorable attrition and selected omission of... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 442 |
SubjectTerms | Bayesian analysis Bayesian vector autoregressive model Dependent variables Intensive longitudinal data Missing data Multiple imputation Nonignorable missing data Time series |
Title | A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent Variables and Covariates: Development, Evaluation, and Application to Family Processes |
URI | https://www.tandfonline.com/doi/abs/10.1080/10705511.2019.1623681 https://www.ncbi.nlm.nih.gov/pubmed/32601517 https://www.proquest.com/docview/2403184143 https://www.proquest.com/docview/2419085861 https://pubmed.ncbi.nlm.nih.gov/PMC7323924 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJ6HxgPhPYSAj8dalNLHzx7yVClRN6h6gmyZeosZxRiVIh5YhjU_EN-DrcWc7jjuKBrxUbeKcrN4v5zv77neEvEwLiHviUgRlKaKAV4kIYNHLAsZVJZngooqwwHl-mMyO-MFJfNLr_fSyli6aYiS_b60r-R-twjXQK1bJ_oNmnVC4AN9Bv_AJGobPv9LxZPhmeal0GeSx3n0fTpCSQOkYGlOCsNOZTUM_hJf3tAaFY6nUHP5uWLO0mVvVYHRMJ9xmeAyhM44wzM3T9Tf83Zi8OS-_SFtQxxPeZoBOusNwdGltTw1bimBzFa0f_EHT1mrKD_XVSDFNedqVFJN6VnbT4NK7OLXVJJiN6zaIsYWS1DvhH1dNl3oEmsBzAD3ZrijJbnFE-nR-zDyrDHYpANcu9M22oRSw8GSeDeaGruu3tcEkU6IsFIVZfWIUgveXmJ4xHl7OvmjAMKRbi01p6RVS7vbWDbITpeC09cnO4v3BbOYOsMBvMlWYduZt8Vg2frV1BrvkZitzw0Pa4M_dFgVdTeb1vKPFHXLbhjV0YjB6l_RUfY_cmjtO4PP75MeEtmilBq10E61Uo5UiWqmPVuqhla5q6tBKHVopwI92aH1NPazu0w6p-3qgh1ParKnBKXU4fUCO3r1dTGeB7RMSSC6SJlhmRVnFcVIg16JKuYq5lFwtMzmWCXjMkWKSjcEopRVYnpCHWVVAHB-JqpK8kII9JP16XavHhEqISEqIoCueRbxYSsFZwUNRprKE0KMcDwhvdZNLS6KPvVw-56Hl2m21m6N2c6vdARm5x84Mi8x1Dwhf8Xmjt-8q02snZ9c8u9eiJLfG6jxH2s0w4xAdDcgLdxuWEjwfXNZqfYFjIDrI4iwBEY8MqNxsW3AOSLoBNzcAaeo379SrT5quPmURBGH8yR9lPiW73Vu_R_pggdQzcPWb4rl9rX4BIZ39gg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h7QE4tLy7UMBIHJtVEjsPc1tKq1C6e0DbqrcodmyoWGURm0Vqf1F_JjOJE3YrUA89RUnsyJYnM9_YM98AvE8U-j1RKb2ylKEnbCw9NHqpx4WxmkshbUgJzpNpnJ2K4_PofC0XhsIqyYe2LVFEo6vp56bN6C4kDq_EAROQexfIUYAWPKbs660Iba0_gK3Z1-Ms688S0IS1CXGJ71GvLo_nfx_asFAb_KX_QqE3gynXrNPRDuhuXm1Qyo_RqlYjfXWD8vFuE38E2w68snErbY_hnqmewMNJz_y6fArXY_axuDSUmsnOmhMBNiaaBNP49ahaGVVfmzPa_2VTVCjfKhRCNcfnKAJoR0n1souKfXLVeWt2hu48tVgyHDg7WPyme0TIH9haxNM-O-x5y_ebhuO_R_OsXrC2wgdziRFm-QxOjw5nB5nnqkF4Wsi49opUlTaKYkWMeiYRJhJaC1Ok2tcx4qLQcM19FL3EonwFIkitQm8tlNZqobTkz2FQLSqzC0wj7izRT7IiDYUqtBRciUCWiS4RYJb-EEQnAbl2VOlUsWOeB45RtVuInBYidwsxhFHf7WfLFXJbB7kuXnndbNLYtqJKzm_pu9fJYu7UzjInckV02REDD-Fd_xoVBp0CFZVZrKgNYsA0SmP8xItWdPvRciKYi4JkCMmGUPcNiIx880118b0hJU94iFBbvLzDlN7C_Ww2OclPPk-_vIIHIe1sUGgp34NB_WtlXiP8q9Ub93__AdstT3U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKyE4QHmVhRYGiWOz2sTOw9y2j9VS6AqhtuJmxY4NFatsRbJI8Iv4mZ1JnLBbgXroKUpiR7b8ZR72zDeMvU01-j1xIYOikFEgXCIDVHpZwIV1hkshXUQJziezZHomjr_EXTRh5cMqyYd2LVFEI6vp574sXBcRh1eigAnJuwvlMEQFnlDy9Sb6FjECe_P08_F02h8loAZr8-HSUUC9ujSe_31oTUGt0Zf-ywi9Hku5opwmD5nuptXGpHwfLms9NL-vMT7eat5b7IE3XWHcYu0Ru2PLx-z-Sc_7Wj1hf8awn_-ylJgJ5815AIyJJME2Xj0KVqDaa3Og3V-YoTj5WiIE9RyfIwBQi5LghYsSDn1t3hrO0ZmnFhXguOFg8ZPu0T5-ByvxTntw1LOW7zUNx38P5qFeQFvfA3xahK2esrPJ0enBNPC1IAIjZFIHeaYLF8eJJj49mwobC2OEzTMzMglaRZHlho8QeKlDdIUizJxGXy2SzhmhjeTP2Ea5KO1zBgatzgK9JCeySOjcSMG1CGWRmgLNy2I0YKIDgDKeKJ3qdcxV6PlUu4VQtBDKL8SADftuly1TyE0d5Cq6VN1s0bi2noriN_Td6aCovNCpFFErosOOFvCAvelfo7igM6C8tIsltUELMIuzBD-x3SK3Hy0nerk4TAcsXcN034CoyNfflBffGkrylEdoaIsXt5jSa3b30-FEfXw_-_CS3YtoW4PiSvkO26h_LO0u2n61fuX_7iudpE4i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Vector+Autoregressive+Model+with+Nonignorable+Missingness+in+Dependent+Variables+and+Covariates%3A+Development%2C+Evaluation%2C+and+Application+to+Family+Processes&rft.jtitle=Structural+equation+modeling&rft.au=Ji%2C+Linying&rft.au=Chen%2C+Meng&rft.au=Oravecz%2C+Zita&rft.au=Cummings%2C+E+Mark&rft.date=2020-05-03&rft.issn=1070-5511&rft.volume=27&rft.issue=3&rft.spage=442&rft_id=info:doi/10.1080%2F10705511.2019.1623681&rft_id=info%3Apmid%2F32601517&rft.externalDocID=32601517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5511&client=summon |