Complex background suppression for vibro-acoustography images

•Complex background suppression (CBS) uses the complex acoustic emission data.•CBS suppresses the background contribution of the images.•Images have enhanced contrast and better ability to separate object depth.•CBS was applied to sphere and breast phantom images and in vivo breast images.•The CBS m...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics Vol. 56; pp. 456 - 472
Main Authors Urban, Matthew W., Wang, Chenyi, Alizad, Azra, Fatemi, Mostafa
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2015
Subjects
Online AccessGet full text
ISSN0041-624X
1874-9968
1874-9968
DOI10.1016/j.ultras.2014.09.014

Cover

Abstract •Complex background suppression (CBS) uses the complex acoustic emission data.•CBS suppresses the background contribution of the images.•Images have enhanced contrast and better ability to separate object depth.•CBS was applied to sphere and breast phantom images and in vivo breast images.•The CBS method is a fast, linear approach to improve vibro-acoustography images. Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2–12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.
AbstractList Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.
Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.
Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W × W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1-5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.
Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.
•Complex background suppression (CBS) uses the complex acoustic emission data.•CBS suppresses the background contribution of the images.•Images have enhanced contrast and better ability to separate object depth.•CBS was applied to sphere and breast phantom images and in vivo breast images.•The CBS method is a fast, linear approach to improve vibro-acoustography images. Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2–12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.
Author Alizad, Azra
Wang, Chenyi
Urban, Matthew W.
Fatemi, Mostafa
AuthorAffiliation 2 Department of Bioengineering University of Washington Seattle, WA 98105
1 Department of Physiology and Biomedical Engineering Mayo Clinic College of Medicine Rochester, MN 55905
AuthorAffiliation_xml – name: 1 Department of Physiology and Biomedical Engineering Mayo Clinic College of Medicine Rochester, MN 55905
– name: 2 Department of Bioengineering University of Washington Seattle, WA 98105
Author_xml – sequence: 1
  givenname: Matthew W.
  surname: Urban
  fullname: Urban, Matthew W.
  email: urban.matthew@mayo.edu
  organization: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
– sequence: 2
  givenname: Chenyi
  surname: Wang
  fullname: Wang, Chenyi
  organization: Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
– sequence: 3
  givenname: Azra
  surname: Alizad
  fullname: Alizad, Azra
  organization: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
– sequence: 4
  givenname: Mostafa
  surname: Fatemi
  fullname: Fatemi, Mostafa
  organization: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25304993$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuP0zAUhS00iOkM_AOEsmST4HdsJJBQxUsaiQ1I7CzHuem4pHawk0L_Pa46PBeoq7vwd46Oz7lCFyEGQOgxwQ3BRD7bNss4J5sbiglvsG7KuYdWRLW81lqqC7TCmJNaUv75El3lvMWFUIQ9QJdUMMy1Ziv0Yh130wjfq866L5sUl9BXeZmmBDn7GKohpmrvuxRr6-KS57hJdro9VH5nN5AfovuDHTM8urvX6NOb1x_X7-qbD2_fr1_d1I5rOdeaY-Isk45a6gYA3GLBWqYccGU7KixvuSSdlaBtP_RCi24gspeaYaKcdOwaiZPvEiZ7-GbH0UypREgHQ7A51mG25lSHOdZhsDblFN3Lk25auh30DkJBfmuj9ebvl-BvzSbuDaeCKq6LwdM7gxS_LpBns_PZwTjaAKUOQ6TUiishxBko47TFUhxdn_wZ61een7MUgJ8Al2LOCYZzv_v8H5nzs53LjgX145ldQRly7yGZ7DwEB71P4GbTR_9_gx-3kM5g
CitedBy_id crossref_primary_10_1016_j_apacoust_2017_05_022
crossref_primary_10_12677_ACM_2024_142538
Cites_doi 10.1016/j.ultras.2006.06.021
10.1177/016173460402600101
10.1088/0031-9155/45/6/304
10.1097/RLI.0b013e31816085fc
10.1016/j.ultras.2011.02.001
10.1109/TUFFC.2010.1551
10.1121/1.1915719
10.2174/157340511798038648
10.1109/TMI.2006.882142
10.1186/1471-2342-13-12
10.1063/1.2130515
10.1186/bcr3323
10.1073/pnas.96.12.6603
10.1109/TUFFC.2005.1561663
10.1109/TUFFC.2011.1927
10.1016/j.ultras.2008.10.011
10.1118/1.4773890
10.1109/TBME.2008.2001284
10.1088/0031-9155/56/18/013
10.1109/TMI.2004.828674
10.1016/j.compmedimag.2006.08.001
10.1109/TMI.2004.824241
10.1063/1.2211187
10.1109/58.139123
10.1109/TUFFC.2004.1320787
10.1126/science.280.5360.82
10.1121/1.1908830
10.1103/PhysRevLett.96.234301
10.1109/42.981229
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright © 2014 Elsevier B.V. All rights reserved.
2014 Elsevier B.V. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
– notice: 2014 Elsevier B.V. All rights reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SP
7U5
8FD
H8D
L7M
5PM
ADTOC
UNPAY
DOI 10.1016/j.ultras.2014.09.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Mathematics
EISSN 1874-9968
EndPage 472
ExternalDocumentID oai:pubmedcentral.nih.gov:4252849
PMC4252849
25304993
10_1016_j_ultras_2014_09_014
S0041624X14002789
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01CA168575
– fundername: NCI NIH HHS
  grantid: R01CA148994
– fundername: NCI NIH HHS
  grantid: R01 CA127235
– fundername: NCI NIH HHS
  grantid: R01 CA168575
– fundername: NCI NIH HHS
  grantid: R01CA127235
– fundername: NCI NIH HHS
  grantid: P50 CA091956
– fundername: NCI NIH HHS
  grantid: R21 CA121579
– fundername: NCI NIH HHS
  grantid: P50CA91956
– fundername: NCI NIH HHS
  grantid: R01 CA148994
– fundername: NCI NIH HHS
  grantid: R21CA121579
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SP
7U5
8FD
H8D
L7M
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c496t-9401ca36c2a2cfee07053738ce48ab25a47461ba6e9adfd595bf16d693018c6c3
IEDL.DBID UNPAY
ISSN 0041-624X
1874-9968
IngestDate Sun Oct 26 01:31:10 EDT 2025
Tue Sep 30 15:31:59 EDT 2025
Thu Oct 02 07:42:32 EDT 2025
Thu Oct 02 07:43:55 EDT 2025
Mon Jul 21 05:50:43 EDT 2025
Wed Oct 01 01:43:33 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Fri Feb 23 02:36:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Acoustic emission
Vibro-acoustography
Ultrasound
Parametric mixing
Complex
Language English
License Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-9401ca36c2a2cfee07053738ce48ab25a47461ba6e9adfd595bf16d693018c6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4252849
PMID 25304993
PQID 1634270659
PQPubID 23479
PageCount 17
ParticipantIDs unpaywall_primary_10_1016_j_ultras_2014_09_014
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4252849
proquest_miscellaneous_1669848555
proquest_miscellaneous_1634270659
pubmed_primary_25304993
crossref_primary_10_1016_j_ultras_2014_09_014
crossref_citationtrail_10_1016_j_ultras_2014_09_014
elsevier_sciencedirect_doi_10_1016_j_ultras_2014_09_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics
PublicationTitleAlternate Ultrasonics
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Silva, Mitri (b0075) 2011; 56
Thierman (b0095) 2004
J.A. Jensen, Field: a program for simulating ultrasound systems, in: 10th Nordic–Baltic Conference on Biomedical Imaging, Medical & Biological Engineering & Computing, 1996, pp. 351–353.
Fatemi, Greenleaf (b0010) 1999; 96
Urban, Silva, Fatemi, Greenleaf (b0140) 2006; 25
Fatemi, Greenleaf (b0070) 2000; 45
Fatemi, Wold, Alizad, Greenleaf (b0160) 2002; 21
Alizad, Wold, Greenleaf, Fatemi (b0050) 2004; 23
Alizad, Fatemi, Wold, Greenleaf (b0020) 2004; 23
Urban, Alizad, Aquino, Greenleaf, Fatemi (b0065) 2011; 7
Silva, Frery, Fatemi (b0115) 2006; 30
Mitri, Fatemi (b0055) 2005; 98
Silva, Chen, Frery, Greenleaf, Fatemi (b0135) 2005; 52
Alizad, Whaley, Urban, Carter, Kinnick, Greenleaf, Fatemi (b0025) 2012; 14
Silva, Greenleaf, Fatemi (b0125) 2004; 26
Alizad, Whaley, Greenleaf, Fatemi (b0155) 2006; 44
Alizad, Mehrmohammadi, Mitri, Davis, Sebo, Mynderse, Kinnick, Greenleaf, Fatemi (b0045) 2013; 40
Urban, Chalek, Kinnick, Kinter, Haider, Greenleaf, Thomenius, Fatemi (b0145) 2011; 58
Bracewell (b0165) 2000
Chen, Fatemi, Kinnick, Greenleaf (b0130) 2004; 51
Hooi, Thomenius, Fisher, Carson (b0150) 2010; 57
Silva, Chen, Viana (b0090) 2006; 96
Barriere (b0170) 2001
Mitri, Eberlein, Fatemi (b0060) 2006; 88
Alizad, Urban, Morris, Reading, Kinnick, Greenleaf, Fatemi (b0030) 2013; 13
Mitri, Davis, Urban, Alizad, Greenleaf, Lischer, Wilson, Fatemi (b0040) 2009; 49
Urban, Alizad, Fatemi (b0120) 2011; 51
Thuras, Jenkins, O’Neil (b0080) 1935; 6
Pislaru, Kantor, Kinnick, Anderson, Aubry, Urban, Fatemi, Greenleaf (b0015) 2008; 43
Mitri, Davis, Alizad, Greenleaf, Wilson, Mynderse, Fatemi (b0035) 2008; 55
Jensen, Svendsen (b0105) 1992; 39
Westervelt (b0085) 1957; 29
Fatemi, Greenleaf (b0005) 1998; 280
Alizad (10.1016/j.ultras.2014.09.014_b0155) 2006; 44
10.1016/j.ultras.2014.09.014_b0110
Silva (10.1016/j.ultras.2014.09.014_b0125) 2004; 26
Urban (10.1016/j.ultras.2014.09.014_b0065) 2011; 7
Alizad (10.1016/j.ultras.2014.09.014_b0020) 2004; 23
Mitri (10.1016/j.ultras.2014.09.014_b0035) 2008; 55
Silva (10.1016/j.ultras.2014.09.014_b0090) 2006; 96
Fatemi (10.1016/j.ultras.2014.09.014_b0070) 2000; 45
Chen (10.1016/j.ultras.2014.09.014_b0130) 2004; 51
Alizad (10.1016/j.ultras.2014.09.014_b0030) 2013; 13
Mitri (10.1016/j.ultras.2014.09.014_b0060) 2006; 88
Westervelt (10.1016/j.ultras.2014.09.014_b0085) 1957; 29
Bracewell (10.1016/j.ultras.2014.09.014_b0165) 2000
Urban (10.1016/j.ultras.2014.09.014_b0120) 2011; 51
Silva (10.1016/j.ultras.2014.09.014_b0075) 2011; 56
Thierman (10.1016/j.ultras.2014.09.014_b0095) 2004
Jensen (10.1016/j.ultras.2014.09.014_b0105) 1992; 39
Urban (10.1016/j.ultras.2014.09.014_b0140) 2006; 25
Alizad (10.1016/j.ultras.2014.09.014_b0050) 2004; 23
Mitri (10.1016/j.ultras.2014.09.014_b0055) 2005; 98
Urban (10.1016/j.ultras.2014.09.014_b0145) 2011; 58
Thuras (10.1016/j.ultras.2014.09.014_b0080) 1935; 6
Alizad (10.1016/j.ultras.2014.09.014_b0045) 2013; 40
Silva (10.1016/j.ultras.2014.09.014_b0115) 2006; 30
Mitri (10.1016/j.ultras.2014.09.014_b0040) 2009; 49
Hooi (10.1016/j.ultras.2014.09.014_b0150) 2010; 57
Fatemi (10.1016/j.ultras.2014.09.014_b0005) 1998; 280
Barriere (10.1016/j.ultras.2014.09.014_b0170) 2001
Fatemi (10.1016/j.ultras.2014.09.014_b0010) 1999; 96
Pislaru (10.1016/j.ultras.2014.09.014_b0015) 2008; 43
Alizad (10.1016/j.ultras.2014.09.014_b0025) 2012; 14
Silva (10.1016/j.ultras.2014.09.014_b0135) 2005; 52
Fatemi (10.1016/j.ultras.2014.09.014_b0160) 2002; 21
21860078 - Phys Med Biol. 2011 Sep 21;56(18):5985-93
23530993 - BMC Med Imaging. 2013;13:12
10870703 - Phys Med Biol. 2000 Jun;45(6):1449-64
21693399 - IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1169-81
16949793 - Comput Med Imaging Graph. 2006 Jul;30(5):321-7
17024832 - IEEE Trans Med Imaging. 2006 Oct;25(10):1284-95
10359758 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6603-8
9525861 - Science. 1998 Apr 3;280(5360):82-5
15027523 - IEEE Trans Med Imaging. 2004 Mar;23(3):307-12
19062061 - Ultrasonics. 2009 Mar;49(3):389-94
18990628 - IEEE Trans Biomed Eng. 2008 Nov;55(11):2584-92
16422406 - IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):1943-51
15128218 - IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Mar;51(3):313-21
18340248 - Invest Radiol. 2008 Apr;43(4):243-52
16803380 - Phys Rev Lett. 2006 Jun 16;96(23):234301
11838661 - IEEE Trans Med Imaging. 2002 Jan;21(1):1-8
23387773 - Med Phys. 2013 Feb;40(2):022902
16843513 - Ultrasonics. 2006 Dec 22;44 Suppl 1:e217-20
15134390 - Ultrason Imaging. 2004 Jan;26(1):1-17
23021305 - Breast Cancer Res. 2012;14(5):R128
18263145 - IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7
22423235 - Curr Med Imaging Rev. 2011 Nov 1;7(4):350-359
15377117 - IEEE Trans Med Imaging. 2004 Sep;23(9):1087-93
21377181 - Ultrasonics. 2011 Aug;51(6):689-96
20529707 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1311-9
References_xml – volume: 39
  start-page: 262
  year: 1992
  end-page: 267
  ident: b0105
  article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– reference: J.A. Jensen, Field: a program for simulating ultrasound systems, in: 10th Nordic–Baltic Conference on Biomedical Imaging, Medical & Biological Engineering & Computing, 1996, pp. 351–353.
– volume: 29
  start-page: 199
  year: 1957
  end-page: 203
  ident: b0085
  article-title: Scattering of sound by sound
  publication-title: J. Acoust. Soc. Am.
– volume: 57
  start-page: 1311
  year: 2010
  end-page: 1319
  ident: b0150
  article-title: Hybrid beamforming and steering with reconfigurable arrays
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 14
  start-page: R128
  year: 2012
  ident: b0025
  article-title: Breast vibro-acoustography: initial results show promise
  publication-title: Breast Cancer Res.
– volume: 96
  year: 2006
  ident: b0090
  article-title: Parametric amplification of the dynamic radiation force of acoustic waves in fluids
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 6603
  year: 1999
  end-page: 6608
  ident: b0010
  article-title: Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 173
  year: 1935
  end-page: 180
  ident: b0080
  article-title: Extraneous frequencies generated in air carrying intense sound waves
  publication-title: J. Acoust. Soc. Am.
– volume: 58
  start-page: 1169
  year: 2011
  end-page: 1181
  ident: b0145
  article-title: Implementation of vibro-acoustography on a clinical ultrasound system
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 49
  start-page: 389
  year: 2009
  end-page: 394
  ident: b0040
  article-title: Vibro-acoustography imaging of permanent prostate brachytherapy seeds in an excised human prostate – preliminary results and technical feasibility
  publication-title: Ultrasonics
– volume: 45
  start-page: 1449
  year: 2000
  end-page: 1464
  ident: b0070
  article-title: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound
  publication-title: Phys. Med. Biol.
– volume: 30
  start-page: 321
  year: 2006
  end-page: 327
  ident: b0115
  article-title: Image formation in vibro-acoustography with depth-of-field effects
  publication-title: Comput. Med. Imaging Graph.
– year: 2000
  ident: b0165
  article-title: The Fourier Transform and its Applications
– volume: 280
  start-page: 82
  year: 1998
  end-page: 85
  ident: b0005
  article-title: Ultrasound-stimulated vibro-acoustic spectrography
  publication-title: Science
– volume: 23
  start-page: 307
  year: 2004
  end-page: 312
  ident: b0020
  article-title: Performance of vibro-acoustography in detecting microcalcifications in excised human breast tissue: a study of 74 tissue samples
  publication-title: IEEE Trans. Med. Imaging
– volume: 56
  start-page: 5985
  year: 2011
  end-page: 5993
  ident: b0075
  article-title: Difference-frequency generation in vibro-acoustography
  publication-title: Phys. Med. Biol.
– volume: 44
  start-page: e217
  year: 2006
  end-page: e220
  ident: b0155
  article-title: Critical issues in breast imaging by vibro-acoustography
  publication-title: Ultrasonics
– volume: 88
  start-page: 234105
  year: 2006
  ident: b0060
  article-title: Surface roughness imaging using the acoustic emission induced by the dynamic radiation force of ultrasound
  publication-title: Appl. Phys. Lett.
– year: 2001
  ident: b0170
  article-title: Effet de la diffraction sur l’interaction paramétrique d’ondes acoustiques. Application à la mesure de paramètres de non linéarité et de champs acoustiques
  publication-title: Physique Macroscopique
– volume: 23
  start-page: 1087
  year: 2004
  end-page: 1093
  ident: b0050
  article-title: Imaging mass lesions by vibro-acoustography: modeling and experiments
  publication-title: IEEE Trans. Med. Imaging
– volume: 43
  start-page: 243
  year: 2008
  end-page: 252
  ident: b0015
  article-title: In vivo vibroacoustography of large peripheral arteries
  publication-title: Invest. Radiol.
– volume: 98
  start-page: 114901
  year: 2005
  ident: b0055
  article-title: Improved vibroacoustography imaging for nondestructive inspection of materials
  publication-title: J. Appl. Phys.
– volume: 51
  start-page: 313
  year: 2004
  end-page: 321
  ident: b0130
  article-title: Comparison of stress field forming methods for vibro-acoustography
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 51
  start-page: 689
  year: 2011
  end-page: 696
  ident: b0120
  article-title: Vibro-acoustography and multifrequency image compounding
  publication-title: Ultrasonics
– volume: 21
  start-page: 1
  year: 2002
  end-page: 8
  ident: b0160
  article-title: Vibro-acoustic tissue mammography
  publication-title: IEEE Trans. Med. Imaging
– volume: 55
  start-page: 2584
  year: 2008
  end-page: 2592
  ident: b0035
  article-title: Prostate cryotherapy monitoring using vibroacoustography: preliminary results of an ex vivo study and technical feasibility
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 7
  start-page: 350
  year: 2011
  end-page: 359
  ident: b0065
  article-title: A review of vibro-acoustography and its applications in medicine
  publication-title: Curr. Med. Imaging Rev.
– volume: 13
  start-page: 12
  year: 2013
  ident: b0030
  article-title: In vivo thyroid vibro-acoustography: a pilot study
  publication-title: BMC Med. Imaging
– year: 2004
  ident: b0095
  article-title: Sources of Difference Frequency Sound in a Dual-Frequency Imaging System with Implications in Monitoring Thermal Surgery
– volume: 26
  start-page: 1
  year: 2004
  end-page: 17
  ident: b0125
  article-title: Linear arrays for vibro-acoustography: a numerical simulation study
  publication-title: Ultrason. Imaging
– volume: 25
  start-page: 1284
  year: 2006
  end-page: 1295
  ident: b0140
  article-title: Multifrequency vibro-acoustography
  publication-title: IEEE Trans. Med. Imaging
– volume: 40
  start-page: 022902
  year: 2013
  ident: b0045
  article-title: Application of vibro-acoustography in prostate tissue imaging
  publication-title: Med. Phys.
– volume: 52
  start-page: 1943
  year: 2005
  end-page: 1951
  ident: b0135
  article-title: Stress field forming of sector array transducers for vibro-acoustography
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 44
  start-page: e217
  issue: Suppl. 1
  year: 2006
  ident: 10.1016/j.ultras.2014.09.014_b0155
  article-title: Critical issues in breast imaging by vibro-acoustography
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2006.06.021
– volume: 26
  start-page: 1
  year: 2004
  ident: 10.1016/j.ultras.2014.09.014_b0125
  article-title: Linear arrays for vibro-acoustography: a numerical simulation study
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173460402600101
– year: 2004
  ident: 10.1016/j.ultras.2014.09.014_b0095
– volume: 45
  start-page: 1449
  year: 2000
  ident: 10.1016/j.ultras.2014.09.014_b0070
  article-title: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/6/304
– volume: 43
  start-page: 243
  year: 2008
  ident: 10.1016/j.ultras.2014.09.014_b0015
  article-title: In vivo vibroacoustography of large peripheral arteries
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0b013e31816085fc
– volume: 51
  start-page: 689
  year: 2011
  ident: 10.1016/j.ultras.2014.09.014_b0120
  article-title: Vibro-acoustography and multifrequency image compounding
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2011.02.001
– volume: 57
  start-page: 1311
  year: 2010
  ident: 10.1016/j.ultras.2014.09.014_b0150
  article-title: Hybrid beamforming and steering with reconfigurable arrays
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2010.1551
– volume: 6
  start-page: 173
  year: 1935
  ident: 10.1016/j.ultras.2014.09.014_b0080
  article-title: Extraneous frequencies generated in air carrying intense sound waves
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1915719
– volume: 7
  start-page: 350
  year: 2011
  ident: 10.1016/j.ultras.2014.09.014_b0065
  article-title: A review of vibro-acoustography and its applications in medicine
  publication-title: Curr. Med. Imaging Rev.
  doi: 10.2174/157340511798038648
– volume: 25
  start-page: 1284
  year: 2006
  ident: 10.1016/j.ultras.2014.09.014_b0140
  article-title: Multifrequency vibro-acoustography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882142
– volume: 13
  start-page: 12
  year: 2013
  ident: 10.1016/j.ultras.2014.09.014_b0030
  article-title: In vivo thyroid vibro-acoustography: a pilot study
  publication-title: BMC Med. Imaging
  doi: 10.1186/1471-2342-13-12
– volume: 98
  start-page: 114901
  year: 2005
  ident: 10.1016/j.ultras.2014.09.014_b0055
  article-title: Improved vibroacoustography imaging for nondestructive inspection of materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2130515
– volume: 14
  start-page: R128
  year: 2012
  ident: 10.1016/j.ultras.2014.09.014_b0025
  article-title: Breast vibro-acoustography: initial results show promise
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr3323
– year: 2000
  ident: 10.1016/j.ultras.2014.09.014_b0165
– volume: 96
  start-page: 6603
  year: 1999
  ident: 10.1016/j.ultras.2014.09.014_b0010
  article-title: Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.12.6603
– volume: 52
  start-page: 1943
  year: 2005
  ident: 10.1016/j.ultras.2014.09.014_b0135
  article-title: Stress field forming of sector array transducers for vibro-acoustography
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2005.1561663
– volume: 58
  start-page: 1169
  year: 2011
  ident: 10.1016/j.ultras.2014.09.014_b0145
  article-title: Implementation of vibro-acoustography on a clinical ultrasound system
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2011.1927
– volume: 49
  start-page: 389
  year: 2009
  ident: 10.1016/j.ultras.2014.09.014_b0040
  article-title: Vibro-acoustography imaging of permanent prostate brachytherapy seeds in an excised human prostate – preliminary results and technical feasibility
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2008.10.011
– volume: 40
  start-page: 022902
  year: 2013
  ident: 10.1016/j.ultras.2014.09.014_b0045
  article-title: Application of vibro-acoustography in prostate tissue imaging
  publication-title: Med. Phys.
  doi: 10.1118/1.4773890
– volume: 55
  start-page: 2584
  year: 2008
  ident: 10.1016/j.ultras.2014.09.014_b0035
  article-title: Prostate cryotherapy monitoring using vibroacoustography: preliminary results of an ex vivo study and technical feasibility
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2001284
– volume: 56
  start-page: 5985
  year: 2011
  ident: 10.1016/j.ultras.2014.09.014_b0075
  article-title: Difference-frequency generation in vibro-acoustography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/18/013
– volume: 23
  start-page: 1087
  year: 2004
  ident: 10.1016/j.ultras.2014.09.014_b0050
  article-title: Imaging mass lesions by vibro-acoustography: modeling and experiments
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.828674
– ident: 10.1016/j.ultras.2014.09.014_b0110
– volume: 30
  start-page: 321
  year: 2006
  ident: 10.1016/j.ultras.2014.09.014_b0115
  article-title: Image formation in vibro-acoustography with depth-of-field effects
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2006.08.001
– volume: 23
  start-page: 307
  year: 2004
  ident: 10.1016/j.ultras.2014.09.014_b0020
  article-title: Performance of vibro-acoustography in detecting microcalcifications in excised human breast tissue: a study of 74 tissue samples
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.824241
– volume: 88
  start-page: 234105
  year: 2006
  ident: 10.1016/j.ultras.2014.09.014_b0060
  article-title: Surface roughness imaging using the acoustic emission induced by the dynamic radiation force of ultrasound
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2211187
– volume: 39
  start-page: 262
  year: 1992
  ident: 10.1016/j.ultras.2014.09.014_b0105
  article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.139123
– year: 2001
  ident: 10.1016/j.ultras.2014.09.014_b0170
  article-title: Effet de la diffraction sur l’interaction paramétrique d’ondes acoustiques. Application à la mesure de paramètres de non linéarité et de champs acoustiques
– volume: 51
  start-page: 313
  year: 2004
  ident: 10.1016/j.ultras.2014.09.014_b0130
  article-title: Comparison of stress field forming methods for vibro-acoustography
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2004.1320787
– volume: 280
  start-page: 82
  year: 1998
  ident: 10.1016/j.ultras.2014.09.014_b0005
  article-title: Ultrasound-stimulated vibro-acoustic spectrography
  publication-title: Science
  doi: 10.1126/science.280.5360.82
– volume: 29
  start-page: 199
  year: 1957
  ident: 10.1016/j.ultras.2014.09.014_b0085
  article-title: Scattering of sound by sound
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1908830
– volume: 96
  year: 2006
  ident: 10.1016/j.ultras.2014.09.014_b0090
  article-title: Parametric amplification of the dynamic radiation force of acoustic waves in fluids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.234301
– volume: 21
  start-page: 1
  year: 2002
  ident: 10.1016/j.ultras.2014.09.014_b0160
  article-title: Vibro-acoustic tissue mammography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.981229
– reference: 22423235 - Curr Med Imaging Rev. 2011 Nov 1;7(4):350-359
– reference: 16803380 - Phys Rev Lett. 2006 Jun 16;96(23):234301
– reference: 23530993 - BMC Med Imaging. 2013;13:12
– reference: 19062061 - Ultrasonics. 2009 Mar;49(3):389-94
– reference: 15134390 - Ultrason Imaging. 2004 Jan;26(1):1-17
– reference: 11838661 - IEEE Trans Med Imaging. 2002 Jan;21(1):1-8
– reference: 10870703 - Phys Med Biol. 2000 Jun;45(6):1449-64
– reference: 16422406 - IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):1943-51
– reference: 23387773 - Med Phys. 2013 Feb;40(2):022902
– reference: 15377117 - IEEE Trans Med Imaging. 2004 Sep;23(9):1087-93
– reference: 17024832 - IEEE Trans Med Imaging. 2006 Oct;25(10):1284-95
– reference: 15128218 - IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Mar;51(3):313-21
– reference: 20529707 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1311-9
– reference: 15027523 - IEEE Trans Med Imaging. 2004 Mar;23(3):307-12
– reference: 18990628 - IEEE Trans Biomed Eng. 2008 Nov;55(11):2584-92
– reference: 16949793 - Comput Med Imaging Graph. 2006 Jul;30(5):321-7
– reference: 23021305 - Breast Cancer Res. 2012;14(5):R128
– reference: 10359758 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6603-8
– reference: 16843513 - Ultrasonics. 2006 Dec 22;44 Suppl 1:e217-20
– reference: 21860078 - Phys Med Biol. 2011 Sep 21;56(18):5985-93
– reference: 21377181 - Ultrasonics. 2011 Aug;51(6):689-96
– reference: 18340248 - Invest Radiol. 2008 Apr;43(4):243-52
– reference: 18263145 - IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7
– reference: 9525861 - Science. 1998 Apr 3;280(5360):82-5
– reference: 21693399 - IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1169-81
SSID ssj0014813
Score 2.0828722
Snippet •Complex background suppression (CBS) uses the complex acoustic emission data.•CBS suppresses the background contribution of the images.•Images have enhanced...
Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 456
SubjectTerms Acoustic emission
Algorithms
Breast
Complex
Elasticity Imaging Techniques - methods
Filtering
Focal plane
Humans
Image contrast
Inclusions
Mathematics
Models, Theoretical
Parametric mixing
Phantoms, Imaging
Transducers
Ultrasonography, Mammary
Ultrasound
Vibro-acoustography
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQEmp7qIA-gNIqlXo1rBPbWR8rBEJI5QTS3qzxI-q2aYjYDZQLv52ZvMQKtVQ9RUkmiTO2x581M98w9iXIQhtA5KZlEbhUHjjIkHIRAdeHEHLXcnd-O9enl_JspmZr7GjIhaGwyt72dza9tdb9lcNem4f1fE45vggmUjnDLQK5zyiJT8qcqhgc3I9hHoj2Re9lFpykh_S5NsarKZfXQKTdomM7FfJPy9NT-Pk0ivJFU9Vwdwtl-WiJOtlkr3tsmXztmr_F1mK1zV49YhzcZhttxKdfvGGUGlKX8XfiwP-k3I4qJIum7uNiqwTBbHKDe-krjjazQYjYUVsn819ogRZv2eXJ8cXRKe9rKXAvjV5yg_soD5n2KaS-iBFnuiJSIx_lFFyqQOZSCwc6GghFUEa5QuhAhRLF1GufvWPr1VUVd1giwXmXQdReZzJkAXBHiG92E-FC7idql2WDCq3vicap3kVph4iyH7ZTvCXF24mxeNhlfHyq7og2npHPh96xKwPG4lrwzJOfh860OJfIQQJVRE1axKYyJb-v-ZuMNlNi1MH_fN8NgLG9qSKnpcmwbStDYxQgLu_VO9X8e8vpjaYTgQJ-92AcRP-khr3_VsMH9hLPVBeBvs_Wl9dN_IgAa-k-tTPoAYdtJus
  priority: 102
  providerName: Elsevier
Title Complex background suppression for vibro-acoustography images
URI https://dx.doi.org/10.1016/j.ultras.2014.09.014
https://www.ncbi.nlm.nih.gov/pubmed/25304993
https://www.proquest.com/docview/1634270659
https://www.proquest.com/docview/1669848555
https://pubmed.ncbi.nlm.nih.gov/PMC4252849
https://www.ncbi.nlm.nih.gov/pmc/articles/4252849
UnpaywallVersion submittedVersion
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aWiHggcu4lUsVJF6T1YntJo8VYiogKoSoVJ4s3yLK0ixaE24P_HaO46TamGDsKYpsR7F9fPwdnc-fAV4YmvNMInLjNDchZVqGkpo4JFbi_mDMVLXane8WfL6kb1ZstQekPwvTkva1WkdlsYnK9eeWW1lt9GHPEztEI0OXmu3DkDOE3wMYLhfvZ598JpmEPKYrF2SlUxoilk_743Itp6sp6lPpRLqJVzcl9G_b0UW4eZE1eb0pK_njmyyKM1vS0W340HfGM1GOo6ZWkf75h87jlXp7B251ADWY-aK7sGfLA7h5RrbwAK61tFG9vQfufElV2O-BkvrYHRApTbBtqo5cWwaIiIOvGJCfhOh4G8SZXh87WG_QjW3vw_Lo1ceX87C7kCHUNON1mGEwpmXCdSxjnVuL7oI5ZSRtaSpVzCSdUk6U5DaTJjcsYyon3LjbFkmquU4ewKA8Ke0jCKhUWiXScs0TahIjMazEL6sJUWaqJ2wEST8vQndq5e7SjEL0tLQvws-mcLMpJpnAxwjCXavKq3VcUn_aT7noEIdHEgI3lEtaPu8tROCCdFkWWVocSYEAl8YueZz9qw7PUifLg_186K1q978xc5nPLMF_O2dvuwpOEPx8CVpOKwzeGcsIop1l_tcwPL5qgydwA9-YZ68_hUF92thnCM5qNYb96BcZw3D2-u18Me4W52_pXT6w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQ4ICiPlmeQuLpdJ7azPqKKaoG2p1bamzV-RCyENOpuClz47YzzUlcVFHGKlIwTZ2yPv9HMfAZ460WhNBJyU6LwTEiHDIVPGQ9I-4P3uW25O49P1OxMfJzL-QYcDLUwMa2yt_2dTW-tdX9nv9fmfr1YxBpfAhOpmJOLEMNn-hbcFjLNowe292vM8yC4z_swM2dRfKifa5O8mnJ1gZG1m3d0p1z8aX-6jj-vp1FuNVWNP79jWV7Zow4fwP0eXCbvuv4_hI1QbcO9K5SD23CnTfl0y0cQa0PqMvxILLqvsbij8smyqfvE2CohNJtckjN9zshoNoQRO27rZPGNTNDyMZwdvj89mLH-MAXmhFYrpsmRcpgpl2LqihBoqcvIauSCmKJNJYpcKG5RBY2-8FJLW3Dl40mJfOqUy57AZnVehR1IBFpnMwzKqUz4zCO5hPRmO-HW524idyEbVGhczzQeD7wozZBS9sV0ijdR8WaiDV12gY2t6o5p4wb5fBgdszZjDG0GN7R8MwymocUUIyRYBdKkIXAq0hj41X-TUXoaKXXoP592E2Dsbypj1FJn1Le1qTEKRDLv9SfV4nNL6k22k5ACfXdvnET_pIZn_62G17A1Oz0-MkcfTj49h7v0RHbp6C9gc3XRhJeEtlb2VbuafgNeBCoO
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4FFey0tB4up0k9hOfKwQVYVEhRArLSfLr4hts2nUTVrg1zOOk1VLBaWnKLIdxfZ4_I3m82eAd5aWXChEbpyWllBmFFHUpiRxCvcHa3Pda3d-OuQHc_pxwRZbkIxnYXrSvtHLuK5Wcb383nMrm5XZHXliu2hk6FLFLdjmDOH3BLbnh5_3voVMckJ4Shc-yCpyShDLF-NxuZ7T1VXtqfIi3UlQN03o37ajq3DzKmvyTlc36ue5qqoLW9L-A_gydiYwUY7jrtWx-fWHzuONevsQ7g8ANdoLRY9gy9U7cO-CbOEO3O5po2b9GPz5kqZyPyKtzLE_IFLbaN01A7m2jhARR2cYkJ8QdLwd4sygjx0tV-jG1k9gvv_h6_sDMlzIQAwVvCUCgzGjMm5SlZrSOXQXzCsjGUcLpVOmaE55ohV3QtnSMsF0mXDrb1tMCsNN9hQm9UntnkNElTY6U44bnlGbWYVhJX5ZzxJtczNjU8jGeZFmUCv3l2ZUcqSlHckwm9LPppwJiY8pkE2rJqh1XFM_H6dcDogjIAmJG8o1Ld-OFiJxQfosi6odjqREgEtTnzwW_6rDReFlebCfz4JVbf43ZT7zKTL8t0v2tqngBcEvl6Dl9MLgg7FMId5Y5n8Nw4ubNngJd_GNBfb6K5i0p517jeCs1W-G5fgbkts8JA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+Background+Suppression+for+Vibro-acoustography+Images&rft.jtitle=Ultrasonics&rft.au=Urban%2C+Matthew+W.&rft.au=Wang%2C+Chenyi&rft.au=Alizad%2C+Azra&rft.au=Fatemi%2C+Mostafa&rft.date=2015-02-01&rft.issn=0041-624X&rft.eissn=1874-9968&rft.spage=456&rft.epage=472&rft_id=info:doi/10.1016%2Fj.ultras.2014.09.014&rft_id=info%3Apmid%2F25304993&rft.externalDocID=PMC4252849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon