Complex background suppression for vibro-acoustography images
•Complex background suppression (CBS) uses the complex acoustic emission data.•CBS suppresses the background contribution of the images.•Images have enhanced contrast and better ability to separate object depth.•CBS was applied to sphere and breast phantom images and in vivo breast images.•The CBS m...
        Saved in:
      
    
          | Published in | Ultrasonics Vol. 56; pp. 456 - 472 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.02.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0041-624X 1874-9968 1874-9968  | 
| DOI | 10.1016/j.ultras.2014.09.014 | 
Cover
| Abstract | •Complex background suppression (CBS) uses the complex acoustic emission data.•CBS suppresses the background contribution of the images.•Images have enhanced contrast and better ability to separate object depth.•CBS was applied to sphere and breast phantom images and in vivo breast images.•The CBS method is a fast, linear approach to improve vibro-acoustography images.
Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2–12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications. | 
    
|---|---|
| AbstractList | Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications. Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications. Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W × W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1-5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications. Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2-12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications. •Complex background suppression (CBS) uses the complex acoustic emission data.•CBS suppresses the background contribution of the images.•Images have enhanced contrast and better ability to separate object depth.•CBS was applied to sphere and breast phantom images and in vivo breast images.•The CBS method is a fast, linear approach to improve vibro-acoustography images. Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two ultrasound waves at slightly different frequencies. VA images typically have a nonzero background intensity which can reduce contrast in images. We present a method that uses the complex representation of the acoustic emission data to estimate and suppress the unwanted background signal. This method utilizes a fast, linear approach to the problem called complex background suppression (CBS) using a square filtering window of size W×W. Images processed with the CBS algorithm have significantly enhanced contrast. Another improvement observed with this method is the ability to better localize objects within the depth direction with respect to the ultrasound transducer. This algorithm was tested on images obtained from scanning a phantom with spherical inclusions, a urethane breast phantom, and in vivo human breast. The results show that image quality is improved through processing with the CBS algorithm by increasing the contrast of features in the images. The contrast in the sphere phantom was increased by factors of 2–12 depending on the sphere. Utilizing the CBS algorithm increased the contrast in breast phantom by factors ranging from 1.1 to 5.4 for various inclusions. The size of the filtering window, W, affected the contrast achieved between the phantom features such as the spheres or simulated inclusions and the background material. Application of the CBS algorithm also demonstrated that objects could be localized in depth much better as the relationship to image intensity level was directly correlated to objects located at the center of the focal plane in the axial direction. This method has wide applicability for all VA imaging applications.  | 
    
| Author | Alizad, Azra Wang, Chenyi Urban, Matthew W. Fatemi, Mostafa  | 
    
| AuthorAffiliation | 2 Department of Bioengineering University of Washington Seattle, WA 98105 1 Department of Physiology and Biomedical Engineering Mayo Clinic College of Medicine Rochester, MN 55905  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Physiology and Biomedical Engineering Mayo Clinic College of Medicine Rochester, MN 55905 – name: 2 Department of Bioengineering University of Washington Seattle, WA 98105  | 
    
| Author_xml | – sequence: 1 givenname: Matthew W. surname: Urban fullname: Urban, Matthew W. email: urban.matthew@mayo.edu organization: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States – sequence: 2 givenname: Chenyi surname: Wang fullname: Wang, Chenyi organization: Department of Bioengineering, University of Washington, Seattle, WA 98105, United States – sequence: 3 givenname: Azra surname: Alizad fullname: Alizad, Azra organization: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States – sequence: 4 givenname: Mostafa surname: Fatemi fullname: Fatemi, Mostafa organization: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25304993$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUuP0zAUhS00iOkM_AOEsmST4HdsJJBQxUsaiQ1I7CzHuem4pHawk0L_Pa46PBeoq7vwd46Oz7lCFyEGQOgxwQ3BRD7bNss4J5sbiglvsG7KuYdWRLW81lqqC7TCmJNaUv75El3lvMWFUIQ9QJdUMMy1Ziv0Yh130wjfq866L5sUl9BXeZmmBDn7GKohpmrvuxRr6-KS57hJdro9VH5nN5AfovuDHTM8urvX6NOb1x_X7-qbD2_fr1_d1I5rOdeaY-Isk45a6gYA3GLBWqYccGU7KixvuSSdlaBtP_RCi24gspeaYaKcdOwaiZPvEiZ7-GbH0UypREgHQ7A51mG25lSHOdZhsDblFN3Lk25auh30DkJBfmuj9ebvl-BvzSbuDaeCKq6LwdM7gxS_LpBns_PZwTjaAKUOQ6TUiishxBko47TFUhxdn_wZ61een7MUgJ8Al2LOCYZzv_v8H5nzs53LjgX145ldQRly7yGZ7DwEB71P4GbTR_9_gx-3kM5g | 
    
| CitedBy_id | crossref_primary_10_1016_j_apacoust_2017_05_022 crossref_primary_10_12677_ACM_2024_142538  | 
    
| Cites_doi | 10.1016/j.ultras.2006.06.021 10.1177/016173460402600101 10.1088/0031-9155/45/6/304 10.1097/RLI.0b013e31816085fc 10.1016/j.ultras.2011.02.001 10.1109/TUFFC.2010.1551 10.1121/1.1915719 10.2174/157340511798038648 10.1109/TMI.2006.882142 10.1186/1471-2342-13-12 10.1063/1.2130515 10.1186/bcr3323 10.1073/pnas.96.12.6603 10.1109/TUFFC.2005.1561663 10.1109/TUFFC.2011.1927 10.1016/j.ultras.2008.10.011 10.1118/1.4773890 10.1109/TBME.2008.2001284 10.1088/0031-9155/56/18/013 10.1109/TMI.2004.828674 10.1016/j.compmedimag.2006.08.001 10.1109/TMI.2004.824241 10.1063/1.2211187 10.1109/58.139123 10.1109/TUFFC.2004.1320787 10.1126/science.280.5360.82 10.1121/1.1908830 10.1103/PhysRevLett.96.234301 10.1109/42.981229  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. 2014 Elsevier B.V. All rights reserved. 2014  | 
    
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. – notice: 2014 Elsevier B.V. All rights reserved. 2014  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SP 7U5 8FD H8D L7M 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.ultras.2014.09.014 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Aerospace Database MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics Mathematics  | 
    
| EISSN | 1874-9968 | 
    
| EndPage | 472 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4252849 PMC4252849 25304993 10_1016_j_ultras_2014_09_014 S0041624X14002789  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01CA168575 – fundername: NCI NIH HHS grantid: R01CA148994 – fundername: NCI NIH HHS grantid: R01 CA127235 – fundername: NCI NIH HHS grantid: R01 CA168575 – fundername: NCI NIH HHS grantid: R01CA127235 – fundername: NCI NIH HHS grantid: P50 CA091956 – fundername: NCI NIH HHS grantid: R21 CA121579 – fundername: NCI NIH HHS grantid: P50CA91956 – fundername: NCI NIH HHS grantid: R01 CA148994 – fundername: NCI NIH HHS grantid: R21CA121579  | 
    
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM LCYCR M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K TAE TEORI UHS WH7 WUQ XPP ZGI ZMT ZXP ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 7SP 7U5 8FD H8D L7M 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c496t-9401ca36c2a2cfee07053738ce48ab25a47461ba6e9adfd595bf16d693018c6c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0041-624X 1874-9968  | 
    
| IngestDate | Sun Oct 26 01:31:10 EDT 2025 Tue Sep 30 15:31:59 EDT 2025 Thu Oct 02 07:42:32 EDT 2025 Thu Oct 02 07:43:55 EDT 2025 Mon Jul 21 05:50:43 EDT 2025 Wed Oct 01 01:43:33 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Fri Feb 23 02:36:21 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Acoustic emission Vibro-acoustography Ultrasound Parametric mixing Complex  | 
    
| Language | English | 
    
| License | Copyright © 2014 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c496t-9401ca36c2a2cfee07053738ce48ab25a47461ba6e9adfd595bf16d693018c6c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4252849 | 
    
| PMID | 25304993 | 
    
| PQID | 1634270659 | 
    
| PQPubID | 23479 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_ultras_2014_09_014 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4252849 proquest_miscellaneous_1669848555 proquest_miscellaneous_1634270659 pubmed_primary_25304993 crossref_primary_10_1016_j_ultras_2014_09_014 crossref_citationtrail_10_1016_j_ultras_2014_09_014 elsevier_sciencedirect_doi_10_1016_j_ultras_2014_09_014  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-02-01 | 
    
| PublicationDateYYYYMMDD | 2015-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Ultrasonics | 
    
| PublicationTitleAlternate | Ultrasonics | 
    
| PublicationYear | 2015 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Silva, Mitri (b0075) 2011; 56 Thierman (b0095) 2004 J.A. Jensen, Field: a program for simulating ultrasound systems, in: 10th Nordic–Baltic Conference on Biomedical Imaging, Medical & Biological Engineering & Computing, 1996, pp. 351–353. Fatemi, Greenleaf (b0010) 1999; 96 Urban, Silva, Fatemi, Greenleaf (b0140) 2006; 25 Fatemi, Greenleaf (b0070) 2000; 45 Fatemi, Wold, Alizad, Greenleaf (b0160) 2002; 21 Alizad, Wold, Greenleaf, Fatemi (b0050) 2004; 23 Alizad, Fatemi, Wold, Greenleaf (b0020) 2004; 23 Urban, Alizad, Aquino, Greenleaf, Fatemi (b0065) 2011; 7 Silva, Frery, Fatemi (b0115) 2006; 30 Mitri, Fatemi (b0055) 2005; 98 Silva, Chen, Frery, Greenleaf, Fatemi (b0135) 2005; 52 Alizad, Whaley, Urban, Carter, Kinnick, Greenleaf, Fatemi (b0025) 2012; 14 Silva, Greenleaf, Fatemi (b0125) 2004; 26 Alizad, Whaley, Greenleaf, Fatemi (b0155) 2006; 44 Alizad, Mehrmohammadi, Mitri, Davis, Sebo, Mynderse, Kinnick, Greenleaf, Fatemi (b0045) 2013; 40 Urban, Chalek, Kinnick, Kinter, Haider, Greenleaf, Thomenius, Fatemi (b0145) 2011; 58 Bracewell (b0165) 2000 Chen, Fatemi, Kinnick, Greenleaf (b0130) 2004; 51 Hooi, Thomenius, Fisher, Carson (b0150) 2010; 57 Silva, Chen, Viana (b0090) 2006; 96 Barriere (b0170) 2001 Mitri, Eberlein, Fatemi (b0060) 2006; 88 Alizad, Urban, Morris, Reading, Kinnick, Greenleaf, Fatemi (b0030) 2013; 13 Mitri, Davis, Urban, Alizad, Greenleaf, Lischer, Wilson, Fatemi (b0040) 2009; 49 Urban, Alizad, Fatemi (b0120) 2011; 51 Thuras, Jenkins, O’Neil (b0080) 1935; 6 Pislaru, Kantor, Kinnick, Anderson, Aubry, Urban, Fatemi, Greenleaf (b0015) 2008; 43 Mitri, Davis, Alizad, Greenleaf, Wilson, Mynderse, Fatemi (b0035) 2008; 55 Jensen, Svendsen (b0105) 1992; 39 Westervelt (b0085) 1957; 29 Fatemi, Greenleaf (b0005) 1998; 280 Alizad (10.1016/j.ultras.2014.09.014_b0155) 2006; 44 10.1016/j.ultras.2014.09.014_b0110 Silva (10.1016/j.ultras.2014.09.014_b0125) 2004; 26 Urban (10.1016/j.ultras.2014.09.014_b0065) 2011; 7 Alizad (10.1016/j.ultras.2014.09.014_b0020) 2004; 23 Mitri (10.1016/j.ultras.2014.09.014_b0035) 2008; 55 Silva (10.1016/j.ultras.2014.09.014_b0090) 2006; 96 Fatemi (10.1016/j.ultras.2014.09.014_b0070) 2000; 45 Chen (10.1016/j.ultras.2014.09.014_b0130) 2004; 51 Alizad (10.1016/j.ultras.2014.09.014_b0030) 2013; 13 Mitri (10.1016/j.ultras.2014.09.014_b0060) 2006; 88 Westervelt (10.1016/j.ultras.2014.09.014_b0085) 1957; 29 Bracewell (10.1016/j.ultras.2014.09.014_b0165) 2000 Urban (10.1016/j.ultras.2014.09.014_b0120) 2011; 51 Silva (10.1016/j.ultras.2014.09.014_b0075) 2011; 56 Thierman (10.1016/j.ultras.2014.09.014_b0095) 2004 Jensen (10.1016/j.ultras.2014.09.014_b0105) 1992; 39 Urban (10.1016/j.ultras.2014.09.014_b0140) 2006; 25 Alizad (10.1016/j.ultras.2014.09.014_b0050) 2004; 23 Mitri (10.1016/j.ultras.2014.09.014_b0055) 2005; 98 Urban (10.1016/j.ultras.2014.09.014_b0145) 2011; 58 Thuras (10.1016/j.ultras.2014.09.014_b0080) 1935; 6 Alizad (10.1016/j.ultras.2014.09.014_b0045) 2013; 40 Silva (10.1016/j.ultras.2014.09.014_b0115) 2006; 30 Mitri (10.1016/j.ultras.2014.09.014_b0040) 2009; 49 Hooi (10.1016/j.ultras.2014.09.014_b0150) 2010; 57 Fatemi (10.1016/j.ultras.2014.09.014_b0005) 1998; 280 Barriere (10.1016/j.ultras.2014.09.014_b0170) 2001 Fatemi (10.1016/j.ultras.2014.09.014_b0010) 1999; 96 Pislaru (10.1016/j.ultras.2014.09.014_b0015) 2008; 43 Alizad (10.1016/j.ultras.2014.09.014_b0025) 2012; 14 Silva (10.1016/j.ultras.2014.09.014_b0135) 2005; 52 Fatemi (10.1016/j.ultras.2014.09.014_b0160) 2002; 21 21860078 - Phys Med Biol. 2011 Sep 21;56(18):5985-93 23530993 - BMC Med Imaging. 2013;13:12 10870703 - Phys Med Biol. 2000 Jun;45(6):1449-64 21693399 - IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1169-81 16949793 - Comput Med Imaging Graph. 2006 Jul;30(5):321-7 17024832 - IEEE Trans Med Imaging. 2006 Oct;25(10):1284-95 10359758 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6603-8 9525861 - Science. 1998 Apr 3;280(5360):82-5 15027523 - IEEE Trans Med Imaging. 2004 Mar;23(3):307-12 19062061 - Ultrasonics. 2009 Mar;49(3):389-94 18990628 - IEEE Trans Biomed Eng. 2008 Nov;55(11):2584-92 16422406 - IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):1943-51 15128218 - IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Mar;51(3):313-21 18340248 - Invest Radiol. 2008 Apr;43(4):243-52 16803380 - Phys Rev Lett. 2006 Jun 16;96(23):234301 11838661 - IEEE Trans Med Imaging. 2002 Jan;21(1):1-8 23387773 - Med Phys. 2013 Feb;40(2):022902 16843513 - Ultrasonics. 2006 Dec 22;44 Suppl 1:e217-20 15134390 - Ultrason Imaging. 2004 Jan;26(1):1-17 23021305 - Breast Cancer Res. 2012;14(5):R128 18263145 - IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7 22423235 - Curr Med Imaging Rev. 2011 Nov 1;7(4):350-359 15377117 - IEEE Trans Med Imaging. 2004 Sep;23(9):1087-93 21377181 - Ultrasonics. 2011 Aug;51(6):689-96 20529707 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1311-9  | 
    
| References_xml | – volume: 39 start-page: 262 year: 1992 end-page: 267 ident: b0105 article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – reference: J.A. Jensen, Field: a program for simulating ultrasound systems, in: 10th Nordic–Baltic Conference on Biomedical Imaging, Medical & Biological Engineering & Computing, 1996, pp. 351–353. – volume: 29 start-page: 199 year: 1957 end-page: 203 ident: b0085 article-title: Scattering of sound by sound publication-title: J. Acoust. Soc. Am. – volume: 57 start-page: 1311 year: 2010 end-page: 1319 ident: b0150 article-title: Hybrid beamforming and steering with reconfigurable arrays publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 14 start-page: R128 year: 2012 ident: b0025 article-title: Breast vibro-acoustography: initial results show promise publication-title: Breast Cancer Res. – volume: 96 year: 2006 ident: b0090 article-title: Parametric amplification of the dynamic radiation force of acoustic waves in fluids publication-title: Phys. Rev. Lett. – volume: 96 start-page: 6603 year: 1999 end-page: 6608 ident: b0010 article-title: Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 173 year: 1935 end-page: 180 ident: b0080 article-title: Extraneous frequencies generated in air carrying intense sound waves publication-title: J. Acoust. Soc. Am. – volume: 58 start-page: 1169 year: 2011 end-page: 1181 ident: b0145 article-title: Implementation of vibro-acoustography on a clinical ultrasound system publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 49 start-page: 389 year: 2009 end-page: 394 ident: b0040 article-title: Vibro-acoustography imaging of permanent prostate brachytherapy seeds in an excised human prostate – preliminary results and technical feasibility publication-title: Ultrasonics – volume: 45 start-page: 1449 year: 2000 end-page: 1464 ident: b0070 article-title: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound publication-title: Phys. Med. Biol. – volume: 30 start-page: 321 year: 2006 end-page: 327 ident: b0115 article-title: Image formation in vibro-acoustography with depth-of-field effects publication-title: Comput. Med. Imaging Graph. – year: 2000 ident: b0165 article-title: The Fourier Transform and its Applications – volume: 280 start-page: 82 year: 1998 end-page: 85 ident: b0005 article-title: Ultrasound-stimulated vibro-acoustic spectrography publication-title: Science – volume: 23 start-page: 307 year: 2004 end-page: 312 ident: b0020 article-title: Performance of vibro-acoustography in detecting microcalcifications in excised human breast tissue: a study of 74 tissue samples publication-title: IEEE Trans. Med. Imaging – volume: 56 start-page: 5985 year: 2011 end-page: 5993 ident: b0075 article-title: Difference-frequency generation in vibro-acoustography publication-title: Phys. Med. Biol. – volume: 44 start-page: e217 year: 2006 end-page: e220 ident: b0155 article-title: Critical issues in breast imaging by vibro-acoustography publication-title: Ultrasonics – volume: 88 start-page: 234105 year: 2006 ident: b0060 article-title: Surface roughness imaging using the acoustic emission induced by the dynamic radiation force of ultrasound publication-title: Appl. Phys. Lett. – year: 2001 ident: b0170 article-title: Effet de la diffraction sur l’interaction paramétrique d’ondes acoustiques. Application à la mesure de paramètres de non linéarité et de champs acoustiques publication-title: Physique Macroscopique – volume: 23 start-page: 1087 year: 2004 end-page: 1093 ident: b0050 article-title: Imaging mass lesions by vibro-acoustography: modeling and experiments publication-title: IEEE Trans. Med. Imaging – volume: 43 start-page: 243 year: 2008 end-page: 252 ident: b0015 article-title: In vivo vibroacoustography of large peripheral arteries publication-title: Invest. Radiol. – volume: 98 start-page: 114901 year: 2005 ident: b0055 article-title: Improved vibroacoustography imaging for nondestructive inspection of materials publication-title: J. Appl. Phys. – volume: 51 start-page: 313 year: 2004 end-page: 321 ident: b0130 article-title: Comparison of stress field forming methods for vibro-acoustography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 51 start-page: 689 year: 2011 end-page: 696 ident: b0120 article-title: Vibro-acoustography and multifrequency image compounding publication-title: Ultrasonics – volume: 21 start-page: 1 year: 2002 end-page: 8 ident: b0160 article-title: Vibro-acoustic tissue mammography publication-title: IEEE Trans. Med. Imaging – volume: 55 start-page: 2584 year: 2008 end-page: 2592 ident: b0035 article-title: Prostate cryotherapy monitoring using vibroacoustography: preliminary results of an ex vivo study and technical feasibility publication-title: IEEE Trans. Biomed. Eng. – volume: 7 start-page: 350 year: 2011 end-page: 359 ident: b0065 article-title: A review of vibro-acoustography and its applications in medicine publication-title: Curr. Med. Imaging Rev. – volume: 13 start-page: 12 year: 2013 ident: b0030 article-title: In vivo thyroid vibro-acoustography: a pilot study publication-title: BMC Med. Imaging – year: 2004 ident: b0095 article-title: Sources of Difference Frequency Sound in a Dual-Frequency Imaging System with Implications in Monitoring Thermal Surgery – volume: 26 start-page: 1 year: 2004 end-page: 17 ident: b0125 article-title: Linear arrays for vibro-acoustography: a numerical simulation study publication-title: Ultrason. Imaging – volume: 25 start-page: 1284 year: 2006 end-page: 1295 ident: b0140 article-title: Multifrequency vibro-acoustography publication-title: IEEE Trans. Med. Imaging – volume: 40 start-page: 022902 year: 2013 ident: b0045 article-title: Application of vibro-acoustography in prostate tissue imaging publication-title: Med. Phys. – volume: 52 start-page: 1943 year: 2005 end-page: 1951 ident: b0135 article-title: Stress field forming of sector array transducers for vibro-acoustography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 44 start-page: e217 issue: Suppl. 1 year: 2006 ident: 10.1016/j.ultras.2014.09.014_b0155 article-title: Critical issues in breast imaging by vibro-acoustography publication-title: Ultrasonics doi: 10.1016/j.ultras.2006.06.021 – volume: 26 start-page: 1 year: 2004 ident: 10.1016/j.ultras.2014.09.014_b0125 article-title: Linear arrays for vibro-acoustography: a numerical simulation study publication-title: Ultrason. Imaging doi: 10.1177/016173460402600101 – year: 2004 ident: 10.1016/j.ultras.2014.09.014_b0095 – volume: 45 start-page: 1449 year: 2000 ident: 10.1016/j.ultras.2014.09.014_b0070 article-title: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/45/6/304 – volume: 43 start-page: 243 year: 2008 ident: 10.1016/j.ultras.2014.09.014_b0015 article-title: In vivo vibroacoustography of large peripheral arteries publication-title: Invest. Radiol. doi: 10.1097/RLI.0b013e31816085fc – volume: 51 start-page: 689 year: 2011 ident: 10.1016/j.ultras.2014.09.014_b0120 article-title: Vibro-acoustography and multifrequency image compounding publication-title: Ultrasonics doi: 10.1016/j.ultras.2011.02.001 – volume: 57 start-page: 1311 year: 2010 ident: 10.1016/j.ultras.2014.09.014_b0150 article-title: Hybrid beamforming and steering with reconfigurable arrays publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2010.1551 – volume: 6 start-page: 173 year: 1935 ident: 10.1016/j.ultras.2014.09.014_b0080 article-title: Extraneous frequencies generated in air carrying intense sound waves publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1915719 – volume: 7 start-page: 350 year: 2011 ident: 10.1016/j.ultras.2014.09.014_b0065 article-title: A review of vibro-acoustography and its applications in medicine publication-title: Curr. Med. Imaging Rev. doi: 10.2174/157340511798038648 – volume: 25 start-page: 1284 year: 2006 ident: 10.1016/j.ultras.2014.09.014_b0140 article-title: Multifrequency vibro-acoustography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882142 – volume: 13 start-page: 12 year: 2013 ident: 10.1016/j.ultras.2014.09.014_b0030 article-title: In vivo thyroid vibro-acoustography: a pilot study publication-title: BMC Med. Imaging doi: 10.1186/1471-2342-13-12 – volume: 98 start-page: 114901 year: 2005 ident: 10.1016/j.ultras.2014.09.014_b0055 article-title: Improved vibroacoustography imaging for nondestructive inspection of materials publication-title: J. Appl. Phys. doi: 10.1063/1.2130515 – volume: 14 start-page: R128 year: 2012 ident: 10.1016/j.ultras.2014.09.014_b0025 article-title: Breast vibro-acoustography: initial results show promise publication-title: Breast Cancer Res. doi: 10.1186/bcr3323 – year: 2000 ident: 10.1016/j.ultras.2014.09.014_b0165 – volume: 96 start-page: 6603 year: 1999 ident: 10.1016/j.ultras.2014.09.014_b0010 article-title: Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.12.6603 – volume: 52 start-page: 1943 year: 2005 ident: 10.1016/j.ultras.2014.09.014_b0135 article-title: Stress field forming of sector array transducers for vibro-acoustography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2005.1561663 – volume: 58 start-page: 1169 year: 2011 ident: 10.1016/j.ultras.2014.09.014_b0145 article-title: Implementation of vibro-acoustography on a clinical ultrasound system publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2011.1927 – volume: 49 start-page: 389 year: 2009 ident: 10.1016/j.ultras.2014.09.014_b0040 article-title: Vibro-acoustography imaging of permanent prostate brachytherapy seeds in an excised human prostate – preliminary results and technical feasibility publication-title: Ultrasonics doi: 10.1016/j.ultras.2008.10.011 – volume: 40 start-page: 022902 year: 2013 ident: 10.1016/j.ultras.2014.09.014_b0045 article-title: Application of vibro-acoustography in prostate tissue imaging publication-title: Med. Phys. doi: 10.1118/1.4773890 – volume: 55 start-page: 2584 year: 2008 ident: 10.1016/j.ultras.2014.09.014_b0035 article-title: Prostate cryotherapy monitoring using vibroacoustography: preliminary results of an ex vivo study and technical feasibility publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2001284 – volume: 56 start-page: 5985 year: 2011 ident: 10.1016/j.ultras.2014.09.014_b0075 article-title: Difference-frequency generation in vibro-acoustography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/18/013 – volume: 23 start-page: 1087 year: 2004 ident: 10.1016/j.ultras.2014.09.014_b0050 article-title: Imaging mass lesions by vibro-acoustography: modeling and experiments publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.828674 – ident: 10.1016/j.ultras.2014.09.014_b0110 – volume: 30 start-page: 321 year: 2006 ident: 10.1016/j.ultras.2014.09.014_b0115 article-title: Image formation in vibro-acoustography with depth-of-field effects publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2006.08.001 – volume: 23 start-page: 307 year: 2004 ident: 10.1016/j.ultras.2014.09.014_b0020 article-title: Performance of vibro-acoustography in detecting microcalcifications in excised human breast tissue: a study of 74 tissue samples publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.824241 – volume: 88 start-page: 234105 year: 2006 ident: 10.1016/j.ultras.2014.09.014_b0060 article-title: Surface roughness imaging using the acoustic emission induced by the dynamic radiation force of ultrasound publication-title: Appl. Phys. Lett. doi: 10.1063/1.2211187 – volume: 39 start-page: 262 year: 1992 ident: 10.1016/j.ultras.2014.09.014_b0105 article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.139123 – year: 2001 ident: 10.1016/j.ultras.2014.09.014_b0170 article-title: Effet de la diffraction sur l’interaction paramétrique d’ondes acoustiques. Application à la mesure de paramètres de non linéarité et de champs acoustiques – volume: 51 start-page: 313 year: 2004 ident: 10.1016/j.ultras.2014.09.014_b0130 article-title: Comparison of stress field forming methods for vibro-acoustography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2004.1320787 – volume: 280 start-page: 82 year: 1998 ident: 10.1016/j.ultras.2014.09.014_b0005 article-title: Ultrasound-stimulated vibro-acoustic spectrography publication-title: Science doi: 10.1126/science.280.5360.82 – volume: 29 start-page: 199 year: 1957 ident: 10.1016/j.ultras.2014.09.014_b0085 article-title: Scattering of sound by sound publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1908830 – volume: 96 year: 2006 ident: 10.1016/j.ultras.2014.09.014_b0090 article-title: Parametric amplification of the dynamic radiation force of acoustic waves in fluids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.234301 – volume: 21 start-page: 1 year: 2002 ident: 10.1016/j.ultras.2014.09.014_b0160 article-title: Vibro-acoustic tissue mammography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.981229 – reference: 22423235 - Curr Med Imaging Rev. 2011 Nov 1;7(4):350-359 – reference: 16803380 - Phys Rev Lett. 2006 Jun 16;96(23):234301 – reference: 23530993 - BMC Med Imaging. 2013;13:12 – reference: 19062061 - Ultrasonics. 2009 Mar;49(3):389-94 – reference: 15134390 - Ultrason Imaging. 2004 Jan;26(1):1-17 – reference: 11838661 - IEEE Trans Med Imaging. 2002 Jan;21(1):1-8 – reference: 10870703 - Phys Med Biol. 2000 Jun;45(6):1449-64 – reference: 16422406 - IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):1943-51 – reference: 23387773 - Med Phys. 2013 Feb;40(2):022902 – reference: 15377117 - IEEE Trans Med Imaging. 2004 Sep;23(9):1087-93 – reference: 17024832 - IEEE Trans Med Imaging. 2006 Oct;25(10):1284-95 – reference: 15128218 - IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Mar;51(3):313-21 – reference: 20529707 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1311-9 – reference: 15027523 - IEEE Trans Med Imaging. 2004 Mar;23(3):307-12 – reference: 18990628 - IEEE Trans Biomed Eng. 2008 Nov;55(11):2584-92 – reference: 16949793 - Comput Med Imaging Graph. 2006 Jul;30(5):321-7 – reference: 23021305 - Breast Cancer Res. 2012;14(5):R128 – reference: 10359758 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6603-8 – reference: 16843513 - Ultrasonics. 2006 Dec 22;44 Suppl 1:e217-20 – reference: 21860078 - Phys Med Biol. 2011 Sep 21;56(18):5985-93 – reference: 21377181 - Ultrasonics. 2011 Aug;51(6):689-96 – reference: 18340248 - Invest Radiol. 2008 Apr;43(4):243-52 – reference: 18263145 - IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7 – reference: 9525861 - Science. 1998 Apr 3;280(5360):82-5 – reference: 21693399 - IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1169-81  | 
    
| SSID | ssj0014813 | 
    
| Score | 2.0828722 | 
    
| Snippet | •Complex background suppression (CBS) uses the complex acoustic emission data.•CBS suppresses the background contribution of the images.•Images have enhanced... Vibro-acoustography (VA) is an ultrasound-based imaging modality that maps the acoustic response, or acoustic emission, of an object stimulated by two...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 456 | 
    
| SubjectTerms | Acoustic emission Algorithms Breast Complex Elasticity Imaging Techniques - methods Filtering Focal plane Humans Image contrast Inclusions Mathematics Models, Theoretical Parametric mixing Phantoms, Imaging Transducers Ultrasonography, Mammary Ultrasound Vibro-acoustography  | 
    
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQEmp7qIA-gNIqlXo1rBPbWR8rBEJI5QTS3qzxI-q2aYjYDZQLv52ZvMQKtVQ9RUkmiTO2x581M98w9iXIQhtA5KZlEbhUHjjIkHIRAdeHEHLXcnd-O9enl_JspmZr7GjIhaGwyt72dza9tdb9lcNem4f1fE45vggmUjnDLQK5zyiJT8qcqhgc3I9hHoj2Re9lFpykh_S5NsarKZfXQKTdomM7FfJPy9NT-Pk0ivJFU9Vwdwtl-WiJOtlkr3tsmXztmr_F1mK1zV49YhzcZhttxKdfvGGUGlKX8XfiwP-k3I4qJIum7uNiqwTBbHKDe-krjjazQYjYUVsn819ogRZv2eXJ8cXRKe9rKXAvjV5yg_soD5n2KaS-iBFnuiJSIx_lFFyqQOZSCwc6GghFUEa5QuhAhRLF1GufvWPr1VUVd1giwXmXQdReZzJkAXBHiG92E-FC7idql2WDCq3vicap3kVph4iyH7ZTvCXF24mxeNhlfHyq7og2npHPh96xKwPG4lrwzJOfh860OJfIQQJVRE1axKYyJb-v-ZuMNlNi1MH_fN8NgLG9qSKnpcmwbStDYxQgLu_VO9X8e8vpjaYTgQJ-92AcRP-khr3_VsMH9hLPVBeBvs_Wl9dN_IgAa-k-tTPoAYdtJus priority: 102 providerName: Elsevier  | 
    
| Title | Complex background suppression for vibro-acoustography images | 
    
| URI | https://dx.doi.org/10.1016/j.ultras.2014.09.014 https://www.ncbi.nlm.nih.gov/pubmed/25304993 https://www.proquest.com/docview/1634270659 https://www.proquest.com/docview/1669848555 https://pubmed.ncbi.nlm.nih.gov/PMC4252849 https://www.ncbi.nlm.nih.gov/pmc/articles/4252849  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 56 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aWiHggcu4lUsVJF6T1YntJo8VYiogKoSoVJ4s3yLK0ixaE24P_HaO46TamGDsKYpsR7F9fPwdnc-fAV4YmvNMInLjNDchZVqGkpo4JFbi_mDMVLXane8WfL6kb1ZstQekPwvTkva1WkdlsYnK9eeWW1lt9GHPEztEI0OXmu3DkDOE3wMYLhfvZ598JpmEPKYrF2SlUxoilk_743Itp6sp6lPpRLqJVzcl9G_b0UW4eZE1eb0pK_njmyyKM1vS0W340HfGM1GOo6ZWkf75h87jlXp7B251ADWY-aK7sGfLA7h5RrbwAK61tFG9vQfufElV2O-BkvrYHRApTbBtqo5cWwaIiIOvGJCfhOh4G8SZXh87WG_QjW3vw_Lo1ceX87C7kCHUNON1mGEwpmXCdSxjnVuL7oI5ZSRtaSpVzCSdUk6U5DaTJjcsYyon3LjbFkmquU4ewKA8Ke0jCKhUWiXScs0TahIjMazEL6sJUWaqJ2wEST8vQndq5e7SjEL0tLQvws-mcLMpJpnAxwjCXavKq3VcUn_aT7noEIdHEgI3lEtaPu8tROCCdFkWWVocSYEAl8YueZz9qw7PUifLg_186K1q978xc5nPLMF_O2dvuwpOEPx8CVpOKwzeGcsIop1l_tcwPL5qgydwA9-YZ68_hUF92thnCM5qNYb96BcZw3D2-u18Me4W52_pXT6w | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQ4ICiPlmeQuLpdJ7azPqKKaoG2p1bamzV-RCyENOpuClz47YzzUlcVFHGKlIwTZ2yPv9HMfAZ460WhNBJyU6LwTEiHDIVPGQ9I-4P3uW25O49P1OxMfJzL-QYcDLUwMa2yt_2dTW-tdX9nv9fmfr1YxBpfAhOpmJOLEMNn-hbcFjLNowe292vM8yC4z_swM2dRfKifa5O8mnJ1gZG1m3d0p1z8aX-6jj-vp1FuNVWNP79jWV7Zow4fwP0eXCbvuv4_hI1QbcO9K5SD23CnTfl0y0cQa0PqMvxILLqvsbij8smyqfvE2CohNJtckjN9zshoNoQRO27rZPGNTNDyMZwdvj89mLH-MAXmhFYrpsmRcpgpl2LqihBoqcvIauSCmKJNJYpcKG5RBY2-8FJLW3Dl40mJfOqUy57AZnVehR1IBFpnMwzKqUz4zCO5hPRmO-HW524idyEbVGhczzQeD7wozZBS9sV0ijdR8WaiDV12gY2t6o5p4wb5fBgdszZjDG0GN7R8MwymocUUIyRYBdKkIXAq0hj41X-TUXoaKXXoP592E2Dsbypj1FJn1Le1qTEKRDLv9SfV4nNL6k22k5ACfXdvnET_pIZn_62G17A1Oz0-MkcfTj49h7v0RHbp6C9gc3XRhJeEtlb2VbuafgNeBCoO | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4FFey0tB4up0k9hOfKwQVYVEhRArLSfLr4hts2nUTVrg1zOOk1VLBaWnKLIdxfZ4_I3m82eAd5aWXChEbpyWllBmFFHUpiRxCvcHa3Pda3d-OuQHc_pxwRZbkIxnYXrSvtHLuK5Wcb383nMrm5XZHXliu2hk6FLFLdjmDOH3BLbnh5_3voVMckJ4Shc-yCpyShDLF-NxuZ7T1VXtqfIi3UlQN03o37ajq3DzKmvyTlc36ue5qqoLW9L-A_gydiYwUY7jrtWx-fWHzuONevsQ7g8ANdoLRY9gy9U7cO-CbOEO3O5po2b9GPz5kqZyPyKtzLE_IFLbaN01A7m2jhARR2cYkJ8QdLwd4sygjx0tV-jG1k9gvv_h6_sDMlzIQAwVvCUCgzGjMm5SlZrSOXQXzCsjGUcLpVOmaE55ohV3QtnSMsF0mXDrb1tMCsNN9hQm9UntnkNElTY6U44bnlGbWYVhJX5ZzxJtczNjU8jGeZFmUCv3l2ZUcqSlHckwm9LPppwJiY8pkE2rJqh1XFM_H6dcDogjIAmJG8o1Ld-OFiJxQfosi6odjqREgEtTnzwW_6rDReFlebCfz4JVbf43ZT7zKTL8t0v2tqngBcEvl6Dl9MLgg7FMId5Y5n8Nw4ubNngJd_GNBfb6K5i0p517jeCs1W-G5fgbkts8JA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+Background+Suppression+for+Vibro-acoustography+Images&rft.jtitle=Ultrasonics&rft.au=Urban%2C+Matthew+W.&rft.au=Wang%2C+Chenyi&rft.au=Alizad%2C+Azra&rft.au=Fatemi%2C+Mostafa&rft.date=2015-02-01&rft.issn=0041-624X&rft.eissn=1874-9968&rft.spage=456&rft.epage=472&rft_id=info:doi/10.1016%2Fj.ultras.2014.09.014&rft_id=info%3Apmid%2F25304993&rft.externalDocID=PMC4252849 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon |