Enhancer Features that Drive Formation of Transcriptional Condensates

Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 75; no. 3; pp. 549 - 561.e7
Main Authors Shrinivas, Krishna, Sabari, Benjamin R., Coffey, Eliot L., Klein, Isaac A., Boija, Ann, Zamudio, Alicia V., Schuijers, Jurian, Hannett, Nancy M., Sharp, Phillip A., Young, Richard A., Chakraborty, Arup K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.08.2019
Subjects
Online AccessGet full text
ISSN1097-2765
1097-4164
1097-4164
DOI10.1016/j.molcel.2019.07.009

Cover

Abstract Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process. [Display omitted] •Transcription machinery forms condensates localized to specific DNA elements•Combination of structured and dynamic interactions enables localized condensation•DNA encoding binding site features above threshold values drive condensation•DNA features that drive condensation promote enhancer activity in cells Shrinivas et al. demonstrate that specific types of motif compositions encoded in DNA drive localized formation of transcriptional condensates. These findings explain how phase separation can occur at specific genomic locations and shed light on why only some genomic loci become highly active enhancers.
AbstractList Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process. [Display omitted] •Transcription machinery forms condensates localized to specific DNA elements•Combination of structured and dynamic interactions enables localized condensation•DNA encoding binding site features above threshold values drive condensation•DNA features that drive condensation promote enhancer activity in cells Shrinivas et al. demonstrate that specific types of motif compositions encoded in DNA drive localized formation of transcriptional condensates. These findings explain how phase separation can occur at specific genomic locations and shed light on why only some genomic loci become highly active enhancers.
Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.
Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci, and how the universal phenonomenon of phase separation might regulate this process. Shrinivas et al. demonstrate that specific types of motif compositions encoded in DNA drive localized formation of transcriptional condensates. These findings explain how phase separation can occur at specific genomic locations and shed light on why only some genomic loci become highly active enhancers.
Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.
Author Shrinivas, Krishna
Coffey, Eliot L.
Sharp, Phillip A.
Chakraborty, Arup K.
Zamudio, Alicia V.
Young, Richard A.
Sabari, Benjamin R.
Boija, Ann
Hannett, Nancy M.
Klein, Isaac A.
Schuijers, Jurian
AuthorAffiliation 3 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142 USA
5 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA 02215 USA
4 Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA
8 Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge MA 02139 USA
7 Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139 USA
10 These authors contributed equally
1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 USA
9 Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139 USA
11 Lead contact
2 Institute of Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge MA 02139 USA
6 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139 USA
AuthorAffiliation_xml – name: 1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 USA
– name: 11 Lead contact
– name: 2 Institute of Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge MA 02139 USA
– name: 4 Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA
– name: 5 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA 02215 USA
– name: 9 Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139 USA
– name: 7 Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139 USA
– name: 10 These authors contributed equally
– name: 6 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139 USA
– name: 3 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142 USA
– name: 8 Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge MA 02139 USA
Author_xml – sequence: 1
  givenname: Krishna
  surname: Shrinivas
  fullname: Shrinivas, Krishna
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 2
  givenname: Benjamin R.
  surname: Sabari
  fullname: Sabari, Benjamin R.
  organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
– sequence: 3
  givenname: Eliot L.
  surname: Coffey
  fullname: Coffey, Eliot L.
  organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
– sequence: 4
  givenname: Isaac A.
  surname: Klein
  fullname: Klein, Isaac A.
  organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
– sequence: 5
  givenname: Ann
  surname: Boija
  fullname: Boija, Ann
  organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
– sequence: 6
  givenname: Alicia V.
  surname: Zamudio
  fullname: Zamudio, Alicia V.
  organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
– sequence: 7
  givenname: Jurian
  surname: Schuijers
  fullname: Schuijers, Jurian
  organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
– sequence: 8
  givenname: Nancy M.
  surname: Hannett
  fullname: Hannett, Nancy M.
  organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
– sequence: 9
  givenname: Phillip A.
  surname: Sharp
  fullname: Sharp, Phillip A.
  email: sharppa@mit.edu
  organization: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 10
  givenname: Richard A.
  surname: Young
  fullname: Young, Richard A.
  email: young@wi.mit.edu
  organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
– sequence: 11
  givenname: Arup K.
  surname: Chakraborty
  fullname: Chakraborty, Arup K.
  email: arupc@mit.edu
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31398323$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2PUyEYhYkZ43zoPzDmLt30yvcFFyamtmoyiZtxTRh4r6W5FyrQJv57qa0TdeFsgMA5Jy_nuUYXMUVA6CXBPcFEvtn2c5ocTD3FRPd46DHWT9AVwXpYcCL5xflMByku0XUpW4wJF0o_Q5eMMK0YZVdotYobGx3kbg227jOUrm5s7T7kcIBunfJsa0ixS2N3l20sLofd8cJO3TJFD7HYCuU5ejraqcCL836Dvq5Xd8tPi9svHz8v398uHNeyLiQdR-W9JIxQq8SIjwtn_l5QKwiW2lJg0jFhGTjiB6BageWKWxBsZJ7doHen3N3-fgbvINZsJ7PLYbb5h0k2mL9fYtiYb-lgpNSYDaoFvD4H5PR9D6WaOZRW4mQjpH0xlGFBMcaUPy6lA1GCKS2b9NWfYz3M87vmJuAngcuplAzjg4Rgc6RptuZE0xxpGjyYRrPZ3v5jc6H-4tE-F6bHzOeuoAE5BMimuAANtQ8ZXDU-hf8H_ASWoL4j
CitedBy_id crossref_primary_10_1016_j_ceb_2020_11_002
crossref_primary_10_1039_D2SC05438H
crossref_primary_10_1038_s42003_024_05892_5
crossref_primary_10_1038_s41588_024_01892_7
crossref_primary_10_1016_j_tcb_2019_10_006
crossref_primary_10_1038_s41467_021_25761_7
crossref_primary_10_1021_acsnano_0c07397
crossref_primary_10_1073_pnas_2200667119
crossref_primary_10_3390_ijms24032668
crossref_primary_10_1038_s41388_022_02195_z
crossref_primary_10_1038_s41576_023_00630_9
crossref_primary_10_1080_19491034_2022_2160551
crossref_primary_10_1371_journal_pcbi_1009669
crossref_primary_10_1134_S1607672924700935
crossref_primary_10_1016_j_ceb_2021_01_002
crossref_primary_10_1016_j_jmb_2022_167869
crossref_primary_10_1016_j_molcel_2020_04_020
crossref_primary_10_1016_j_ccell_2020_12_003
crossref_primary_10_1038_s41580_021_00401_6
crossref_primary_10_1002_mco2_223
crossref_primary_10_1111_febs_16250
crossref_primary_10_15252_embr_202255699
crossref_primary_10_1038_s41467_021_22441_4
crossref_primary_10_1371_journal_pone_0244038
crossref_primary_10_1101_cshperspect_a040204
crossref_primary_10_1002_bies_202200145
crossref_primary_10_1016_j_tibs_2020_06_007
crossref_primary_10_1002_1878_0261_12693
crossref_primary_10_1016_j_jmb_2021_167216
crossref_primary_10_1016_j_coisb_2020_07_006
crossref_primary_10_1016_j_cocis_2021_101421
crossref_primary_10_1016_j_ejcb_2021_151170
crossref_primary_10_1016_j_bpj_2024_05_026
crossref_primary_10_1073_pnas_2024685118
crossref_primary_10_1158_2159_8290_CD_21_1605
crossref_primary_10_1016_j_virol_2024_110301
crossref_primary_10_1073_pnas_2401834121
crossref_primary_10_1093_nar_gkac1262
crossref_primary_10_1111_jipb_12903
crossref_primary_10_1002_cai2_33
crossref_primary_10_1016_j_tig_2024_10_001
crossref_primary_10_1134_S1607672920010032
crossref_primary_10_1038_s41580_024_00739_7
crossref_primary_10_1038_s41467_024_45353_5
crossref_primary_10_1098_rsob_200255
crossref_primary_10_1242_dev_171736
crossref_primary_10_1021_acs_biochem_2c00250
crossref_primary_10_1134_S0006297922070082
crossref_primary_10_1016_j_devcel_2021_02_016
crossref_primary_10_1111_cas_15232
crossref_primary_10_1242_dev_200398
crossref_primary_10_1016_j_tig_2022_11_003
crossref_primary_10_3390_antiox10091483
crossref_primary_10_1063_5_0083286
crossref_primary_10_1134_S1607672921010038
crossref_primary_10_1016_j_ijbiomac_2023_123221
crossref_primary_10_3390_ijms23147664
crossref_primary_10_1016_j_jmb_2020_04_015
crossref_primary_10_1140_epje_s10189_024_00405_y
crossref_primary_10_1002_bies_202200001
crossref_primary_10_1038_s41564_022_01314_6
crossref_primary_10_1038_s41580_024_00789_x
crossref_primary_10_1038_s41421_022_00388_0
crossref_primary_10_1038_s41422_022_00676_0
crossref_primary_10_1093_nar_gkad227
crossref_primary_10_1038_s41580_022_00498_3
crossref_primary_10_3390_cancers14184375
crossref_primary_10_1038_s41467_023_42345_9
crossref_primary_10_1126_sciadv_adp3251
crossref_primary_10_1093_nar_gkad908
crossref_primary_10_3389_fgene_2023_1132018
crossref_primary_10_3389_fmolb_2022_944955
crossref_primary_10_46940_sphrj_02_1007
crossref_primary_10_1016_j_jmb_2021_166827
crossref_primary_10_3389_fcell_2021_723859
crossref_primary_10_1039_D0CP01877E
crossref_primary_10_1126_sciadv_adk7160
crossref_primary_10_3390_ijms251810215
crossref_primary_10_1016_j_tips_2022_07_001
crossref_primary_10_1186_s12915_020_00788_2
crossref_primary_10_1038_s41580_021_00359_5
crossref_primary_10_3389_frnar_2023_1194526
crossref_primary_10_1016_j_tibs_2019_10_001
crossref_primary_10_1093_nar_gkac506
crossref_primary_10_7554_eLife_95170
crossref_primary_10_1042_BCJ20200883
crossref_primary_10_1016_j_celrep_2023_112505
crossref_primary_10_1042_ETLS20190190
crossref_primary_10_3892_mmr_2024_13221
crossref_primary_10_1038_s41467_021_23831_4
crossref_primary_10_1016_j_celrep_2020_108248
crossref_primary_10_3390_cells9112480
crossref_primary_10_1016_j_cels_2020_09_011
crossref_primary_10_1021_acscentsci_4c01617
crossref_primary_10_7554_eLife_68068
crossref_primary_10_1073_pnas_2216436120
crossref_primary_10_1093_nar_gkab304
crossref_primary_10_1038_s41467_021_21606_5
crossref_primary_10_1016_j_gde_2020_10_001
crossref_primary_10_1093_bib_bbae030
crossref_primary_10_3390_ijms23042179
crossref_primary_10_1016_j_stemcr_2020_10_012
crossref_primary_10_1093_bioinformatics_btac742
crossref_primary_10_1371_journal_pgen_1010235
crossref_primary_10_1042_BST20231286
crossref_primary_10_31857_S0320972524040087
crossref_primary_10_1016_j_molcel_2024_03_001
crossref_primary_10_1242_bio_058896
crossref_primary_10_1038_s41590_019_0566_z
crossref_primary_10_1038_s41467_022_30397_2
crossref_primary_10_1016_j_bpj_2022_07_011
crossref_primary_10_1038_s41594_023_01059_8
crossref_primary_10_1007_s40484_020_0221_6
crossref_primary_10_3390_ijms222312758
crossref_primary_10_1038_s41556_024_01411_0
crossref_primary_10_1080_21541264_2023_2222032
crossref_primary_10_1016_j_cell_2022_12_013
crossref_primary_10_1111_febs_16959
crossref_primary_10_1093_nar_gkac849
crossref_primary_10_1016_j_bbagrm_2020_194641
crossref_primary_10_3390_cancers14215404
crossref_primary_10_1186_s13059_021_02455_3
crossref_primary_10_15252_msb_20209653
crossref_primary_10_1038_s41573_021_00199_0
crossref_primary_10_1186_s13059_021_02322_1
crossref_primary_10_1080_21541264_2019_1673636
crossref_primary_10_1101_gr_260463_119
crossref_primary_10_1038_s41588_022_01044_9
crossref_primary_10_1016_j_coisb_2022_100436
crossref_primary_10_3390_cancers14122866
crossref_primary_10_1002_bies_202200166
crossref_primary_10_1038_s41587_023_01737_4
crossref_primary_10_1016_j_molcel_2021_07_022
crossref_primary_10_1016_j_sbi_2021_06_005
crossref_primary_10_1038_s41467_020_19435_z
crossref_primary_10_1038_s41588_023_01442_7
crossref_primary_10_1093_nar_gkz1038
crossref_primary_10_1016_j_jmb_2021_167151
crossref_primary_10_1038_s41567_021_01462_2
crossref_primary_10_1016_j_jgg_2021_07_012
crossref_primary_10_1016_j_molcel_2022_04_017
crossref_primary_10_1007_s11427_020_1702_x
crossref_primary_10_1111_febs_15735
crossref_primary_10_1101_gad_331520_119
crossref_primary_10_1038_s41576_024_00780_4
crossref_primary_10_1016_j_devcel_2023_11_020
crossref_primary_10_1016_j_gde_2021_11_003
crossref_primary_10_3389_fcell_2023_1205540
crossref_primary_10_1038_s41564_020_0760_7
crossref_primary_10_1016_j_semcdb_2022_11_016
crossref_primary_10_1186_s13072_023_00502_w
crossref_primary_10_1016_j_molcel_2022_10_011
crossref_primary_10_1016_j_cell_2020_11_030
crossref_primary_10_1073_pnas_2116091119
crossref_primary_10_1103_PhysRevResearch_6_033082
crossref_primary_10_1016_j_coisb_2020_05_002
crossref_primary_10_1016_j_sbi_2022_102487
crossref_primary_10_1016_j_bpj_2023_05_032
crossref_primary_10_1038_s41588_021_00878_z
crossref_primary_10_1016_j_bbagrm_2022_194827
crossref_primary_10_1109_TCBB_2022_3204365
crossref_primary_10_1534_genetics_120_301370
crossref_primary_10_1261_rna_078971_121
crossref_primary_10_15252_embj_2019103373
crossref_primary_10_3389_fgene_2021_730633
crossref_primary_10_3390_biology11050708
crossref_primary_10_1126_science_aaz4427
crossref_primary_10_1016_j_tcb_2019_12_008
crossref_primary_10_3390_ijms22063017
crossref_primary_10_1093_pnasnexus_pgae226
crossref_primary_10_15252_msb_202110272
crossref_primary_10_3389_fmed_2022_924087
crossref_primary_10_1016_j_molcel_2021_01_031
crossref_primary_10_1002_wsbm_1467
crossref_primary_10_1016_j_jbc_2023_104800
crossref_primary_10_31857_S2686738924040121
crossref_primary_10_1093_nar_gkaa261
crossref_primary_10_1016_j_jbc_2021_100687
crossref_primary_10_1038_s41467_021_25875_y
crossref_primary_10_1111_febs_16089
crossref_primary_10_1093_nar_gkac766
crossref_primary_10_1016_j_bpj_2021_01_033
crossref_primary_10_1016_j_tig_2022_05_015
crossref_primary_10_1371_journal_pcbi_1010162
crossref_primary_10_1093_nar_gkab1180
crossref_primary_10_1038_s41467_022_30614_y
crossref_primary_10_1016_j_devcel_2020_09_005
crossref_primary_10_1016_j_gde_2024_102203
crossref_primary_10_1016_j_tig_2022_05_011
crossref_primary_10_1007_s00018_024_05559_8
crossref_primary_10_1016_j_jbc_2022_102117
crossref_primary_10_1016_j_bpj_2022_06_008
crossref_primary_10_1042_BST20210856
crossref_primary_10_1101_gr_267898_120
crossref_primary_10_3390_ijms242015418
crossref_primary_10_1038_s41576_021_00398_w
crossref_primary_10_1016_j_xcrm_2020_100188
crossref_primary_10_1186_s13059_020_02152_7
crossref_primary_10_1038_s41467_023_40981_9
crossref_primary_10_1073_pnas_2214062120
crossref_primary_10_1021_acsmacrolett_2c00167
crossref_primary_10_1016_j_molcel_2021_03_002
crossref_primary_10_1139_bcb_2024_0094
crossref_primary_10_1016_j_ceb_2022_01_005
crossref_primary_10_1093_bib_bbad286
crossref_primary_10_3390_biom14070875
crossref_primary_10_3390_cancers16091622
crossref_primary_10_1016_j_molcel_2024_06_006
crossref_primary_10_1038_s41588_021_00888_x
crossref_primary_10_1016_j_jpha_2023_11_012
crossref_primary_10_1038_s41576_020_0272_6
crossref_primary_10_1101_gr_272468_120
crossref_primary_10_1093_nar_gkaf015
crossref_primary_10_1038_s41580_022_00566_8
crossref_primary_10_1186_s12964_024_01787_4
crossref_primary_10_1002_jcp_30980
crossref_primary_10_1038_s12276_024_01233_y
crossref_primary_10_1126_science_abk3512
crossref_primary_10_1002_smll_202311834
crossref_primary_10_1002_adbi_202200006
crossref_primary_10_1016_j_ceb_2023_102215
crossref_primary_10_1016_j_tig_2019_12_010
crossref_primary_10_1242_jcs_260593
crossref_primary_10_7554_eLife_95170_3
crossref_primary_10_1038_s41467_022_29625_6
crossref_primary_10_1080_19491034_2023_2213551
crossref_primary_10_1093_nar_gkac233
crossref_primary_10_1186_s13046_020_01584_0
crossref_primary_10_1093_nar_gkaf189
crossref_primary_10_1038_s41589_022_01046_y
crossref_primary_10_3389_fmolb_2022_867303
crossref_primary_10_1016_j_jmb_2024_168642
crossref_primary_10_1007_s10571_021_01108_0
crossref_primary_10_1016_j_molcel_2021_11_007
crossref_primary_10_1038_s41586_020_2574_4
crossref_primary_10_3390_biomedicines13030594
crossref_primary_10_15252_embj_2021110137
crossref_primary_10_1002_bies_202200105
crossref_primary_10_1134_S0006297924040084
crossref_primary_10_1002_bies_202300075
crossref_primary_10_1080_19491034_2023_2205758
crossref_primary_10_1016_j_coph_2020_03_003
crossref_primary_10_1038_s41467_020_20400_z
crossref_primary_10_1038_s41467_023_39878_4
crossref_primary_10_1038_s41580_024_00710_6
crossref_primary_10_1016_j_molp_2023_09_005
crossref_primary_10_1038_s41467_020_14916_7
crossref_primary_10_1038_s41467_021_21690_7
crossref_primary_10_1016_j_devcel_2023_07_007
crossref_primary_10_1016_j_molcel_2020_10_036
crossref_primary_10_1021_acs_nanolett_3c01301
crossref_primary_10_7555_JBR_37_20230214
crossref_primary_10_3390_ncrna5040054
crossref_primary_10_1016_j_bbcan_2024_189206
crossref_primary_10_1016_j_coisb_2020_08_002
crossref_primary_10_1016_j_jbc_2022_102552
crossref_primary_10_1016_j_bbagrm_2024_195059
crossref_primary_10_1038_s41467_022_35375_2
crossref_primary_10_1261_rna_078997_121
crossref_primary_10_1016_j_cell_2024_03_023
crossref_primary_10_1007_s00018_021_03903_w
crossref_primary_10_3389_fimmu_2021_655590
crossref_primary_10_3389_fimmu_2021_682397
crossref_primary_10_1126_science_add1250
crossref_primary_10_1038_s41586_023_06845_4
crossref_primary_10_1093_nar_gkaf056
Cites_doi 10.7554/eLife.28975
10.1016/j.cell.2018.01.029
10.1016/j.jcp.2008.01.047
10.1016/j.molcel.2015.01.013
10.1073/pnas.1706083114
10.1093/nar/gkx1126
10.1038/nature22822
10.1038/nature15545
10.1073/pnas.1706197114
10.1016/j.cell.2016.04.047
10.1126/science.aaf4382
10.1038/nchem.2803
10.1073/pnas.1304749110
10.1073/pnas.231608898
10.1126/science.1259037
10.1016/j.cell.2017.02.007
10.1101/cshperspect.a000638
10.1016/j.cell.2019.05.029
10.1016/j.cell.2016.09.018
10.1073/pnas.012591199
10.1038/nrm.2017.7
10.1016/j.cell.2014.11.041
10.1038/nature24281
10.1021/ma970616h
10.1016/j.molcel.2017.07.022
10.1016/j.cpc.2011.06.005
10.1186/1471-2105-3-30
10.1016/j.cell.2016.05.025
10.1073/pnas.71.10.4135
10.1016/j.cell.2013.02.014
10.1038/nrg3682
10.1016/j.tibs.2014.07.002
10.1038/nrg3684
10.1038/nature15518
10.1038/nature25762
10.1038/nature22989
10.1063/1.5037727
10.1038/386569a0
10.1016/j.cell.2012.08.026
10.1016/j.sbi.2017.03.006
10.1016/j.tibs.2017.12.001
10.1073/pnas.96.19.10848
10.1016/j.cell.2014.08.009
10.1126/science.aar4199
10.1016/j.cell.2018.10.042
10.1126/science.aar3958
10.7554/eLife.30294
10.1038/s41586-018-0174-3
10.1038/s41467-018-03977-4
10.1038/nsmb.2784
10.1038/nrg1315
10.1101/cshperspect.a000653
10.1016/j.tig.2009.08.003
10.1016/j.cell.2013.03.035
10.1016/j.cell.2008.11.051
10.1016/j.cpc.2015.02.028
10.1073/pnas.1804177115
10.1038/nrg3207
10.1016/j.cell.2018.06.006
10.1088/1367-2630/aa9369
10.1101/sqb.1998.63.609
10.1126/science.aar2555
10.1016/S0300-9084(75)80139-8
10.1016/j.molcel.2018.05.019
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2019.07.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 561.e7
ExternalDocumentID PMC6690378
31398323
10_1016_j_molcel_2019_07_009
S1097276519305398
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM034277
– fundername: NCI NIH HHS
  grantid: P30 CA014051
– fundername: NCI NIH HHS
  grantid: T32 CA009172
– fundername: NIGMS NIH HHS
  grantid: R01 GM123511
– fundername: NCI NIH HHS
  grantid: P01 CA042063
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c496t-62ff8dd61312a85f0a85f43db52a51069a2e36c35a3ec1d7e298ea484ae53f3d3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 18:20:56 EDT 2025
Sun Sep 28 02:31:46 EDT 2025
Sat Sep 27 21:36:59 EDT 2025
Thu Apr 03 06:57:49 EDT 2025
Tue Jul 01 03:21:14 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Fri Feb 23 02:30:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords transcription factor
enhancer
phase separation
regulatory element
transcription
cooperativity
specificity
condensate
multivalence
coactivator
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-62ff8dd61312a85f0a85f43db52a51069a2e36c35a3ec1d7e298ea484ae53f3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Contributions: Conceptualization: K.S., B.R.S., P.A.S., A.K.C., R.A.Y. Methodology: K.S., B.R.S., A.K.C., A.V.Z, J.S., E.L.C., I.A.K., A.B. Software: K.S. Formal Analysis: K.S. Investigation: K.S., B.R.S., A.V.Z, J.S., E.L.C., I.A.K., A.B. Resources: J.S., I.A.K., A.B., N.M.H, P.A.S., A.K.C., R.A.Y. Data Curation: K.S. Writing - Original Draft: K.S., B.R.S., P.A.S., A.K.C., R.A.Y. Writing - Reviewing and Editing: All authors. Visualization: K.S., B.R.S., A.V.Z. Supervision: P.A.S., A.K.C., R.A.Y. Funding Acquisition: P.A.S., A.K.C., R.A.Y.
OpenAccessLink http://www.cell.com/article/S1097276519305398/pdf
PMID 31398323
PQID 2271853896
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690378
proquest_miscellaneous_2305200024
proquest_miscellaneous_2271853896
pubmed_primary_31398323
crossref_primary_10_1016_j_molcel_2019_07_009
crossref_citationtrail_10_1016_j_molcel_2019_07_009
elsevier_sciencedirect_doi_10_1016_j_molcel_2019_07_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-08
PublicationDateYYYYMMDD 2019-08-08
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chong, Dugast-Darzacq, Liu, Dong, Dailey, Cattoglio, Heckert, Banala, Lavis, Darzacq, Tjian (bib9) 2018; 361
Fukaya, Lim, Levine (bib16) 2016; 166
Semenov, Rubinstein (bib48) 1998; 31
Dignon, Zheng, Best, Kim, Mittal (bib13) 2018; 115
Wang, Choi, Holehouse, Lee, Zhang, Jahnel, Maharana, Lemaitre, Pozniakovsky, Drechsel (bib59) 2018; 174
Boija, Klein, Sabari, Dall’Agnese, Coffey, Zamudio, Li, Shrinivas, Manteiga, Hannett (bib4) 2018; 175
Whyte, Orlando, Hnisz, Abraham, Lin, Kagey, Rahl, Lee, Young (bib63) 2013; 153
Rowley, Nichols, Lyu, Ando-Kuri, Rivera, Hermetz, Wang, Ruan, Corces (bib45) 2017; 67
Shin, Brangwynne (bib50) 2017; 357
Tsai, Muthusamy, Alves, Lavis, Singer, Stern, Crocker (bib58) 2017; 6
Long, Prescott, Wysocka (bib32) 2016; 167
Schwarzer, Abdennur, Goloborodko, Pekowska, Fudenberg, Loe-Mie, Fonseca, Huber, Haering, Mirny, Spitz (bib47) 2017; 551
Lee, Young (bib27) 2013; 152
Berman, Nibu, Pfeiffer, Tomancak, Celniker, Levine, Rubin, Eisen (bib3) 2002; 99
Brady, Farber, Sekhar, Lin, Huang, Bah, Nott, Chan, Baldwin, Forman-Kay, Kay (bib7) 2017; 114
Bouras, Southey, Venter (bib6) 2001; 61
Feric, Vaidya, Harmon, Mitrea, Zhu, Richardson, Kriwacki, Pappu, Brangwynne (bib14) 2016; 165
Markstein, Markstein, Markstein, Levine (bib36) 2002; 99
Pederson (bib42) 2011; 3
Glaser, Nguyen, Anderson, Lui, Spiga, Millan, Morse, Glotzer (bib17) 2015; 192
Cho, Spille, Hecht, Lee, Li, Grube, Cisse (bib8) 2018; 361
Morgunova, Taipale (bib37) 2017; 47
Crocker, Abe, Rinaldi, McGregor, Frankel, Wang, Alsawadi, Valenti, Plaza, Payre (bib10) 2015; 160
Hopfield (bib20) 1974; 71
Anderson, Lorenz, Travesset (bib1) 2008; 227
Strom, Emelyanov, Mir, Fyodorov, Darzacq, Karpen (bib56) 2017; 547
Stampfel, Kazmar, Frank, Wienerroither, Reiter, Stark (bib55) 2015
Maniatis, Falvo, Kim, Kim, Lin, Parekh, Wathelet (bib34) 1998; 63
Levo, Segal (bib28) 2014; 15
Fox, Nakagawa, Hirose, Bond (bib15) 2018; 43
Lu, Yu, Hansen, Ganguly, Liu, Heckert, Darzacq, Zhou (bib33) 2018; 558
Sabari, Dall’Agnese, Boija, Klein, Coffey, Shrinivas, Abraham, Hannett, Zamudio, Manteiga (bib46) 2018; 361
Das, Ho, Zikherman, Govern, Yang, Weiss, Chakraborty, Roose (bib12) 2009; 136
Ninio (bib39) 1975; 57
Rajewsky, Vergassola, Gaul, Siggia (bib44) 2002; 3
Harmon, Holehouse, Rosen, Pappu (bib18) 2017; 6
Khan, Fornes, Stigliani, Gheorghe, Castro-Mondragon, van der Lee, Bessy, Chèneby, Kulkarni, Tan (bib24) 2018; 46
Borgia, Borgia, Bugge, Kissling, Heidarsson, Fernandes, Sottini, Soranno, Buholzer, Nettels (bib5) 2018; 555
Hnisz, Shrinivas, Young, Chakraborty, Sharp (bib19) 2017; 169
Ptashne, Gann (bib43) 1997; 386
Slattery, Zhou, Yang, Dantas Machado, Gordân, Rohs (bib52) 2014; 39
Lin, Brady, Forman-Kay, Chan (bib31) 2017; 19
Lin, Lovén, Rahl, Paranal, Burge, Bradner, Lee, Young (bib30) 2012; 151
Wunderlich, Mirny (bib64) 2009; 25
Wasserman, Sandelin (bib60) 2004; 5
Shlyueva, Stampfel, Stark (bib51) 2014; 15
Zhu, Qi, Jain, Le Beau, Espinosa, Atkins, Lazar, Yeldandi, Rao, Reddy (bib66) 1999; 96
Banani, Lee, Hyman, Rosen (bib2) 2017; 18
Jung, Bandilla, von Reutern, Schnepf, Rieder, Unnerstall, Gaul (bib23) 2018; 9
Spitz, Furlong (bib54) 2012; 13
Yamazaki, Souquere, Chujo, Kobelke, Chong, Fox, Bond, Nakagawa, Pierron, Hirose (bib65) 2018; 70
Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett-Jones, Pawson, Forman-Kay, Baldwin (bib41) 2015; 57
Sherry, Das, Pappu, Barrick (bib49) 2017; 114
Lambert, Jolma, Campitelli, Das, Yin, Albu, Chen, Taipale, Hughes, Weirauch (bib25) 2018; 172
Mansour, Abraham, Anders, Berezovskaya, Gutierrez, Durbin, Etchin, Lawton, Sallan, Silverman (bib35) 2014
Tatavosian, Kent, Brown, Yao, Duc, Huynh, Zhen, Ma, Wang, Ren (bib57) 2018
Weirauch, Yang, Albu, Cote, Montenegro-Montero, Drewe, Najafabadi, Lambert, Mann, Cook (bib62) 2014; 158
Smith, Shilatifard (bib53) 2014; 21
Huihui, Firman, Ghosh (bib21) 2018; 149
Nizami, Deryusheva, Gall (bib40) 2010; 2
Nguyen, Phillips, Anderson, Glotzer (bib38) 2011; 182
Jolma, Yin, Nitta, Dave, Popov, Taipale, Enge, Kivioja, Morgunova, Taipale (bib22) 2015; 527
Li, Dong, Saydaminova, Chang, Wang, Ochiai, Yamamoto, Pertsinidis (bib29) 2019
Wei, Elbaum-Garfinkle, Holehouse, Chen, Feric, Arnold, Priestley, Pappu, Brangwynne (bib61) 2017; 9
Das, Pappu (bib11) 2013; 110
Larson, Elnatan, Keenen, Trnka, Johnston, Burlingame, Agard, Redding, Narlikar (bib26) 2017; 547
Sabari (10.1016/j.molcel.2019.07.009_bib46) 2018; 361
Stampfel (10.1016/j.molcel.2019.07.009_bib55) 2015; 528
Jung (10.1016/j.molcel.2019.07.009_bib23) 2018; 9
Spitz (10.1016/j.molcel.2019.07.009_bib54) 2012; 13
Glaser (10.1016/j.molcel.2019.07.009_bib17) 2015; 192
Huihui (10.1016/j.molcel.2019.07.009_bib21) 2018; 149
Long (10.1016/j.molcel.2019.07.009_bib32) 2016; 167
Pederson (10.1016/j.molcel.2019.07.009_bib42) 2011; 3
Tatavosian (10.1016/j.molcel.2019.07.009_bib57) 2018
Dignon (10.1016/j.molcel.2019.07.009_bib13) 2018; 115
Brady (10.1016/j.molcel.2019.07.009_bib7) 2017; 114
Shin (10.1016/j.molcel.2019.07.009_bib50) 2017; 357
Cho (10.1016/j.molcel.2019.07.009_bib8) 2018; 361
Crocker (10.1016/j.molcel.2019.07.009_bib10) 2015; 160
Lin (10.1016/j.molcel.2019.07.009_bib30) 2012; 151
Jolma (10.1016/j.molcel.2019.07.009_bib22) 2015; 527
Tsai (10.1016/j.molcel.2019.07.009_bib58) 2017; 6
Yamazaki (10.1016/j.molcel.2019.07.009_bib65) 2018; 70
Li (10.1016/j.molcel.2019.07.009_bib29) 2019; 178
Markstein (10.1016/j.molcel.2019.07.009_bib36) 2002; 99
Fox (10.1016/j.molcel.2019.07.009_bib15) 2018; 43
Sherry (10.1016/j.molcel.2019.07.009_bib49) 2017; 114
Ptashne (10.1016/j.molcel.2019.07.009_bib43) 1997; 386
Wang (10.1016/j.molcel.2019.07.009_bib59) 2018; 174
Das (10.1016/j.molcel.2019.07.009_bib11) 2013; 110
Rowley (10.1016/j.molcel.2019.07.009_bib45) 2017; 67
Bouras (10.1016/j.molcel.2019.07.009_bib6) 2001; 61
Shlyueva (10.1016/j.molcel.2019.07.009_bib51) 2014; 15
Harmon (10.1016/j.molcel.2019.07.009_bib18) 2017; 6
Lin (10.1016/j.molcel.2019.07.009_bib31) 2017; 19
Banani (10.1016/j.molcel.2019.07.009_bib2) 2017; 18
Smith (10.1016/j.molcel.2019.07.009_bib53) 2014; 21
Weirauch (10.1016/j.molcel.2019.07.009_bib62) 2014; 158
Rajewsky (10.1016/j.molcel.2019.07.009_bib44) 2002; 3
Slattery (10.1016/j.molcel.2019.07.009_bib52) 2014; 39
Nizami (10.1016/j.molcel.2019.07.009_bib40) 2010; 2
Whyte (10.1016/j.molcel.2019.07.009_bib63) 2013; 153
Chong (10.1016/j.molcel.2019.07.009_bib9) 2018; 361
Lee (10.1016/j.molcel.2019.07.009_bib27) 2013; 152
Maniatis (10.1016/j.molcel.2019.07.009_bib34) 1998; 63
Das (10.1016/j.molcel.2019.07.009_bib12) 2009; 136
Hnisz (10.1016/j.molcel.2019.07.009_bib19) 2017; 169
Boija (10.1016/j.molcel.2019.07.009_bib4) 2018; 175
Morgunova (10.1016/j.molcel.2019.07.009_bib37) 2017; 47
Hopfield (10.1016/j.molcel.2019.07.009_bib20) 1974; 71
Lu (10.1016/j.molcel.2019.07.009_bib33) 2018; 558
Nguyen (10.1016/j.molcel.2019.07.009_bib38) 2011; 182
Nott (10.1016/j.molcel.2019.07.009_bib41) 2015; 57
Khan (10.1016/j.molcel.2019.07.009_bib24) 2018; 46
Wasserman (10.1016/j.molcel.2019.07.009_bib60) 2004; 5
Wei (10.1016/j.molcel.2019.07.009_bib61) 2017; 9
Mansour (10.1016/j.molcel.2019.07.009_bib35) 2014; 346
Lambert (10.1016/j.molcel.2019.07.009_bib25) 2018; 172
Borgia (10.1016/j.molcel.2019.07.009_bib5) 2018; 555
Feric (10.1016/j.molcel.2019.07.009_bib14) 2016; 165
Wunderlich (10.1016/j.molcel.2019.07.009_bib64) 2009; 25
Schwarzer (10.1016/j.molcel.2019.07.009_bib47) 2017; 551
Levo (10.1016/j.molcel.2019.07.009_bib28) 2014; 15
Zhu (10.1016/j.molcel.2019.07.009_bib66) 1999; 96
Berman (10.1016/j.molcel.2019.07.009_bib3) 2002; 99
Semenov (10.1016/j.molcel.2019.07.009_bib48) 1998; 31
Larson (10.1016/j.molcel.2019.07.009_bib26) 2017; 547
Anderson (10.1016/j.molcel.2019.07.009_bib1) 2008; 227
Fukaya (10.1016/j.molcel.2019.07.009_bib16) 2016; 166
Strom (10.1016/j.molcel.2019.07.009_bib56) 2017; 547
Ninio (10.1016/j.molcel.2019.07.009_bib39) 1975; 57
References_xml – volume: 547
  start-page: 241
  year: 2017
  end-page: 245
  ident: bib56
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
– volume: 99
  start-page: 763
  year: 2002
  end-page: 768
  ident: bib36
  article-title: Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 13392
  year: 2013
  end-page: 13397
  ident: bib11
  article-title: Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 558
  start-page: 318
  year: 2018
  end-page: 323
  ident: bib33
  article-title: Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II
  publication-title: Nature
– volume: 555
  start-page: 61
  year: 2018
  end-page: 66
  ident: bib5
  article-title: Extreme disorder in an ultrahigh-affinity protein complex
  publication-title: Nature
– volume: 227
  start-page: 5342
  year: 2008
  end-page: 5359
  ident: bib1
  article-title: General purpose molecular dynamics simulations fully implemented on graphics processing units
  publication-title: J. Comp. Phys.
– volume: 357
  start-page: eaaf4382
  year: 2017
  ident: bib50
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
– volume: 151
  start-page: 56
  year: 2012
  end-page: 67
  ident: bib30
  article-title: Transcriptional amplification in tumor cells with elevated c-Myc
  publication-title: Cell
– volume: 21
  start-page: 210
  year: 2014
  end-page: 219
  ident: bib53
  article-title: Enhancer biology and enhanceropathies
  publication-title: Nat. Struct. Mol. Biol.
– volume: 5
  start-page: 276
  year: 2004
  end-page: 287
  ident: bib60
  article-title: Applied bioinformatics for the identification of regulatory elements
  publication-title: Nat. Rev. Genet.
– volume: 114
  start-page: E8194
  year: 2017
  end-page: E8203
  ident: bib7
  article-title: Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 43
  start-page: 124
  year: 2018
  end-page: 135
  ident: bib15
  article-title: Paraspeckles: where long noncoding RNA meets phase separation
  publication-title: Trends Biochem. Sci.
– volume: 167
  start-page: 1170
  year: 2016
  end-page: 1187
  ident: bib32
  article-title: Ever-changing landscapes: transcriptional enhancers in development and evolution
  publication-title: Cell
– volume: 166
  start-page: 358
  year: 2016
  end-page: 368
  ident: bib16
  article-title: Enhancer control of transcriptional bursting
  publication-title: Cell
– volume: 13
  start-page: 613
  year: 2012
  end-page: 626
  ident: bib54
  article-title: Transcription factors: from enhancer binding to developmental control
  publication-title: Nat. Rev. Genet.
– volume: 115
  start-page: 9929
  year: 2018
  end-page: 9934
  ident: bib13
  article-title: Relation between single-molecule properties and phase behavior of intrinsically disordered proteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 434
  year: 2009
  end-page: 440
  ident: bib64
  article-title: Different gene regulation strategies revealed by analysis of binding motifs
  publication-title: Trends Genet.
– volume: 61
  start-page: 903
  year: 2001
  end-page: 907
  ident: bib6
  article-title: Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu
  publication-title: Cancer Res.
– volume: 175
  start-page: 1842
  year: 2018
  end-page: 1855.e16
  ident: bib4
  article-title: Transcription factors activate genes through the phase-separation capacity of their activation domains
  publication-title: Cell
– volume: 67
  start-page: 837
  year: 2017
  end-page: 852.e7
  ident: bib45
  article-title: Evolutionarily conserved principles predict 3D chromatin organization
  publication-title: Mol. Cell
– volume: 18
  start-page: 285
  year: 2017
  end-page: 298
  ident: bib2
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 527
  start-page: 384
  year: 2015
  end-page: 388
  ident: bib22
  article-title: DNA-dependent formation of transcription factor pairs alters their binding specificity
  publication-title: Nature
– volume: 160
  start-page: 191
  year: 2015
  end-page: 203
  ident: bib10
  article-title: Low affinity binding site clusters confer hox specificity and regulatory robustness
  publication-title: Cell
– volume: 165
  start-page: 1686
  year: 2016
  end-page: 1697
  ident: bib14
  article-title: Coexisting liquid phases underlie nucleolar subcompartments
  publication-title: Cell
– year: 2018
  ident: bib57
  article-title: Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation
  publication-title: J. Biol. Chem.
– volume: 96
  start-page: 10848
  year: 1999
  end-page: 10853
  ident: bib66
  article-title: Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 70
  start-page: 1038
  year: 2018
  end-page: 1053.e7
  ident: bib65
  article-title: Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation
  publication-title: Mol. Cell
– volume: 547
  start-page: 236
  year: 2017
  end-page: 240
  ident: bib26
  article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin
  publication-title: Nature
– volume: 2
  start-page: a000653
  year: 2010
  ident: bib40
  article-title: The Cajal body and histone locus body
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 57
  start-page: 587
  year: 1975
  end-page: 595
  ident: bib39
  article-title: Kinetic amplification of enzyme discrimination
  publication-title: Biochimie
– volume: 47
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib37
  article-title: Structural perspective of cooperative transcription factor binding
  publication-title: Curr. Opin. Struct. Biol.
– volume: 99
  start-page: 757
  year: 2002
  end-page: 762
  ident: bib3
  article-title: Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 272
  year: 2014
  end-page: 286
  ident: bib51
  article-title: Transcriptional enhancers: from properties to genome-wide predictions
  publication-title: Nat. Rev. Genet.
– volume: 6
  start-page: e28975
  year: 2017
  ident: bib58
  article-title: Nuclear microenvironments modulate transcription from low-affinity enhancers
  publication-title: eLife
– volume: 152
  start-page: 1237
  year: 2013
  end-page: 1251
  ident: bib27
  article-title: Transcriptional regulation and its misregulation in disease
  publication-title: Cell
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: bib41
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
– volume: 192
  start-page: 97
  year: 2015
  end-page: 107
  ident: bib17
  article-title: Strong scaling of general-purpose molecular dynamics simulations on GPUs
  publication-title: Comput. Phys. Commun.
– volume: 15
  start-page: 453
  year: 2014
  end-page: 468
  ident: bib28
  article-title: In pursuit of design principles of regulatory sequences
  publication-title: Nat. Rev. Genet.
– volume: 172
  start-page: 650
  year: 2018
  end-page: 665
  ident: bib25
  article-title: The human transcription factors
  publication-title: Cell
– start-page: 491
  year: 2019
  end-page: 506.E28
  ident: bib29
  article-title: Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells
  publication-title: Cell
– start-page: 1373
  year: 2014
  end-page: 1377
  ident: bib35
  article-title: Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element
  publication-title: Science
– volume: 361
  start-page: 412
  year: 2018
  end-page: 415
  ident: bib8
  article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates
  publication-title: Science
– volume: 386
  start-page: 569
  year: 1997
  end-page: 577
  ident: bib43
  article-title: Transcriptional activation by recruitment
  publication-title: Nature
– volume: 114
  start-page: E9243
  year: 2017
  end-page: E9252
  ident: bib49
  article-title: Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 149
  start-page: 085101
  year: 2018
  ident: bib21
  article-title: Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins
  publication-title: J. Chem. Phys.
– volume: 361
  start-page: eaar3958
  year: 2018
  ident: bib46
  article-title: Coactivator condensation at super-enhancers links phase separation and gene control
  publication-title: Science
– volume: 551
  start-page: 51
  year: 2017
  end-page: 56
  ident: bib47
  article-title: Two independent modes of chromatin organization revealed by cohesin removal
  publication-title: Nature
– volume: 153
  start-page: 307
  year: 2013
  end-page: 319
  ident: bib63
  article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes
  publication-title: Cell
– volume: 174
  start-page: 688
  year: 2018
  end-page: 699.e16
  ident: bib59
  article-title: A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins
  publication-title: Cell
– volume: 3
  start-page: 30
  year: 2002
  ident: bib44
  article-title: Computational detection of genomic cis-regulatory modules applied to body patterning in the early Drosophila embryo
  publication-title: BMC Bioinformatics
– volume: 71
  start-page: 4135
  year: 1974
  end-page: 4139
  ident: bib20
  article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 115003
  year: 2017
  ident: bib31
  article-title: Charge pattern matching as a “fuzzy” mode of molecular recognition for the functional phase separations of intrinsically disordered proteins
  publication-title: New J. Phys.
– volume: 158
  start-page: 1431
  year: 2014
  end-page: 1443
  ident: bib62
  article-title: Determination and inference of eukaryotic transcription factor sequence specificity
  publication-title: Cell
– volume: 9
  start-page: 1118
  year: 2017
  end-page: 1125
  ident: bib61
  article-title: Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles
  publication-title: Nat. Chem.
– volume: 3
  start-page: a000638
  year: 2011
  ident: bib42
  article-title: The nucleolus
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 39
  start-page: 381
  year: 2014
  end-page: 399
  ident: bib52
  article-title: Absence of a simple code: how transcription factors read the genome
  publication-title: Trends Biochem. Sci.
– volume: 361
  start-page: eaar2555
  year: 2018
  ident: bib9
  article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription
  publication-title: Science
– volume: 136
  start-page: 337
  year: 2009
  end-page: 351
  ident: bib12
  article-title: Digital signaling and hysteresis characterize ras activation in lymphoid cells
  publication-title: Cell
– volume: 6
  start-page: e30294
  year: 2017
  ident: bib18
  article-title: Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins
  publication-title: eLife
– volume: 63
  start-page: 609
  year: 1998
  end-page: 620
  ident: bib34
  article-title: Structure and function of the interferon-beta enhanceosome
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 31
  start-page: 1373
  year: 1998
  end-page: 1385
  ident: bib48
  article-title: Thermoreversible gelation in solutions of associative polymers. 1. Statics
  publication-title: Macromolecules
– volume: 9
  start-page: 1605
  year: 2018
  ident: bib23
  article-title: True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy
  publication-title: Nat. Commun.
– start-page: 147
  year: 2015
  end-page: 151
  ident: bib55
  article-title: Transcriptional regulators form diverse groups with context-dependent regulatory functions
  publication-title: Nature
– volume: 46
  start-page: D260
  year: 2018
  end-page: D266
  ident: bib24
  article-title: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework
  publication-title: Nucleic Acids Res.
– volume: 169
  start-page: 13
  year: 2017
  end-page: 23
  ident: bib19
  article-title: A phase separation model for transcriptional control
  publication-title: Cell
– volume: 182
  start-page: 2307
  year: 2011
  end-page: 2313
  ident: bib38
  article-title: Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units
  publication-title: Comput. Phys. Commun.
– year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib57
  article-title: Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: e28975
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib58
  article-title: Nuclear microenvironments modulate transcription from low-affinity enhancers
  publication-title: eLife
  doi: 10.7554/eLife.28975
– volume: 172
  start-page: 650
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib25
  article-title: The human transcription factors
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.029
– volume: 227
  start-page: 5342
  year: 2008
  ident: 10.1016/j.molcel.2019.07.009_bib1
  article-title: General purpose molecular dynamics simulations fully implemented on graphics processing units
  publication-title: J. Comp. Phys.
  doi: 10.1016/j.jcp.2008.01.047
– volume: 57
  start-page: 936
  year: 2015
  ident: 10.1016/j.molcel.2019.07.009_bib41
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 114
  start-page: E9243
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib49
  article-title: Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1706083114
– volume: 46
  start-page: D260
  issue: D1
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib24
  article-title: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1126
– volume: 547
  start-page: 236
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib26
  article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin
  publication-title: Nature
  doi: 10.1038/nature22822
– volume: 528
  start-page: 147
  year: 2015
  ident: 10.1016/j.molcel.2019.07.009_bib55
  article-title: Transcriptional regulators form diverse groups with context-dependent regulatory functions
  publication-title: Nature
  doi: 10.1038/nature15545
– volume: 114
  start-page: E8194
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib7
  article-title: Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1706197114
– volume: 165
  start-page: 1686
  year: 2016
  ident: 10.1016/j.molcel.2019.07.009_bib14
  article-title: Coexisting liquid phases underlie nucleolar subcompartments
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.047
– volume: 357
  start-page: eaaf4382
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib50
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
  doi: 10.1126/science.aaf4382
– volume: 9
  start-page: 1118
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib61
  article-title: Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2803
– volume: 110
  start-page: 13392
  year: 2013
  ident: 10.1016/j.molcel.2019.07.009_bib11
  article-title: Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1304749110
– volume: 99
  start-page: 757
  year: 2002
  ident: 10.1016/j.molcel.2019.07.009_bib3
  article-title: Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.231608898
– volume: 346
  start-page: 1373
  year: 2014
  ident: 10.1016/j.molcel.2019.07.009_bib35
  article-title: Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element
  publication-title: Science
  doi: 10.1126/science.1259037
– volume: 169
  start-page: 13
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib19
  article-title: A phase separation model for transcriptional control
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.007
– volume: 3
  start-page: a000638
  year: 2011
  ident: 10.1016/j.molcel.2019.07.009_bib42
  article-title: The nucleolus
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a000638
– volume: 178
  start-page: 491
  year: 2019
  ident: 10.1016/j.molcel.2019.07.009_bib29
  article-title: Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.029
– volume: 167
  start-page: 1170
  year: 2016
  ident: 10.1016/j.molcel.2019.07.009_bib32
  article-title: Ever-changing landscapes: transcriptional enhancers in development and evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.018
– volume: 99
  start-page: 763
  year: 2002
  ident: 10.1016/j.molcel.2019.07.009_bib36
  article-title: Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.012591199
– volume: 18
  start-page: 285
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib2
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.7
– volume: 160
  start-page: 191
  year: 2015
  ident: 10.1016/j.molcel.2019.07.009_bib10
  article-title: Low affinity binding site clusters confer hox specificity and regulatory robustness
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.041
– volume: 551
  start-page: 51
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib47
  article-title: Two independent modes of chromatin organization revealed by cohesin removal
  publication-title: Nature
  doi: 10.1038/nature24281
– volume: 31
  start-page: 1373
  year: 1998
  ident: 10.1016/j.molcel.2019.07.009_bib48
  article-title: Thermoreversible gelation in solutions of associative polymers. 1. Statics
  publication-title: Macromolecules
  doi: 10.1021/ma970616h
– volume: 67
  start-page: 837
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib45
  article-title: Evolutionarily conserved principles predict 3D chromatin organization
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.07.022
– volume: 182
  start-page: 2307
  year: 2011
  ident: 10.1016/j.molcel.2019.07.009_bib38
  article-title: Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.06.005
– volume: 3
  start-page: 30
  year: 2002
  ident: 10.1016/j.molcel.2019.07.009_bib44
  article-title: Computational detection of genomic cis-regulatory modules applied to body patterning in the early Drosophila embryo
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-3-30
– volume: 166
  start-page: 358
  year: 2016
  ident: 10.1016/j.molcel.2019.07.009_bib16
  article-title: Enhancer control of transcriptional bursting
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.025
– volume: 71
  start-page: 4135
  year: 1974
  ident: 10.1016/j.molcel.2019.07.009_bib20
  article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.71.10.4135
– volume: 152
  start-page: 1237
  year: 2013
  ident: 10.1016/j.molcel.2019.07.009_bib27
  article-title: Transcriptional regulation and its misregulation in disease
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.014
– volume: 15
  start-page: 272
  year: 2014
  ident: 10.1016/j.molcel.2019.07.009_bib51
  article-title: Transcriptional enhancers: from properties to genome-wide predictions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3682
– volume: 39
  start-page: 381
  year: 2014
  ident: 10.1016/j.molcel.2019.07.009_bib52
  article-title: Absence of a simple code: how transcription factors read the genome
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2014.07.002
– volume: 15
  start-page: 453
  year: 2014
  ident: 10.1016/j.molcel.2019.07.009_bib28
  article-title: In pursuit of design principles of regulatory sequences
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3684
– volume: 527
  start-page: 384
  year: 2015
  ident: 10.1016/j.molcel.2019.07.009_bib22
  article-title: DNA-dependent formation of transcription factor pairs alters their binding specificity
  publication-title: Nature
  doi: 10.1038/nature15518
– volume: 555
  start-page: 61
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib5
  article-title: Extreme disorder in an ultrahigh-affinity protein complex
  publication-title: Nature
  doi: 10.1038/nature25762
– volume: 547
  start-page: 241
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib56
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
  doi: 10.1038/nature22989
– volume: 149
  start-page: 085101
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib21
  article-title: Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5037727
– volume: 386
  start-page: 569
  year: 1997
  ident: 10.1016/j.molcel.2019.07.009_bib43
  article-title: Transcriptional activation by recruitment
  publication-title: Nature
  doi: 10.1038/386569a0
– volume: 151
  start-page: 56
  year: 2012
  ident: 10.1016/j.molcel.2019.07.009_bib30
  article-title: Transcriptional amplification in tumor cells with elevated c-Myc
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.026
– volume: 47
  start-page: 1
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib37
  article-title: Structural perspective of cooperative transcription factor binding
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2017.03.006
– volume: 43
  start-page: 124
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib15
  article-title: Paraspeckles: where long noncoding RNA meets phase separation
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2017.12.001
– volume: 96
  start-page: 10848
  year: 1999
  ident: 10.1016/j.molcel.2019.07.009_bib66
  article-title: Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.19.10848
– volume: 158
  start-page: 1431
  year: 2014
  ident: 10.1016/j.molcel.2019.07.009_bib62
  article-title: Determination and inference of eukaryotic transcription factor sequence specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.009
– volume: 361
  start-page: 412
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib8
  article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates
  publication-title: Science
  doi: 10.1126/science.aar4199
– volume: 175
  start-page: 1842
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib4
  article-title: Transcription factors activate genes through the phase-separation capacity of their activation domains
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.042
– volume: 361
  start-page: eaar3958
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib46
  article-title: Coactivator condensation at super-enhancers links phase separation and gene control
  publication-title: Science
  doi: 10.1126/science.aar3958
– volume: 6
  start-page: e30294
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib18
  article-title: Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins
  publication-title: eLife
  doi: 10.7554/eLife.30294
– volume: 558
  start-page: 318
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib33
  article-title: Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II
  publication-title: Nature
  doi: 10.1038/s41586-018-0174-3
– volume: 9
  start-page: 1605
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib23
  article-title: True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03977-4
– volume: 21
  start-page: 210
  year: 2014
  ident: 10.1016/j.molcel.2019.07.009_bib53
  article-title: Enhancer biology and enhanceropathies
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2784
– volume: 5
  start-page: 276
  year: 2004
  ident: 10.1016/j.molcel.2019.07.009_bib60
  article-title: Applied bioinformatics for the identification of regulatory elements
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1315
– volume: 2
  start-page: a000653
  year: 2010
  ident: 10.1016/j.molcel.2019.07.009_bib40
  article-title: The Cajal body and histone locus body
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a000653
– volume: 25
  start-page: 434
  year: 2009
  ident: 10.1016/j.molcel.2019.07.009_bib64
  article-title: Different gene regulation strategies revealed by analysis of binding motifs
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2009.08.003
– volume: 153
  start-page: 307
  year: 2013
  ident: 10.1016/j.molcel.2019.07.009_bib63
  article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.035
– volume: 136
  start-page: 337
  year: 2009
  ident: 10.1016/j.molcel.2019.07.009_bib12
  article-title: Digital signaling and hysteresis characterize ras activation in lymphoid cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.11.051
– volume: 192
  start-page: 97
  year: 2015
  ident: 10.1016/j.molcel.2019.07.009_bib17
  article-title: Strong scaling of general-purpose molecular dynamics simulations on GPUs
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.02.028
– volume: 61
  start-page: 903
  year: 2001
  ident: 10.1016/j.molcel.2019.07.009_bib6
  article-title: Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu
  publication-title: Cancer Res.
– volume: 115
  start-page: 9929
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib13
  article-title: Relation between single-molecule properties and phase behavior of intrinsically disordered proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1804177115
– volume: 13
  start-page: 613
  year: 2012
  ident: 10.1016/j.molcel.2019.07.009_bib54
  article-title: Transcription factors: from enhancer binding to developmental control
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3207
– volume: 174
  start-page: 688
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib59
  article-title: A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.006
– volume: 19
  start-page: 115003
  year: 2017
  ident: 10.1016/j.molcel.2019.07.009_bib31
  article-title: Charge pattern matching as a “fuzzy” mode of molecular recognition for the functional phase separations of intrinsically disordered proteins
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa9369
– volume: 63
  start-page: 609
  year: 1998
  ident: 10.1016/j.molcel.2019.07.009_bib34
  article-title: Structure and function of the interferon-beta enhanceosome
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.1998.63.609
– volume: 361
  start-page: eaar2555
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib9
  article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription
  publication-title: Science
  doi: 10.1126/science.aar2555
– volume: 57
  start-page: 587
  year: 1975
  ident: 10.1016/j.molcel.2019.07.009_bib39
  article-title: Kinetic amplification of enzyme discrimination
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(75)80139-8
– volume: 70
  start-page: 1038
  year: 2018
  ident: 10.1016/j.molcel.2019.07.009_bib65
  article-title: Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.05.019
SSID ssj0014589
Score 2.674348
Snippet Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 549
SubjectTerms Animals
Base Sequence - genetics
binding sites
Binding Sites - genetics
Chromatin - genetics
coactivator
complement
condensate
condensates
cooperativity
DNA
DNA - genetics
DNA-Binding Proteins - genetics
enhancer
Enhancer Elements, Genetic
Gene Expression Regulation
genes
Genomics
loci
Mice
Mouse Embryonic Stem Cells
multivalence
nucleotide sequences
phase separation
regulatory element
separation
specificity
transcription
transcription (genetics)
transcription factor
transcription factors
Transcription Factors - genetics
Transcription, Genetic
Title Enhancer Features that Drive Formation of Transcriptional Condensates
URI https://dx.doi.org/10.1016/j.molcel.2019.07.009
https://www.ncbi.nlm.nih.gov/pubmed/31398323
https://www.proquest.com/docview/2271853896
https://www.proquest.com/docview/2305200024
https://pubmed.ncbi.nlm.nih.gov/PMC6690378
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CoNBLSF-J0zYokOtia997bF0bU2gvScC3ZSWtsEMiBUc-5N93ZvUgTksNuQgkzYrVzO7Mt8yLkEuVKQ7bJqVgPAMV2mTUyKKgRshCTHzuQ6xb8Ou3WtyIn0u5PCDTPhcGwyo73d_q9Kituyfjjpvjh_V6fIW-U6YVQhBYSRYTfjGrFJP4lt8HT4KQsQ0eElOk7tPnYozXfX2XB3RApDaW8MSwxH-bp7_h58soymdmaX5Mjjo8mXxrp_yOHITqPXnTdph8-kBms2qFct0kiPW2cLZOmpVvkh8b0HLJvM9cTOoyiVar1yHwyWmNzXEfEYt-JDfz2fV0QbvOCTQXVjVUsbI0RQGmOmXeyHKCF8GLTDIPm1BZzwJXOZeehzwtdGDWBC-M8EHykhf8Ezms6iqckiQrpSy5UDIvwdinyuep9ibAsQ_OMpqxEeE9w1zelRXH7hZ3ro8fu3Utmx2y2U3Q321HhA6jHtqyGnvodS8Lt7M8HGj-PSMvetE52DnoDvFVqLePjjGNYMVY9R8aHutSAZAZkZNW3MN8OYBn0Icc5razEAYCrNy9-6Zar2IFb6XshGtz9uq_-kze4l2MRNRfyGGz2YavgI6a7Dwu_z-3SQ7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6DsN6KfZe1j08YFchtl6Wj22WIN3aXtYCuQmyLSMZOrtInUP__UjZDpZtWIFdfLAoQyYp8hNIkQCfdK4FbpuEofP0TKYmZ0aVJTNSlTJ2hfOhbsH5hZ5fyS8LtdiDyXAXhtIqe9vf2fRgrfs3456b45vVavyNYqc81QRBUJMy8wAeIhqISbVPFyfbUIJUoQ8eUTMiH-7PhSSvH8114SkCkWShhiflJf7dP_2JP39Po_zFL82ewGEPKKPjbs1PYc_Xz-BR12Ly7jlMp_WSBLuOCOxt8HAdtUvXRp_XaOai2XB1MWqqKLitwYjgJycNdce9JTD6Aq5m08vJnPWtE1ghM90yzavKlCX66oQ7o6qYHlKUueIOd6HOHPdCF0I54YukTD3PjHfSSOeVqEQpXsJ-3dT-NUR5pVQlpFZFhd4-0a5IUmc8nvvwMJNyPgIxMMwWfV1xam9xbYcEsu-2Y7MlNtuYAt7ZCNh21k1XV-Me-nSQhd3RD4um_56ZHwfRWdw6FA9xtW82t5bzlNCKyfQ_aEQoTIVIZgSvOnFv1ysQPaNBFLi2HUXYElDp7t2RerUMJby1zmKRmjf__Vcf4PH88vzMnp1efD2CAxoJaYnmLey3641_h1Cpzd-HrfATW7gR5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancer+Features+that+Drive+Formation+of+Transcriptional+Condensates&rft.jtitle=Molecular+cell&rft.au=Shrinivas%2C+Krishna&rft.au=Sabari%2C+Benjamin+R&rft.au=Coffey%2C+Eliot+L&rft.au=Klein%2C+Isaac+A&rft.date=2019-08-08&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=75&rft.issue=3&rft.spage=549&rft_id=info:doi/10.1016%2Fj.molcel.2019.07.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon