Enhancer Features that Drive Formation of Transcriptional Condensates
Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of...
Saved in:
Published in | Molecular cell Vol. 75; no. 3; pp. 549 - 561.e7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.08.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1097-2765 1097-4164 1097-4164 |
DOI | 10.1016/j.molcel.2019.07.009 |
Cover
Abstract | Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.
[Display omitted]
•Transcription machinery forms condensates localized to specific DNA elements•Combination of structured and dynamic interactions enables localized condensation•DNA encoding binding site features above threshold values drive condensation•DNA features that drive condensation promote enhancer activity in cells
Shrinivas et al. demonstrate that specific types of motif compositions encoded in DNA drive localized formation of transcriptional condensates. These findings explain how phase separation can occur at specific genomic locations and shed light on why only some genomic loci become highly active enhancers. |
---|---|
AbstractList | Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.
[Display omitted]
•Transcription machinery forms condensates localized to specific DNA elements•Combination of structured and dynamic interactions enables localized condensation•DNA encoding binding site features above threshold values drive condensation•DNA features that drive condensation promote enhancer activity in cells
Shrinivas et al. demonstrate that specific types of motif compositions encoded in DNA drive localized formation of transcriptional condensates. These findings explain how phase separation can occur at specific genomic locations and shed light on why only some genomic loci become highly active enhancers. Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process. Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci, and how the universal phenonomenon of phase separation might regulate this process. Shrinivas et al. demonstrate that specific types of motif compositions encoded in DNA drive localized formation of transcriptional condensates. These findings explain how phase separation can occur at specific genomic locations and shed light on why only some genomic loci become highly active enhancers. Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process. |
Author | Shrinivas, Krishna Coffey, Eliot L. Sharp, Phillip A. Chakraborty, Arup K. Zamudio, Alicia V. Young, Richard A. Sabari, Benjamin R. Boija, Ann Hannett, Nancy M. Klein, Isaac A. Schuijers, Jurian |
AuthorAffiliation | 3 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142 USA 5 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA 02215 USA 4 Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA 8 Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge MA 02139 USA 7 Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139 USA 10 These authors contributed equally 1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 USA 9 Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139 USA 11 Lead contact 2 Institute of Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge MA 02139 USA 6 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139 USA |
AuthorAffiliation_xml | – name: 1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 USA – name: 11 Lead contact – name: 2 Institute of Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge MA 02139 USA – name: 4 Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA – name: 5 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA 02215 USA – name: 9 Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139 USA – name: 7 Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139 USA – name: 10 These authors contributed equally – name: 6 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139 USA – name: 3 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142 USA – name: 8 Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge MA 02139 USA |
Author_xml | – sequence: 1 givenname: Krishna surname: Shrinivas fullname: Shrinivas, Krishna organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 2 givenname: Benjamin R. surname: Sabari fullname: Sabari, Benjamin R. organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA – sequence: 3 givenname: Eliot L. surname: Coffey fullname: Coffey, Eliot L. organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA – sequence: 4 givenname: Isaac A. surname: Klein fullname: Klein, Isaac A. organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA – sequence: 5 givenname: Ann surname: Boija fullname: Boija, Ann organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA – sequence: 6 givenname: Alicia V. surname: Zamudio fullname: Zamudio, Alicia V. organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA – sequence: 7 givenname: Jurian surname: Schuijers fullname: Schuijers, Jurian organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA – sequence: 8 givenname: Nancy M. surname: Hannett fullname: Hannett, Nancy M. organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA – sequence: 9 givenname: Phillip A. surname: Sharp fullname: Sharp, Phillip A. email: sharppa@mit.edu organization: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 10 givenname: Richard A. surname: Young fullname: Young, Richard A. email: young@wi.mit.edu organization: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA – sequence: 11 givenname: Arup K. surname: Chakraborty fullname: Chakraborty, Arup K. email: arupc@mit.edu organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31398323$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2PUyEYhYkZ43zoPzDmLt30yvcFFyamtmoyiZtxTRh4r6W5FyrQJv57qa0TdeFsgMA5Jy_nuUYXMUVA6CXBPcFEvtn2c5ocTD3FRPd46DHWT9AVwXpYcCL5xflMByku0XUpW4wJF0o_Q5eMMK0YZVdotYobGx3kbg227jOUrm5s7T7kcIBunfJsa0ixS2N3l20sLofd8cJO3TJFD7HYCuU5ejraqcCL836Dvq5Xd8tPi9svHz8v398uHNeyLiQdR-W9JIxQq8SIjwtn_l5QKwiW2lJg0jFhGTjiB6BageWKWxBsZJ7doHen3N3-fgbvINZsJ7PLYbb5h0k2mL9fYtiYb-lgpNSYDaoFvD4H5PR9D6WaOZRW4mQjpH0xlGFBMcaUPy6lA1GCKS2b9NWfYz3M87vmJuAngcuplAzjg4Rgc6RptuZE0xxpGjyYRrPZ3v5jc6H-4tE-F6bHzOeuoAE5BMimuAANtQ8ZXDU-hf8H_ASWoL4j |
CitedBy_id | crossref_primary_10_1016_j_ceb_2020_11_002 crossref_primary_10_1039_D2SC05438H crossref_primary_10_1038_s42003_024_05892_5 crossref_primary_10_1038_s41588_024_01892_7 crossref_primary_10_1016_j_tcb_2019_10_006 crossref_primary_10_1038_s41467_021_25761_7 crossref_primary_10_1021_acsnano_0c07397 crossref_primary_10_1073_pnas_2200667119 crossref_primary_10_3390_ijms24032668 crossref_primary_10_1038_s41388_022_02195_z crossref_primary_10_1038_s41576_023_00630_9 crossref_primary_10_1080_19491034_2022_2160551 crossref_primary_10_1371_journal_pcbi_1009669 crossref_primary_10_1134_S1607672924700935 crossref_primary_10_1016_j_ceb_2021_01_002 crossref_primary_10_1016_j_jmb_2022_167869 crossref_primary_10_1016_j_molcel_2020_04_020 crossref_primary_10_1016_j_ccell_2020_12_003 crossref_primary_10_1038_s41580_021_00401_6 crossref_primary_10_1002_mco2_223 crossref_primary_10_1111_febs_16250 crossref_primary_10_15252_embr_202255699 crossref_primary_10_1038_s41467_021_22441_4 crossref_primary_10_1371_journal_pone_0244038 crossref_primary_10_1101_cshperspect_a040204 crossref_primary_10_1002_bies_202200145 crossref_primary_10_1016_j_tibs_2020_06_007 crossref_primary_10_1002_1878_0261_12693 crossref_primary_10_1016_j_jmb_2021_167216 crossref_primary_10_1016_j_coisb_2020_07_006 crossref_primary_10_1016_j_cocis_2021_101421 crossref_primary_10_1016_j_ejcb_2021_151170 crossref_primary_10_1016_j_bpj_2024_05_026 crossref_primary_10_1073_pnas_2024685118 crossref_primary_10_1158_2159_8290_CD_21_1605 crossref_primary_10_1016_j_virol_2024_110301 crossref_primary_10_1073_pnas_2401834121 crossref_primary_10_1093_nar_gkac1262 crossref_primary_10_1111_jipb_12903 crossref_primary_10_1002_cai2_33 crossref_primary_10_1016_j_tig_2024_10_001 crossref_primary_10_1134_S1607672920010032 crossref_primary_10_1038_s41580_024_00739_7 crossref_primary_10_1038_s41467_024_45353_5 crossref_primary_10_1098_rsob_200255 crossref_primary_10_1242_dev_171736 crossref_primary_10_1021_acs_biochem_2c00250 crossref_primary_10_1134_S0006297922070082 crossref_primary_10_1016_j_devcel_2021_02_016 crossref_primary_10_1111_cas_15232 crossref_primary_10_1242_dev_200398 crossref_primary_10_1016_j_tig_2022_11_003 crossref_primary_10_3390_antiox10091483 crossref_primary_10_1063_5_0083286 crossref_primary_10_1134_S1607672921010038 crossref_primary_10_1016_j_ijbiomac_2023_123221 crossref_primary_10_3390_ijms23147664 crossref_primary_10_1016_j_jmb_2020_04_015 crossref_primary_10_1140_epje_s10189_024_00405_y crossref_primary_10_1002_bies_202200001 crossref_primary_10_1038_s41564_022_01314_6 crossref_primary_10_1038_s41580_024_00789_x crossref_primary_10_1038_s41421_022_00388_0 crossref_primary_10_1038_s41422_022_00676_0 crossref_primary_10_1093_nar_gkad227 crossref_primary_10_1038_s41580_022_00498_3 crossref_primary_10_3390_cancers14184375 crossref_primary_10_1038_s41467_023_42345_9 crossref_primary_10_1126_sciadv_adp3251 crossref_primary_10_1093_nar_gkad908 crossref_primary_10_3389_fgene_2023_1132018 crossref_primary_10_3389_fmolb_2022_944955 crossref_primary_10_46940_sphrj_02_1007 crossref_primary_10_1016_j_jmb_2021_166827 crossref_primary_10_3389_fcell_2021_723859 crossref_primary_10_1039_D0CP01877E crossref_primary_10_1126_sciadv_adk7160 crossref_primary_10_3390_ijms251810215 crossref_primary_10_1016_j_tips_2022_07_001 crossref_primary_10_1186_s12915_020_00788_2 crossref_primary_10_1038_s41580_021_00359_5 crossref_primary_10_3389_frnar_2023_1194526 crossref_primary_10_1016_j_tibs_2019_10_001 crossref_primary_10_1093_nar_gkac506 crossref_primary_10_7554_eLife_95170 crossref_primary_10_1042_BCJ20200883 crossref_primary_10_1016_j_celrep_2023_112505 crossref_primary_10_1042_ETLS20190190 crossref_primary_10_3892_mmr_2024_13221 crossref_primary_10_1038_s41467_021_23831_4 crossref_primary_10_1016_j_celrep_2020_108248 crossref_primary_10_3390_cells9112480 crossref_primary_10_1016_j_cels_2020_09_011 crossref_primary_10_1021_acscentsci_4c01617 crossref_primary_10_7554_eLife_68068 crossref_primary_10_1073_pnas_2216436120 crossref_primary_10_1093_nar_gkab304 crossref_primary_10_1038_s41467_021_21606_5 crossref_primary_10_1016_j_gde_2020_10_001 crossref_primary_10_1093_bib_bbae030 crossref_primary_10_3390_ijms23042179 crossref_primary_10_1016_j_stemcr_2020_10_012 crossref_primary_10_1093_bioinformatics_btac742 crossref_primary_10_1371_journal_pgen_1010235 crossref_primary_10_1042_BST20231286 crossref_primary_10_31857_S0320972524040087 crossref_primary_10_1016_j_molcel_2024_03_001 crossref_primary_10_1242_bio_058896 crossref_primary_10_1038_s41590_019_0566_z crossref_primary_10_1038_s41467_022_30397_2 crossref_primary_10_1016_j_bpj_2022_07_011 crossref_primary_10_1038_s41594_023_01059_8 crossref_primary_10_1007_s40484_020_0221_6 crossref_primary_10_3390_ijms222312758 crossref_primary_10_1038_s41556_024_01411_0 crossref_primary_10_1080_21541264_2023_2222032 crossref_primary_10_1016_j_cell_2022_12_013 crossref_primary_10_1111_febs_16959 crossref_primary_10_1093_nar_gkac849 crossref_primary_10_1016_j_bbagrm_2020_194641 crossref_primary_10_3390_cancers14215404 crossref_primary_10_1186_s13059_021_02455_3 crossref_primary_10_15252_msb_20209653 crossref_primary_10_1038_s41573_021_00199_0 crossref_primary_10_1186_s13059_021_02322_1 crossref_primary_10_1080_21541264_2019_1673636 crossref_primary_10_1101_gr_260463_119 crossref_primary_10_1038_s41588_022_01044_9 crossref_primary_10_1016_j_coisb_2022_100436 crossref_primary_10_3390_cancers14122866 crossref_primary_10_1002_bies_202200166 crossref_primary_10_1038_s41587_023_01737_4 crossref_primary_10_1016_j_molcel_2021_07_022 crossref_primary_10_1016_j_sbi_2021_06_005 crossref_primary_10_1038_s41467_020_19435_z crossref_primary_10_1038_s41588_023_01442_7 crossref_primary_10_1093_nar_gkz1038 crossref_primary_10_1016_j_jmb_2021_167151 crossref_primary_10_1038_s41567_021_01462_2 crossref_primary_10_1016_j_jgg_2021_07_012 crossref_primary_10_1016_j_molcel_2022_04_017 crossref_primary_10_1007_s11427_020_1702_x crossref_primary_10_1111_febs_15735 crossref_primary_10_1101_gad_331520_119 crossref_primary_10_1038_s41576_024_00780_4 crossref_primary_10_1016_j_devcel_2023_11_020 crossref_primary_10_1016_j_gde_2021_11_003 crossref_primary_10_3389_fcell_2023_1205540 crossref_primary_10_1038_s41564_020_0760_7 crossref_primary_10_1016_j_semcdb_2022_11_016 crossref_primary_10_1186_s13072_023_00502_w crossref_primary_10_1016_j_molcel_2022_10_011 crossref_primary_10_1016_j_cell_2020_11_030 crossref_primary_10_1073_pnas_2116091119 crossref_primary_10_1103_PhysRevResearch_6_033082 crossref_primary_10_1016_j_coisb_2020_05_002 crossref_primary_10_1016_j_sbi_2022_102487 crossref_primary_10_1016_j_bpj_2023_05_032 crossref_primary_10_1038_s41588_021_00878_z crossref_primary_10_1016_j_bbagrm_2022_194827 crossref_primary_10_1109_TCBB_2022_3204365 crossref_primary_10_1534_genetics_120_301370 crossref_primary_10_1261_rna_078971_121 crossref_primary_10_15252_embj_2019103373 crossref_primary_10_3389_fgene_2021_730633 crossref_primary_10_3390_biology11050708 crossref_primary_10_1126_science_aaz4427 crossref_primary_10_1016_j_tcb_2019_12_008 crossref_primary_10_3390_ijms22063017 crossref_primary_10_1093_pnasnexus_pgae226 crossref_primary_10_15252_msb_202110272 crossref_primary_10_3389_fmed_2022_924087 crossref_primary_10_1016_j_molcel_2021_01_031 crossref_primary_10_1002_wsbm_1467 crossref_primary_10_1016_j_jbc_2023_104800 crossref_primary_10_31857_S2686738924040121 crossref_primary_10_1093_nar_gkaa261 crossref_primary_10_1016_j_jbc_2021_100687 crossref_primary_10_1038_s41467_021_25875_y crossref_primary_10_1111_febs_16089 crossref_primary_10_1093_nar_gkac766 crossref_primary_10_1016_j_bpj_2021_01_033 crossref_primary_10_1016_j_tig_2022_05_015 crossref_primary_10_1371_journal_pcbi_1010162 crossref_primary_10_1093_nar_gkab1180 crossref_primary_10_1038_s41467_022_30614_y crossref_primary_10_1016_j_devcel_2020_09_005 crossref_primary_10_1016_j_gde_2024_102203 crossref_primary_10_1016_j_tig_2022_05_011 crossref_primary_10_1007_s00018_024_05559_8 crossref_primary_10_1016_j_jbc_2022_102117 crossref_primary_10_1016_j_bpj_2022_06_008 crossref_primary_10_1042_BST20210856 crossref_primary_10_1101_gr_267898_120 crossref_primary_10_3390_ijms242015418 crossref_primary_10_1038_s41576_021_00398_w crossref_primary_10_1016_j_xcrm_2020_100188 crossref_primary_10_1186_s13059_020_02152_7 crossref_primary_10_1038_s41467_023_40981_9 crossref_primary_10_1073_pnas_2214062120 crossref_primary_10_1021_acsmacrolett_2c00167 crossref_primary_10_1016_j_molcel_2021_03_002 crossref_primary_10_1139_bcb_2024_0094 crossref_primary_10_1016_j_ceb_2022_01_005 crossref_primary_10_1093_bib_bbad286 crossref_primary_10_3390_biom14070875 crossref_primary_10_3390_cancers16091622 crossref_primary_10_1016_j_molcel_2024_06_006 crossref_primary_10_1038_s41588_021_00888_x crossref_primary_10_1016_j_jpha_2023_11_012 crossref_primary_10_1038_s41576_020_0272_6 crossref_primary_10_1101_gr_272468_120 crossref_primary_10_1093_nar_gkaf015 crossref_primary_10_1038_s41580_022_00566_8 crossref_primary_10_1186_s12964_024_01787_4 crossref_primary_10_1002_jcp_30980 crossref_primary_10_1038_s12276_024_01233_y crossref_primary_10_1126_science_abk3512 crossref_primary_10_1002_smll_202311834 crossref_primary_10_1002_adbi_202200006 crossref_primary_10_1016_j_ceb_2023_102215 crossref_primary_10_1016_j_tig_2019_12_010 crossref_primary_10_1242_jcs_260593 crossref_primary_10_7554_eLife_95170_3 crossref_primary_10_1038_s41467_022_29625_6 crossref_primary_10_1080_19491034_2023_2213551 crossref_primary_10_1093_nar_gkac233 crossref_primary_10_1186_s13046_020_01584_0 crossref_primary_10_1093_nar_gkaf189 crossref_primary_10_1038_s41589_022_01046_y crossref_primary_10_3389_fmolb_2022_867303 crossref_primary_10_1016_j_jmb_2024_168642 crossref_primary_10_1007_s10571_021_01108_0 crossref_primary_10_1016_j_molcel_2021_11_007 crossref_primary_10_1038_s41586_020_2574_4 crossref_primary_10_3390_biomedicines13030594 crossref_primary_10_15252_embj_2021110137 crossref_primary_10_1002_bies_202200105 crossref_primary_10_1134_S0006297924040084 crossref_primary_10_1002_bies_202300075 crossref_primary_10_1080_19491034_2023_2205758 crossref_primary_10_1016_j_coph_2020_03_003 crossref_primary_10_1038_s41467_020_20400_z crossref_primary_10_1038_s41467_023_39878_4 crossref_primary_10_1038_s41580_024_00710_6 crossref_primary_10_1016_j_molp_2023_09_005 crossref_primary_10_1038_s41467_020_14916_7 crossref_primary_10_1038_s41467_021_21690_7 crossref_primary_10_1016_j_devcel_2023_07_007 crossref_primary_10_1016_j_molcel_2020_10_036 crossref_primary_10_1021_acs_nanolett_3c01301 crossref_primary_10_7555_JBR_37_20230214 crossref_primary_10_3390_ncrna5040054 crossref_primary_10_1016_j_bbcan_2024_189206 crossref_primary_10_1016_j_coisb_2020_08_002 crossref_primary_10_1016_j_jbc_2022_102552 crossref_primary_10_1016_j_bbagrm_2024_195059 crossref_primary_10_1038_s41467_022_35375_2 crossref_primary_10_1261_rna_078997_121 crossref_primary_10_1016_j_cell_2024_03_023 crossref_primary_10_1007_s00018_021_03903_w crossref_primary_10_3389_fimmu_2021_655590 crossref_primary_10_3389_fimmu_2021_682397 crossref_primary_10_1126_science_add1250 crossref_primary_10_1038_s41586_023_06845_4 crossref_primary_10_1093_nar_gkaf056 |
Cites_doi | 10.7554/eLife.28975 10.1016/j.cell.2018.01.029 10.1016/j.jcp.2008.01.047 10.1016/j.molcel.2015.01.013 10.1073/pnas.1706083114 10.1093/nar/gkx1126 10.1038/nature22822 10.1038/nature15545 10.1073/pnas.1706197114 10.1016/j.cell.2016.04.047 10.1126/science.aaf4382 10.1038/nchem.2803 10.1073/pnas.1304749110 10.1073/pnas.231608898 10.1126/science.1259037 10.1016/j.cell.2017.02.007 10.1101/cshperspect.a000638 10.1016/j.cell.2019.05.029 10.1016/j.cell.2016.09.018 10.1073/pnas.012591199 10.1038/nrm.2017.7 10.1016/j.cell.2014.11.041 10.1038/nature24281 10.1021/ma970616h 10.1016/j.molcel.2017.07.022 10.1016/j.cpc.2011.06.005 10.1186/1471-2105-3-30 10.1016/j.cell.2016.05.025 10.1073/pnas.71.10.4135 10.1016/j.cell.2013.02.014 10.1038/nrg3682 10.1016/j.tibs.2014.07.002 10.1038/nrg3684 10.1038/nature15518 10.1038/nature25762 10.1038/nature22989 10.1063/1.5037727 10.1038/386569a0 10.1016/j.cell.2012.08.026 10.1016/j.sbi.2017.03.006 10.1016/j.tibs.2017.12.001 10.1073/pnas.96.19.10848 10.1016/j.cell.2014.08.009 10.1126/science.aar4199 10.1016/j.cell.2018.10.042 10.1126/science.aar3958 10.7554/eLife.30294 10.1038/s41586-018-0174-3 10.1038/s41467-018-03977-4 10.1038/nsmb.2784 10.1038/nrg1315 10.1101/cshperspect.a000653 10.1016/j.tig.2009.08.003 10.1016/j.cell.2013.03.035 10.1016/j.cell.2008.11.051 10.1016/j.cpc.2015.02.028 10.1073/pnas.1804177115 10.1038/nrg3207 10.1016/j.cell.2018.06.006 10.1088/1367-2630/aa9369 10.1101/sqb.1998.63.609 10.1126/science.aar2555 10.1016/S0300-9084(75)80139-8 10.1016/j.molcel.2018.05.019 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2019.07.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 561.e7 |
ExternalDocumentID | PMC6690378 31398323 10_1016_j_molcel_2019_07_009 S1097276519305398 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM034277 – fundername: NCI NIH HHS grantid: P30 CA014051 – fundername: NCI NIH HHS grantid: T32 CA009172 – fundername: NIGMS NIH HHS grantid: R01 GM123511 – fundername: NCI NIH HHS grantid: P01 CA042063 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c496t-62ff8dd61312a85f0a85f43db52a51069a2e36c35a3ec1d7e298ea484ae53f3d3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:20:56 EDT 2025 Sun Sep 28 02:31:46 EDT 2025 Sat Sep 27 21:36:59 EDT 2025 Thu Apr 03 06:57:49 EDT 2025 Tue Jul 01 03:21:14 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Fri Feb 23 02:30:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | transcription factor enhancer phase separation regulatory element transcription cooperativity specificity condensate multivalence coactivator |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-62ff8dd61312a85f0a85f43db52a51069a2e36c35a3ec1d7e298ea484ae53f3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author Contributions: Conceptualization: K.S., B.R.S., P.A.S., A.K.C., R.A.Y. Methodology: K.S., B.R.S., A.K.C., A.V.Z, J.S., E.L.C., I.A.K., A.B. Software: K.S. Formal Analysis: K.S. Investigation: K.S., B.R.S., A.V.Z, J.S., E.L.C., I.A.K., A.B. Resources: J.S., I.A.K., A.B., N.M.H, P.A.S., A.K.C., R.A.Y. Data Curation: K.S. Writing - Original Draft: K.S., B.R.S., P.A.S., A.K.C., R.A.Y. Writing - Reviewing and Editing: All authors. Visualization: K.S., B.R.S., A.V.Z. Supervision: P.A.S., A.K.C., R.A.Y. Funding Acquisition: P.A.S., A.K.C., R.A.Y. |
OpenAccessLink | http://www.cell.com/article/S1097276519305398/pdf |
PMID | 31398323 |
PQID | 2271853896 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690378 proquest_miscellaneous_2305200024 proquest_miscellaneous_2271853896 pubmed_primary_31398323 crossref_primary_10_1016_j_molcel_2019_07_009 crossref_citationtrail_10_1016_j_molcel_2019_07_009 elsevier_sciencedirect_doi_10_1016_j_molcel_2019_07_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-08 |
PublicationDateYYYYMMDD | 2019-08-08 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chong, Dugast-Darzacq, Liu, Dong, Dailey, Cattoglio, Heckert, Banala, Lavis, Darzacq, Tjian (bib9) 2018; 361 Fukaya, Lim, Levine (bib16) 2016; 166 Semenov, Rubinstein (bib48) 1998; 31 Dignon, Zheng, Best, Kim, Mittal (bib13) 2018; 115 Wang, Choi, Holehouse, Lee, Zhang, Jahnel, Maharana, Lemaitre, Pozniakovsky, Drechsel (bib59) 2018; 174 Boija, Klein, Sabari, Dall’Agnese, Coffey, Zamudio, Li, Shrinivas, Manteiga, Hannett (bib4) 2018; 175 Whyte, Orlando, Hnisz, Abraham, Lin, Kagey, Rahl, Lee, Young (bib63) 2013; 153 Rowley, Nichols, Lyu, Ando-Kuri, Rivera, Hermetz, Wang, Ruan, Corces (bib45) 2017; 67 Shin, Brangwynne (bib50) 2017; 357 Tsai, Muthusamy, Alves, Lavis, Singer, Stern, Crocker (bib58) 2017; 6 Long, Prescott, Wysocka (bib32) 2016; 167 Schwarzer, Abdennur, Goloborodko, Pekowska, Fudenberg, Loe-Mie, Fonseca, Huber, Haering, Mirny, Spitz (bib47) 2017; 551 Lee, Young (bib27) 2013; 152 Berman, Nibu, Pfeiffer, Tomancak, Celniker, Levine, Rubin, Eisen (bib3) 2002; 99 Brady, Farber, Sekhar, Lin, Huang, Bah, Nott, Chan, Baldwin, Forman-Kay, Kay (bib7) 2017; 114 Bouras, Southey, Venter (bib6) 2001; 61 Feric, Vaidya, Harmon, Mitrea, Zhu, Richardson, Kriwacki, Pappu, Brangwynne (bib14) 2016; 165 Markstein, Markstein, Markstein, Levine (bib36) 2002; 99 Pederson (bib42) 2011; 3 Glaser, Nguyen, Anderson, Lui, Spiga, Millan, Morse, Glotzer (bib17) 2015; 192 Cho, Spille, Hecht, Lee, Li, Grube, Cisse (bib8) 2018; 361 Morgunova, Taipale (bib37) 2017; 47 Crocker, Abe, Rinaldi, McGregor, Frankel, Wang, Alsawadi, Valenti, Plaza, Payre (bib10) 2015; 160 Hopfield (bib20) 1974; 71 Anderson, Lorenz, Travesset (bib1) 2008; 227 Strom, Emelyanov, Mir, Fyodorov, Darzacq, Karpen (bib56) 2017; 547 Stampfel, Kazmar, Frank, Wienerroither, Reiter, Stark (bib55) 2015 Maniatis, Falvo, Kim, Kim, Lin, Parekh, Wathelet (bib34) 1998; 63 Levo, Segal (bib28) 2014; 15 Fox, Nakagawa, Hirose, Bond (bib15) 2018; 43 Lu, Yu, Hansen, Ganguly, Liu, Heckert, Darzacq, Zhou (bib33) 2018; 558 Sabari, Dall’Agnese, Boija, Klein, Coffey, Shrinivas, Abraham, Hannett, Zamudio, Manteiga (bib46) 2018; 361 Das, Ho, Zikherman, Govern, Yang, Weiss, Chakraborty, Roose (bib12) 2009; 136 Ninio (bib39) 1975; 57 Rajewsky, Vergassola, Gaul, Siggia (bib44) 2002; 3 Harmon, Holehouse, Rosen, Pappu (bib18) 2017; 6 Khan, Fornes, Stigliani, Gheorghe, Castro-Mondragon, van der Lee, Bessy, Chèneby, Kulkarni, Tan (bib24) 2018; 46 Borgia, Borgia, Bugge, Kissling, Heidarsson, Fernandes, Sottini, Soranno, Buholzer, Nettels (bib5) 2018; 555 Hnisz, Shrinivas, Young, Chakraborty, Sharp (bib19) 2017; 169 Ptashne, Gann (bib43) 1997; 386 Slattery, Zhou, Yang, Dantas Machado, Gordân, Rohs (bib52) 2014; 39 Lin, Brady, Forman-Kay, Chan (bib31) 2017; 19 Lin, Lovén, Rahl, Paranal, Burge, Bradner, Lee, Young (bib30) 2012; 151 Wunderlich, Mirny (bib64) 2009; 25 Wasserman, Sandelin (bib60) 2004; 5 Shlyueva, Stampfel, Stark (bib51) 2014; 15 Zhu, Qi, Jain, Le Beau, Espinosa, Atkins, Lazar, Yeldandi, Rao, Reddy (bib66) 1999; 96 Banani, Lee, Hyman, Rosen (bib2) 2017; 18 Jung, Bandilla, von Reutern, Schnepf, Rieder, Unnerstall, Gaul (bib23) 2018; 9 Spitz, Furlong (bib54) 2012; 13 Yamazaki, Souquere, Chujo, Kobelke, Chong, Fox, Bond, Nakagawa, Pierron, Hirose (bib65) 2018; 70 Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett-Jones, Pawson, Forman-Kay, Baldwin (bib41) 2015; 57 Sherry, Das, Pappu, Barrick (bib49) 2017; 114 Lambert, Jolma, Campitelli, Das, Yin, Albu, Chen, Taipale, Hughes, Weirauch (bib25) 2018; 172 Mansour, Abraham, Anders, Berezovskaya, Gutierrez, Durbin, Etchin, Lawton, Sallan, Silverman (bib35) 2014 Tatavosian, Kent, Brown, Yao, Duc, Huynh, Zhen, Ma, Wang, Ren (bib57) 2018 Weirauch, Yang, Albu, Cote, Montenegro-Montero, Drewe, Najafabadi, Lambert, Mann, Cook (bib62) 2014; 158 Smith, Shilatifard (bib53) 2014; 21 Huihui, Firman, Ghosh (bib21) 2018; 149 Nizami, Deryusheva, Gall (bib40) 2010; 2 Nguyen, Phillips, Anderson, Glotzer (bib38) 2011; 182 Jolma, Yin, Nitta, Dave, Popov, Taipale, Enge, Kivioja, Morgunova, Taipale (bib22) 2015; 527 Li, Dong, Saydaminova, Chang, Wang, Ochiai, Yamamoto, Pertsinidis (bib29) 2019 Wei, Elbaum-Garfinkle, Holehouse, Chen, Feric, Arnold, Priestley, Pappu, Brangwynne (bib61) 2017; 9 Das, Pappu (bib11) 2013; 110 Larson, Elnatan, Keenen, Trnka, Johnston, Burlingame, Agard, Redding, Narlikar (bib26) 2017; 547 Sabari (10.1016/j.molcel.2019.07.009_bib46) 2018; 361 Stampfel (10.1016/j.molcel.2019.07.009_bib55) 2015; 528 Jung (10.1016/j.molcel.2019.07.009_bib23) 2018; 9 Spitz (10.1016/j.molcel.2019.07.009_bib54) 2012; 13 Glaser (10.1016/j.molcel.2019.07.009_bib17) 2015; 192 Huihui (10.1016/j.molcel.2019.07.009_bib21) 2018; 149 Long (10.1016/j.molcel.2019.07.009_bib32) 2016; 167 Pederson (10.1016/j.molcel.2019.07.009_bib42) 2011; 3 Tatavosian (10.1016/j.molcel.2019.07.009_bib57) 2018 Dignon (10.1016/j.molcel.2019.07.009_bib13) 2018; 115 Brady (10.1016/j.molcel.2019.07.009_bib7) 2017; 114 Shin (10.1016/j.molcel.2019.07.009_bib50) 2017; 357 Cho (10.1016/j.molcel.2019.07.009_bib8) 2018; 361 Crocker (10.1016/j.molcel.2019.07.009_bib10) 2015; 160 Lin (10.1016/j.molcel.2019.07.009_bib30) 2012; 151 Jolma (10.1016/j.molcel.2019.07.009_bib22) 2015; 527 Tsai (10.1016/j.molcel.2019.07.009_bib58) 2017; 6 Yamazaki (10.1016/j.molcel.2019.07.009_bib65) 2018; 70 Li (10.1016/j.molcel.2019.07.009_bib29) 2019; 178 Markstein (10.1016/j.molcel.2019.07.009_bib36) 2002; 99 Fox (10.1016/j.molcel.2019.07.009_bib15) 2018; 43 Sherry (10.1016/j.molcel.2019.07.009_bib49) 2017; 114 Ptashne (10.1016/j.molcel.2019.07.009_bib43) 1997; 386 Wang (10.1016/j.molcel.2019.07.009_bib59) 2018; 174 Das (10.1016/j.molcel.2019.07.009_bib11) 2013; 110 Rowley (10.1016/j.molcel.2019.07.009_bib45) 2017; 67 Bouras (10.1016/j.molcel.2019.07.009_bib6) 2001; 61 Shlyueva (10.1016/j.molcel.2019.07.009_bib51) 2014; 15 Harmon (10.1016/j.molcel.2019.07.009_bib18) 2017; 6 Lin (10.1016/j.molcel.2019.07.009_bib31) 2017; 19 Banani (10.1016/j.molcel.2019.07.009_bib2) 2017; 18 Smith (10.1016/j.molcel.2019.07.009_bib53) 2014; 21 Weirauch (10.1016/j.molcel.2019.07.009_bib62) 2014; 158 Rajewsky (10.1016/j.molcel.2019.07.009_bib44) 2002; 3 Slattery (10.1016/j.molcel.2019.07.009_bib52) 2014; 39 Nizami (10.1016/j.molcel.2019.07.009_bib40) 2010; 2 Whyte (10.1016/j.molcel.2019.07.009_bib63) 2013; 153 Chong (10.1016/j.molcel.2019.07.009_bib9) 2018; 361 Lee (10.1016/j.molcel.2019.07.009_bib27) 2013; 152 Maniatis (10.1016/j.molcel.2019.07.009_bib34) 1998; 63 Das (10.1016/j.molcel.2019.07.009_bib12) 2009; 136 Hnisz (10.1016/j.molcel.2019.07.009_bib19) 2017; 169 Boija (10.1016/j.molcel.2019.07.009_bib4) 2018; 175 Morgunova (10.1016/j.molcel.2019.07.009_bib37) 2017; 47 Hopfield (10.1016/j.molcel.2019.07.009_bib20) 1974; 71 Lu (10.1016/j.molcel.2019.07.009_bib33) 2018; 558 Nguyen (10.1016/j.molcel.2019.07.009_bib38) 2011; 182 Nott (10.1016/j.molcel.2019.07.009_bib41) 2015; 57 Khan (10.1016/j.molcel.2019.07.009_bib24) 2018; 46 Wasserman (10.1016/j.molcel.2019.07.009_bib60) 2004; 5 Wei (10.1016/j.molcel.2019.07.009_bib61) 2017; 9 Mansour (10.1016/j.molcel.2019.07.009_bib35) 2014; 346 Lambert (10.1016/j.molcel.2019.07.009_bib25) 2018; 172 Borgia (10.1016/j.molcel.2019.07.009_bib5) 2018; 555 Feric (10.1016/j.molcel.2019.07.009_bib14) 2016; 165 Wunderlich (10.1016/j.molcel.2019.07.009_bib64) 2009; 25 Schwarzer (10.1016/j.molcel.2019.07.009_bib47) 2017; 551 Levo (10.1016/j.molcel.2019.07.009_bib28) 2014; 15 Zhu (10.1016/j.molcel.2019.07.009_bib66) 1999; 96 Berman (10.1016/j.molcel.2019.07.009_bib3) 2002; 99 Semenov (10.1016/j.molcel.2019.07.009_bib48) 1998; 31 Larson (10.1016/j.molcel.2019.07.009_bib26) 2017; 547 Anderson (10.1016/j.molcel.2019.07.009_bib1) 2008; 227 Fukaya (10.1016/j.molcel.2019.07.009_bib16) 2016; 166 Strom (10.1016/j.molcel.2019.07.009_bib56) 2017; 547 Ninio (10.1016/j.molcel.2019.07.009_bib39) 1975; 57 |
References_xml | – volume: 547 start-page: 241 year: 2017 end-page: 245 ident: bib56 article-title: Phase separation drives heterochromatin domain formation publication-title: Nature – volume: 99 start-page: 763 year: 2002 end-page: 768 ident: bib36 article-title: Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo publication-title: Proc. Natl. Acad. Sci. USA – volume: 110 start-page: 13392 year: 2013 end-page: 13397 ident: bib11 article-title: Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues publication-title: Proc. Natl. Acad. Sci. USA – volume: 558 start-page: 318 year: 2018 end-page: 323 ident: bib33 article-title: Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II publication-title: Nature – volume: 555 start-page: 61 year: 2018 end-page: 66 ident: bib5 article-title: Extreme disorder in an ultrahigh-affinity protein complex publication-title: Nature – volume: 227 start-page: 5342 year: 2008 end-page: 5359 ident: bib1 article-title: General purpose molecular dynamics simulations fully implemented on graphics processing units publication-title: J. Comp. Phys. – volume: 357 start-page: eaaf4382 year: 2017 ident: bib50 article-title: Liquid phase condensation in cell physiology and disease publication-title: Science – volume: 151 start-page: 56 year: 2012 end-page: 67 ident: bib30 article-title: Transcriptional amplification in tumor cells with elevated c-Myc publication-title: Cell – volume: 21 start-page: 210 year: 2014 end-page: 219 ident: bib53 article-title: Enhancer biology and enhanceropathies publication-title: Nat. Struct. Mol. Biol. – volume: 5 start-page: 276 year: 2004 end-page: 287 ident: bib60 article-title: Applied bioinformatics for the identification of regulatory elements publication-title: Nat. Rev. Genet. – volume: 114 start-page: E8194 year: 2017 end-page: E8203 ident: bib7 article-title: Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation publication-title: Proc. Natl. Acad. Sci. USA – volume: 43 start-page: 124 year: 2018 end-page: 135 ident: bib15 article-title: Paraspeckles: where long noncoding RNA meets phase separation publication-title: Trends Biochem. Sci. – volume: 167 start-page: 1170 year: 2016 end-page: 1187 ident: bib32 article-title: Ever-changing landscapes: transcriptional enhancers in development and evolution publication-title: Cell – volume: 166 start-page: 358 year: 2016 end-page: 368 ident: bib16 article-title: Enhancer control of transcriptional bursting publication-title: Cell – volume: 13 start-page: 613 year: 2012 end-page: 626 ident: bib54 article-title: Transcription factors: from enhancer binding to developmental control publication-title: Nat. Rev. Genet. – volume: 115 start-page: 9929 year: 2018 end-page: 9934 ident: bib13 article-title: Relation between single-molecule properties and phase behavior of intrinsically disordered proteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 434 year: 2009 end-page: 440 ident: bib64 article-title: Different gene regulation strategies revealed by analysis of binding motifs publication-title: Trends Genet. – volume: 61 start-page: 903 year: 2001 end-page: 907 ident: bib6 article-title: Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu publication-title: Cancer Res. – volume: 175 start-page: 1842 year: 2018 end-page: 1855.e16 ident: bib4 article-title: Transcription factors activate genes through the phase-separation capacity of their activation domains publication-title: Cell – volume: 67 start-page: 837 year: 2017 end-page: 852.e7 ident: bib45 article-title: Evolutionarily conserved principles predict 3D chromatin organization publication-title: Mol. Cell – volume: 18 start-page: 285 year: 2017 end-page: 298 ident: bib2 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat. Rev. Mol. Cell Biol. – volume: 527 start-page: 384 year: 2015 end-page: 388 ident: bib22 article-title: DNA-dependent formation of transcription factor pairs alters their binding specificity publication-title: Nature – volume: 160 start-page: 191 year: 2015 end-page: 203 ident: bib10 article-title: Low affinity binding site clusters confer hox specificity and regulatory robustness publication-title: Cell – volume: 165 start-page: 1686 year: 2016 end-page: 1697 ident: bib14 article-title: Coexisting liquid phases underlie nucleolar subcompartments publication-title: Cell – year: 2018 ident: bib57 article-title: Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation publication-title: J. Biol. Chem. – volume: 96 start-page: 10848 year: 1999 end-page: 10853 ident: bib66 article-title: Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer publication-title: Proc. Natl. Acad. Sci. USA – volume: 70 start-page: 1038 year: 2018 end-page: 1053.e7 ident: bib65 article-title: Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation publication-title: Mol. Cell – volume: 547 start-page: 236 year: 2017 end-page: 240 ident: bib26 article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin publication-title: Nature – volume: 2 start-page: a000653 year: 2010 ident: bib40 article-title: The Cajal body and histone locus body publication-title: Cold Spring Harb. Perspect. Biol. – volume: 57 start-page: 587 year: 1975 end-page: 595 ident: bib39 article-title: Kinetic amplification of enzyme discrimination publication-title: Biochimie – volume: 47 start-page: 1 year: 2017 end-page: 8 ident: bib37 article-title: Structural perspective of cooperative transcription factor binding publication-title: Curr. Opin. Struct. Biol. – volume: 99 start-page: 757 year: 2002 end-page: 762 ident: bib3 article-title: Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 272 year: 2014 end-page: 286 ident: bib51 article-title: Transcriptional enhancers: from properties to genome-wide predictions publication-title: Nat. Rev. Genet. – volume: 6 start-page: e28975 year: 2017 ident: bib58 article-title: Nuclear microenvironments modulate transcription from low-affinity enhancers publication-title: eLife – volume: 152 start-page: 1237 year: 2013 end-page: 1251 ident: bib27 article-title: Transcriptional regulation and its misregulation in disease publication-title: Cell – volume: 57 start-page: 936 year: 2015 end-page: 947 ident: bib41 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell – volume: 192 start-page: 97 year: 2015 end-page: 107 ident: bib17 article-title: Strong scaling of general-purpose molecular dynamics simulations on GPUs publication-title: Comput. Phys. Commun. – volume: 15 start-page: 453 year: 2014 end-page: 468 ident: bib28 article-title: In pursuit of design principles of regulatory sequences publication-title: Nat. Rev. Genet. – volume: 172 start-page: 650 year: 2018 end-page: 665 ident: bib25 article-title: The human transcription factors publication-title: Cell – start-page: 491 year: 2019 end-page: 506.E28 ident: bib29 article-title: Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells publication-title: Cell – start-page: 1373 year: 2014 end-page: 1377 ident: bib35 article-title: Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element publication-title: Science – volume: 361 start-page: 412 year: 2018 end-page: 415 ident: bib8 article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates publication-title: Science – volume: 386 start-page: 569 year: 1997 end-page: 577 ident: bib43 article-title: Transcriptional activation by recruitment publication-title: Nature – volume: 114 start-page: E9243 year: 2017 end-page: E9252 ident: bib49 article-title: Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor publication-title: Proc. Natl. Acad. Sci. USA – volume: 149 start-page: 085101 year: 2018 ident: bib21 article-title: Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins publication-title: J. Chem. Phys. – volume: 361 start-page: eaar3958 year: 2018 ident: bib46 article-title: Coactivator condensation at super-enhancers links phase separation and gene control publication-title: Science – volume: 551 start-page: 51 year: 2017 end-page: 56 ident: bib47 article-title: Two independent modes of chromatin organization revealed by cohesin removal publication-title: Nature – volume: 153 start-page: 307 year: 2013 end-page: 319 ident: bib63 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell – volume: 174 start-page: 688 year: 2018 end-page: 699.e16 ident: bib59 article-title: A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins publication-title: Cell – volume: 3 start-page: 30 year: 2002 ident: bib44 article-title: Computational detection of genomic cis-regulatory modules applied to body patterning in the early Drosophila embryo publication-title: BMC Bioinformatics – volume: 71 start-page: 4135 year: 1974 end-page: 4139 ident: bib20 article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 115003 year: 2017 ident: bib31 article-title: Charge pattern matching as a “fuzzy” mode of molecular recognition for the functional phase separations of intrinsically disordered proteins publication-title: New J. Phys. – volume: 158 start-page: 1431 year: 2014 end-page: 1443 ident: bib62 article-title: Determination and inference of eukaryotic transcription factor sequence specificity publication-title: Cell – volume: 9 start-page: 1118 year: 2017 end-page: 1125 ident: bib61 article-title: Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles publication-title: Nat. Chem. – volume: 3 start-page: a000638 year: 2011 ident: bib42 article-title: The nucleolus publication-title: Cold Spring Harb. Perspect. Biol. – volume: 39 start-page: 381 year: 2014 end-page: 399 ident: bib52 article-title: Absence of a simple code: how transcription factors read the genome publication-title: Trends Biochem. Sci. – volume: 361 start-page: eaar2555 year: 2018 ident: bib9 article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription publication-title: Science – volume: 136 start-page: 337 year: 2009 end-page: 351 ident: bib12 article-title: Digital signaling and hysteresis characterize ras activation in lymphoid cells publication-title: Cell – volume: 6 start-page: e30294 year: 2017 ident: bib18 article-title: Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins publication-title: eLife – volume: 63 start-page: 609 year: 1998 end-page: 620 ident: bib34 article-title: Structure and function of the interferon-beta enhanceosome publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 31 start-page: 1373 year: 1998 end-page: 1385 ident: bib48 article-title: Thermoreversible gelation in solutions of associative polymers. 1. Statics publication-title: Macromolecules – volume: 9 start-page: 1605 year: 2018 ident: bib23 article-title: True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy publication-title: Nat. Commun. – start-page: 147 year: 2015 end-page: 151 ident: bib55 article-title: Transcriptional regulators form diverse groups with context-dependent regulatory functions publication-title: Nature – volume: 46 start-page: D260 year: 2018 end-page: D266 ident: bib24 article-title: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework publication-title: Nucleic Acids Res. – volume: 169 start-page: 13 year: 2017 end-page: 23 ident: bib19 article-title: A phase separation model for transcriptional control publication-title: Cell – volume: 182 start-page: 2307 year: 2011 end-page: 2313 ident: bib38 article-title: Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units publication-title: Comput. Phys. Commun. – year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib57 article-title: Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation publication-title: J. Biol. Chem. – volume: 6 start-page: e28975 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib58 article-title: Nuclear microenvironments modulate transcription from low-affinity enhancers publication-title: eLife doi: 10.7554/eLife.28975 – volume: 172 start-page: 650 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib25 article-title: The human transcription factors publication-title: Cell doi: 10.1016/j.cell.2018.01.029 – volume: 227 start-page: 5342 year: 2008 ident: 10.1016/j.molcel.2019.07.009_bib1 article-title: General purpose molecular dynamics simulations fully implemented on graphics processing units publication-title: J. Comp. Phys. doi: 10.1016/j.jcp.2008.01.047 – volume: 57 start-page: 936 year: 2015 ident: 10.1016/j.molcel.2019.07.009_bib41 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 114 start-page: E9243 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib49 article-title: Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1706083114 – volume: 46 start-page: D260 issue: D1 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib24 article-title: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1126 – volume: 547 start-page: 236 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib26 article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin publication-title: Nature doi: 10.1038/nature22822 – volume: 528 start-page: 147 year: 2015 ident: 10.1016/j.molcel.2019.07.009_bib55 article-title: Transcriptional regulators form diverse groups with context-dependent regulatory functions publication-title: Nature doi: 10.1038/nature15545 – volume: 114 start-page: E8194 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib7 article-title: Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1706197114 – volume: 165 start-page: 1686 year: 2016 ident: 10.1016/j.molcel.2019.07.009_bib14 article-title: Coexisting liquid phases underlie nucleolar subcompartments publication-title: Cell doi: 10.1016/j.cell.2016.04.047 – volume: 357 start-page: eaaf4382 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib50 article-title: Liquid phase condensation in cell physiology and disease publication-title: Science doi: 10.1126/science.aaf4382 – volume: 9 start-page: 1118 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib61 article-title: Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles publication-title: Nat. Chem. doi: 10.1038/nchem.2803 – volume: 110 start-page: 13392 year: 2013 ident: 10.1016/j.molcel.2019.07.009_bib11 article-title: Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1304749110 – volume: 99 start-page: 757 year: 2002 ident: 10.1016/j.molcel.2019.07.009_bib3 article-title: Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.231608898 – volume: 346 start-page: 1373 year: 2014 ident: 10.1016/j.molcel.2019.07.009_bib35 article-title: Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element publication-title: Science doi: 10.1126/science.1259037 – volume: 169 start-page: 13 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib19 article-title: A phase separation model for transcriptional control publication-title: Cell doi: 10.1016/j.cell.2017.02.007 – volume: 3 start-page: a000638 year: 2011 ident: 10.1016/j.molcel.2019.07.009_bib42 article-title: The nucleolus publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a000638 – volume: 178 start-page: 491 year: 2019 ident: 10.1016/j.molcel.2019.07.009_bib29 article-title: Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells publication-title: Cell doi: 10.1016/j.cell.2019.05.029 – volume: 167 start-page: 1170 year: 2016 ident: 10.1016/j.molcel.2019.07.009_bib32 article-title: Ever-changing landscapes: transcriptional enhancers in development and evolution publication-title: Cell doi: 10.1016/j.cell.2016.09.018 – volume: 99 start-page: 763 year: 2002 ident: 10.1016/j.molcel.2019.07.009_bib36 article-title: Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.012591199 – volume: 18 start-page: 285 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib2 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.7 – volume: 160 start-page: 191 year: 2015 ident: 10.1016/j.molcel.2019.07.009_bib10 article-title: Low affinity binding site clusters confer hox specificity and regulatory robustness publication-title: Cell doi: 10.1016/j.cell.2014.11.041 – volume: 551 start-page: 51 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib47 article-title: Two independent modes of chromatin organization revealed by cohesin removal publication-title: Nature doi: 10.1038/nature24281 – volume: 31 start-page: 1373 year: 1998 ident: 10.1016/j.molcel.2019.07.009_bib48 article-title: Thermoreversible gelation in solutions of associative polymers. 1. Statics publication-title: Macromolecules doi: 10.1021/ma970616h – volume: 67 start-page: 837 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib45 article-title: Evolutionarily conserved principles predict 3D chromatin organization publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.07.022 – volume: 182 start-page: 2307 year: 2011 ident: 10.1016/j.molcel.2019.07.009_bib38 article-title: Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2011.06.005 – volume: 3 start-page: 30 year: 2002 ident: 10.1016/j.molcel.2019.07.009_bib44 article-title: Computational detection of genomic cis-regulatory modules applied to body patterning in the early Drosophila embryo publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-3-30 – volume: 166 start-page: 358 year: 2016 ident: 10.1016/j.molcel.2019.07.009_bib16 article-title: Enhancer control of transcriptional bursting publication-title: Cell doi: 10.1016/j.cell.2016.05.025 – volume: 71 start-page: 4135 year: 1974 ident: 10.1016/j.molcel.2019.07.009_bib20 article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.71.10.4135 – volume: 152 start-page: 1237 year: 2013 ident: 10.1016/j.molcel.2019.07.009_bib27 article-title: Transcriptional regulation and its misregulation in disease publication-title: Cell doi: 10.1016/j.cell.2013.02.014 – volume: 15 start-page: 272 year: 2014 ident: 10.1016/j.molcel.2019.07.009_bib51 article-title: Transcriptional enhancers: from properties to genome-wide predictions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3682 – volume: 39 start-page: 381 year: 2014 ident: 10.1016/j.molcel.2019.07.009_bib52 article-title: Absence of a simple code: how transcription factors read the genome publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.07.002 – volume: 15 start-page: 453 year: 2014 ident: 10.1016/j.molcel.2019.07.009_bib28 article-title: In pursuit of design principles of regulatory sequences publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3684 – volume: 527 start-page: 384 year: 2015 ident: 10.1016/j.molcel.2019.07.009_bib22 article-title: DNA-dependent formation of transcription factor pairs alters their binding specificity publication-title: Nature doi: 10.1038/nature15518 – volume: 555 start-page: 61 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib5 article-title: Extreme disorder in an ultrahigh-affinity protein complex publication-title: Nature doi: 10.1038/nature25762 – volume: 547 start-page: 241 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib56 article-title: Phase separation drives heterochromatin domain formation publication-title: Nature doi: 10.1038/nature22989 – volume: 149 start-page: 085101 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib21 article-title: Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins publication-title: J. Chem. Phys. doi: 10.1063/1.5037727 – volume: 386 start-page: 569 year: 1997 ident: 10.1016/j.molcel.2019.07.009_bib43 article-title: Transcriptional activation by recruitment publication-title: Nature doi: 10.1038/386569a0 – volume: 151 start-page: 56 year: 2012 ident: 10.1016/j.molcel.2019.07.009_bib30 article-title: Transcriptional amplification in tumor cells with elevated c-Myc publication-title: Cell doi: 10.1016/j.cell.2012.08.026 – volume: 47 start-page: 1 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib37 article-title: Structural perspective of cooperative transcription factor binding publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2017.03.006 – volume: 43 start-page: 124 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib15 article-title: Paraspeckles: where long noncoding RNA meets phase separation publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2017.12.001 – volume: 96 start-page: 10848 year: 1999 ident: 10.1016/j.molcel.2019.07.009_bib66 article-title: Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.19.10848 – volume: 158 start-page: 1431 year: 2014 ident: 10.1016/j.molcel.2019.07.009_bib62 article-title: Determination and inference of eukaryotic transcription factor sequence specificity publication-title: Cell doi: 10.1016/j.cell.2014.08.009 – volume: 361 start-page: 412 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib8 article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates publication-title: Science doi: 10.1126/science.aar4199 – volume: 175 start-page: 1842 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib4 article-title: Transcription factors activate genes through the phase-separation capacity of their activation domains publication-title: Cell doi: 10.1016/j.cell.2018.10.042 – volume: 361 start-page: eaar3958 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib46 article-title: Coactivator condensation at super-enhancers links phase separation and gene control publication-title: Science doi: 10.1126/science.aar3958 – volume: 6 start-page: e30294 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib18 article-title: Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins publication-title: eLife doi: 10.7554/eLife.30294 – volume: 558 start-page: 318 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib33 article-title: Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II publication-title: Nature doi: 10.1038/s41586-018-0174-3 – volume: 9 start-page: 1605 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib23 article-title: True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy publication-title: Nat. Commun. doi: 10.1038/s41467-018-03977-4 – volume: 21 start-page: 210 year: 2014 ident: 10.1016/j.molcel.2019.07.009_bib53 article-title: Enhancer biology and enhanceropathies publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2784 – volume: 5 start-page: 276 year: 2004 ident: 10.1016/j.molcel.2019.07.009_bib60 article-title: Applied bioinformatics for the identification of regulatory elements publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1315 – volume: 2 start-page: a000653 year: 2010 ident: 10.1016/j.molcel.2019.07.009_bib40 article-title: The Cajal body and histone locus body publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a000653 – volume: 25 start-page: 434 year: 2009 ident: 10.1016/j.molcel.2019.07.009_bib64 article-title: Different gene regulation strategies revealed by analysis of binding motifs publication-title: Trends Genet. doi: 10.1016/j.tig.2009.08.003 – volume: 153 start-page: 307 year: 2013 ident: 10.1016/j.molcel.2019.07.009_bib63 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell doi: 10.1016/j.cell.2013.03.035 – volume: 136 start-page: 337 year: 2009 ident: 10.1016/j.molcel.2019.07.009_bib12 article-title: Digital signaling and hysteresis characterize ras activation in lymphoid cells publication-title: Cell doi: 10.1016/j.cell.2008.11.051 – volume: 192 start-page: 97 year: 2015 ident: 10.1016/j.molcel.2019.07.009_bib17 article-title: Strong scaling of general-purpose molecular dynamics simulations on GPUs publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.02.028 – volume: 61 start-page: 903 year: 2001 ident: 10.1016/j.molcel.2019.07.009_bib6 article-title: Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu publication-title: Cancer Res. – volume: 115 start-page: 9929 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib13 article-title: Relation between single-molecule properties and phase behavior of intrinsically disordered proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1804177115 – volume: 13 start-page: 613 year: 2012 ident: 10.1016/j.molcel.2019.07.009_bib54 article-title: Transcription factors: from enhancer binding to developmental control publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3207 – volume: 174 start-page: 688 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib59 article-title: A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins publication-title: Cell doi: 10.1016/j.cell.2018.06.006 – volume: 19 start-page: 115003 year: 2017 ident: 10.1016/j.molcel.2019.07.009_bib31 article-title: Charge pattern matching as a “fuzzy” mode of molecular recognition for the functional phase separations of intrinsically disordered proteins publication-title: New J. Phys. doi: 10.1088/1367-2630/aa9369 – volume: 63 start-page: 609 year: 1998 ident: 10.1016/j.molcel.2019.07.009_bib34 article-title: Structure and function of the interferon-beta enhanceosome publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.1998.63.609 – volume: 361 start-page: eaar2555 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib9 article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription publication-title: Science doi: 10.1126/science.aar2555 – volume: 57 start-page: 587 year: 1975 ident: 10.1016/j.molcel.2019.07.009_bib39 article-title: Kinetic amplification of enzyme discrimination publication-title: Biochimie doi: 10.1016/S0300-9084(75)80139-8 – volume: 70 start-page: 1038 year: 2018 ident: 10.1016/j.molcel.2019.07.009_bib65 article-title: Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.05.019 |
SSID | ssj0014589 |
Score | 2.674348 |
Snippet | Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 549 |
SubjectTerms | Animals Base Sequence - genetics binding sites Binding Sites - genetics Chromatin - genetics coactivator complement condensate condensates cooperativity DNA DNA - genetics DNA-Binding Proteins - genetics enhancer Enhancer Elements, Genetic Gene Expression Regulation genes Genomics loci Mice Mouse Embryonic Stem Cells multivalence nucleotide sequences phase separation regulatory element separation specificity transcription transcription (genetics) transcription factor transcription factors Transcription Factors - genetics Transcription, Genetic |
Title | Enhancer Features that Drive Formation of Transcriptional Condensates |
URI | https://dx.doi.org/10.1016/j.molcel.2019.07.009 https://www.ncbi.nlm.nih.gov/pubmed/31398323 https://www.proquest.com/docview/2271853896 https://www.proquest.com/docview/2305200024 https://pubmed.ncbi.nlm.nih.gov/PMC6690378 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CoNBLSF-J0zYokOtia997bF0bU2gvScC3ZSWtsEMiBUc-5N93ZvUgTksNuQgkzYrVzO7Mt8yLkEuVKQ7bJqVgPAMV2mTUyKKgRshCTHzuQ6xb8Ou3WtyIn0u5PCDTPhcGwyo73d_q9Kituyfjjpvjh_V6fIW-U6YVQhBYSRYTfjGrFJP4lt8HT4KQsQ0eElOk7tPnYozXfX2XB3RApDaW8MSwxH-bp7_h58soymdmaX5Mjjo8mXxrp_yOHITqPXnTdph8-kBms2qFct0kiPW2cLZOmpVvkh8b0HLJvM9cTOoyiVar1yHwyWmNzXEfEYt-JDfz2fV0QbvOCTQXVjVUsbI0RQGmOmXeyHKCF8GLTDIPm1BZzwJXOZeehzwtdGDWBC-M8EHykhf8Ezms6iqckiQrpSy5UDIvwdinyuep9ibAsQ_OMpqxEeE9w1zelRXH7hZ3ro8fu3Utmx2y2U3Q321HhA6jHtqyGnvodS8Lt7M8HGj-PSMvetE52DnoDvFVqLePjjGNYMVY9R8aHutSAZAZkZNW3MN8OYBn0Icc5razEAYCrNy9-6Zar2IFb6XshGtz9uq_-kze4l2MRNRfyGGz2YavgI6a7Dwu_z-3SQ7A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6DsN6KfZe1j08YFchtl6Wj22WIN3aXtYCuQmyLSMZOrtInUP__UjZDpZtWIFdfLAoQyYp8hNIkQCfdK4FbpuEofP0TKYmZ0aVJTNSlTJ2hfOhbsH5hZ5fyS8LtdiDyXAXhtIqe9vf2fRgrfs3456b45vVavyNYqc81QRBUJMy8wAeIhqISbVPFyfbUIJUoQ8eUTMiH-7PhSSvH8114SkCkWShhiflJf7dP_2JP39Po_zFL82ewGEPKKPjbs1PYc_Xz-BR12Ly7jlMp_WSBLuOCOxt8HAdtUvXRp_XaOai2XB1MWqqKLitwYjgJycNdce9JTD6Aq5m08vJnPWtE1ghM90yzavKlCX66oQ7o6qYHlKUueIOd6HOHPdCF0I54YukTD3PjHfSSOeVqEQpXsJ-3dT-NUR5pVQlpFZFhd4-0a5IUmc8nvvwMJNyPgIxMMwWfV1xam9xbYcEsu-2Y7MlNtuYAt7ZCNh21k1XV-Me-nSQhd3RD4um_56ZHwfRWdw6FA9xtW82t5bzlNCKyfQ_aEQoTIVIZgSvOnFv1ysQPaNBFLi2HUXYElDp7t2RerUMJby1zmKRmjf__Vcf4PH88vzMnp1efD2CAxoJaYnmLey3641_h1Cpzd-HrfATW7gR5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancer+Features+that+Drive+Formation+of+Transcriptional+Condensates&rft.jtitle=Molecular+cell&rft.au=Shrinivas%2C+Krishna&rft.au=Sabari%2C+Benjamin+R&rft.au=Coffey%2C+Eliot+L&rft.au=Klein%2C+Isaac+A&rft.date=2019-08-08&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=75&rft.issue=3&rft.spage=549&rft_id=info:doi/10.1016%2Fj.molcel.2019.07.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |