Uniform signal enhancement in MAS NMR of half-integer quadrupolar nuclei using quadruple-frequency sweeps
[Display omitted] •Manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei.•Quadruple-frequency sweeps make the ST → CT transfer less sensitive to the offset.•Achieving similar signal enhancement for 27Al nuclei subject to different quadrupole interactions.•Improved...
        Saved in:
      
    
          | Published in | Journal of magnetic resonance (1997) Vol. 293; pp. 92 - 103 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.08.2018
     Elsevier  | 
| Series | Journal of Magnetic Resonance | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1090-7807 1096-0856 1096-0856  | 
| DOI | 10.1016/j.jmr.2018.06.005 | 
Cover
| Abstract | [Display omitted]
•Manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei.•Quadruple-frequency sweeps make the ST → CT transfer less sensitive to the offset.•Achieving similar signal enhancement for 27Al nuclei subject to different quadrupole interactions.•Improved acceleration of the 31P-27Al coherence transfer in PT-J-HMQC experiments.
We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments. | 
    
|---|---|
| AbstractList | We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments. [Display omitted] •Manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei.•Quadruple-frequency sweeps make the ST → CT transfer less sensitive to the offset.•Achieving similar signal enhancement for 27Al nuclei subject to different quadrupole interactions.•Improved acceleration of the 31P-27Al coherence transfer in PT-J-HMQC experiments. We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments. We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments.We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments. We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (C ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to C and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different Al sites. We also confirm that these schemes provide an improved acceleration of the P-{ Al} coherence transfer in PT-J-HMQC experiments.  | 
    
| Author | Li, Yixuan Feng, Ningdong Trébosc, Julien Xin, Shaohui Xu, Jun Deng, Feng Wang, Qiang Lafon, Oliver Hu, Bingwen Amoureux, Jean-Paul  | 
    
| Author_xml | – sequence: 1 givenname: Qiang surname: Wang fullname: Wang, Qiang organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China – sequence: 2 givenname: Julien surname: Trébosc fullname: Trébosc, Julien organization: Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France – sequence: 3 givenname: Yixuan surname: Li fullname: Li, Yixuan organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China – sequence: 4 givenname: Oliver surname: Lafon fullname: Lafon, Oliver organization: Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France – sequence: 5 givenname: Shaohui surname: Xin fullname: Xin, Shaohui organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China – sequence: 6 givenname: Jun surname: Xu fullname: Xu, Jun organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China – sequence: 7 givenname: Bingwen orcidid: 0000-0003-0694-0178 surname: Hu fullname: Hu, Bingwen organization: Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 200062 Shanghai, China – sequence: 8 givenname: Ningdong surname: Feng fullname: Feng, Ningdong organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China – sequence: 9 givenname: Jean-Paul surname: Amoureux fullname: Amoureux, Jean-Paul email: jean-paul.amoureux@univ-lille1.fr organization: Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France – sequence: 10 givenname: Feng orcidid: 0000-0002-6461-7152 surname: Deng fullname: Deng, Feng email: dengf@wipm.ac.cn organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29909082$$D View this record in MEDLINE/PubMed https://hal.univ-lille.fr/hal-04330153$$DView record in HAL  | 
    
| BookMark | eNqNkU9v1DAQxSNURP_AB-CCfIRDwjiJ7VicVhW0SFuQgJ4tbzLZeuXYqZ202m-Pt2l74FAhWRrL83vPnufT7Mh5h1n2nkJBgfLPu2I3hKIE2hTACwD2KjuhIHkODeNHD3vIRQPiODuNcQdAKRPwJjsupUytpjzJzLUzvQ8DiWbrtCXobrRrcUA3EePI1eo3-XH1i_ie3Gjb58ZNuMVAbmfdhXn0Vgfi5taiIXM0bvvUsJj3AW9ndO2exHvEMb7NXvfaRnz3WM-y629f_5xf5uufF9_PV-u8rSWfclZrJtsNNKk2VQeix67mJUW94bLTICq56Zuy7CmvpRR604m0aqmZwKZhtDrLysV3dqPe32tr1RjMoMNeUVCH3NROpdzUITcFXKXckujTIkpTPuNeG3W5WqvDGdRVBZRVd4cLPi7sGHyaME5qMLFFa7VDP8fky7hgEigk9MMjOm8G7J6dn_JPAF2ANvgYA_b_9Vbxj6Y1k56Md1PQxr6o_LIoMeV_ZzCo2Jr0RdiZgO2kOm9eUP8Fc8G_Rg | 
    
| CitedBy_id | crossref_primary_10_1016_j_jmr_2021_106913 crossref_primary_10_1063_5_0249863 crossref_primary_10_1002_chem_202101421 crossref_primary_10_1016_j_jmr_2019_07_051 crossref_primary_10_1002_mrc_5163 crossref_primary_10_1021_acs_jpcc_3c02754 crossref_primary_10_1002_mrc_5121 crossref_primary_10_1016_j_pnmrs_2023_11_001 crossref_primary_10_1002_mrc_5188  | 
    
| Cites_doi | 10.1063/1.480804 10.1016/j.jmr.2017.07.009 10.1063/1.441857 10.1021/ja504734p 10.1016/j.jmr.2012.04.007 10.1002/anie.201200728 10.1016/j.ssnmr.2015.09.003 10.1080/00268979809482204 10.1063/1.3521491 10.1039/b907183k 10.1016/S1090-7807(03)00134-4 10.1016/j.cplett.2004.03.047 10.1021/ja057682g 10.1021/ja306227p 10.1103/PhysRevB.28.6567 10.1016/S1090-7807(02)00139-8 10.1016/j.cplett.2007.11.032 10.1016/j.jmr.2006.12.013 10.1016/j.ssnmr.2013.10.003 10.1007/128_2011_141 10.1016/j.ssnmr.2012.11.002 10.1016/j.jmr.2007.01.018 10.1002/cmr.a.20037 10.1002/mrc.2413 10.1006/jmre.2000.2179 10.1002/9780470034590.emrstm1200 10.1016/0009-2614(93)80109-3 10.1016/j.pnmrs.2011.06.002 10.1016/S1090-7807(02)00061-7 10.1006/jmre.2001.2340 10.1016/j.cplett.2003.11.049 10.1006/jmra.1995.1179 10.1039/c3cc42961j 10.1006/jmre.1996.1087 10.1016/S0009-2614(98)01402-X 10.1016/S0009-2614(00)00805-8 10.1139/v11-053 10.1016/j.ssnmr.2012.04.002 10.1016/j.jmr.2006.03.016 10.1063/1.4913683 10.1016/j.jmr.2008.02.020 10.1016/j.ssnmr.2006.09.002 10.1021/acscatal.7b03211 10.1021/cr00007a013 10.1016/S0926-2040(03)00051-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION NPM 7X8 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1016/j.jmr.2018.06.005 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry Physics  | 
    
| EISSN | 1096-0856 | 
    
| EndPage | 103 | 
    
| ExternalDocumentID | oai:HAL:hal-04330153v1 29909082 10_1016_j_jmr_2018_06_005 S1090780718301599  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABBQC ABFNM ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABUDA ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 D-I DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q G8K GBLVA HVGLF HZ~ IHE J1W KOM LCYCR LG5 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSH SSK SSQ SSU SSZ T5K UPT UQL XPP YQT ZA5 ZCG ZGI ZXP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 1XC VOOES ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c496t-54a59cb084a583d07fed4621eab69da0739bf822f164997abd7bd749a57e88513 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1090-7807 1096-0856  | 
    
| IngestDate | Sun Oct 26 04:11:47 EDT 2025 Tue Oct 14 21:07:24 EDT 2025 Wed Oct 01 08:22:59 EDT 2025 Wed Feb 19 02:36:38 EST 2025 Wed Oct 01 02:50:14 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Fri Feb 23 02:24:16 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Signal enhancement Central transition Half-integer quadrupolar nuclei Quadruple-frequency sweeps Satellite transitions  | 
    
| Language | English | 
    
| License | Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c496t-54a59cb084a583d07fed4621eab69da0739bf822f164997abd7bd749a57e88513 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-6461-7152 0000-0003-0694-0178 0000-0002-5214-4060 0000-0002-4034-855X 0000-0003-3772-6801  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.univ-lille.fr/hal-04330153 | 
    
| PMID | 29909082 | 
    
| PQID | 2056759010 | 
    
| PQPubID | 23479 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_jmr_2018_06_005 hal_primary_oai_HAL_hal_04330153v1 proquest_miscellaneous_2056759010 pubmed_primary_29909082 crossref_primary_10_1016_j_jmr_2018_06_005 crossref_citationtrail_10_1016_j_jmr_2018_06_005 elsevier_sciencedirect_doi_10_1016_j_jmr_2018_06_005  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2018 2018-08-00 2018-Aug 20180801 2018-08-01  | 
    
| PublicationDateYYYYMMDD | 2018-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationSeriesTitle | Journal of Magnetic Resonance | 
    
| PublicationTitle | Journal of magnetic resonance (1997) | 
    
| PublicationTitleAlternate | J Magn Reson | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Inc Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier  | 
    
| References | Kong, O'Dell, Terskikh, Ye, Wang, Wu (b0025) 2012; 134 Kwak, Prasad, Clark, Grandinetti, Nakashima, Teymoori, Wasylishen (b0115) 2003; 160 Fyfe, Feng, Grondey, Kokotailo, Gies (b0020) 1991; 91 Yao, Kwak, Sakellariou, Emsley, Grandinetti (b0085) 2000; 327 Samoson, Kundla, Lippmaa, Samoson, Lippmaa (b0015) 1982; 49 Madhu, Goldbourt, Frydman, Vega, Siegel, Nakashima, Wasylichen (b0050) 2000; 112 Siegel, Nakashima, Wasylishen (b0090) 2004; 388 Nakashima, Wasylishen, Siegel, Ooms, Goswami, van Bentum, Kentgens (b0100) 2008; 450 Fernandez, Pruski (b0010) 2012; 306 Vega, Naor, Haase, Conradi, Siegel, Nakashima, Wasylichen (b0055) 1981; 75 Kupče, Freeman, O’Dell (b0120) 1995; 115 Massiot, Fayon, Alonso, Trébosc, Amoureux (b0150) 2003; 164 Gao, Wang, Xu, Qi, Wang, Zhou, Zhao, Feng, Liu, Deng, Nagashima, Trébosc, Calvez, Pourpoint, Mear, Lafon, Amoureux (b0040) 2018; 8 Bak, Nielsen (b0140) 1997; 125 Antonijevic, Ashbrook, Biedasek, Walton, Wimperis, Yang (b0145) 2006; 128 Kentgens, Verhagen (b0065) 1999; 300 Garwood, DelaBarre (b0125) 2001; 153 Wu, Zhu (b0035) 2012; 61 Nakashima, Wasylichen (b0045) 2011 Trébosc, Amoureux, Gan (b0130) 2007; 31 Wang, Trébosc, Li, Xu, Hu, Feng, Chen, Lafon, Amoureux, Deng, Wang, Li, Trébosc, Lafon, Xu, Hu, Feng, Chen, Amoureux, Deng (b0110) 2013; 49 Perras, Bryce, Perras, Viger-Gravel, Burgess, Bryce (b0030) 2012; 51 Caravatti, Bodenhausen, Ernst, Pell, Kervern, Emsley, Deschamps, Massiot, Grandinetti, Pintacuda, Shen, Trébosc, Lafon, Gan, Pourpoint, Hu, Chen, Amoureux (b0080) 1983; 55 Delevoye, Trébosc, Gan, Montagne, Amoureux (b0155) 2007; 186 Van Veenendal, Meier, Kentgens (b0070) 1998; 93 Dey, Prasad, Ash, Deschamps, Grandinetti (b0095) 2007; 185 Bak, Rasmussen, Nielsen (b0135) 2000; 147 Kwak, Prasad, Clark, Grandinetti, Goswami, Madhu, Goswami, van Bentum, Kentgens (b0105) 2003; 24 Ashbrook, Ashbrook, Sneddon (b0005) 2009; 11 Iuga, Kentgens (b0075) 2002; 158 Brauniger, Ramaswamy, Madhu, Brauniger, Hempel, Madhu, Brauniger (b0060) 2004; 383 Samoson (10.1016/j.jmr.2018.06.005_h0025) 1983; 28 Kwak (10.1016/j.jmr.2018.06.005_h0165) 2003; 24 Massiot (10.1016/j.jmr.2018.06.005_b0150) 2003; 164 Wang (10.1016/j.jmr.2018.06.005_h0180) 2013; 49 Madhu (10.1016/j.jmr.2018.06.005_h0070) 2000; 112 Bak (10.1016/j.jmr.2018.06.005_b0140) 1997; 125 Caravatti (10.1016/j.jmr.2018.06.005_h0125) 1983; 55 Ashbrook (10.1016/j.jmr.2018.06.005_h0005) 2009; 11 Nakashima (10.1016/j.jmr.2018.06.005_h0155) 2008; 450 Nakashima (10.1016/j.jmr.2018.06.005_b0045) 2011 Trébosc (10.1016/j.jmr.2018.06.005_b0130) 2007; 31 Fernandez (10.1016/j.jmr.2018.06.005_b0010) 2012; 306 Yao (10.1016/j.jmr.2018.06.005_b0085) 2000; 327 Perras (10.1016/j.jmr.2018.06.005_h0045) 2013; 51–52 Brauniger (10.1016/j.jmr.2018.06.005_h0105) 2012; 45–46 Brauniger (10.1016/j.jmr.2018.06.005_h0095) 2004; 383 Samoson (10.1016/j.jmr.2018.06.005_h0020) 1982; 49 Antonijevic (10.1016/j.jmr.2018.06.005_b0145) 2006; 128 Pell (10.1016/j.jmr.2018.06.005_h0130) 2011; 134 Garwood (10.1016/j.jmr.2018.06.005_b0125) 2001; 153 Wang (10.1016/j.jmr.2018.06.005_h0185) 2015; 142 Haase (10.1016/j.jmr.2018.06.005_h0085) 1993; 209 Brauniger (10.1016/j.jmr.2018.06.005_h0100) 2006; 181 Siegel (10.1016/j.jmr.2018.06.005_h0090) 2004; 388 Nagashima (10.1016/j.jmr.2018.06.005_h0060) 2017; 282 Goswami (10.1016/j.jmr.2018.06.005_h0175) 2012; 219 Goswami (10.1016/j.jmr.2018.06.005_h0160) 2011; 89 Kong (10.1016/j.jmr.2018.06.005_b0025) 2012; 134 Perras (10.1016/j.jmr.2018.06.005_h0040) 2012; 51 Gao (10.1016/j.jmr.2018.06.005_h0055) 2018; 8 Shen (10.1016/j.jmr.2018.06.005_h0135) 2015; 72 Siegel (10.1016/j.jmr.2018.06.005_b0090) 2004; 388 Fyfe (10.1016/j.jmr.2018.06.005_b0020) 1991; 91 Iuga (10.1016/j.jmr.2018.06.005_b0075) 2002; 158 Dey (10.1016/j.jmr.2018.06.005_b0095) 2007; 185 Delevoye (10.1016/j.jmr.2018.06.005_b0155) 2007; 186 Vega (10.1016/j.jmr.2018.06.005_h0080) 1981; 75 Ashbrook (10.1016/j.jmr.2018.06.005_h0010) 2014; 136 Kwak (10.1016/j.jmr.2018.06.005_h0190) 2003; 160 Wu (10.1016/j.jmr.2018.06.005_b0035) 2012; 61 O’Dell (10.1016/j.jmr.2018.06.005_h0205) 2013; 55 Kupče (10.1016/j.jmr.2018.06.005_h0200) 1995; 115 Nakashima (10.1016/j.jmr.2018.06.005_h0195) 2009; 47 Goswami (10.1016/j.jmr.2018.06.005_h0170) 2008; 192 Van Veenendal (10.1016/j.jmr.2018.06.005_b0070) 1998; 93 Siegel (10.1016/j.jmr.2018.06.005_h0075) 2005; 26A Bak (10.1016/j.jmr.2018.06.005_b0135) 2000; 147 Kentgens (10.1016/j.jmr.2018.06.005_b0065) 1999; 300  | 
    
| References_xml | – volume: 164 start-page: 160 year: 2003 end-page: 164 ident: b0150 article-title: Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei publication-title: J. Magn. Reson. – volume: 383 start-page: 403 year: 2004 end-page: 410 ident: b0060 article-title: Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses publication-title: Chem. Phys. Lett. – volume: 327 start-page: 85 year: 2000 end-page: 90 ident: b0085 article-title: Sensitivity enhancement of the central transition NMR signal of quadrupolar nuclei under magic-angle spinning publication-title: Chem. Phys. Lett. – volume: 450 start-page: 417 year: 2008 end-page: 421 ident: b0100 article-title: Sensitivity enhancement of solid-state NMR spectra of half-integer spin quadrupolar nuclei: double- or single-frequency sweeps? Insights from the hyperbolic secant experiment publication-title: Chem. Phys. Lett. – volume: 158 start-page: 65 year: 2002 end-page: 72 ident: b0075 article-title: Influencing the satellite transitions of half-integer quadrupolar nuclei for the enhancement of magic angle spinning spectra publication-title: J. Magn. Reson. – volume: 115 start-page: 273 year: 1995 end-page: 276 ident: b0120 article-title: Adiabatic pulses for wideband inversion and broadband decoupling publication-title: J. Magn. Reson. A – volume: 300 start-page: 435 year: 1999 end-page: 443 ident: b0065 article-title: Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I = 3/2 nuclei publication-title: Chem. Phys. Lett. – volume: 93 start-page: 95 year: 1998 ident: b0070 article-title: Frequency stepped adiabatic passage excitation of half-integer quadrupolar spin systems publication-title: Mol. Phys. – volume: 24 start-page: 71 year: 2003 end-page: 77 ident: b0105 article-title: Enhancing sensitivity of quadrupolar nuclei in solid-state NMR with multiple rotor assisted population transfers publication-title: Solid State Nucl. Magn. Reson. – volume: 61 start-page: 1 year: 2012 end-page: 70 ident: b0035 article-title: NMR studies of alkali metal ions in organic and biological solids publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 125 start-page: 132 year: 1997 end-page: 139 ident: b0140 article-title: REPULSION, a novel approach to efficient powder averaging in Solid-State NMR publication-title: J. Magn. Reson. – volume: 134 start-page: 14609 year: 2012 end-page: 14617 ident: b0025 article-title: Variable-temperature 17O NMR studies allow quantitative evaluation of molecular dynamics in organic solids publication-title: J. Am. Chem. Soc. – volume: 147 start-page: 296 year: 2000 end-page: 330 ident: b0135 article-title: SIMPSON: a general simulation program for solid-state NMR spectroscopy publication-title: J. Magn. Reson. – volume: 160 start-page: 107 year: 2003 end-page: 113 ident: b0115 article-title: Selective suppression and excitation of solid-state NMR resonances based on quadrupole coupling constants publication-title: J. Magn. Reson. – volume: 51 start-page: 4227 year: 2012 end-page: 4230 ident: b0030 article-title: Direct investigation of covalently bound chlorine in organic compounds by solid-state 35Cl NMR spectroscopy and exact spectral line-shape simulations publication-title: Angew. Chem.-Int. Edit. – volume: 185 start-page: 326 year: 2007 end-page: 330 ident: b0095 article-title: Spectral editing in solid-state MAS NMR of quadrupolar nuclei using selective satellite inversion publication-title: J. Magn. Reson. – volume: 388 start-page: 441 year: 2004 end-page: 445 ident: b0090 article-title: Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses publication-title: Chem. Phys. Lett. – volume: 153 start-page: 155 year: 2001 end-page: 177 ident: b0125 article-title: The return of the frequency sweep: designing adiabatic pulses for contemporary NMR publication-title: J. Magn. Reson. – volume: 112 start-page: 2377 year: 2000 end-page: 2391 ident: b0050 article-title: Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: theory and experiments publication-title: J. Chem. Phys. – volume: 55 start-page: 88 year: 1983 end-page: 103 ident: b0080 article-title: Selective pulse experiments in high-resolution solid state NMR publication-title: J. Magn. Reson. – volume: 49 start-page: 6653 year: 2013 end-page: 6655 ident: b0110 article-title: Signal enhancement of J-HMQC experiments in solid-state NMR involving half-integer quadrupolar nuclei publication-title: Chem. Commun. – year: 2011 ident: b0045 article-title: Sensitivity and resolution enhancement of half-integer quadrupolar nuclei in solid-state NMR publication-title: eMagRes – volume: 128 start-page: 8054 year: 2006 end-page: 8062 ident: b0145 article-title: Dynamics on the microsecond timescale in microporous aluminophosphate AlPO publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 1525 year: 1991 end-page: 1543 ident: b0020 article-title: One- and two-dimensional high-resolution solid-state NMR studies of zeolite lattice structures publication-title: Chem. Rev. – volume: 75 start-page: 75 year: 1981 end-page: 291 ident: b0055 article-title: Triple quantum NMR on spin systems with I = 3/2 in solids publication-title: J. Chem. Phys. – volume: 31 start-page: 1 year: 2007 end-page: 9 ident: b0130 article-title: Comparison of high-resolution solid-state NMR MQMAS and STMAS methods for half-integer quadrupolar nuclei publication-title: Solid State Nucl. Magn. Reson. – volume: 49 start-page: 350 year: 1982 end-page: 357 ident: b0015 article-title: High-resolution MAS-NMR of quadrupolar nuclei in powders publication-title: J. Magn. Reson. – volume: 186 start-page: 94 year: 2007 end-page: 99 ident: b0155 article-title: Resolution enhancement using a new multiple-pulse decoupling sequence for quadrupolar nuclei publication-title: J. Magn. Reson. – volume: 8 start-page: 69 year: 2018 end-page: 74 ident: b0040 article-title: Brønsted/Lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy publication-title: ACS Catal. – volume: 306 start-page: 119 year: 2012 end-page: 188 ident: b0010 article-title: Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances publication-title: Top. Curr. Chem. – volume: 11 start-page: 6892 year: 2009 end-page: 6905 ident: b0005 article-title: Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei publication-title: Phys. Chem. Chem. Phys. – volume: 112 start-page: 2377 year: 2000 ident: 10.1016/j.jmr.2018.06.005_h0070 article-title: Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: theory and experiments publication-title: J. Chem. Phys. doi: 10.1063/1.480804 – volume: 282 start-page: 71 year: 2017 ident: 10.1016/j.jmr.2018.06.005_h0060 article-title: 71Ga-77Se connectivities and proximities in gallium selenide crystal and glass probed by solid-state NMR publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2017.07.009 – volume: 75 start-page: 75 year: 1981 ident: 10.1016/j.jmr.2018.06.005_h0080 article-title: Triple quantum NMR on spin systems with I = 3/2 in solids publication-title: J. Chem. Phys. doi: 10.1063/1.441857 – volume: 136 start-page: 15440 year: 2014 ident: 10.1016/j.jmr.2018.06.005_h0010 article-title: New Methods and Applications in Solid-State NMR Spectroscopy of Quadrupolar Nuclei publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504734p – volume: 219 start-page: 25 year: 2012 ident: 10.1016/j.jmr.2018.06.005_h0175 article-title: Repetitive sideband-selective double frequency sweeps for sensitivity enhancement of MAS NMR of half-integer quadrupolar nuclei publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2012.04.007 – volume: 51 start-page: 4227 year: 2012 ident: 10.1016/j.jmr.2018.06.005_h0040 article-title: Direct investigation of covalently bound chlorine in organic compounds by solid-state 35Cl NMR spectroscopy and exact spectral line-shape simulations publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.201200728 – volume: 72 start-page: 104 year: 2015 ident: 10.1016/j.jmr.2018.06.005_h0135 article-title: Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2015.09.003 – volume: 93 start-page: 95 year: 1998 ident: 10.1016/j.jmr.2018.06.005_b0070 article-title: Frequency stepped adiabatic passage excitation of half-integer quadrupolar spin systems publication-title: Mol. Phys. doi: 10.1080/00268979809482204 – volume: 134 start-page: 024117 year: 2011 ident: 10.1016/j.jmr.2018.06.005_h0130 article-title: Broadband inversion for MAS NMR with single-sideband-selective adiabatic pulses publication-title: J. Chem. Phys. doi: 10.1063/1.3521491 – volume: 49 start-page: 350 year: 1982 ident: 10.1016/j.jmr.2018.06.005_h0020 article-title: High-resolution MAS-NMR of quadrupolar nuclei in powders publication-title: J. Magn. Reson. – volume: 11 start-page: 6892 year: 2009 ident: 10.1016/j.jmr.2018.06.005_h0005 article-title: Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b907183k – volume: 164 start-page: 160 year: 2003 ident: 10.1016/j.jmr.2018.06.005_b0150 article-title: Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei publication-title: J. Magn. Reson. doi: 10.1016/S1090-7807(03)00134-4 – volume: 388 start-page: 441 year: 2004 ident: 10.1016/j.jmr.2018.06.005_b0090 article-title: Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.03.047 – volume: 128 start-page: 8054 year: 2006 ident: 10.1016/j.jmr.2018.06.005_b0145 article-title: Dynamics on the microsecond timescale in microporous aluminophosphate AlPO4-14 as evidenced by 27Al MQMAS and STMAS NMR spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057682g – volume: 134 start-page: 14609 year: 2012 ident: 10.1016/j.jmr.2018.06.005_b0025 article-title: Variable-temperature 17O NMR studies allow quantitative evaluation of molecular dynamics in organic solids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306227p – volume: 28 start-page: 6567 year: 1983 ident: 10.1016/j.jmr.2018.06.005_h0025 article-title: Excitation phenomena and line-intensities in high-resolution NMR powder spectra of half-integer quadrupolar nuclei publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.6567 – volume: 160 start-page: 107 year: 2003 ident: 10.1016/j.jmr.2018.06.005_h0190 article-title: Selective suppression and excitation of solid-state NMR resonances based on quadrupole coupling constants publication-title: J. Magn. Reson. doi: 10.1016/S1090-7807(02)00139-8 – volume: 450 start-page: 417 year: 2008 ident: 10.1016/j.jmr.2018.06.005_h0155 article-title: Sensitivity enhancement of solid-state NMR spectra of half-integer spin quadrupolar nuclei: double- or single-frequency sweeps? Insights from the hyperbolic secant experiment publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.11.032 – volume: 185 start-page: 326 year: 2007 ident: 10.1016/j.jmr.2018.06.005_b0095 article-title: Spectral editing in solid-state MAS NMR of quadrupolar nuclei using selective satellite inversion publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2006.12.013 – volume: 55 start-page: 28 year: 2013 ident: 10.1016/j.jmr.2018.06.005_h0205 article-title: The WURST kind of pulses in solid-state NMR publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2013.10.003 – volume: 306 start-page: 119 year: 2012 ident: 10.1016/j.jmr.2018.06.005_b0010 article-title: Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances publication-title: Top. Curr. Chem. doi: 10.1007/128_2011_141 – volume: 51–52 start-page: 1 year: 2013 ident: 10.1016/j.jmr.2018.06.005_h0045 article-title: Signal enhancement in solid-state NMR of quadrupolar nuclei publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2012.11.002 – volume: 388 start-page: 441 year: 2004 ident: 10.1016/j.jmr.2018.06.005_h0090 article-title: Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.03.047 – volume: 186 start-page: 94 year: 2007 ident: 10.1016/j.jmr.2018.06.005_b0155 article-title: Resolution enhancement using a new multiple-pulse decoupling sequence for quadrupolar nuclei publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2007.01.018 – volume: 26A start-page: 47 year: 2005 ident: 10.1016/j.jmr.2018.06.005_h0075 article-title: Sensitivity enhancement of NMR spectra of half-integer quadrupolar nuclei in the solid state via population transfer publication-title: Concepts Magn. Reson. doi: 10.1002/cmr.a.20037 – volume: 47 start-page: 465 year: 2009 ident: 10.1016/j.jmr.2018.06.005_h0195 article-title: Using hyperbolic secant pulses to assist characterization of chemical shift tensors for half-integer spin quadrupolar nuclei in MAS powder samples publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.2413 – volume: 147 start-page: 296 year: 2000 ident: 10.1016/j.jmr.2018.06.005_b0135 article-title: SIMPSON: a general simulation program for solid-state NMR spectroscopy publication-title: J. Magn. Reson. doi: 10.1006/jmre.2000.2179 – year: 2011 ident: 10.1016/j.jmr.2018.06.005_b0045 article-title: Sensitivity and resolution enhancement of half-integer quadrupolar nuclei in solid-state NMR publication-title: eMagRes doi: 10.1002/9780470034590.emrstm1200 – volume: 209 start-page: 287 year: 1993 ident: 10.1016/j.jmr.2018.06.005_h0085 article-title: Sensitivity enhancement for NMR of the central transition of quadrupolar nuclei publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)80109-3 – volume: 61 start-page: 1 year: 2012 ident: 10.1016/j.jmr.2018.06.005_b0035 article-title: NMR studies of alkali metal ions in organic and biological solids publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2011.06.002 – volume: 158 start-page: 65 year: 2002 ident: 10.1016/j.jmr.2018.06.005_b0075 article-title: Influencing the satellite transitions of half-integer quadrupolar nuclei for the enhancement of magic angle spinning spectra publication-title: J. Magn. Reson. doi: 10.1016/S1090-7807(02)00061-7 – volume: 153 start-page: 155 year: 2001 ident: 10.1016/j.jmr.2018.06.005_b0125 article-title: The return of the frequency sweep: designing adiabatic pulses for contemporary NMR publication-title: J. Magn. Reson. doi: 10.1006/jmre.2001.2340 – volume: 383 start-page: 403 year: 2004 ident: 10.1016/j.jmr.2018.06.005_h0095 article-title: Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.11.049 – volume: 115 start-page: 273 year: 1995 ident: 10.1016/j.jmr.2018.06.005_h0200 article-title: Adiabatic pulses for wideband inversion and broadband decoupling publication-title: J. Magn. Reson. A doi: 10.1006/jmra.1995.1179 – volume: 49 start-page: 6653 year: 2013 ident: 10.1016/j.jmr.2018.06.005_h0180 article-title: Signal enhancement of J-HMQC experiments in solid-state NMR involving half-integer quadrupolar nuclei publication-title: Chem. Commun. doi: 10.1039/c3cc42961j – volume: 125 start-page: 132 year: 1997 ident: 10.1016/j.jmr.2018.06.005_b0140 article-title: REPULSION, a novel approach to efficient powder averaging in Solid-State NMR publication-title: J. Magn. Reson. doi: 10.1006/jmre.1996.1087 – volume: 300 start-page: 435 year: 1999 ident: 10.1016/j.jmr.2018.06.005_b0065 article-title: Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I = 3/2 nuclei publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)01402-X – volume: 327 start-page: 85 year: 2000 ident: 10.1016/j.jmr.2018.06.005_b0085 article-title: Sensitivity enhancement of the central transition NMR signal of quadrupolar nuclei under magic-angle spinning publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00805-8 – volume: 89 start-page: 1130 year: 2011 ident: 10.1016/j.jmr.2018.06.005_h0160 article-title: Sensitivity enhancement in MAS NMR of half-integer quadrupolar nuclei using sideband selective double-frequency sweeps publication-title: Can. J. Chem. doi: 10.1139/v11-053 – volume: 45–46 start-page: 16 year: 2012 ident: 10.1016/j.jmr.2018.06.005_h0105 article-title: Enhancing the central-transition NMR signal of quadrupolar nuclei by spin population transfer using SW-FAM pulse trains with a tangent-shaped sweep profile publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2012.04.002 – volume: 55 start-page: 88 year: 1983 ident: 10.1016/j.jmr.2018.06.005_h0125 article-title: Selective pulse experiments in high-resolution solid state NMR publication-title: J. Magn. Reson. – volume: 181 start-page: 68 year: 2006 ident: 10.1016/j.jmr.2018.06.005_h0100 article-title: Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in static NMR of half-integer spin quadrupolar nuclei publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2006.03.016 – volume: 142 year: 2015 ident: 10.1016/j.jmr.2018.06.005_h0185 article-title: Population transfer HMQC for half-integer quadrupolar nuclei publication-title: J. Chem. Phys. doi: 10.1063/1.4913683 – volume: 192 start-page: 230 year: 2008 ident: 10.1016/j.jmr.2018.06.005_h0170 article-title: Sensitivity enhancement of the central-transition signal of half-integer spin quadrupolar nuclei in solid-state NMR: Features of multiple fast amplitude-modulated pulse transfer publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2008.02.020 – volume: 31 start-page: 1 year: 2007 ident: 10.1016/j.jmr.2018.06.005_b0130 article-title: Comparison of high-resolution solid-state NMR MQMAS and STMAS methods for half-integer quadrupolar nuclei publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2006.09.002 – volume: 8 start-page: 69 year: 2018 ident: 10.1016/j.jmr.2018.06.005_h0055 article-title: Brønsted/Lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy publication-title: ACS Catal. doi: 10.1021/acscatal.7b03211 – volume: 91 start-page: 1525 year: 1991 ident: 10.1016/j.jmr.2018.06.005_b0020 article-title: One- and two-dimensional high-resolution solid-state NMR studies of zeolite lattice structures publication-title: Chem. Rev. doi: 10.1021/cr00007a013 – volume: 24 start-page: 71 year: 2003 ident: 10.1016/j.jmr.2018.06.005_h0165 article-title: Enhancing sensitivity of quadrupolar nuclei in solid-state NMR with multiple rotor assisted population transfers publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/S0926-2040(03)00051-1  | 
    
| SSID | ssj0011570 | 
    
| Score | 2.2898874 | 
    
| Snippet | [Display omitted]
•Manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei.•Quadruple-frequency sweeps make the ST → CT... We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit...  | 
    
| SourceID | unpaywall hal proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 92 | 
    
| SubjectTerms | Central transition Chemical Sciences Half-integer quadrupolar nuclei Inorganic chemistry Quadruple-frequency sweeps Satellite transitions Signal enhancement  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5indDEA5dxy8SQQTyBUjXUzuWxmtgqRCsEVBpPlp3YtCO4JW02bb-ec5K4QoA2IUVK5MTO5ZzE34k_fwfgVZToNFWJDvMIYxNe4HdQpbagnzha2wIRh6AJzpNpPJ7x96fitCPI0lyYOSLO2i3Ow5KmwvVtRSUhqWxhvzXcgd1YIObuwe5s-nH0tRnKzIgS18yLxm0Mj1MR--HLhsh19oN0P6NWp5PS1P27A9qZExPyb5h5B_Zqt1KXF6osf-t6ju_Bib_olnHyvV9vdD-_-kPP8ea7ug93O_TJRq27PIBbxu3D3pFP-rYPtxtGaL5-CAtEowRoGTE8sI5xc3IQ-pnIFo5NRp_ZdPKJLS3Dk9iwkZ0wFftZq6KqVxQwM0dayQtG1PpvfkdpQlu19O1Ltr4wZrV-BLPjd1-OxmGXlyHMeRZvQsGVyHI9SHGdDotBYk3B47eRUTrOCkVjf9oi8LAYimVZonSR4MIzJRKTIsIbPoaeWzrzFBiiR65jizFjojB0ssrEAhEQxjkqinLFAxh4Y8m8Ey2n3Bml9Oy0M4n2lWRf2TD0RACvt1VWrWLHdQdz7wGygxwtlJDYo1xX7SU-223zJNE9Hn2QVOaNeh4F8MI7k0Qr0kCMcmZZr7ElgXEaEWMCeNJ62bYtggeUhj6AN1u3u_k-Dv7r6GfQ21S1OUQ4tdHPu3fpF1LMHCc priority: 102 providerName: Unpaywall  | 
    
| Title | Uniform signal enhancement in MAS NMR of half-integer quadrupolar nuclei using quadruple-frequency sweeps | 
    
| URI | https://dx.doi.org/10.1016/j.jmr.2018.06.005 https://www.ncbi.nlm.nih.gov/pubmed/29909082 https://www.proquest.com/docview/2056759010 https://hal.univ-lille.fr/hal-04330153  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 293 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-0856 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011570 issn: 1090-7807 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1096-0856 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011570 issn: 1090-7807 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1096-0856 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011570 issn: 1090-7807 databaseCode: AIKHN dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1096-0856 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011570 issn: 1090-7807 databaseCode: ACRLP dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-0856 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011570 issn: 1090-7807 databaseCode: AKRWK dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITR4mGB8ZYzJIJ5AWRtqx8ljVDGVj1aIUWk8WXZis0wlDW3DtJf97dzlSyDQkJAqRU1qK_Fdfb-Lf_4dwItAmijS0vhpgLkJz3Ae1JHL6CWOMS5DxCFog_N0Fk7m_N2pON2CcbcXhmiV7dzfzOn1bN2eGbSjOSjzfHBClEIZYYiM0ElFTJv4OJdUxeDoqqd5kJZMo0gQE3NuKLuVzZrjdf6NJEGDRsKTKtj9PTbdOCOS5J8I9A7sVEWpLy_0YvFLVDq-C7stnGRJc8f3YMsWe7Az7qq47cGtmuKZru9DjvCSECojyga2scUZWZzeDrK8YNPkhM2mn9jSMbwP59c6EnbFvlc6W1UlZcCsIPHjnBFX_mt3YWF9t2r42JdsfWFtuX4A8-M3n8cTvy204Kc8Dje-4FrEqRlGeIxG2VA6m_HwdWC1CeNM02KecYgkHOZWcSy1ySR-eKyFtBFCttFD2C6WhX0MDOEgN6HDJFBqzIWctqFASIOJiw6CVHMPht0Qq7RVIadiGAvV0c3OFVpFkVVUTbkTHrzsm5SNBMd1P-ad3dRvfqQwRFzX7DmObd89aW5Pkg-KzpHCG_rX6EfgwbPOBRRakVZWdGGX1Rp7Eph4EdPFg0eNb_R9UbynuvIevOqd5d_Psf9_z_EEbtO3hqF4ANubVWWfImramMP6b3EIN5O37yczPM5nH5MvPwGJRxV1 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ6jwMMH4CuPDIJ5AWZvVjpPHqmIq0PaBbdLeLDuxWaaShrZh2sv-9t3lSyDQkJAiRUpiK_FdfL-Lf_kdwLtAmijS0vhJgLkJT3Ee1JFL6SOOMS5FxCHoB-fZPJyc8s9n4mwLxu2_MESrbOb-ek6vZuvmSL8ZzX6RZf1johTKCENkhE4q4ngb7nBxKCkDO7jueB4kJlNLEsREnRvIdmmzInldfCdN0KDW8KQSdn8PTtvnxJL8E4Leh16ZF_rqUi8Wv4Slowew2-BJNqpv-SFs2XwPeuO2jNse3K04nsn6EWSILwmiMuJsYBubn5PJ6fMgy3I2Gx2z-ewrWzqG9-H8SkjCrtiPUqersqAUmOWkfpwxIst_a08srO9WNSH7iq0vrS3Wj-H06OPJeOI3lRb8hMfhxhdcizgxgwj30TAdSGdTHh4GVpswTjWt5hmHUMJhchXHUptU4sZjLaSNELMNn8BOvsztM2CIB7kJHWaBUmMy5LQNBWIazFx0ECSaezBoh1gljQw5VcNYqJZvdqHQKoqsoirOnfDgfdekqDU4bruYt3ZTvzmSwhhxW7O3OLZd9yS6PRlNFR0jiTd0sOHPwIM3rQsotCItrejcLss19iQw8yKqiwdPa9_o-qKAT4XlPfjQOcu_n-P5_z3Ha-hNTmZTNf00_7IP9-hMTVd8ATubVWlfIoTamFfVK3IDIlMVWg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5indDEA5dxy8SQQTyBUjXUzuWxmtgqRCsEVBpPlp3YtCO4JW02bb-ec5K4QoA2IUVK5MTO5ZzE34k_fwfgVZToNFWJDvMIYxNe4HdQpbagnzha2wIRh6AJzpNpPJ7x96fitCPI0lyYOSLO2i3Ow5KmwvVtRSUhqWxhvzXcgd1YIObuwe5s-nH0tRnKzIgS18yLxm0Mj1MR--HLhsh19oN0P6NWp5PS1P27A9qZExPyb5h5B_Zqt1KXF6osf-t6ju_Bib_olnHyvV9vdD-_-kPP8ea7ug93O_TJRq27PIBbxu3D3pFP-rYPtxtGaL5-CAtEowRoGTE8sI5xc3IQ-pnIFo5NRp_ZdPKJLS3Dk9iwkZ0wFftZq6KqVxQwM0dayQtG1PpvfkdpQlu19O1Ltr4wZrV-BLPjd1-OxmGXlyHMeRZvQsGVyHI9SHGdDotBYk3B47eRUTrOCkVjf9oi8LAYimVZonSR4MIzJRKTIsIbPoaeWzrzFBiiR65jizFjojB0ssrEAhEQxjkqinLFAxh4Y8m8Ey2n3Bml9Oy0M4n2lWRf2TD0RACvt1VWrWLHdQdz7wGygxwtlJDYo1xX7SU-223zJNE9Hn2QVOaNeh4F8MI7k0Qr0kCMcmZZr7ElgXEaEWMCeNJ62bYtggeUhj6AN1u3u_k-Dv7r6GfQ21S1OUQ4tdHPu3fpF1LMHCc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+signal+enhancement+in+MAS+NMR+of+half-integer+quadrupolar+nuclei+using+quadruple-frequency+sweeps&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Wang%2C+Qiyan&rft.au=Trebosc%2C+Julien&rft.au=Li%2C+Yixuan&rft.au=Lafon%2C+Olivier&rft.series=Journal+of+Magnetic+Resonance&rft.date=2018-08-01&rft.pub=Elsevier&rft.issn=1090-7807&rft.eissn=1096-0856&rft.volume=293&rft.spage=92&rft.epage=103&rft_id=info:doi/10.1016%2Fj.jmr.2018.06.005&rft_id=info%3Apmid%2F29909082&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04330153v1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon |