Uniform signal enhancement in MAS NMR of half-integer quadrupolar nuclei using quadruple-frequency sweeps

[Display omitted] •Manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei.•Quadruple-frequency sweeps make the ST → CT transfer less sensitive to the offset.•Achieving similar signal enhancement for 27Al nuclei subject to different quadrupole interactions.•Improved...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance (1997) Vol. 293; pp. 92 - 103
Main Authors Wang, Qiang, Trébosc, Julien, Li, Yixuan, Lafon, Oliver, Xin, Shaohui, Xu, Jun, Hu, Bingwen, Feng, Ningdong, Amoureux, Jean-Paul, Deng, Feng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2018
Elsevier
SeriesJournal of Magnetic Resonance
Subjects
Online AccessGet full text
ISSN1090-7807
1096-0856
1096-0856
DOI10.1016/j.jmr.2018.06.005

Cover

Abstract [Display omitted] •Manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei.•Quadruple-frequency sweeps make the ST → CT transfer less sensitive to the offset.•Achieving similar signal enhancement for 27Al nuclei subject to different quadrupole interactions.•Improved acceleration of the 31P-27Al coherence transfer in PT-J-HMQC experiments. We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments.
AbstractList We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments.
[Display omitted] •Manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei.•Quadruple-frequency sweeps make the ST → CT transfer less sensitive to the offset.•Achieving similar signal enhancement for 27Al nuclei subject to different quadrupole interactions.•Improved acceleration of the 31P-27Al coherence transfer in PT-J-HMQC experiments. We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments.
We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments.We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments.
We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (C ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to C and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different Al sites. We also confirm that these schemes provide an improved acceleration of the P-{ Al} coherence transfer in PT-J-HMQC experiments.
Author Li, Yixuan
Feng, Ningdong
Trébosc, Julien
Xin, Shaohui
Xu, Jun
Deng, Feng
Wang, Qiang
Lafon, Oliver
Hu, Bingwen
Amoureux, Jean-Paul
Author_xml – sequence: 1
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
  organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
– sequence: 2
  givenname: Julien
  surname: Trébosc
  fullname: Trébosc, Julien
  organization: Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
– sequence: 3
  givenname: Yixuan
  surname: Li
  fullname: Li, Yixuan
  organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
– sequence: 4
  givenname: Oliver
  surname: Lafon
  fullname: Lafon, Oliver
  organization: Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
– sequence: 5
  givenname: Shaohui
  surname: Xin
  fullname: Xin, Shaohui
  organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
– sequence: 6
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
  organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
– sequence: 7
  givenname: Bingwen
  orcidid: 0000-0003-0694-0178
  surname: Hu
  fullname: Hu, Bingwen
  organization: Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 200062 Shanghai, China
– sequence: 8
  givenname: Ningdong
  surname: Feng
  fullname: Feng, Ningdong
  organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
– sequence: 9
  givenname: Jean-Paul
  surname: Amoureux
  fullname: Amoureux, Jean-Paul
  email: jean-paul.amoureux@univ-lille1.fr
  organization: Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
– sequence: 10
  givenname: Feng
  orcidid: 0000-0002-6461-7152
  surname: Deng
  fullname: Deng, Feng
  email: dengf@wipm.ac.cn
  organization: National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29909082$$D View this record in MEDLINE/PubMed
https://hal.univ-lille.fr/hal-04330153$$DView record in HAL
BookMark eNqNkU9v1DAQxSNURP_AB-CCfIRDwjiJ7VicVhW0SFuQgJ4tbzLZeuXYqZ202m-Pt2l74FAhWRrL83vPnufT7Mh5h1n2nkJBgfLPu2I3hKIE2hTACwD2KjuhIHkODeNHD3vIRQPiODuNcQdAKRPwJjsupUytpjzJzLUzvQ8DiWbrtCXobrRrcUA3EePI1eo3-XH1i_ie3Gjb58ZNuMVAbmfdhXn0Vgfi5taiIXM0bvvUsJj3AW9ndO2exHvEMb7NXvfaRnz3WM-y629f_5xf5uufF9_PV-u8rSWfclZrJtsNNKk2VQeix67mJUW94bLTICq56Zuy7CmvpRR604m0aqmZwKZhtDrLysV3dqPe32tr1RjMoMNeUVCH3NROpdzUITcFXKXckujTIkpTPuNeG3W5WqvDGdRVBZRVd4cLPi7sGHyaME5qMLFFa7VDP8fky7hgEigk9MMjOm8G7J6dn_JPAF2ANvgYA_b_9Vbxj6Y1k56Md1PQxr6o_LIoMeV_ZzCo2Jr0RdiZgO2kOm9eUP8Fc8G_Rg
CitedBy_id crossref_primary_10_1016_j_jmr_2021_106913
crossref_primary_10_1063_5_0249863
crossref_primary_10_1002_chem_202101421
crossref_primary_10_1016_j_jmr_2019_07_051
crossref_primary_10_1002_mrc_5163
crossref_primary_10_1021_acs_jpcc_3c02754
crossref_primary_10_1002_mrc_5121
crossref_primary_10_1016_j_pnmrs_2023_11_001
crossref_primary_10_1002_mrc_5188
Cites_doi 10.1063/1.480804
10.1016/j.jmr.2017.07.009
10.1063/1.441857
10.1021/ja504734p
10.1016/j.jmr.2012.04.007
10.1002/anie.201200728
10.1016/j.ssnmr.2015.09.003
10.1080/00268979809482204
10.1063/1.3521491
10.1039/b907183k
10.1016/S1090-7807(03)00134-4
10.1016/j.cplett.2004.03.047
10.1021/ja057682g
10.1021/ja306227p
10.1103/PhysRevB.28.6567
10.1016/S1090-7807(02)00139-8
10.1016/j.cplett.2007.11.032
10.1016/j.jmr.2006.12.013
10.1016/j.ssnmr.2013.10.003
10.1007/128_2011_141
10.1016/j.ssnmr.2012.11.002
10.1016/j.jmr.2007.01.018
10.1002/cmr.a.20037
10.1002/mrc.2413
10.1006/jmre.2000.2179
10.1002/9780470034590.emrstm1200
10.1016/0009-2614(93)80109-3
10.1016/j.pnmrs.2011.06.002
10.1016/S1090-7807(02)00061-7
10.1006/jmre.2001.2340
10.1016/j.cplett.2003.11.049
10.1006/jmra.1995.1179
10.1039/c3cc42961j
10.1006/jmre.1996.1087
10.1016/S0009-2614(98)01402-X
10.1016/S0009-2614(00)00805-8
10.1139/v11-053
10.1016/j.ssnmr.2012.04.002
10.1016/j.jmr.2006.03.016
10.1063/1.4913683
10.1016/j.jmr.2008.02.020
10.1016/j.ssnmr.2006.09.002
10.1021/acscatal.7b03211
10.1021/cr00007a013
10.1016/S0926-2040(03)00051-1
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.jmr.2018.06.005
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-0856
EndPage 103
ExternalDocumentID oai:HAL:hal-04330153v1
29909082
10_1016_j_jmr_2018_06_005
S1090780718301599
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SSQ
SSU
SSZ
T5K
UPT
UQL
XPP
YQT
ZA5
ZCG
ZGI
ZXP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c496t-54a59cb084a583d07fed4621eab69da0739bf822f164997abd7bd749a57e88513
IEDL.DBID .~1
ISSN 1090-7807
1096-0856
IngestDate Sun Oct 26 04:11:47 EDT 2025
Tue Oct 14 21:07:24 EDT 2025
Wed Oct 01 08:22:59 EDT 2025
Wed Feb 19 02:36:38 EST 2025
Wed Oct 01 02:50:14 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Fri Feb 23 02:24:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Signal enhancement
Central transition
Half-integer quadrupolar nuclei
Quadruple-frequency sweeps
Satellite transitions
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-54a59cb084a583d07fed4621eab69da0739bf822f164997abd7bd749a57e88513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6461-7152
0000-0003-0694-0178
0000-0002-5214-4060
0000-0002-4034-855X
0000-0003-3772-6801
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.univ-lille.fr/hal-04330153
PMID 29909082
PQID 2056759010
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_jmr_2018_06_005
hal_primary_oai_HAL_hal_04330153v1
proquest_miscellaneous_2056759010
pubmed_primary_29909082
crossref_primary_10_1016_j_jmr_2018_06_005
crossref_citationtrail_10_1016_j_jmr_2018_06_005
elsevier_sciencedirect_doi_10_1016_j_jmr_2018_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
2018-Aug
20180801
2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle Journal of Magnetic Resonance
PublicationTitle Journal of magnetic resonance (1997)
PublicationTitleAlternate J Magn Reson
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kong, O'Dell, Terskikh, Ye, Wang, Wu (b0025) 2012; 134
Kwak, Prasad, Clark, Grandinetti, Nakashima, Teymoori, Wasylishen (b0115) 2003; 160
Fyfe, Feng, Grondey, Kokotailo, Gies (b0020) 1991; 91
Yao, Kwak, Sakellariou, Emsley, Grandinetti (b0085) 2000; 327
Samoson, Kundla, Lippmaa, Samoson, Lippmaa (b0015) 1982; 49
Madhu, Goldbourt, Frydman, Vega, Siegel, Nakashima, Wasylichen (b0050) 2000; 112
Siegel, Nakashima, Wasylishen (b0090) 2004; 388
Nakashima, Wasylishen, Siegel, Ooms, Goswami, van Bentum, Kentgens (b0100) 2008; 450
Fernandez, Pruski (b0010) 2012; 306
Vega, Naor, Haase, Conradi, Siegel, Nakashima, Wasylichen (b0055) 1981; 75
Kupče, Freeman, O’Dell (b0120) 1995; 115
Massiot, Fayon, Alonso, Trébosc, Amoureux (b0150) 2003; 164
Gao, Wang, Xu, Qi, Wang, Zhou, Zhao, Feng, Liu, Deng, Nagashima, Trébosc, Calvez, Pourpoint, Mear, Lafon, Amoureux (b0040) 2018; 8
Bak, Nielsen (b0140) 1997; 125
Antonijevic, Ashbrook, Biedasek, Walton, Wimperis, Yang (b0145) 2006; 128
Kentgens, Verhagen (b0065) 1999; 300
Garwood, DelaBarre (b0125) 2001; 153
Wu, Zhu (b0035) 2012; 61
Nakashima, Wasylichen (b0045) 2011
Trébosc, Amoureux, Gan (b0130) 2007; 31
Wang, Trébosc, Li, Xu, Hu, Feng, Chen, Lafon, Amoureux, Deng, Wang, Li, Trébosc, Lafon, Xu, Hu, Feng, Chen, Amoureux, Deng (b0110) 2013; 49
Perras, Bryce, Perras, Viger-Gravel, Burgess, Bryce (b0030) 2012; 51
Caravatti, Bodenhausen, Ernst, Pell, Kervern, Emsley, Deschamps, Massiot, Grandinetti, Pintacuda, Shen, Trébosc, Lafon, Gan, Pourpoint, Hu, Chen, Amoureux (b0080) 1983; 55
Delevoye, Trébosc, Gan, Montagne, Amoureux (b0155) 2007; 186
Van Veenendal, Meier, Kentgens (b0070) 1998; 93
Dey, Prasad, Ash, Deschamps, Grandinetti (b0095) 2007; 185
Bak, Rasmussen, Nielsen (b0135) 2000; 147
Kwak, Prasad, Clark, Grandinetti, Goswami, Madhu, Goswami, van Bentum, Kentgens (b0105) 2003; 24
Ashbrook, Ashbrook, Sneddon (b0005) 2009; 11
Iuga, Kentgens (b0075) 2002; 158
Brauniger, Ramaswamy, Madhu, Brauniger, Hempel, Madhu, Brauniger (b0060) 2004; 383
Samoson (10.1016/j.jmr.2018.06.005_h0025) 1983; 28
Kwak (10.1016/j.jmr.2018.06.005_h0165) 2003; 24
Massiot (10.1016/j.jmr.2018.06.005_b0150) 2003; 164
Wang (10.1016/j.jmr.2018.06.005_h0180) 2013; 49
Madhu (10.1016/j.jmr.2018.06.005_h0070) 2000; 112
Bak (10.1016/j.jmr.2018.06.005_b0140) 1997; 125
Caravatti (10.1016/j.jmr.2018.06.005_h0125) 1983; 55
Ashbrook (10.1016/j.jmr.2018.06.005_h0005) 2009; 11
Nakashima (10.1016/j.jmr.2018.06.005_h0155) 2008; 450
Nakashima (10.1016/j.jmr.2018.06.005_b0045) 2011
Trébosc (10.1016/j.jmr.2018.06.005_b0130) 2007; 31
Fernandez (10.1016/j.jmr.2018.06.005_b0010) 2012; 306
Yao (10.1016/j.jmr.2018.06.005_b0085) 2000; 327
Perras (10.1016/j.jmr.2018.06.005_h0045) 2013; 51–52
Brauniger (10.1016/j.jmr.2018.06.005_h0105) 2012; 45–46
Brauniger (10.1016/j.jmr.2018.06.005_h0095) 2004; 383
Samoson (10.1016/j.jmr.2018.06.005_h0020) 1982; 49
Antonijevic (10.1016/j.jmr.2018.06.005_b0145) 2006; 128
Pell (10.1016/j.jmr.2018.06.005_h0130) 2011; 134
Garwood (10.1016/j.jmr.2018.06.005_b0125) 2001; 153
Wang (10.1016/j.jmr.2018.06.005_h0185) 2015; 142
Haase (10.1016/j.jmr.2018.06.005_h0085) 1993; 209
Brauniger (10.1016/j.jmr.2018.06.005_h0100) 2006; 181
Siegel (10.1016/j.jmr.2018.06.005_h0090) 2004; 388
Nagashima (10.1016/j.jmr.2018.06.005_h0060) 2017; 282
Goswami (10.1016/j.jmr.2018.06.005_h0175) 2012; 219
Goswami (10.1016/j.jmr.2018.06.005_h0160) 2011; 89
Kong (10.1016/j.jmr.2018.06.005_b0025) 2012; 134
Perras (10.1016/j.jmr.2018.06.005_h0040) 2012; 51
Gao (10.1016/j.jmr.2018.06.005_h0055) 2018; 8
Shen (10.1016/j.jmr.2018.06.005_h0135) 2015; 72
Siegel (10.1016/j.jmr.2018.06.005_b0090) 2004; 388
Fyfe (10.1016/j.jmr.2018.06.005_b0020) 1991; 91
Iuga (10.1016/j.jmr.2018.06.005_b0075) 2002; 158
Dey (10.1016/j.jmr.2018.06.005_b0095) 2007; 185
Delevoye (10.1016/j.jmr.2018.06.005_b0155) 2007; 186
Vega (10.1016/j.jmr.2018.06.005_h0080) 1981; 75
Ashbrook (10.1016/j.jmr.2018.06.005_h0010) 2014; 136
Kwak (10.1016/j.jmr.2018.06.005_h0190) 2003; 160
Wu (10.1016/j.jmr.2018.06.005_b0035) 2012; 61
O’Dell (10.1016/j.jmr.2018.06.005_h0205) 2013; 55
Kupče (10.1016/j.jmr.2018.06.005_h0200) 1995; 115
Nakashima (10.1016/j.jmr.2018.06.005_h0195) 2009; 47
Goswami (10.1016/j.jmr.2018.06.005_h0170) 2008; 192
Van Veenendal (10.1016/j.jmr.2018.06.005_b0070) 1998; 93
Siegel (10.1016/j.jmr.2018.06.005_h0075) 2005; 26A
Bak (10.1016/j.jmr.2018.06.005_b0135) 2000; 147
Kentgens (10.1016/j.jmr.2018.06.005_b0065) 1999; 300
References_xml – volume: 164
  start-page: 160
  year: 2003
  end-page: 164
  ident: b0150
  article-title: Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei
  publication-title: J. Magn. Reson.
– volume: 383
  start-page: 403
  year: 2004
  end-page: 410
  ident: b0060
  article-title: Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses
  publication-title: Chem. Phys. Lett.
– volume: 327
  start-page: 85
  year: 2000
  end-page: 90
  ident: b0085
  article-title: Sensitivity enhancement of the central transition NMR signal of quadrupolar nuclei under magic-angle spinning
  publication-title: Chem. Phys. Lett.
– volume: 450
  start-page: 417
  year: 2008
  end-page: 421
  ident: b0100
  article-title: Sensitivity enhancement of solid-state NMR spectra of half-integer spin quadrupolar nuclei: double- or single-frequency sweeps? Insights from the hyperbolic secant experiment
  publication-title: Chem. Phys. Lett.
– volume: 158
  start-page: 65
  year: 2002
  end-page: 72
  ident: b0075
  article-title: Influencing the satellite transitions of half-integer quadrupolar nuclei for the enhancement of magic angle spinning spectra
  publication-title: J. Magn. Reson.
– volume: 115
  start-page: 273
  year: 1995
  end-page: 276
  ident: b0120
  article-title: Adiabatic pulses for wideband inversion and broadband decoupling
  publication-title: J. Magn. Reson. A
– volume: 300
  start-page: 435
  year: 1999
  end-page: 443
  ident: b0065
  article-title: Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I = 3/2 nuclei
  publication-title: Chem. Phys. Lett.
– volume: 93
  start-page: 95
  year: 1998
  ident: b0070
  article-title: Frequency stepped adiabatic passage excitation of half-integer quadrupolar spin systems
  publication-title: Mol. Phys.
– volume: 24
  start-page: 71
  year: 2003
  end-page: 77
  ident: b0105
  article-title: Enhancing sensitivity of quadrupolar nuclei in solid-state NMR with multiple rotor assisted population transfers
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 61
  start-page: 1
  year: 2012
  end-page: 70
  ident: b0035
  article-title: NMR studies of alkali metal ions in organic and biological solids
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 125
  start-page: 132
  year: 1997
  end-page: 139
  ident: b0140
  article-title: REPULSION, a novel approach to efficient powder averaging in Solid-State NMR
  publication-title: J. Magn. Reson.
– volume: 134
  start-page: 14609
  year: 2012
  end-page: 14617
  ident: b0025
  article-title: Variable-temperature 17O NMR studies allow quantitative evaluation of molecular dynamics in organic solids
  publication-title: J. Am. Chem. Soc.
– volume: 147
  start-page: 296
  year: 2000
  end-page: 330
  ident: b0135
  article-title: SIMPSON: a general simulation program for solid-state NMR spectroscopy
  publication-title: J. Magn. Reson.
– volume: 160
  start-page: 107
  year: 2003
  end-page: 113
  ident: b0115
  article-title: Selective suppression and excitation of solid-state NMR resonances based on quadrupole coupling constants
  publication-title: J. Magn. Reson.
– volume: 51
  start-page: 4227
  year: 2012
  end-page: 4230
  ident: b0030
  article-title: Direct investigation of covalently bound chlorine in organic compounds by solid-state 35Cl NMR spectroscopy and exact spectral line-shape simulations
  publication-title: Angew. Chem.-Int. Edit.
– volume: 185
  start-page: 326
  year: 2007
  end-page: 330
  ident: b0095
  article-title: Spectral editing in solid-state MAS NMR of quadrupolar nuclei using selective satellite inversion
  publication-title: J. Magn. Reson.
– volume: 388
  start-page: 441
  year: 2004
  end-page: 445
  ident: b0090
  article-title: Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses
  publication-title: Chem. Phys. Lett.
– volume: 153
  start-page: 155
  year: 2001
  end-page: 177
  ident: b0125
  article-title: The return of the frequency sweep: designing adiabatic pulses for contemporary NMR
  publication-title: J. Magn. Reson.
– volume: 112
  start-page: 2377
  year: 2000
  end-page: 2391
  ident: b0050
  article-title: Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: theory and experiments
  publication-title: J. Chem. Phys.
– volume: 55
  start-page: 88
  year: 1983
  end-page: 103
  ident: b0080
  article-title: Selective pulse experiments in high-resolution solid state NMR
  publication-title: J. Magn. Reson.
– volume: 49
  start-page: 6653
  year: 2013
  end-page: 6655
  ident: b0110
  article-title: Signal enhancement of J-HMQC experiments in solid-state NMR involving half-integer quadrupolar nuclei
  publication-title: Chem. Commun.
– year: 2011
  ident: b0045
  article-title: Sensitivity and resolution enhancement of half-integer quadrupolar nuclei in solid-state NMR
  publication-title: eMagRes
– volume: 128
  start-page: 8054
  year: 2006
  end-page: 8062
  ident: b0145
  article-title: Dynamics on the microsecond timescale in microporous aluminophosphate AlPO
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 1525
  year: 1991
  end-page: 1543
  ident: b0020
  article-title: One- and two-dimensional high-resolution solid-state NMR studies of zeolite lattice structures
  publication-title: Chem. Rev.
– volume: 75
  start-page: 75
  year: 1981
  end-page: 291
  ident: b0055
  article-title: Triple quantum NMR on spin systems with I = 3/2 in solids
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 1
  year: 2007
  end-page: 9
  ident: b0130
  article-title: Comparison of high-resolution solid-state NMR MQMAS and STMAS methods for half-integer quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 49
  start-page: 350
  year: 1982
  end-page: 357
  ident: b0015
  article-title: High-resolution MAS-NMR of quadrupolar nuclei in powders
  publication-title: J. Magn. Reson.
– volume: 186
  start-page: 94
  year: 2007
  end-page: 99
  ident: b0155
  article-title: Resolution enhancement using a new multiple-pulse decoupling sequence for quadrupolar nuclei
  publication-title: J. Magn. Reson.
– volume: 8
  start-page: 69
  year: 2018
  end-page: 74
  ident: b0040
  article-title: Brønsted/Lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy
  publication-title: ACS Catal.
– volume: 306
  start-page: 119
  year: 2012
  end-page: 188
  ident: b0010
  article-title: Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances
  publication-title: Top. Curr. Chem.
– volume: 11
  start-page: 6892
  year: 2009
  end-page: 6905
  ident: b0005
  article-title: Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei
  publication-title: Phys. Chem. Chem. Phys.
– volume: 112
  start-page: 2377
  year: 2000
  ident: 10.1016/j.jmr.2018.06.005_h0070
  article-title: Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: theory and experiments
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480804
– volume: 282
  start-page: 71
  year: 2017
  ident: 10.1016/j.jmr.2018.06.005_h0060
  article-title: 71Ga-77Se connectivities and proximities in gallium selenide crystal and glass probed by solid-state NMR
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2017.07.009
– volume: 75
  start-page: 75
  year: 1981
  ident: 10.1016/j.jmr.2018.06.005_h0080
  article-title: Triple quantum NMR on spin systems with I = 3/2 in solids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.441857
– volume: 136
  start-page: 15440
  year: 2014
  ident: 10.1016/j.jmr.2018.06.005_h0010
  article-title: New Methods and Applications in Solid-State NMR Spectroscopy of Quadrupolar Nuclei
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504734p
– volume: 219
  start-page: 25
  year: 2012
  ident: 10.1016/j.jmr.2018.06.005_h0175
  article-title: Repetitive sideband-selective double frequency sweeps for sensitivity enhancement of MAS NMR of half-integer quadrupolar nuclei
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2012.04.007
– volume: 51
  start-page: 4227
  year: 2012
  ident: 10.1016/j.jmr.2018.06.005_h0040
  article-title: Direct investigation of covalently bound chlorine in organic compounds by solid-state 35Cl NMR spectroscopy and exact spectral line-shape simulations
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.201200728
– volume: 72
  start-page: 104
  year: 2015
  ident: 10.1016/j.jmr.2018.06.005_h0135
  article-title: Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2015.09.003
– volume: 93
  start-page: 95
  year: 1998
  ident: 10.1016/j.jmr.2018.06.005_b0070
  article-title: Frequency stepped adiabatic passage excitation of half-integer quadrupolar spin systems
  publication-title: Mol. Phys.
  doi: 10.1080/00268979809482204
– volume: 134
  start-page: 024117
  year: 2011
  ident: 10.1016/j.jmr.2018.06.005_h0130
  article-title: Broadband inversion for MAS NMR with single-sideband-selective adiabatic pulses
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3521491
– volume: 49
  start-page: 350
  year: 1982
  ident: 10.1016/j.jmr.2018.06.005_h0020
  article-title: High-resolution MAS-NMR of quadrupolar nuclei in powders
  publication-title: J. Magn. Reson.
– volume: 11
  start-page: 6892
  year: 2009
  ident: 10.1016/j.jmr.2018.06.005_h0005
  article-title: Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b907183k
– volume: 164
  start-page: 160
  year: 2003
  ident: 10.1016/j.jmr.2018.06.005_b0150
  article-title: Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei
  publication-title: J. Magn. Reson.
  doi: 10.1016/S1090-7807(03)00134-4
– volume: 388
  start-page: 441
  year: 2004
  ident: 10.1016/j.jmr.2018.06.005_b0090
  article-title: Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.03.047
– volume: 128
  start-page: 8054
  year: 2006
  ident: 10.1016/j.jmr.2018.06.005_b0145
  article-title: Dynamics on the microsecond timescale in microporous aluminophosphate AlPO4-14 as evidenced by 27Al MQMAS and STMAS NMR spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057682g
– volume: 134
  start-page: 14609
  year: 2012
  ident: 10.1016/j.jmr.2018.06.005_b0025
  article-title: Variable-temperature 17O NMR studies allow quantitative evaluation of molecular dynamics in organic solids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306227p
– volume: 28
  start-page: 6567
  year: 1983
  ident: 10.1016/j.jmr.2018.06.005_h0025
  article-title: Excitation phenomena and line-intensities in high-resolution NMR powder spectra of half-integer quadrupolar nuclei
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.6567
– volume: 160
  start-page: 107
  year: 2003
  ident: 10.1016/j.jmr.2018.06.005_h0190
  article-title: Selective suppression and excitation of solid-state NMR resonances based on quadrupole coupling constants
  publication-title: J. Magn. Reson.
  doi: 10.1016/S1090-7807(02)00139-8
– volume: 450
  start-page: 417
  year: 2008
  ident: 10.1016/j.jmr.2018.06.005_h0155
  article-title: Sensitivity enhancement of solid-state NMR spectra of half-integer spin quadrupolar nuclei: double- or single-frequency sweeps? Insights from the hyperbolic secant experiment
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.11.032
– volume: 185
  start-page: 326
  year: 2007
  ident: 10.1016/j.jmr.2018.06.005_b0095
  article-title: Spectral editing in solid-state MAS NMR of quadrupolar nuclei using selective satellite inversion
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.12.013
– volume: 55
  start-page: 28
  year: 2013
  ident: 10.1016/j.jmr.2018.06.005_h0205
  article-title: The WURST kind of pulses in solid-state NMR
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2013.10.003
– volume: 306
  start-page: 119
  year: 2012
  ident: 10.1016/j.jmr.2018.06.005_b0010
  article-title: Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances
  publication-title: Top. Curr. Chem.
  doi: 10.1007/128_2011_141
– volume: 51–52
  start-page: 1
  year: 2013
  ident: 10.1016/j.jmr.2018.06.005_h0045
  article-title: Signal enhancement in solid-state NMR of quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2012.11.002
– volume: 388
  start-page: 441
  year: 2004
  ident: 10.1016/j.jmr.2018.06.005_h0090
  article-title: Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.03.047
– volume: 186
  start-page: 94
  year: 2007
  ident: 10.1016/j.jmr.2018.06.005_b0155
  article-title: Resolution enhancement using a new multiple-pulse decoupling sequence for quadrupolar nuclei
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2007.01.018
– volume: 26A
  start-page: 47
  year: 2005
  ident: 10.1016/j.jmr.2018.06.005_h0075
  article-title: Sensitivity enhancement of NMR spectra of half-integer quadrupolar nuclei in the solid state via population transfer
  publication-title: Concepts Magn. Reson.
  doi: 10.1002/cmr.a.20037
– volume: 47
  start-page: 465
  year: 2009
  ident: 10.1016/j.jmr.2018.06.005_h0195
  article-title: Using hyperbolic secant pulses to assist characterization of chemical shift tensors for half-integer spin quadrupolar nuclei in MAS powder samples
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.2413
– volume: 147
  start-page: 296
  year: 2000
  ident: 10.1016/j.jmr.2018.06.005_b0135
  article-title: SIMPSON: a general simulation program for solid-state NMR spectroscopy
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2000.2179
– year: 2011
  ident: 10.1016/j.jmr.2018.06.005_b0045
  article-title: Sensitivity and resolution enhancement of half-integer quadrupolar nuclei in solid-state NMR
  publication-title: eMagRes
  doi: 10.1002/9780470034590.emrstm1200
– volume: 209
  start-page: 287
  year: 1993
  ident: 10.1016/j.jmr.2018.06.005_h0085
  article-title: Sensitivity enhancement for NMR of the central transition of quadrupolar nuclei
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)80109-3
– volume: 61
  start-page: 1
  year: 2012
  ident: 10.1016/j.jmr.2018.06.005_b0035
  article-title: NMR studies of alkali metal ions in organic and biological solids
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2011.06.002
– volume: 158
  start-page: 65
  year: 2002
  ident: 10.1016/j.jmr.2018.06.005_b0075
  article-title: Influencing the satellite transitions of half-integer quadrupolar nuclei for the enhancement of magic angle spinning spectra
  publication-title: J. Magn. Reson.
  doi: 10.1016/S1090-7807(02)00061-7
– volume: 153
  start-page: 155
  year: 2001
  ident: 10.1016/j.jmr.2018.06.005_b0125
  article-title: The return of the frequency sweep: designing adiabatic pulses for contemporary NMR
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2001.2340
– volume: 383
  start-page: 403
  year: 2004
  ident: 10.1016/j.jmr.2018.06.005_h0095
  article-title: Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.11.049
– volume: 115
  start-page: 273
  year: 1995
  ident: 10.1016/j.jmr.2018.06.005_h0200
  article-title: Adiabatic pulses for wideband inversion and broadband decoupling
  publication-title: J. Magn. Reson. A
  doi: 10.1006/jmra.1995.1179
– volume: 49
  start-page: 6653
  year: 2013
  ident: 10.1016/j.jmr.2018.06.005_h0180
  article-title: Signal enhancement of J-HMQC experiments in solid-state NMR involving half-integer quadrupolar nuclei
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42961j
– volume: 125
  start-page: 132
  year: 1997
  ident: 10.1016/j.jmr.2018.06.005_b0140
  article-title: REPULSION, a novel approach to efficient powder averaging in Solid-State NMR
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1996.1087
– volume: 300
  start-page: 435
  year: 1999
  ident: 10.1016/j.jmr.2018.06.005_b0065
  article-title: Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I = 3/2 nuclei
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)01402-X
– volume: 327
  start-page: 85
  year: 2000
  ident: 10.1016/j.jmr.2018.06.005_b0085
  article-title: Sensitivity enhancement of the central transition NMR signal of quadrupolar nuclei under magic-angle spinning
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00805-8
– volume: 89
  start-page: 1130
  year: 2011
  ident: 10.1016/j.jmr.2018.06.005_h0160
  article-title: Sensitivity enhancement in MAS NMR of half-integer quadrupolar nuclei using sideband selective double-frequency sweeps
  publication-title: Can. J. Chem.
  doi: 10.1139/v11-053
– volume: 45–46
  start-page: 16
  year: 2012
  ident: 10.1016/j.jmr.2018.06.005_h0105
  article-title: Enhancing the central-transition NMR signal of quadrupolar nuclei by spin population transfer using SW-FAM pulse trains with a tangent-shaped sweep profile
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2012.04.002
– volume: 55
  start-page: 88
  year: 1983
  ident: 10.1016/j.jmr.2018.06.005_h0125
  article-title: Selective pulse experiments in high-resolution solid state NMR
  publication-title: J. Magn. Reson.
– volume: 181
  start-page: 68
  year: 2006
  ident: 10.1016/j.jmr.2018.06.005_h0100
  article-title: Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in static NMR of half-integer spin quadrupolar nuclei
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.03.016
– volume: 142
  year: 2015
  ident: 10.1016/j.jmr.2018.06.005_h0185
  article-title: Population transfer HMQC for half-integer quadrupolar nuclei
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4913683
– volume: 192
  start-page: 230
  year: 2008
  ident: 10.1016/j.jmr.2018.06.005_h0170
  article-title: Sensitivity enhancement of the central-transition signal of half-integer spin quadrupolar nuclei in solid-state NMR: Features of multiple fast amplitude-modulated pulse transfer
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2008.02.020
– volume: 31
  start-page: 1
  year: 2007
  ident: 10.1016/j.jmr.2018.06.005_b0130
  article-title: Comparison of high-resolution solid-state NMR MQMAS and STMAS methods for half-integer quadrupolar nuclei
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2006.09.002
– volume: 8
  start-page: 69
  year: 2018
  ident: 10.1016/j.jmr.2018.06.005_h0055
  article-title: Brønsted/Lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03211
– volume: 91
  start-page: 1525
  year: 1991
  ident: 10.1016/j.jmr.2018.06.005_b0020
  article-title: One- and two-dimensional high-resolution solid-state NMR studies of zeolite lattice structures
  publication-title: Chem. Rev.
  doi: 10.1021/cr00007a013
– volume: 24
  start-page: 71
  year: 2003
  ident: 10.1016/j.jmr.2018.06.005_h0165
  article-title: Enhancing sensitivity of quadrupolar nuclei in solid-state NMR with multiple rotor assisted population transfers
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/S0926-2040(03)00051-1
SSID ssj0011570
Score 2.2898874
Snippet [Display omitted] •Manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei.•Quadruple-frequency sweeps make the ST → CT...
We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit...
SourceID unpaywall
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 92
SubjectTerms Central transition
Chemical Sciences
Half-integer quadrupolar nuclei
Inorganic chemistry
Quadruple-frequency sweeps
Satellite transitions
Signal enhancement
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5indDEA5dxy8SQQTyBUjXUzuWxmtgqRCsEVBpPlp3YtCO4JW02bb-ec5K4QoA2IUVK5MTO5ZzE34k_fwfgVZToNFWJDvMIYxNe4HdQpbagnzha2wIRh6AJzpNpPJ7x96fitCPI0lyYOSLO2i3Ow5KmwvVtRSUhqWxhvzXcgd1YIObuwe5s-nH0tRnKzIgS18yLxm0Mj1MR--HLhsh19oN0P6NWp5PS1P27A9qZExPyb5h5B_Zqt1KXF6osf-t6ju_Bib_olnHyvV9vdD-_-kPP8ea7ug93O_TJRq27PIBbxu3D3pFP-rYPtxtGaL5-CAtEowRoGTE8sI5xc3IQ-pnIFo5NRp_ZdPKJLS3Dk9iwkZ0wFftZq6KqVxQwM0dayQtG1PpvfkdpQlu19O1Ltr4wZrV-BLPjd1-OxmGXlyHMeRZvQsGVyHI9SHGdDotBYk3B47eRUTrOCkVjf9oi8LAYimVZonSR4MIzJRKTIsIbPoaeWzrzFBiiR65jizFjojB0ssrEAhEQxjkqinLFAxh4Y8m8Ey2n3Bml9Oy0M4n2lWRf2TD0RACvt1VWrWLHdQdz7wGygxwtlJDYo1xX7SU-223zJNE9Hn2QVOaNeh4F8MI7k0Qr0kCMcmZZr7ElgXEaEWMCeNJ62bYtggeUhj6AN1u3u_k-Dv7r6GfQ21S1OUQ4tdHPu3fpF1LMHCc
  priority: 102
  providerName: Unpaywall
Title Uniform signal enhancement in MAS NMR of half-integer quadrupolar nuclei using quadruple-frequency sweeps
URI https://dx.doi.org/10.1016/j.jmr.2018.06.005
https://www.ncbi.nlm.nih.gov/pubmed/29909082
https://www.proquest.com/docview/2056759010
https://hal.univ-lille.fr/hal-04330153
UnpaywallVersion submittedVersion
Volume 293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITR4mGB8ZYzJIJ5AWRtqx8ljVDGVj1aIUWk8WXZis0wlDW3DtJf97dzlSyDQkJAqRU1qK_Fdfb-Lf_4dwItAmijS0vhpgLkJz3Ae1JHL6CWOMS5DxCFog_N0Fk7m_N2pON2CcbcXhmiV7dzfzOn1bN2eGbSjOSjzfHBClEIZYYiM0ElFTJv4OJdUxeDoqqd5kJZMo0gQE3NuKLuVzZrjdf6NJEGDRsKTKtj9PTbdOCOS5J8I9A7sVEWpLy_0YvFLVDq-C7stnGRJc8f3YMsWe7Az7qq47cGtmuKZru9DjvCSECojyga2scUZWZzeDrK8YNPkhM2mn9jSMbwP59c6EnbFvlc6W1UlZcCsIPHjnBFX_mt3YWF9t2r42JdsfWFtuX4A8-M3n8cTvy204Kc8Dje-4FrEqRlGeIxG2VA6m_HwdWC1CeNM02KecYgkHOZWcSy1ySR-eKyFtBFCttFD2C6WhX0MDOEgN6HDJFBqzIWctqFASIOJiw6CVHMPht0Qq7RVIadiGAvV0c3OFVpFkVVUTbkTHrzsm5SNBMd1P-ad3dRvfqQwRFzX7DmObd89aW5Pkg-KzpHCG_rX6EfgwbPOBRRakVZWdGGX1Rp7Eph4EdPFg0eNb_R9UbynuvIevOqd5d_Psf9_z_EEbtO3hqF4ANubVWWfImramMP6b3EIN5O37yczPM5nH5MvPwGJRxV1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ6jwMMH4CuPDIJ5AWZvVjpPHqmIq0PaBbdLeLDuxWaaShrZh2sv-9t3lSyDQkJAiRUpiK_FdfL-Lf_kdwLtAmijS0vhJgLkJT3Ee1JFL6SOOMS5FxCHoB-fZPJyc8s9n4mwLxu2_MESrbOb-ek6vZuvmSL8ZzX6RZf1johTKCENkhE4q4ngb7nBxKCkDO7jueB4kJlNLEsREnRvIdmmzInldfCdN0KDW8KQSdn8PTtvnxJL8E4Leh16ZF_rqUi8Wv4Slowew2-BJNqpv-SFs2XwPeuO2jNse3K04nsn6EWSILwmiMuJsYBubn5PJ6fMgy3I2Gx2z-ewrWzqG9-H8SkjCrtiPUqersqAUmOWkfpwxIst_a08srO9WNSH7iq0vrS3Wj-H06OPJeOI3lRb8hMfhxhdcizgxgwj30TAdSGdTHh4GVpswTjWt5hmHUMJhchXHUptU4sZjLaSNELMNn8BOvsztM2CIB7kJHWaBUmMy5LQNBWIazFx0ECSaezBoh1gljQw5VcNYqJZvdqHQKoqsoirOnfDgfdekqDU4bruYt3ZTvzmSwhhxW7O3OLZd9yS6PRlNFR0jiTd0sOHPwIM3rQsotCItrejcLss19iQw8yKqiwdPa9_o-qKAT4XlPfjQOcu_n-P5_z3Ha-hNTmZTNf00_7IP9-hMTVd8ATubVWlfIoTamFfVK3IDIlMVWg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5indDEA5dxy8SQQTyBUjXUzuWxmtgqRCsEVBpPlp3YtCO4JW02bb-ec5K4QoA2IUVK5MTO5ZzE34k_fwfgVZToNFWJDvMIYxNe4HdQpbagnzha2wIRh6AJzpNpPJ7x96fitCPI0lyYOSLO2i3Ow5KmwvVtRSUhqWxhvzXcgd1YIObuwe5s-nH0tRnKzIgS18yLxm0Mj1MR--HLhsh19oN0P6NWp5PS1P27A9qZExPyb5h5B_Zqt1KXF6osf-t6ju_Bib_olnHyvV9vdD-_-kPP8ea7ug93O_TJRq27PIBbxu3D3pFP-rYPtxtGaL5-CAtEowRoGTE8sI5xc3IQ-pnIFo5NRp_ZdPKJLS3Dk9iwkZ0wFftZq6KqVxQwM0dayQtG1PpvfkdpQlu19O1Ltr4wZrV-BLPjd1-OxmGXlyHMeRZvQsGVyHI9SHGdDotBYk3B47eRUTrOCkVjf9oi8LAYimVZonSR4MIzJRKTIsIbPoaeWzrzFBiiR65jizFjojB0ssrEAhEQxjkqinLFAxh4Y8m8Ey2n3Bml9Oy0M4n2lWRf2TD0RACvt1VWrWLHdQdz7wGygxwtlJDYo1xX7SU-223zJNE9Hn2QVOaNeh4F8MI7k0Qr0kCMcmZZr7ElgXEaEWMCeNJ62bYtggeUhj6AN1u3u_k-Dv7r6GfQ21S1OUQ4tdHPu3fpF1LMHCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+signal+enhancement+in+MAS+NMR+of+half-integer+quadrupolar+nuclei+using+quadruple-frequency+sweeps&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Wang%2C+Qiyan&rft.au=Trebosc%2C+Julien&rft.au=Li%2C+Yixuan&rft.au=Lafon%2C+Olivier&rft.series=Journal+of+Magnetic+Resonance&rft.date=2018-08-01&rft.pub=Elsevier&rft.issn=1090-7807&rft.eissn=1096-0856&rft.volume=293&rft.spage=92&rft.epage=103&rft_id=info:doi/10.1016%2Fj.jmr.2018.06.005&rft_id=info%3Apmid%2F29909082&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04330153v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon