Dynamic glucose enhanced imaging using direct water saturation
Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange‐based linewidth (LW) broadening of the direct water saturat...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 94; no. 1; pp. 15 - 27 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.07.2025
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.30447 |
Cover
| Abstract | Purpose
Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange‐based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z‐spectrum) during and after glucose infusion (DS‐DGE MRI).
Methods
To estimate the glucose‐infusion‐induced LW changes (ΔLW), Bloch‐McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole‐brain DS‐DGE imaging was implemented at 3 T using dynamic Z‐spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D‐glucose. To assess ΔLW, a deep learning‐based Lorentzian fitting approach was used on voxel‐based DS spectra acquired before, during, and post‐infusion. Area‐under‐the‐curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion‐weighted imaging parametric maps.
Results
In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS‐DGE AUC maps clearly outlined lesion areas.
Conclusions
DS‐DGE MRI is highly promising for assessing D‐glucose uptake. Initial results in brain tumor patients show high‐quality AUC maps of glucose‐induced line broadening and DGE‐based lesion enhancement similar and/or complementary to perfusion‐weighted imaging. |
|---|---|
| AbstractList | Purpose
Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange‐based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z‐spectrum) during and after glucose infusion (DS‐DGE MRI).
Methods
To estimate the glucose‐infusion‐induced LW changes (ΔLW), Bloch‐McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole‐brain DS‐DGE imaging was implemented at 3 T using dynamic Z‐spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D‐glucose. To assess ΔLW, a deep learning‐based Lorentzian fitting approach was used on voxel‐based DS spectra acquired before, during, and post‐infusion. Area‐under‐the‐curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion‐weighted imaging parametric maps.
Results
In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS‐DGE AUC maps clearly outlined lesion areas.
Conclusions
DS‐DGE MRI is highly promising for assessing D‐glucose uptake. Initial results in brain tumor patients show high‐quality AUC maps of glucose‐induced line broadening and DGE‐based lesion enhancement similar and/or complementary to perfusion‐weighted imaging. Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z-spectrum) during and after glucose infusion (DS-DGE MRI).PURPOSEDynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z-spectrum) during and after glucose infusion (DS-DGE MRI).To estimate the glucose-infusion-induced LW changes (ΔLW), Bloch-McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole-brain DS-DGE imaging was implemented at 3 T using dynamic Z-spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D-glucose. To assess ΔLW, a deep learning-based Lorentzian fitting approach was used on voxel-based DS spectra acquired before, during, and post-infusion. Area-under-the-curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion-weighted imaging parametric maps.METHODSTo estimate the glucose-infusion-induced LW changes (ΔLW), Bloch-McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole-brain DS-DGE imaging was implemented at 3 T using dynamic Z-spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D-glucose. To assess ΔLW, a deep learning-based Lorentzian fitting approach was used on voxel-based DS spectra acquired before, during, and post-infusion. Area-under-the-curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion-weighted imaging parametric maps.In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS-DGE AUC maps clearly outlined lesion areas.RESULTSIn simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS-DGE AUC maps clearly outlined lesion areas.DS-DGE MRI is highly promising for assessing D-glucose uptake. Initial results in brain tumor patients show high-quality AUC maps of glucose-induced line broadening and DGE-based lesion enhancement similar and/or complementary to perfusion-weighted imaging.CONCLUSIONSDS-DGE MRI is highly promising for assessing D-glucose uptake. Initial results in brain tumor patients show high-quality AUC maps of glucose-induced line broadening and DGE-based lesion enhancement similar and/or complementary to perfusion-weighted imaging. Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z-spectrum) during and after glucose infusion (DS-DGE MRI). To estimate the glucose-infusion-induced LW changes (ΔLW), Bloch-McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole-brain DS-DGE imaging was implemented at 3 T using dynamic Z-spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D-glucose. To assess ΔLW, a deep learning-based Lorentzian fitting approach was used on voxel-based DS spectra acquired before, during, and post-infusion. Area-under-the-curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion-weighted imaging parametric maps. In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS-DGE AUC maps clearly outlined lesion areas. DS-DGE MRI is highly promising for assessing D-glucose uptake. Initial results in brain tumor patients show high-quality AUC maps of glucose-induced line broadening and DGE-based lesion enhancement similar and/or complementary to perfusion-weighted imaging. Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange‐based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z‐spectrum) during and after glucose infusion (DS‐DGE MRI). Methods To estimate the glucose‐infusion‐induced LW changes (ΔLW), Bloch‐McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole‐brain DS‐DGE imaging was implemented at 3 T using dynamic Z‐spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D‐glucose. To assess ΔLW, a deep learning‐based Lorentzian fitting approach was used on voxel‐based DS spectra acquired before, during, and post‐infusion. Area‐under‐the‐curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion‐weighted imaging parametric maps. Results In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS‐DGE AUC maps clearly outlined lesion areas. Conclusions DS‐DGE MRI is highly promising for assessing D‐glucose uptake. Initial results in brain tumor patients show high‐quality AUC maps of glucose‐induced line broadening and DGE‐based lesion enhancement similar and/or complementary to perfusion‐weighted imaging. |
| Author | Seidemo, Anina Knutsson, Linda Lin, Doris D. Demetriou, Eleni Yadav, Nirbhay N. Kamson, David Olayinka Blair, Lindsay Mohammed Ali, Sajad Laterra, John Zijl, Peter C. M. |
| AuthorAffiliation | 5 Department of Oncology Johns Hopkins University School of Medicine Baltimore Maryland USA 7 Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA 3 Department of Medical Radiation Physics Lund University Lund Sweden 2 Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA 4 Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA 9 Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA 6 Diagnostic Radiology, Department of Clinical Sciences Lund University Lund Sweden 8 Department of Neuroscience Johns Hopkins University School of Medicine Baltimore Maryland USA 1 F.M. Kirby Research Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland USA |
| AuthorAffiliation_xml | – name: 7 Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA – name: 6 Diagnostic Radiology, Department of Clinical Sciences Lund University Lund Sweden – name: 4 Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA – name: 3 Department of Medical Radiation Physics Lund University Lund Sweden – name: 9 Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA – name: 5 Department of Oncology Johns Hopkins University School of Medicine Baltimore Maryland USA – name: 8 Department of Neuroscience Johns Hopkins University School of Medicine Baltimore Maryland USA – name: 1 F.M. Kirby Research Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland USA – name: 2 Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA |
| Author_xml | – sequence: 1 givenname: Linda orcidid: 0000-0002-4263-113X surname: Knutsson fullname: Knutsson, Linda email: lknutss1@jhu.edu organization: Lund University – sequence: 2 givenname: Nirbhay N. surname: Yadav fullname: Yadav, Nirbhay N. organization: Johns Hopkins University School of Medicine – sequence: 3 givenname: Sajad orcidid: 0000-0002-4707-8206 surname: Mohammed Ali fullname: Mohammed Ali, Sajad organization: Lund University – sequence: 4 givenname: David Olayinka surname: Kamson fullname: Kamson, David Olayinka organization: Johns Hopkins University School of Medicine – sequence: 5 givenname: Eleni surname: Demetriou fullname: Demetriou, Eleni organization: Johns Hopkins University School of Medicine – sequence: 6 givenname: Anina orcidid: 0000-0002-0919-9680 surname: Seidemo fullname: Seidemo, Anina organization: Lund University – sequence: 7 givenname: Lindsay surname: Blair fullname: Blair, Lindsay organization: Johns Hopkins University School of Medicine – sequence: 8 givenname: Doris D. surname: Lin fullname: Lin, Doris D. organization: Johns Hopkins University School of Medicine – sequence: 9 givenname: John surname: Laterra fullname: Laterra, John organization: Johns Hopkins University School of Medicine – sequence: 10 givenname: Peter C. M. surname: Zijl fullname: Zijl, Peter C. M. organization: Johns Hopkins University School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40096575$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS1URLeFA18AReICSNvajh3HFxAqf6VWSAjOo1lnspvKcRY7YbXfHm9TKooEF9uSf_PmzZsTdhSGQIw9FfxMcC7P-9iflVwp84AthJZyKbVVR2zBjeLLUlh1zE5SuuacW2vUI3as8qvSRi_Y63f7gH3nirWf3JCooLDB4Kgpuh7XXVgXUzqcTRfJjcUOR4pFwnGKOHZDeMwetugTPbm9T9n3D--_XXxaXn75-Pni7eXSKVuZpWi0bbUQ2lZWt5Kw1aXR0lmneCVkq7Wj0oiVE4qoNmSdpMZp6wxKpFaUp-zVrDuFLe536D1sY3YY9yA4HEKAHALchJBhnOG0o-20uiMH7GA7xBE9REqE0W3AT5AIMuU7dzNRgpbqRrrGgOEVgpK6gVWJGhTXpWww57kqc483c49c2mevFMaI_n6rez-h28B6-AlCcilKUWeFF7cKcfgxURqh75Ij7zHQMCUohaml1bo-DPT8L_R6mGLIgcNhu1ILaQ-Cz_60dOfl97Iz8HIGXBxSitT-N8Pzmd11nvb_BuHq69Vc8QsnB8n- |
| Cites_doi | 10.1109/TMI.2009.2035616 10.1002/nbm.4207 10.1002/jmri.1880070113 10.1016/j.neuroimage.2013.09.072 10.1186/s13244-019-0771-1 10.1002/mrm.27183 10.1111/j.1464-5491.1995.tb00486.x 10.1002/mrm.26370 10.1002/mrm.25995 10.1258/acb.2007.006212 10.1210/jc.86.5.1986 10.1016/S1474-4422(17)30158-8 10.1002/mrm.1910030312 10.1002/nbm.4778 10.1002/mrm.23130 10.1002/mrm.27857 10.1002/mrm.28124 10.1002/mrm.28825 10.1002/mrm.25006 10.1006/jmre.1999.1956 10.1007/s10334-009-0190-2 10.1148/radiol.2017162351 10.1002/nbm.3066 10.1002/nbm.2887 10.18383/j.tom.2018.00025 10.1002/mrm.30011 10.1001/jamainternmed.2019.5284 10.1148/radiol.2017171161 10.3389/fnins.2017.00049 10.1007/s11060-020-03474-z 10.1002/mrm.25875 10.1002/mrm.27341 10.1148/rg.2020190110 10.1038/jcbfm.2014.97 10.1002/mrm.22721 10.1097/01.WCB.0000124322.60992.5C 10.1002/hbm.22658 10.1038/nm.3252 10.1002/mrm.28112 10.1016/j.jmr.2018.11.002 10.1002/mrm.24520 10.1002/nbm.4624 10.1002/mrm.29563 10.2967/jnumed.106.037689 10.1007/s10334-021-00982-5 10.1002/mrm.25329 10.1038/srep32648 10.1002/nbm.4784 10.1002/nbm.4863 10.1118/1.597063 10.1002/nbm.4113 10.1002/mrm.29718 10.1111/j.1464-5491.1991.tb01558.x 10.1186/s41747-023-00390-5 10.1002/nbm.5265 10.18383/j.tom.2015.00175 10.1038/srep42093 10.1002/mrm.21873 10.1002/nbm.5294 10.1002/mrm.21980 10.1002/mrm.27683 10.1148/radiol.2017161595 10.1088/0031-9155/57/24/8185 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | LU Profile Area: Light and Materials Lunds universitets profilområden MultiPark: Multidisciplinary research focused on Parkinson's disease Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments Faculty of Science Lund University Medical Radiation Physics, Lund Lund University Profile areas LU profilområde: Ljus och material Strategiska forskningsområden (SFO) Strategic research areas (SRA) Profilområden och andra starka forskningsmiljöer MR Physics Medicinsk strålningsfysik, Lund |
| CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: Medicinsk strålningsfysik, Lund – name: MR Physics – name: LU profilområde: Ljus och material – name: Strategic research areas (SRA) – name: Faculty of Science – name: Lunds universitet – name: Lunds universitets profilområden – name: Lund University Profile areas – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Profile areas and other strong research environments – name: Medical Radiation Physics, Lund – name: LU Profile Area: Light and Materials – name: MultiPark: Multidisciplinary research focused on Parkinson's disease |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC ADTOC UNPAY |
| DOI | 10.1002/mrm.30447 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | KNUTSSON et al |
| EISSN | 1522-2594 |
| EndPage | 27 |
| ExternalDocumentID | 10.1002/mrm.30447 oai_portal_research_lu_se_publications_fe8d2cd7_706a_425d_b3a5_40532da319b3 PMC12021318 40096575 10_1002_mrm_30447 MRM30447 |
| Genre | rapidPublication Journal Article |
| GrantInformation_xml | – fundername: Cancerfonden funderid: 21 1652 Pj – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: RO1 EB034978; S10OD021648 – fundername: Vetenskapsrådet funderid: 2019‐03637 – fundername: NIBIB NIH HHS grantid: R01 EB034978 – fundername: NIBIB NIH HHS grantid: RO1 EB034978 – fundername: NIBIB NIH HHS grantid: S10OD021648 – fundername: Cancerfonden grantid: 21 1652 Pj – fundername: NIH HHS grantid: S10 OD021648 – fundername: Vetenskapsrådet grantid: 2019-03637 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4967-1d59f51159695f2eaf53752c9c40612f55ce371bc14ee87e9c2edc59c7a2aef13 |
| IEDL.DBID | DR2 |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Sun Oct 26 03:51:01 EDT 2025 Sun Oct 19 00:40:47 EDT 2025 Thu Aug 21 18:26:46 EDT 2025 Wed Oct 01 17:28:08 EDT 2025 Sat Oct 25 06:47:22 EDT 2025 Thu Jul 24 02:17:00 EDT 2025 Wed Oct 29 21:25:56 EDT 2025 Wed Aug 20 07:25:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | dynamic glucose enhanced (DGE) MRI glucoCEST CEST Z‐spectra direct saturation (DS) |
| Language | English |
| License | Attribution 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4967-1d59f51159695f2eaf53752c9c40612f55ce371bc14ee87e9c2edc59c7a2aef13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4263-113X 0000-0002-0919-9680 0000-0002-4707-8206 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30447 |
| PMID | 40096575 |
| PQID | 3194251298 |
| PQPubID | 1016391 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_30447 swepub_primary_oai_portal_research_lu_se_publications_fe8d2cd7_706a_425d_b3a5_40532da319b3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12021318 proquest_miscellaneous_3178295587 proquest_journals_3194251298 pubmed_primary_40096575 crossref_primary_10_1002_mrm_30447 wiley_primary_10_1002_mrm_30447_MRM30447 |
| PublicationCentury | 2000 |
| PublicationDate | July 2025 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2018; 287 2017; 7 2015; 36 2013; 26 2023; 36 2019; 10 2023; 7 2015; 74 1993; 20 2004; 24 2014; 27 2016; 76 2018; 80 2025; 38 2024 2012; 57 2024; 38 1997; 7 2001; 86 2013; 19 2010; 23 2018; 4 2010; 29 1986; 3 2017; 78 2022; 35 2022; 36 2011; 65 2017; 285 2012; 68 2012; 67 2015; 1 2021; 86 2009; 62 2020; 40 2020; 84 2009; 61 2019; 32 2020; 180 1995; 12 2020; 33 2020; 147 1991; 8 2014; 86 2016; 6 2019; 82 2019; 81 2023; 89 2017; 16 2017; 11 2024; 91 2008; 45 2017 2000; 143 2018; 12 2023; 90 2014; 72 2014; 34 2019; 298 2007; 48 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Seidemo A (e_1_2_9_46_1) 2024 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Choi WM (e_1_2_9_62_1) 2017 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 Marta GN (e_1_2_9_9_1) 2018; 12 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 39502884 - ArXiv. 2025 Apr 24:arXiv:2410.17119v2. |
| References_xml | – volume: 19 start-page: 1067 year: 2013 end-page: 1072 article-title: In vivo imaging of glucose uptake and metabolism in tumors publication-title: Nat Med – volume: 84 start-page: 182 year: 2020 end-page: 191 article-title: Dynamic glucose‐enhanced (DGE) MRI in the human brain at 7 T with reduced motion‐induced artifacts based on quantitative R1rho mapping publication-title: Magn Reson Med – volume: 36 year: 2023 article-title: The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI publication-title: NMR Biomed – volume: 36 year: 2023 article-title: Tissue response curve‐shape analysis of dynamic glucose‐enhanced and dynamic contrast‐enhanced magnetic resonance imaging in patients with brain tumor publication-title: NMR Biomed – volume: 62 start-page: 384 year: 2009 end-page: 393 article-title: Direct saturation MRI: theory and application to imaging brain iron publication-title: Magn Reson Med – volume: 91 start-page: 2391 year: 2024 end-page: 2402 article-title: Sidebands in CEST MR‐how to recognize and avoid them publication-title: Magn Reson Med – volume: 285 start-page: 546 year: 2017 end-page: 554 article-title: Gadolinium deposition in human brain tissues after contrast‐enhanced MR imaging in adult patients without intracranial abnormalities publication-title: Radiology – volume: 35 start-page: 77 year: 2022 end-page: 85 article-title: GLINT: GlucoCEST in neoplastic tumors at 3 T‐clinical results of GlucoCEST in gliomas publication-title: MAGMA – volume: 12 start-page: 325 year: 1995 end-page: 329 article-title: Assessing the impact of blood sample type on the estimated prevalence of impaired glucose tolerance and diabetes mellitus in epidemiological surveys publication-title: Diabet Med – volume: 16 start-page: 564 year: 2017 end-page: 570 article-title: International Society for Magnetic Resonance in M. Gadolinium deposition in the brain: summary of evidence and recommendations publication-title: Lancet Neurol – volume: 12 start-page: 818 year: 2018 article-title: Cystic brain metastases in ALK‐rearranged non‐small cell lung cancer publication-title: Ecancermedicalscience – volume: 36 year: 2022 article-title: Imaging of sugar‐based contrast agents using their hydroxyl proton exchange properties publication-title: NMR Biomed – volume: 86 start-page: 265 year: 2014 end-page: 279 article-title: Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR publication-title: NeuroImage – volume: 57 start-page: 8185 year: 2012 end-page: 8200 article-title: MR chemical exchange imaging with spin‐lock technique (CESL): a theoretical analysis of the Z‐spectrum using a two‐pool R(1rho) relaxation model beyond the fast‐exchange limit publication-title: Phys Med Biol – volume: 10 start-page: 84 year: 2019 article-title: Diagnostic value of alternative techniques to gadolinium‐based contrast agents in MR neuroimaging‐a comprehensive overview publication-title: Insights Imaging – volume: 45 start-page: 140 year: 2008 end-page: 148 article-title: Measurement of blood glucose: comparison between different types of specimens publication-title: Ann Clin Biochem – volume: 7 year: 2017 article-title: Fast and quantitative T1rho‐weighted dynamic glucose enhanced MRI publication-title: Sci Rep – volume: 1 start-page: 105 year: 2015 end-page: 114 article-title: Dynamic glucose‐enhanced (DGE) MRI: translation to human scanning and first results in glioma patients publication-title: Tomography – volume: 81 start-page: 3798 year: 2019 end-page: 3807 article-title: The effect of the mTOR inhibitor rapamycin on glucoCEST signal in a preclinical model of glioblastoma publication-title: Magn Reson Med – volume: 36 start-page: 707 year: 2015 end-page: 716 article-title: Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism publication-title: Hum Brain Mapp – volume: 20 start-page: 5 year: 1993 end-page: 13 article-title: The general solution to the Bloch equation with constant rf and relaxation terms: application to saturation and slice selection publication-title: Med Phys – volume: 82 start-page: 1832 year: 2019 end-page: 1847 article-title: T1rho‐based dynamic glucose‐enhanced (DGErho) MRI at 3 T: method development and early clinical experience in the human brain publication-title: Magn Reson Med – volume: 48 start-page: 1468 year: 2007 end-page: 1481 article-title: Clinical applications of PET in brain tumors publication-title: J Nucl Med – volume: 76 start-page: 270 year: 2016 end-page: 281 article-title: Quantitative theory for the longitudinal relaxation time of blood water publication-title: Magn Reson Med – volume: 11 start-page: 49 year: 2017 article-title: Changes in cerebral blood flow during an alteration in glycemic state in a large non‐human primate (Papio hamadryas sp.) publication-title: Front Neurosci – volume: 287 start-page: 96 year: 2018 end-page: 103 article-title: Observed deposition of gadolinium in bone using a new noninvasive in vivo biomedical device: results of a small pilot feasibility study publication-title: Radiology – volume: 27 start-page: 320 year: 2014 end-page: 331 article-title: Non‐invasive temperature mapping using temperature‐responsive water saturation shift referencing (T‐WASSR) MRI publication-title: NMR Biomed – volume: 24 start-page: 764 year: 2004 end-page: 770 article-title: Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery publication-title: J Cereb Blood Flow Metab – volume: 35 year: 2022 article-title: Towards robust glucose chemical exchange saturation transfer imaging in humans at 3 T: arterial input function measurements and the effects of infusion time publication-title: NMR Biomed – volume: 68 start-page: 1764 year: 2012 end-page: 1773 article-title: Natural D‐glucose as a biodegradable MRI contrast agent for detecting cancer publication-title: Magn Reson Med – volume: 74 start-page: 1556 year: 2015 end-page: 1563 article-title: Dynamic glucose enhanced (DGE) MRI for combined imaging of blood‐brain barrier break down and increased blood volume in brain cancer publication-title: Magn Reson Med – volume: 34 start-page: 1402 year: 2014 end-page: 1410 article-title: Mapping brain glucose uptake with chemical exchange‐sensitive spin‐lock magnetic resonance imaging publication-title: J Cereb Blood Flow Metab – start-page: 729 year: 2024 – volume: 4 start-page: 164 year: 2018 end-page: 171 article-title: Arterial input functions and tissue response curves in dynamic glucose‐enhanced (DGE) imaging: comparison between glucoCEST and blood glucose sampling in humans publication-title: Tomography – volume: 67 start-page: 1427 year: 2012 end-page: 1433 article-title: Exchange‐mediated contrast agents for spin‐lock imaging publication-title: Magn Reson Med – volume: 61 start-page: 1441 year: 2009 end-page: 1450 article-title: Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments publication-title: Magn Reson Med – volume: 38 year: 2024 article-title: Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: a contemporary review publication-title: NMR Biomed – volume: 86 start-page: 1845 year: 2021 end-page: 1858 article-title: Pulseq‐CEST: towards multi‐site multi‐vendor compatibility and reproducibility of CEST experiments using an open‐source sequence standard publication-title: Magn Reson Med – volume: 78 start-page: 215 year: 2017 end-page: 225 article-title: Adiabatically prepared spin‐lock approach for T1rho‐based dynamic glucose enhanced MRI at ultrahigh fields publication-title: Magn Reson Med – volume: 72 start-page: 823 year: 2014 end-page: 828 article-title: Natural D‐glucose as a biodegradable MRI relaxation agent publication-title: Magn Reson Med – volume: 32 year: 2019 article-title: Quantification of hydroxyl exchange of D‐glucose at physiological conditions for optimization of glucoCEST MRI at 3, 7 and 9.4 tesla publication-title: NMR Biomed – volume: 89 start-page: 1871 year: 2023 end-page: 1887 article-title: A numerical human brain phantom for dynamic glucose‐enhanced (DGE) MRI: on the influence of head motion at 3T publication-title: Magn Reson Med – volume: 3 start-page: 463 year: 1986 end-page: 466 article-title: Influence of glycogen on water proton relaxation times publication-title: Magn Reson Med – volume: 86 start-page: 1986 year: 2001 end-page: 1990 article-title: Blood‐brain barrier transport and brain metabolism of glucose during acute hyperglycemia in humans publication-title: J Clin Endocrinol Metab – volume: 23 start-page: 1 year: 2010 end-page: 21 article-title: Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities publication-title: MAGMA – volume: 147 start-page: 671 year: 2020 end-page: 679 article-title: Incidence of high grade gliomas presenting as radiographically non‐enhancing lesions: experience in 111 surgically treated non‐enhancing gliomas with tissue diagnosis publication-title: J Neuro‐Oncol – volume: 180 start-page: 223 year: 2020 end-page: 230 article-title: Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium‐based contrast agent: a systematic review and meta‐analysis publication-title: JAMA Intern Med – volume: 285 start-page: 914 year: 2017 end-page: 922 article-title: T1rho‐weighted dynamic glucose‐enhanced MR imaging in the human brain publication-title: Radiology – volume: 7 start-page: 78 year: 2023 article-title: Improved postprocessing of dynamic glucose‐enhanced CEST MRI for imaging brain metastases at 3 T publication-title: Eur Radiol Exp – volume: 80 start-page: 488 year: 2018 end-page: 495 article-title: Chemical exchange‐sensitive spin‐lock (CESL) MRI of glucose and analogs in brain tumors publication-title: Magn Reson Med – volume: 40 start-page: 153 year: 2020 end-page: 162 article-title: Gadolinium deposition and nephrogenic systemic fibrosis: a Radiologist's primer publication-title: Radiographics – volume: 143 start-page: 79 year: 2000 end-page: 87 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J Magn Reson – volume: 29 start-page: 196 year: 2010 end-page: 205 article-title: Elastix: a toolbox for intensity‐based medical image registration publication-title: IEEE Trans Med Imaging – volume: 7 start-page: 91 year: 1997 end-page: 101 article-title: Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging publication-title: J Magn Reson Imaging – volume: 90 start-page: 1610 year: 2023 end-page: 1624 article-title: Deep learning‐based Lorentzian fitting of water saturation shift referencing spectra in MRI publication-title: Magn Reson Med – volume: 26 start-page: 507 year: 2013 end-page: 518 article-title: Exchange‐dependent relaxation in the rotating frame for slow and intermediate exchange ‐‐ modeling off‐resonant spin‐lock and chemical exchange saturation transfer publication-title: NMR Biomed – volume: 80 start-page: 1320 year: 2018 end-page: 1340 article-title: CEST, ASL, and magnetization transfer contrast: how similar pulse sequences detect different phenomena publication-title: Magn Reson Med – volume: 8 start-page: 129 year: 1991 end-page: 134 article-title: Influence of sample type on the interpretation of the oral glucose tolerance test for gestational diabetes mellitus publication-title: Diabet Med – volume: 84 start-page: 247 year: 2020 end-page: 262 article-title: D‐glucose weighted chemical exchange saturation transfer (glucoCEST)‐based dynamic glucose enhanced (DGE) MRI at 3T: early experience in healthy volunteers and brain tumor patients publication-title: Magn Reson Med – volume: 72 start-page: 996 year: 2014 end-page: 1006 article-title: Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion publication-title: Magn Reson Med – volume: 6 year: 2016 article-title: Glucosamine and N‐acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors publication-title: Sci Rep – volume: 298 start-page: 16 year: 2019 end-page: 22 article-title: Possible artifacts in dynamic CEST MRI due to motion and field alterations publication-title: J Magn Reson – year: 2017 – start-page: 194 year: 2017 – volume: 33 year: 2020 article-title: Quantitative theory for the transverse relaxation time of blood water publication-title: NMR Biomed – volume: 38 year: 2025 article-title: Dynamic glucose enhanced MRI of gliomas: a preliminary clinical application publication-title: NMR Biomed – volume: 65 start-page: 1448 year: 2011 end-page: 1460 article-title: Spin‐locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons publication-title: Magn Reson Med – ident: e_1_2_9_51_1 doi: 10.1109/TMI.2009.2035616 – ident: e_1_2_9_48_1 doi: 10.1002/nbm.4207 – ident: e_1_2_9_52_1 doi: 10.1002/jmri.1880070113 – ident: e_1_2_9_57_1 doi: 10.1016/j.neuroimage.2013.09.072 – ident: e_1_2_9_10_1 doi: 10.1186/s13244-019-0771-1 – ident: e_1_2_9_27_1 doi: 10.1002/mrm.27183 – ident: e_1_2_9_59_1 doi: 10.1111/j.1464-5491.1995.tb00486.x – ident: e_1_2_9_25_1 doi: 10.1002/mrm.26370 – ident: e_1_2_9_15_1 doi: 10.1002/mrm.25995 – ident: e_1_2_9_60_1 doi: 10.1258/acb.2007.006212 – ident: e_1_2_9_68_1 doi: 10.1210/jc.86.5.1986 – ident: e_1_2_9_4_1 doi: 10.1016/S1474-4422(17)30158-8 – ident: e_1_2_9_39_1 doi: 10.1002/mrm.1910030312 – ident: e_1_2_9_42_1 doi: 10.1002/nbm.4778 – start-page: 729 volume-title: Proceedings of the International Society of Magnetic Resonance in Medicine year: 2024 ident: e_1_2_9_46_1 – ident: e_1_2_9_20_1 doi: 10.1002/mrm.23130 – ident: e_1_2_9_28_1 doi: 10.1002/mrm.27857 – ident: e_1_2_9_33_1 doi: 10.1002/mrm.28124 – start-page: 194 volume-title: Proceedings of the International Society of Magnetic Resonance in Medicine year: 2017 ident: e_1_2_9_62_1 – ident: e_1_2_9_45_1 doi: 10.1002/mrm.28825 – ident: e_1_2_9_54_1 doi: 10.1002/mrm.25006 – ident: e_1_2_9_11_1 doi: 10.1006/jmre.1999.1956 – ident: e_1_2_9_53_1 doi: 10.1007/s10334-009-0190-2 – ident: e_1_2_9_26_1 doi: 10.1148/radiol.2017162351 – ident: e_1_2_9_43_1 doi: 10.1002/nbm.3066 – ident: e_1_2_9_22_1 doi: 10.1002/nbm.2887 – ident: e_1_2_9_31_1 doi: 10.18383/j.tom.2018.00025 – ident: e_1_2_9_61_1 doi: 10.1002/mrm.30011 – ident: e_1_2_9_3_1 doi: 10.1001/jamainternmed.2019.5284 – ident: e_1_2_9_6_1 doi: 10.1148/radiol.2017171161 – ident: e_1_2_9_66_1 doi: 10.3389/fnins.2017.00049 – ident: e_1_2_9_8_1 doi: 10.1007/s11060-020-03474-z – ident: e_1_2_9_47_1 doi: 10.1002/mrm.25875 – ident: e_1_2_9_17_1 doi: 10.1002/mrm.27341 – ident: e_1_2_9_2_1 doi: 10.1148/rg.2020190110 – ident: e_1_2_9_23_1 doi: 10.1038/jcbfm.2014.97 – ident: e_1_2_9_19_1 doi: 10.1002/mrm.22721 – ident: e_1_2_9_50_1 doi: 10.1097/01.WCB.0000124322.60992.5C – ident: e_1_2_9_67_1 doi: 10.1002/hbm.22658 – ident: e_1_2_9_13_1 doi: 10.1038/nm.3252 – ident: e_1_2_9_29_1 doi: 10.1002/mrm.28112 – ident: e_1_2_9_37_1 doi: 10.1016/j.jmr.2018.11.002 – ident: e_1_2_9_12_1 doi: 10.1002/mrm.24520 – ident: e_1_2_9_34_1 doi: 10.1002/nbm.4624 – ident: e_1_2_9_38_1 doi: 10.1002/mrm.29563 – ident: e_1_2_9_63_1 doi: 10.2967/jnumed.106.037689 – ident: e_1_2_9_30_1 doi: 10.1007/s10334-021-00982-5 – ident: e_1_2_9_40_1 doi: 10.1002/mrm.25329 – ident: e_1_2_9_16_1 doi: 10.1038/srep32648 – ident: e_1_2_9_18_1 doi: 10.1002/nbm.4784 – ident: e_1_2_9_7_1 – ident: e_1_2_9_35_1 doi: 10.1002/nbm.4863 – ident: e_1_2_9_55_1 doi: 10.1118/1.597063 – ident: e_1_2_9_49_1 doi: 10.1002/nbm.4113 – ident: e_1_2_9_44_1 doi: 10.1002/mrm.29718 – ident: e_1_2_9_58_1 doi: 10.1111/j.1464-5491.1991.tb01558.x – ident: e_1_2_9_36_1 doi: 10.1186/s41747-023-00390-5 – ident: e_1_2_9_65_1 doi: 10.1002/nbm.5265 – ident: e_1_2_9_14_1 doi: 10.18383/j.tom.2015.00175 – ident: e_1_2_9_24_1 doi: 10.1038/srep42093 – ident: e_1_2_9_41_1 doi: 10.1002/mrm.21873 – ident: e_1_2_9_64_1 doi: 10.1002/nbm.5294 – ident: e_1_2_9_56_1 doi: 10.1002/mrm.21980 – ident: e_1_2_9_32_1 doi: 10.1002/mrm.27683 – volume: 12 start-page: 818 year: 2018 ident: e_1_2_9_9_1 article-title: Cystic brain metastases in ALK‐rearranged non‐small cell lung cancer publication-title: Ecancermedicalscience – ident: e_1_2_9_5_1 doi: 10.1148/radiol.2017161595 – ident: e_1_2_9_21_1 doi: 10.1088/0031-9155/57/24/8185 – reference: 39502884 - ArXiv. 2025 Apr 24:arXiv:2410.17119v2. |
| SSID | ssj0009974 |
| Score | 2.49739 |
| Snippet | Purpose
Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect... Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size... Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect... PURPOSE: Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low... |
| SourceID | unpaywall swepub pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 15 |
| SubjectTerms | Adult Algorithms Annan fysik Blood Brain Brain - diagnostic imaging Brain cancer Brain Neoplasms - diagnostic imaging Brain tumors Cerebrospinal fluid CEST Clinical Medicine Deep learning direct saturation (DS) dynamic glucose enhanced (DGE) MRI Female Fysik glucoCEST Glucose Glucose - administration & dosage Glucose - chemistry Glucose - metabolism Gray Matter - diagnostic imaging Humans Hyperglycemia Image acquisition Image Processing, Computer-Assisted - methods Imaging Methodology Klinisk medicin Lesions Line broadening Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical and Health Sciences Medical imaging Medicin och hälsovetenskap Natural Sciences Naturvetenskap Neuroimaging Other Physics Topics Perfusion Physical Sciences Radiologi och bildbehandling Radiology and Medical Imaging Rapid Communication Substantia alba Substantia grisea Tumors Water - chemistry White Matter - diagnostic imaging Z‐spectra |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTrDxwMf4WGAgD3jYS8rsxLH9gjQB04TUCSEqDV4sx3HotDar2kbT9tdzdtKyMDHxFskfie9s3-_i8-8A3kkjM-H2fQJimvgrOTLO88zEqjSZTLICraB3FAfH2dEw_XLCT9Zgd3kXpnt-z95PZpM-etypuAPrGUe43YP14fHXgx8NvabfQ0KyQzRDLEYony7Zg6637dqcG0DyZjxkyxp6HzbqamouL8x43AWvwfocPvxzh6cJOjnr14u8b6_-onS8dWCP4EGLPclBM1kew5qrtuDeoD1d34K7IRzUzp_Ah09NonrSRrQTV41CqAA5nYS0RsTHy_8ijUEkFwhYZ2TuOUKDop_C8PDz949HcZtpIbapwp2SFlyVCL1QwIqXzJmSJ4Izq6y396zk3LpE0NzS1DkpnLIMpcWVFYYZV9LkGfSq88ptA6GuTCV13AiHzpClOStoIlD_1FL04pMI3ix1oacNoYZuqJOZRpnoIJMIdpZa0u2ammuvaY_GlIxgd1WMq8EfcZjKnde-DiIexbnELp43Sl29JfXuGqLTCGRH3asKnmm7W1KdjgLjNmUIhXD3i-BnMzO6bYKjpFt2ppEe13ru9PTab1ddOlkwWwgt9jOjcRiFzhPD8Zt4wgqDQ8tRMm9Xs-020eyFefjvGnrwbRAeXvxXhy9hk_mcxiEEeQd6i1ntXiHQWuSv26X2Gw2FJB0 priority: 102 providerName: Unpaywall |
| Title | Dynamic glucose enhanced imaging using direct water saturation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30447 https://www.ncbi.nlm.nih.gov/pubmed/40096575 https://www.proquest.com/docview/3194251298 https://www.proquest.com/docview/3178295587 https://pubmed.ncbi.nlm.nih.gov/PMC12021318 https://doi.org/10.1002/mrm.30447 |
| UnpaywallVersion | publishedVersion |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qxdcHH_W1Wo_18cEvd71kN5sEQShqKcKVUjyoUgjZbNYr3m2P21uK_vVOso-6FkX8tpBkdzOZSX6TTH4D8EpokXA7dgmISeSu5IhhmiZ6KHOdiCjJcBV0juLkINmfxh-P2fEGvGnvwtT8EN2Gm7MMP187A9dpuXNBGrpYLUboi8fuJjmJEu9OHV1QR0lZMzDz2M0zMm5ZhcZ0p2vZX4suAczLcZINm-gtuFEVS_39XM_nfVDrV6W9O3DS9qcORvk2qtbpyPz4jerxPzt8F243aDXcrdXrHmzYYguuT5rz-C245gNITXkf3r6vU9uHTQx8aIuZDy4ITxc-EVLoIuy_hvUSGp4jxF2FpWMV9arxAKZ7Hz692x82uRmGJpY4t5KMyRzBGpOJZDm1OmcRZ9RI4xACzRkzNuIkNSS2VnArDUU5Mmm4ptrmJHoIm8VZYR9DSGweC2KZ5hbdJ0NSmpGIo8YQQ9DvjwJ40Y6SWtYUHKomW6YKZaK8TALYbsdPNVZYKjfuDr9JEcDzrhjtxx2K6MKeVa4OYiTJmMBXPKqHu_tK7Bw8xLMBiJ4idBUcN3e_pDideY5uQhE84XwZwJdaZ_ptvGulGj6nmZpXqrRq-ctGrcqtyKjJuOLjRCvsRqbSSDP8JxbRTGPXUpTMy04P_yaa116t_lxDTY4m_uHJv1d9CjepS4XsI5e3YXO9quwzxGfrdABXaHw48OY4gKvTg8Pdzz8BlIc6Mw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIRg8IBgDAgPMjwdeutWOHdvSNAkBU4FlQmiTJl4sx3HopDar2lUT_z1nJ82IJhBvkWwn8Z3t-84-fwfwVlmVST8MCYhpGq7kqEFRZHagK5upNCvRCgZHMT_KRif8y6k4XYO91V2Yhh-i23ALMyOu12GChw3p3SvW0Ol8uoPOOJc34CbPaBZcL8a_XVHu6oaDWfKw0mi-4hUast2uad8aXYOY1yMlWz7Ru7CxrGf216WdTPqwNtqlg_twrwWU5H0zAh7Amq834XbeHplvwq0Y4-kWD2H_Y5N9nrRh6sTX43j-T86mMVcRCUHwP0lj5cglotA5WQTiz6i9LTg5-HT8YTRo0ycMHNe4_NFS6ArxlNCZFhXzthKpFMxpF4w4q4RwPpW0cJR7r6TXjmFHhXbSMusrmj6C9fq89k-AUF9xRb2w0qOH42jBSppKVCp1FF3zNIHXKzGaWcOSYRo-ZGZQ1ibKOoHtlYBNO1EWJigmQCytEnjVFeMQD-cWtvbny1AHYYwWQuErHjf66L7Cgw-GkDMB1dNUVyHQZ_dL6rNxpNGmDPENLmkJ_GiU2m8TvR_TUi6NzWRpFt7M_thLNZVXJXOlNHKYWYPdKE2RWoH_JFJWWuxagZJ50w2Uf4nmXRxCf69h8u95fHj6_1VfwsboOD80h5-Pvj6DOyxkLo6BxtuwfjFf-ucIpy6KF3HW_AYkchsL |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITZ44GMMCAwIsAde2tVOHNsSQkKUanx0QhOTJiRkOY5DJ9qsahtN8Ndzdj5GmECIt0i2k_h8Z__OPv8OYFdokXA7cAmISeSu5Ihemia6J3OdiCjJcBV0juL4INk_it8ds-M1eNHchan4IdoNN2cZfr52Bm7nWb53zho6W8z66IzH_BJcjpkULqBveHhOHiVlxcHMYzfTyLjhFRrQvbZpdzW6ADEvRkrWfKLXYLMs5vr7mZ5Ou7DWr0ujG_Cl6VEVjvKtX67SvvnxG9nj_3b5JlyvAWv4qtKwW7Bmiy3YGNdH8ltwxceQmuVteDmsstuHdRh8aIuJjy8IT2Y-F1Loguy_htUqGp4hyl2ES0cs6rVjG45Gbz693u_V6Rl6JpY4vZKMyRzxGpOJZDm1OmcRZ9RI40ACzRkzNuIkNSS2VnArDUVBMmm4ptrmJLoD68VpYe9BSGweC2KZ5hY9KENSmpGIo9IQQ9D1jwJ42gyTmlcsHKriW6YKZaK8TALYaQZQ1Ya4VG7gHYSTIoAnbTGakDsX0YU9LV0dhEmSMYGvuFuNd_uV2Pl4CGkDEB1NaCs4eu5uSXEy8TTdhCJ-wikzgM-V0nTbeO9K1ZROEzUt1dKq-S97tSq3IqMm44oPEq2wG5lKI83wn1hEM41dS1Eyz1pF_Jtonnu9-nMNNT4c-4f7_171MWx8HI7Uh7cH7x_AVeoSI_s45h1YXy1K-xDR2ip95I3yJzRbO1E |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTrDxwMf4WGAgD3jYS8rsxLH9gjQB04TUCSEqDV4sx3HotDar2kbT9tdzdtKyMDHxFskfie9s3-_i8-8A3kkjM-H2fQJimvgrOTLO88zEqjSZTLICraB3FAfH2dEw_XLCT9Zgd3kXpnt-z95PZpM-etypuAPrGUe43YP14fHXgx8NvabfQ0KyQzRDLEYony7Zg6637dqcG0DyZjxkyxp6HzbqamouL8x43AWvwfocPvxzh6cJOjnr14u8b6_-onS8dWCP4EGLPclBM1kew5qrtuDeoD1d34K7IRzUzp_Ah09NonrSRrQTV41CqAA5nYS0RsTHy_8ijUEkFwhYZ2TuOUKDop_C8PDz949HcZtpIbapwp2SFlyVCL1QwIqXzJmSJ4Izq6y396zk3LpE0NzS1DkpnLIMpcWVFYYZV9LkGfSq88ptA6GuTCV13AiHzpClOStoIlD_1FL04pMI3ix1oacNoYZuqJOZRpnoIJMIdpZa0u2ammuvaY_GlIxgd1WMq8EfcZjKnde-DiIexbnELp43Sl29JfXuGqLTCGRH3asKnmm7W1KdjgLjNmUIhXD3i-BnMzO6bYKjpFt2ppEe13ru9PTab1ddOlkwWwgt9jOjcRiFzhPD8Zt4wgqDQ8tRMm9Xs-020eyFefjvGnrwbRAeXvxXhy9hk_mcxiEEeQd6i1ntXiHQWuSv26X2Gw2FJB0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+glucose+enhanced+imaging+using+direct+water+saturation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Knutsson%2C+Linda&rft.au=Yadav%2C+Nirbhay+N&rft.au=Mohammed+Ali%2C+Sajad&rft.au=Kamson%2C+David+Olayinka&rft.date=2025-07-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.30447&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |