Dynamic glucose enhanced imaging using direct water saturation

Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange‐based linewidth (LW) broadening of the direct water saturat...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 94; no. 1; pp. 15 - 27
Main Authors Knutsson, Linda, Yadav, Nirbhay N., Mohammed Ali, Sajad, Kamson, David Olayinka, Demetriou, Eleni, Seidemo, Anina, Blair, Lindsay, Lin, Doris D., Laterra, John, Zijl, Peter C. M.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30447

Cover

Abstract Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange‐based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z‐spectrum) during and after glucose infusion (DS‐DGE MRI). Methods To estimate the glucose‐infusion‐induced LW changes (ΔLW), Bloch‐McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole‐brain DS‐DGE imaging was implemented at 3 T using dynamic Z‐spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D‐glucose. To assess ΔLW, a deep learning‐based Lorentzian fitting approach was used on voxel‐based DS spectra acquired before, during, and post‐infusion. Area‐under‐the‐curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion‐weighted imaging parametric maps. Results In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS‐DGE AUC maps clearly outlined lesion areas. Conclusions DS‐DGE MRI is highly promising for assessing D‐glucose uptake. Initial results in brain tumor patients show high‐quality AUC maps of glucose‐induced line broadening and DGE‐based lesion enhancement similar and/or complementary to perfusion‐weighted imaging.
AbstractList Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange‐based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z‐spectrum) during and after glucose infusion (DS‐DGE MRI). Methods To estimate the glucose‐infusion‐induced LW changes (ΔLW), Bloch‐McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole‐brain DS‐DGE imaging was implemented at 3 T using dynamic Z‐spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D‐glucose. To assess ΔLW, a deep learning‐based Lorentzian fitting approach was used on voxel‐based DS spectra acquired before, during, and post‐infusion. Area‐under‐the‐curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion‐weighted imaging parametric maps. Results In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS‐DGE AUC maps clearly outlined lesion areas. Conclusions DS‐DGE MRI is highly promising for assessing D‐glucose uptake. Initial results in brain tumor patients show high‐quality AUC maps of glucose‐induced line broadening and DGE‐based lesion enhancement similar and/or complementary to perfusion‐weighted imaging.
Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z-spectrum) during and after glucose infusion (DS-DGE MRI).PURPOSEDynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z-spectrum) during and after glucose infusion (DS-DGE MRI).To estimate the glucose-infusion-induced LW changes (ΔLW), Bloch-McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole-brain DS-DGE imaging was implemented at 3 T using dynamic Z-spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D-glucose. To assess ΔLW, a deep learning-based Lorentzian fitting approach was used on voxel-based DS spectra acquired before, during, and post-infusion. Area-under-the-curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion-weighted imaging parametric maps.METHODSTo estimate the glucose-infusion-induced LW changes (ΔLW), Bloch-McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole-brain DS-DGE imaging was implemented at 3 T using dynamic Z-spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D-glucose. To assess ΔLW, a deep learning-based Lorentzian fitting approach was used on voxel-based DS spectra acquired before, during, and post-infusion. Area-under-the-curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion-weighted imaging parametric maps.In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS-DGE AUC maps clearly outlined lesion areas.RESULTSIn simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS-DGE AUC maps clearly outlined lesion areas.DS-DGE MRI is highly promising for assessing D-glucose uptake. Initial results in brain tumor patients show high-quality AUC maps of glucose-induced line broadening and DGE-based lesion enhancement similar and/or complementary to perfusion-weighted imaging.CONCLUSIONSDS-DGE MRI is highly promising for assessing D-glucose uptake. Initial results in brain tumor patients show high-quality AUC maps of glucose-induced line broadening and DGE-based lesion enhancement similar and/or complementary to perfusion-weighted imaging.
Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z-spectrum) during and after glucose infusion (DS-DGE MRI). To estimate the glucose-infusion-induced LW changes (ΔLW), Bloch-McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole-brain DS-DGE imaging was implemented at 3 T using dynamic Z-spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D-glucose. To assess ΔLW, a deep learning-based Lorentzian fitting approach was used on voxel-based DS spectra acquired before, during, and post-infusion. Area-under-the-curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion-weighted imaging parametric maps. In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS-DGE AUC maps clearly outlined lesion areas. DS-DGE MRI is highly promising for assessing D-glucose uptake. Initial results in brain tumor patients show high-quality AUC maps of glucose-induced line broadening and DGE-based lesion enhancement similar and/or complementary to perfusion-weighted imaging.
Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange‐based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z‐spectrum) during and after glucose infusion (DS‐DGE MRI). Methods To estimate the glucose‐infusion‐induced LW changes (ΔLW), Bloch‐McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole‐brain DS‐DGE imaging was implemented at 3 T using dynamic Z‐spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D‐glucose. To assess ΔLW, a deep learning‐based Lorentzian fitting approach was used on voxel‐based DS spectra acquired before, during, and post‐infusion. Area‐under‐the‐curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion‐weighted imaging parametric maps. Results In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS‐DGE AUC maps clearly outlined lesion areas. Conclusions DS‐DGE MRI is highly promising for assessing D‐glucose uptake. Initial results in brain tumor patients show high‐quality AUC maps of glucose‐induced line broadening and DGE‐based lesion enhancement similar and/or complementary to perfusion‐weighted imaging.
Author Seidemo, Anina
Knutsson, Linda
Lin, Doris D.
Demetriou, Eleni
Yadav, Nirbhay N.
Kamson, David Olayinka
Blair, Lindsay
Mohammed Ali, Sajad
Laterra, John
Zijl, Peter C. M.
AuthorAffiliation 5 Department of Oncology Johns Hopkins University School of Medicine Baltimore Maryland USA
7 Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA
3 Department of Medical Radiation Physics Lund University Lund Sweden
2 Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA
4 Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
9 Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
6 Diagnostic Radiology, Department of Clinical Sciences Lund University Lund Sweden
8 Department of Neuroscience Johns Hopkins University School of Medicine Baltimore Maryland USA
1 F.M. Kirby Research Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland USA
AuthorAffiliation_xml – name: 7 Hugo W. Moser Research Institute at Kennedy Krieger Baltimore Maryland USA
– name: 6 Diagnostic Radiology, Department of Clinical Sciences Lund University Lund Sweden
– name: 4 Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
– name: 3 Department of Medical Radiation Physics Lund University Lund Sweden
– name: 9 Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
– name: 5 Department of Oncology Johns Hopkins University School of Medicine Baltimore Maryland USA
– name: 8 Department of Neuroscience Johns Hopkins University School of Medicine Baltimore Maryland USA
– name: 1 F.M. Kirby Research Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland USA
– name: 2 Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA
Author_xml – sequence: 1
  givenname: Linda
  orcidid: 0000-0002-4263-113X
  surname: Knutsson
  fullname: Knutsson, Linda
  email: lknutss1@jhu.edu
  organization: Lund University
– sequence: 2
  givenname: Nirbhay N.
  surname: Yadav
  fullname: Yadav, Nirbhay N.
  organization: Johns Hopkins University School of Medicine
– sequence: 3
  givenname: Sajad
  orcidid: 0000-0002-4707-8206
  surname: Mohammed Ali
  fullname: Mohammed Ali, Sajad
  organization: Lund University
– sequence: 4
  givenname: David Olayinka
  surname: Kamson
  fullname: Kamson, David Olayinka
  organization: Johns Hopkins University School of Medicine
– sequence: 5
  givenname: Eleni
  surname: Demetriou
  fullname: Demetriou, Eleni
  organization: Johns Hopkins University School of Medicine
– sequence: 6
  givenname: Anina
  orcidid: 0000-0002-0919-9680
  surname: Seidemo
  fullname: Seidemo, Anina
  organization: Lund University
– sequence: 7
  givenname: Lindsay
  surname: Blair
  fullname: Blair, Lindsay
  organization: Johns Hopkins University School of Medicine
– sequence: 8
  givenname: Doris D.
  surname: Lin
  fullname: Lin, Doris D.
  organization: Johns Hopkins University School of Medicine
– sequence: 9
  givenname: John
  surname: Laterra
  fullname: Laterra, John
  organization: Johns Hopkins University School of Medicine
– sequence: 10
  givenname: Peter C. M.
  surname: Zijl
  fullname: Zijl, Peter C. M.
  organization: Johns Hopkins University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40096575$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFA18AReICSNvajh3HFxAqf6VWSAjOo1lnspvKcRY7YbXfHm9TKooEF9uSf_PmzZsTdhSGQIw9FfxMcC7P-9iflVwp84AthJZyKbVVR2zBjeLLUlh1zE5SuuacW2vUI3as8qvSRi_Y63f7gH3nirWf3JCooLDB4Kgpuh7XXVgXUzqcTRfJjcUOR4pFwnGKOHZDeMwetugTPbm9T9n3D--_XXxaXn75-Pni7eXSKVuZpWi0bbUQ2lZWt5Kw1aXR0lmneCVkq7Wj0oiVE4qoNmSdpMZp6wxKpFaUp-zVrDuFLe536D1sY3YY9yA4HEKAHALchJBhnOG0o-20uiMH7GA7xBE9REqE0W3AT5AIMuU7dzNRgpbqRrrGgOEVgpK6gVWJGhTXpWww57kqc483c49c2mevFMaI_n6rez-h28B6-AlCcilKUWeFF7cKcfgxURqh75Ij7zHQMCUohaml1bo-DPT8L_R6mGLIgcNhu1ILaQ-Cz_60dOfl97Iz8HIGXBxSitT-N8Pzmd11nvb_BuHq69Vc8QsnB8n-
Cites_doi 10.1109/TMI.2009.2035616
10.1002/nbm.4207
10.1002/jmri.1880070113
10.1016/j.neuroimage.2013.09.072
10.1186/s13244-019-0771-1
10.1002/mrm.27183
10.1111/j.1464-5491.1995.tb00486.x
10.1002/mrm.26370
10.1002/mrm.25995
10.1258/acb.2007.006212
10.1210/jc.86.5.1986
10.1016/S1474-4422(17)30158-8
10.1002/mrm.1910030312
10.1002/nbm.4778
10.1002/mrm.23130
10.1002/mrm.27857
10.1002/mrm.28124
10.1002/mrm.28825
10.1002/mrm.25006
10.1006/jmre.1999.1956
10.1007/s10334-009-0190-2
10.1148/radiol.2017162351
10.1002/nbm.3066
10.1002/nbm.2887
10.18383/j.tom.2018.00025
10.1002/mrm.30011
10.1001/jamainternmed.2019.5284
10.1148/radiol.2017171161
10.3389/fnins.2017.00049
10.1007/s11060-020-03474-z
10.1002/mrm.25875
10.1002/mrm.27341
10.1148/rg.2020190110
10.1038/jcbfm.2014.97
10.1002/mrm.22721
10.1097/01.WCB.0000124322.60992.5C
10.1002/hbm.22658
10.1038/nm.3252
10.1002/mrm.28112
10.1016/j.jmr.2018.11.002
10.1002/mrm.24520
10.1002/nbm.4624
10.1002/mrm.29563
10.2967/jnumed.106.037689
10.1007/s10334-021-00982-5
10.1002/mrm.25329
10.1038/srep32648
10.1002/nbm.4784
10.1002/nbm.4863
10.1118/1.597063
10.1002/nbm.4113
10.1002/mrm.29718
10.1111/j.1464-5491.1991.tb01558.x
10.1186/s41747-023-00390-5
10.1002/nbm.5265
10.18383/j.tom.2015.00175
10.1038/srep42093
10.1002/mrm.21873
10.1002/nbm.5294
10.1002/mrm.21980
10.1002/mrm.27683
10.1148/radiol.2017161595
10.1088/0031-9155/57/24/8185
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor LU Profile Area: Light and Materials
Lunds universitets profilområden
MultiPark: Multidisciplinary research focused on Parkinson's disease
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
Faculty of Science
Lund University
Medical Radiation Physics, Lund
Lund University Profile areas
LU profilområde: Ljus och material
Strategiska forskningsområden (SFO)
Strategic research areas (SRA)
Profilområden och andra starka forskningsmiljöer
MR Physics
Medicinsk strålningsfysik, Lund
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Medicinsk strålningsfysik, Lund
– name: MR Physics
– name: LU profilområde: Ljus och material
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Lunds universitets profilområden
– name: Lund University Profile areas
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Profile areas and other strong research environments
– name: Medical Radiation Physics, Lund
– name: LU Profile Area: Light and Materials
– name: MultiPark: Multidisciplinary research focused on Parkinson's disease
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ADTOC
UNPAY
DOI 10.1002/mrm.30447
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate KNUTSSON et al
EISSN 1522-2594
EndPage 27
ExternalDocumentID 10.1002/mrm.30447
oai_portal_research_lu_se_publications_fe8d2cd7_706a_425d_b3a5_40532da319b3
PMC12021318
40096575
10_1002_mrm_30447
MRM30447
Genre rapidPublication
Journal Article
GrantInformation_xml – fundername: Cancerfonden
  funderid: 21 1652 Pj
– fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: RO1 EB034978; S10OD021648
– fundername: Vetenskapsrådet
  funderid: 2019‐03637
– fundername: NIBIB NIH HHS
  grantid: R01 EB034978
– fundername: NIBIB NIH HHS
  grantid: RO1 EB034978
– fundername: NIBIB NIH HHS
  grantid: S10OD021648
– fundername: Cancerfonden
  grantid: 21 1652 Pj
– fundername: NIH HHS
  grantid: S10 OD021648
– fundername: Vetenskapsrådet
  grantid: 2019-03637
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c4967-1d59f51159695f2eaf53752c9c40612f55ce371bc14ee87e9c2edc59c7a2aef13
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 03:51:01 EDT 2025
Sun Oct 19 00:40:47 EDT 2025
Thu Aug 21 18:26:46 EDT 2025
Wed Oct 01 17:28:08 EDT 2025
Sat Oct 25 06:47:22 EDT 2025
Thu Jul 24 02:17:00 EDT 2025
Wed Oct 29 21:25:56 EDT 2025
Wed Aug 20 07:25:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords dynamic glucose enhanced (DGE) MRI
glucoCEST
CEST
Z‐spectra
direct saturation (DS)
Language English
License Attribution
2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4967-1d59f51159695f2eaf53752c9c40612f55ce371bc14ee87e9c2edc59c7a2aef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4263-113X
0000-0002-0919-9680
0000-0002-4707-8206
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30447
PMID 40096575
PQID 3194251298
PQPubID 1016391
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_mrm_30447
swepub_primary_oai_portal_research_lu_se_publications_fe8d2cd7_706a_425d_b3a5_40532da319b3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12021318
proquest_miscellaneous_3178295587
proquest_journals_3194251298
pubmed_primary_40096575
crossref_primary_10_1002_mrm_30447
wiley_primary_10_1002_mrm_30447_MRM30447
PublicationCentury 2000
PublicationDate July 2025
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2018; 287
2017; 7
2015; 36
2013; 26
2023; 36
2019; 10
2023; 7
2015; 74
1993; 20
2004; 24
2014; 27
2016; 76
2018; 80
2025; 38
2024
2012; 57
2024; 38
1997; 7
2001; 86
2013; 19
2010; 23
2018; 4
2010; 29
1986; 3
2017; 78
2022; 35
2022; 36
2011; 65
2017; 285
2012; 68
2012; 67
2015; 1
2021; 86
2009; 62
2020; 40
2020; 84
2009; 61
2019; 32
2020; 180
1995; 12
2020; 33
2020; 147
1991; 8
2014; 86
2016; 6
2019; 82
2019; 81
2023; 89
2017; 16
2017; 11
2024; 91
2008; 45
2017
2000; 143
2018; 12
2023; 90
2014; 72
2014; 34
2019; 298
2007; 48
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Seidemo A (e_1_2_9_46_1) 2024
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Choi WM (e_1_2_9_62_1) 2017
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
Marta GN (e_1_2_9_9_1) 2018; 12
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
39502884 - ArXiv. 2025 Apr 24:arXiv:2410.17119v2.
References_xml – volume: 19
  start-page: 1067
  year: 2013
  end-page: 1072
  article-title: In vivo imaging of glucose uptake and metabolism in tumors
  publication-title: Nat Med
– volume: 84
  start-page: 182
  year: 2020
  end-page: 191
  article-title: Dynamic glucose‐enhanced (DGE) MRI in the human brain at 7 T with reduced motion‐induced artifacts based on quantitative R1rho mapping
  publication-title: Magn Reson Med
– volume: 36
  year: 2023
  article-title: The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI
  publication-title: NMR Biomed
– volume: 36
  year: 2023
  article-title: Tissue response curve‐shape analysis of dynamic glucose‐enhanced and dynamic contrast‐enhanced magnetic resonance imaging in patients with brain tumor
  publication-title: NMR Biomed
– volume: 62
  start-page: 384
  year: 2009
  end-page: 393
  article-title: Direct saturation MRI: theory and application to imaging brain iron
  publication-title: Magn Reson Med
– volume: 91
  start-page: 2391
  year: 2024
  end-page: 2402
  article-title: Sidebands in CEST MR‐how to recognize and avoid them
  publication-title: Magn Reson Med
– volume: 285
  start-page: 546
  year: 2017
  end-page: 554
  article-title: Gadolinium deposition in human brain tissues after contrast‐enhanced MR imaging in adult patients without intracranial abnormalities
  publication-title: Radiology
– volume: 35
  start-page: 77
  year: 2022
  end-page: 85
  article-title: GLINT: GlucoCEST in neoplastic tumors at 3 T‐clinical results of GlucoCEST in gliomas
  publication-title: MAGMA
– volume: 12
  start-page: 325
  year: 1995
  end-page: 329
  article-title: Assessing the impact of blood sample type on the estimated prevalence of impaired glucose tolerance and diabetes mellitus in epidemiological surveys
  publication-title: Diabet Med
– volume: 16
  start-page: 564
  year: 2017
  end-page: 570
  article-title: International Society for Magnetic Resonance in M. Gadolinium deposition in the brain: summary of evidence and recommendations
  publication-title: Lancet Neurol
– volume: 12
  start-page: 818
  year: 2018
  article-title: Cystic brain metastases in ALK‐rearranged non‐small cell lung cancer
  publication-title: Ecancermedicalscience
– volume: 36
  year: 2022
  article-title: Imaging of sugar‐based contrast agents using their hydroxyl proton exchange properties
  publication-title: NMR Biomed
– volume: 86
  start-page: 265
  year: 2014
  end-page: 279
  article-title: Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR
  publication-title: NeuroImage
– volume: 57
  start-page: 8185
  year: 2012
  end-page: 8200
  article-title: MR chemical exchange imaging with spin‐lock technique (CESL): a theoretical analysis of the Z‐spectrum using a two‐pool R(1rho) relaxation model beyond the fast‐exchange limit
  publication-title: Phys Med Biol
– volume: 10
  start-page: 84
  year: 2019
  article-title: Diagnostic value of alternative techniques to gadolinium‐based contrast agents in MR neuroimaging‐a comprehensive overview
  publication-title: Insights Imaging
– volume: 45
  start-page: 140
  year: 2008
  end-page: 148
  article-title: Measurement of blood glucose: comparison between different types of specimens
  publication-title: Ann Clin Biochem
– volume: 7
  year: 2017
  article-title: Fast and quantitative T1rho‐weighted dynamic glucose enhanced MRI
  publication-title: Sci Rep
– volume: 1
  start-page: 105
  year: 2015
  end-page: 114
  article-title: Dynamic glucose‐enhanced (DGE) MRI: translation to human scanning and first results in glioma patients
  publication-title: Tomography
– volume: 81
  start-page: 3798
  year: 2019
  end-page: 3807
  article-title: The effect of the mTOR inhibitor rapamycin on glucoCEST signal in a preclinical model of glioblastoma
  publication-title: Magn Reson Med
– volume: 36
  start-page: 707
  year: 2015
  end-page: 716
  article-title: Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism
  publication-title: Hum Brain Mapp
– volume: 20
  start-page: 5
  year: 1993
  end-page: 13
  article-title: The general solution to the Bloch equation with constant rf and relaxation terms: application to saturation and slice selection
  publication-title: Med Phys
– volume: 82
  start-page: 1832
  year: 2019
  end-page: 1847
  article-title: T1rho‐based dynamic glucose‐enhanced (DGErho) MRI at 3 T: method development and early clinical experience in the human brain
  publication-title: Magn Reson Med
– volume: 48
  start-page: 1468
  year: 2007
  end-page: 1481
  article-title: Clinical applications of PET in brain tumors
  publication-title: J Nucl Med
– volume: 76
  start-page: 270
  year: 2016
  end-page: 281
  article-title: Quantitative theory for the longitudinal relaxation time of blood water
  publication-title: Magn Reson Med
– volume: 11
  start-page: 49
  year: 2017
  article-title: Changes in cerebral blood flow during an alteration in glycemic state in a large non‐human primate (Papio hamadryas sp.)
  publication-title: Front Neurosci
– volume: 287
  start-page: 96
  year: 2018
  end-page: 103
  article-title: Observed deposition of gadolinium in bone using a new noninvasive in vivo biomedical device: results of a small pilot feasibility study
  publication-title: Radiology
– volume: 27
  start-page: 320
  year: 2014
  end-page: 331
  article-title: Non‐invasive temperature mapping using temperature‐responsive water saturation shift referencing (T‐WASSR) MRI
  publication-title: NMR Biomed
– volume: 24
  start-page: 764
  year: 2004
  end-page: 770
  article-title: Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery
  publication-title: J Cereb Blood Flow Metab
– volume: 35
  year: 2022
  article-title: Towards robust glucose chemical exchange saturation transfer imaging in humans at 3 T: arterial input function measurements and the effects of infusion time
  publication-title: NMR Biomed
– volume: 68
  start-page: 1764
  year: 2012
  end-page: 1773
  article-title: Natural D‐glucose as a biodegradable MRI contrast agent for detecting cancer
  publication-title: Magn Reson Med
– volume: 74
  start-page: 1556
  year: 2015
  end-page: 1563
  article-title: Dynamic glucose enhanced (DGE) MRI for combined imaging of blood‐brain barrier break down and increased blood volume in brain cancer
  publication-title: Magn Reson Med
– volume: 34
  start-page: 1402
  year: 2014
  end-page: 1410
  article-title: Mapping brain glucose uptake with chemical exchange‐sensitive spin‐lock magnetic resonance imaging
  publication-title: J Cereb Blood Flow Metab
– start-page: 729
  year: 2024
– volume: 4
  start-page: 164
  year: 2018
  end-page: 171
  article-title: Arterial input functions and tissue response curves in dynamic glucose‐enhanced (DGE) imaging: comparison between glucoCEST and blood glucose sampling in humans
  publication-title: Tomography
– volume: 67
  start-page: 1427
  year: 2012
  end-page: 1433
  article-title: Exchange‐mediated contrast agents for spin‐lock imaging
  publication-title: Magn Reson Med
– volume: 61
  start-page: 1441
  year: 2009
  end-page: 1450
  article-title: Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments
  publication-title: Magn Reson Med
– volume: 38
  year: 2024
  article-title: Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: a contemporary review
  publication-title: NMR Biomed
– volume: 86
  start-page: 1845
  year: 2021
  end-page: 1858
  article-title: Pulseq‐CEST: towards multi‐site multi‐vendor compatibility and reproducibility of CEST experiments using an open‐source sequence standard
  publication-title: Magn Reson Med
– volume: 78
  start-page: 215
  year: 2017
  end-page: 225
  article-title: Adiabatically prepared spin‐lock approach for T1rho‐based dynamic glucose enhanced MRI at ultrahigh fields
  publication-title: Magn Reson Med
– volume: 72
  start-page: 823
  year: 2014
  end-page: 828
  article-title: Natural D‐glucose as a biodegradable MRI relaxation agent
  publication-title: Magn Reson Med
– volume: 32
  year: 2019
  article-title: Quantification of hydroxyl exchange of D‐glucose at physiological conditions for optimization of glucoCEST MRI at 3, 7 and 9.4 tesla
  publication-title: NMR Biomed
– volume: 89
  start-page: 1871
  year: 2023
  end-page: 1887
  article-title: A numerical human brain phantom for dynamic glucose‐enhanced (DGE) MRI: on the influence of head motion at 3T
  publication-title: Magn Reson Med
– volume: 3
  start-page: 463
  year: 1986
  end-page: 466
  article-title: Influence of glycogen on water proton relaxation times
  publication-title: Magn Reson Med
– volume: 86
  start-page: 1986
  year: 2001
  end-page: 1990
  article-title: Blood‐brain barrier transport and brain metabolism of glucose during acute hyperglycemia in humans
  publication-title: J Clin Endocrinol Metab
– volume: 23
  start-page: 1
  year: 2010
  end-page: 21
  article-title: Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities
  publication-title: MAGMA
– volume: 147
  start-page: 671
  year: 2020
  end-page: 679
  article-title: Incidence of high grade gliomas presenting as radiographically non‐enhancing lesions: experience in 111 surgically treated non‐enhancing gliomas with tissue diagnosis
  publication-title: J Neuro‐Oncol
– volume: 180
  start-page: 223
  year: 2020
  end-page: 230
  article-title: Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium‐based contrast agent: a systematic review and meta‐analysis
  publication-title: JAMA Intern Med
– volume: 285
  start-page: 914
  year: 2017
  end-page: 922
  article-title: T1rho‐weighted dynamic glucose‐enhanced MR imaging in the human brain
  publication-title: Radiology
– volume: 7
  start-page: 78
  year: 2023
  article-title: Improved postprocessing of dynamic glucose‐enhanced CEST MRI for imaging brain metastases at 3 T
  publication-title: Eur Radiol Exp
– volume: 80
  start-page: 488
  year: 2018
  end-page: 495
  article-title: Chemical exchange‐sensitive spin‐lock (CESL) MRI of glucose and analogs in brain tumors
  publication-title: Magn Reson Med
– volume: 40
  start-page: 153
  year: 2020
  end-page: 162
  article-title: Gadolinium deposition and nephrogenic systemic fibrosis: a Radiologist's primer
  publication-title: Radiographics
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J Magn Reson
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  article-title: Elastix: a toolbox for intensity‐based medical image registration
  publication-title: IEEE Trans Med Imaging
– volume: 7
  start-page: 91
  year: 1997
  end-page: 101
  article-title: Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging
  publication-title: J Magn Reson Imaging
– volume: 90
  start-page: 1610
  year: 2023
  end-page: 1624
  article-title: Deep learning‐based Lorentzian fitting of water saturation shift referencing spectra in MRI
  publication-title: Magn Reson Med
– volume: 26
  start-page: 507
  year: 2013
  end-page: 518
  article-title: Exchange‐dependent relaxation in the rotating frame for slow and intermediate exchange ‐‐ modeling off‐resonant spin‐lock and chemical exchange saturation transfer
  publication-title: NMR Biomed
– volume: 80
  start-page: 1320
  year: 2018
  end-page: 1340
  article-title: CEST, ASL, and magnetization transfer contrast: how similar pulse sequences detect different phenomena
  publication-title: Magn Reson Med
– volume: 8
  start-page: 129
  year: 1991
  end-page: 134
  article-title: Influence of sample type on the interpretation of the oral glucose tolerance test for gestational diabetes mellitus
  publication-title: Diabet Med
– volume: 84
  start-page: 247
  year: 2020
  end-page: 262
  article-title: D‐glucose weighted chemical exchange saturation transfer (glucoCEST)‐based dynamic glucose enhanced (DGE) MRI at 3T: early experience in healthy volunteers and brain tumor patients
  publication-title: Magn Reson Med
– volume: 72
  start-page: 996
  year: 2014
  end-page: 1006
  article-title: Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion
  publication-title: Magn Reson Med
– volume: 6
  year: 2016
  article-title: Glucosamine and N‐acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors
  publication-title: Sci Rep
– volume: 298
  start-page: 16
  year: 2019
  end-page: 22
  article-title: Possible artifacts in dynamic CEST MRI due to motion and field alterations
  publication-title: J Magn Reson
– year: 2017
– start-page: 194
  year: 2017
– volume: 33
  year: 2020
  article-title: Quantitative theory for the transverse relaxation time of blood water
  publication-title: NMR Biomed
– volume: 38
  year: 2025
  article-title: Dynamic glucose enhanced MRI of gliomas: a preliminary clinical application
  publication-title: NMR Biomed
– volume: 65
  start-page: 1448
  year: 2011
  end-page: 1460
  article-title: Spin‐locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons
  publication-title: Magn Reson Med
– ident: e_1_2_9_51_1
  doi: 10.1109/TMI.2009.2035616
– ident: e_1_2_9_48_1
  doi: 10.1002/nbm.4207
– ident: e_1_2_9_52_1
  doi: 10.1002/jmri.1880070113
– ident: e_1_2_9_57_1
  doi: 10.1016/j.neuroimage.2013.09.072
– ident: e_1_2_9_10_1
  doi: 10.1186/s13244-019-0771-1
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.27183
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1464-5491.1995.tb00486.x
– ident: e_1_2_9_25_1
  doi: 10.1002/mrm.26370
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.25995
– ident: e_1_2_9_60_1
  doi: 10.1258/acb.2007.006212
– ident: e_1_2_9_68_1
  doi: 10.1210/jc.86.5.1986
– ident: e_1_2_9_4_1
  doi: 10.1016/S1474-4422(17)30158-8
– ident: e_1_2_9_39_1
  doi: 10.1002/mrm.1910030312
– ident: e_1_2_9_42_1
  doi: 10.1002/nbm.4778
– start-page: 729
  volume-title: Proceedings of the International Society of Magnetic Resonance in Medicine
  year: 2024
  ident: e_1_2_9_46_1
– ident: e_1_2_9_20_1
  doi: 10.1002/mrm.23130
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.27857
– ident: e_1_2_9_33_1
  doi: 10.1002/mrm.28124
– start-page: 194
  volume-title: Proceedings of the International Society of Magnetic Resonance in Medicine
  year: 2017
  ident: e_1_2_9_62_1
– ident: e_1_2_9_45_1
  doi: 10.1002/mrm.28825
– ident: e_1_2_9_54_1
  doi: 10.1002/mrm.25006
– ident: e_1_2_9_11_1
  doi: 10.1006/jmre.1999.1956
– ident: e_1_2_9_53_1
  doi: 10.1007/s10334-009-0190-2
– ident: e_1_2_9_26_1
  doi: 10.1148/radiol.2017162351
– ident: e_1_2_9_43_1
  doi: 10.1002/nbm.3066
– ident: e_1_2_9_22_1
  doi: 10.1002/nbm.2887
– ident: e_1_2_9_31_1
  doi: 10.18383/j.tom.2018.00025
– ident: e_1_2_9_61_1
  doi: 10.1002/mrm.30011
– ident: e_1_2_9_3_1
  doi: 10.1001/jamainternmed.2019.5284
– ident: e_1_2_9_6_1
  doi: 10.1148/radiol.2017171161
– ident: e_1_2_9_66_1
  doi: 10.3389/fnins.2017.00049
– ident: e_1_2_9_8_1
  doi: 10.1007/s11060-020-03474-z
– ident: e_1_2_9_47_1
  doi: 10.1002/mrm.25875
– ident: e_1_2_9_17_1
  doi: 10.1002/mrm.27341
– ident: e_1_2_9_2_1
  doi: 10.1148/rg.2020190110
– ident: e_1_2_9_23_1
  doi: 10.1038/jcbfm.2014.97
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.22721
– ident: e_1_2_9_50_1
  doi: 10.1097/01.WCB.0000124322.60992.5C
– ident: e_1_2_9_67_1
  doi: 10.1002/hbm.22658
– ident: e_1_2_9_13_1
  doi: 10.1038/nm.3252
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.28112
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jmr.2018.11.002
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.24520
– ident: e_1_2_9_34_1
  doi: 10.1002/nbm.4624
– ident: e_1_2_9_38_1
  doi: 10.1002/mrm.29563
– ident: e_1_2_9_63_1
  doi: 10.2967/jnumed.106.037689
– ident: e_1_2_9_30_1
  doi: 10.1007/s10334-021-00982-5
– ident: e_1_2_9_40_1
  doi: 10.1002/mrm.25329
– ident: e_1_2_9_16_1
  doi: 10.1038/srep32648
– ident: e_1_2_9_18_1
  doi: 10.1002/nbm.4784
– ident: e_1_2_9_7_1
– ident: e_1_2_9_35_1
  doi: 10.1002/nbm.4863
– ident: e_1_2_9_55_1
  doi: 10.1118/1.597063
– ident: e_1_2_9_49_1
  doi: 10.1002/nbm.4113
– ident: e_1_2_9_44_1
  doi: 10.1002/mrm.29718
– ident: e_1_2_9_58_1
  doi: 10.1111/j.1464-5491.1991.tb01558.x
– ident: e_1_2_9_36_1
  doi: 10.1186/s41747-023-00390-5
– ident: e_1_2_9_65_1
  doi: 10.1002/nbm.5265
– ident: e_1_2_9_14_1
  doi: 10.18383/j.tom.2015.00175
– ident: e_1_2_9_24_1
  doi: 10.1038/srep42093
– ident: e_1_2_9_41_1
  doi: 10.1002/mrm.21873
– ident: e_1_2_9_64_1
  doi: 10.1002/nbm.5294
– ident: e_1_2_9_56_1
  doi: 10.1002/mrm.21980
– ident: e_1_2_9_32_1
  doi: 10.1002/mrm.27683
– volume: 12
  start-page: 818
  year: 2018
  ident: e_1_2_9_9_1
  article-title: Cystic brain metastases in ALK‐rearranged non‐small cell lung cancer
  publication-title: Ecancermedicalscience
– ident: e_1_2_9_5_1
  doi: 10.1148/radiol.2017161595
– ident: e_1_2_9_21_1
  doi: 10.1088/0031-9155/57/24/8185
– reference: 39502884 - ArXiv. 2025 Apr 24:arXiv:2410.17119v2.
SSID ssj0009974
Score 2.49739
Snippet Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect...
Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size...
Purpose Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect...
PURPOSE: Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low...
SourceID unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15
SubjectTerms Adult
Algorithms
Annan fysik
Blood
Brain
Brain - diagnostic imaging
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain tumors
Cerebrospinal fluid
CEST
Clinical Medicine
Deep learning
direct saturation (DS)
dynamic glucose enhanced (DGE) MRI
Female
Fysik
glucoCEST
Glucose
Glucose - administration & dosage
Glucose - chemistry
Glucose - metabolism
Gray Matter - diagnostic imaging
Humans
Hyperglycemia
Image acquisition
Image Processing, Computer-Assisted - methods
Imaging Methodology
Klinisk medicin
Lesions
Line broadening
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical and Health Sciences
Medical imaging
Medicin och hälsovetenskap
Natural Sciences
Naturvetenskap
Neuroimaging
Other Physics Topics
Perfusion
Physical Sciences
Radiologi och bildbehandling
Radiology and Medical Imaging
Rapid Communication
Substantia alba
Substantia grisea
Tumors
Water - chemistry
White Matter - diagnostic imaging
Z‐spectra
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTrDxwMf4WGAgD3jYS8rsxLH9gjQB04TUCSEqDV4sx3HotDar2kbT9tdzdtKyMDHxFskfie9s3-_i8-8A3kkjM-H2fQJimvgrOTLO88zEqjSZTLICraB3FAfH2dEw_XLCT9Zgd3kXpnt-z95PZpM-etypuAPrGUe43YP14fHXgx8NvabfQ0KyQzRDLEYony7Zg6637dqcG0DyZjxkyxp6HzbqamouL8x43AWvwfocPvxzh6cJOjnr14u8b6_-onS8dWCP4EGLPclBM1kew5qrtuDeoD1d34K7IRzUzp_Ah09NonrSRrQTV41CqAA5nYS0RsTHy_8ijUEkFwhYZ2TuOUKDop_C8PDz949HcZtpIbapwp2SFlyVCL1QwIqXzJmSJ4Izq6y396zk3LpE0NzS1DkpnLIMpcWVFYYZV9LkGfSq88ptA6GuTCV13AiHzpClOStoIlD_1FL04pMI3ix1oacNoYZuqJOZRpnoIJMIdpZa0u2ammuvaY_GlIxgd1WMq8EfcZjKnde-DiIexbnELp43Sl29JfXuGqLTCGRH3asKnmm7W1KdjgLjNmUIhXD3i-BnMzO6bYKjpFt2ppEe13ru9PTab1ddOlkwWwgt9jOjcRiFzhPD8Zt4wgqDQ8tRMm9Xs-020eyFefjvGnrwbRAeXvxXhy9hk_mcxiEEeQd6i1ntXiHQWuSv26X2Gw2FJB0
  priority: 102
  providerName: Unpaywall
Title Dynamic glucose enhanced imaging using direct water saturation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30447
https://www.ncbi.nlm.nih.gov/pubmed/40096575
https://www.proquest.com/docview/3194251298
https://www.proquest.com/docview/3178295587
https://pubmed.ncbi.nlm.nih.gov/PMC12021318
https://doi.org/10.1002/mrm.30447
UnpaywallVersion publishedVersion
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qxdcHH_W1Wo_18cEvd71kN5sEQShqKcKVUjyoUgjZbNYr3m2P21uK_vVOso-6FkX8tpBkdzOZSX6TTH4D8EpokXA7dgmISeSu5IhhmiZ6KHOdiCjJcBV0juLkINmfxh-P2fEGvGnvwtT8EN2Gm7MMP187A9dpuXNBGrpYLUboi8fuJjmJEu9OHV1QR0lZMzDz2M0zMm5ZhcZ0p2vZX4suAczLcZINm-gtuFEVS_39XM_nfVDrV6W9O3DS9qcORvk2qtbpyPz4jerxPzt8F243aDXcrdXrHmzYYguuT5rz-C245gNITXkf3r6vU9uHTQx8aIuZDy4ITxc-EVLoIuy_hvUSGp4jxF2FpWMV9arxAKZ7Hz692x82uRmGJpY4t5KMyRzBGpOJZDm1OmcRZ9RI4xACzRkzNuIkNSS2VnArDUU5Mmm4ptrmJHoIm8VZYR9DSGweC2KZ5hbdJ0NSmpGIo8YQQ9DvjwJ40Y6SWtYUHKomW6YKZaK8TALYbsdPNVZYKjfuDr9JEcDzrhjtxx2K6MKeVa4OYiTJmMBXPKqHu_tK7Bw8xLMBiJ4idBUcN3e_pDideY5uQhE84XwZwJdaZ_ptvGulGj6nmZpXqrRq-ctGrcqtyKjJuOLjRCvsRqbSSDP8JxbRTGPXUpTMy04P_yaa116t_lxDTY4m_uHJv1d9CjepS4XsI5e3YXO9quwzxGfrdABXaHw48OY4gKvTg8Pdzz8BlIc6Mw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIRg8IBgDAgPMjwdeutWOHdvSNAkBU4FlQmiTJl4sx3HopDar2lUT_z1nJ82IJhBvkWwn8Z3t-84-fwfwVlmVST8MCYhpGq7kqEFRZHagK5upNCvRCgZHMT_KRif8y6k4XYO91V2Yhh-i23ALMyOu12GChw3p3SvW0Ol8uoPOOJc34CbPaBZcL8a_XVHu6oaDWfKw0mi-4hUast2uad8aXYOY1yMlWz7Ru7CxrGf216WdTPqwNtqlg_twrwWU5H0zAh7Amq834XbeHplvwq0Y4-kWD2H_Y5N9nrRh6sTX43j-T86mMVcRCUHwP0lj5cglotA5WQTiz6i9LTg5-HT8YTRo0ycMHNe4_NFS6ArxlNCZFhXzthKpFMxpF4w4q4RwPpW0cJR7r6TXjmFHhXbSMusrmj6C9fq89k-AUF9xRb2w0qOH42jBSppKVCp1FF3zNIHXKzGaWcOSYRo-ZGZQ1ibKOoHtlYBNO1EWJigmQCytEnjVFeMQD-cWtvbny1AHYYwWQuErHjf66L7Cgw-GkDMB1dNUVyHQZ_dL6rNxpNGmDPENLmkJ_GiU2m8TvR_TUi6NzWRpFt7M_thLNZVXJXOlNHKYWYPdKE2RWoH_JFJWWuxagZJ50w2Uf4nmXRxCf69h8u95fHj6_1VfwsboOD80h5-Pvj6DOyxkLo6BxtuwfjFf-ucIpy6KF3HW_AYkchsL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITZ44GMMCAwIsAde2tVOHNsSQkKUanx0QhOTJiRkOY5DJ9qsahtN8Ndzdj5GmECIt0i2k_h8Z__OPv8OYFdokXA7cAmISeSu5Ihemia6J3OdiCjJcBV0juL4INk_it8ds-M1eNHchan4IdoNN2cZfr52Bm7nWb53zho6W8z66IzH_BJcjpkULqBveHhOHiVlxcHMYzfTyLjhFRrQvbZpdzW6ADEvRkrWfKLXYLMs5vr7mZ5Ou7DWr0ujG_Cl6VEVjvKtX67SvvnxG9nj_3b5JlyvAWv4qtKwW7Bmiy3YGNdH8ltwxceQmuVteDmsstuHdRh8aIuJjy8IT2Y-F1Loguy_htUqGp4hyl2ES0cs6rVjG45Gbz693u_V6Rl6JpY4vZKMyRzxGpOJZDm1OmcRZ9RI40ACzRkzNuIkNSS2VnArDUVBMmm4ptrmJLoD68VpYe9BSGweC2KZ5hY9KENSmpGIo9IQQ9D1jwJ42gyTmlcsHKriW6YKZaK8TALYaQZQ1Ya4VG7gHYSTIoAnbTGakDsX0YU9LV0dhEmSMYGvuFuNd_uV2Pl4CGkDEB1NaCs4eu5uSXEy8TTdhCJ-wikzgM-V0nTbeO9K1ZROEzUt1dKq-S97tSq3IqMm44oPEq2wG5lKI83wn1hEM41dS1Eyz1pF_Jtonnu9-nMNNT4c-4f7_171MWx8HI7Uh7cH7x_AVeoSI_s45h1YXy1K-xDR2ip95I3yJzRbO1E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTrDxwMf4WGAgD3jYS8rsxLH9gjQB04TUCSEqDV4sx3HotDar2kbT9tdzdtKyMDHxFskfie9s3-_i8-8A3kkjM-H2fQJimvgrOTLO88zEqjSZTLICraB3FAfH2dEw_XLCT9Zgd3kXpnt-z95PZpM-etypuAPrGUe43YP14fHXgx8NvabfQ0KyQzRDLEYony7Zg6637dqcG0DyZjxkyxp6HzbqamouL8x43AWvwfocPvxzh6cJOjnr14u8b6_-onS8dWCP4EGLPclBM1kew5qrtuDeoD1d34K7IRzUzp_Ah09NonrSRrQTV41CqAA5nYS0RsTHy_8ijUEkFwhYZ2TuOUKDop_C8PDz949HcZtpIbapwp2SFlyVCL1QwIqXzJmSJ4Izq6y396zk3LpE0NzS1DkpnLIMpcWVFYYZV9LkGfSq88ptA6GuTCV13AiHzpClOStoIlD_1FL04pMI3ix1oacNoYZuqJOZRpnoIJMIdpZa0u2ammuvaY_GlIxgd1WMq8EfcZjKnde-DiIexbnELp43Sl29JfXuGqLTCGRH3asKnmm7W1KdjgLjNmUIhXD3i-BnMzO6bYKjpFt2ppEe13ru9PTab1ddOlkwWwgt9jOjcRiFzhPD8Zt4wgqDQ8tRMm9Xs-020eyFefjvGnrwbRAeXvxXhy9hk_mcxiEEeQd6i1ntXiHQWuSv26X2Gw2FJB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+glucose+enhanced+imaging+using+direct+water+saturation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Knutsson%2C+Linda&rft.au=Yadav%2C+Nirbhay+N&rft.au=Mohammed+Ali%2C+Sajad&rft.au=Kamson%2C+David+Olayinka&rft.date=2025-07-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.30447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon