Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells
Significance Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call attention to the need to develop our understanding of hostâpathogen interactions to improve mitigation strategies. Here, we show that...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 26; pp. E3421 - E3430 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
30.06.2015
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1424144112 |
Cover
Abstract | Significance Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call attention to the need to develop our understanding of hostâpathogen interactions to improve mitigation strategies. Here, we show that lung cells exposed to S. pneumoniae are subject to DNA damage caused by hydrogen peroxide, which is secreted by strains of S. pneumoniae that carry the s pxB gene. The observation that S. pneumoniae secretes hydrogen peroxide at genotoxic and cytotoxic levels is consistent with a model wherein host DNA damage and repair modulate pneumococcal pathogenicity.
Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H âO â, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H âO â, greatly suppresses S. pneumoniae -induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H âO â production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae -induced genotoxicity. Taken together, this study shows that S. pneumoniae -induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia. |
---|---|
AbstractList | Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of ..., plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes ..., greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and ... production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia. (ProQuest: ... denotes formulae/symbols omitted.) Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call attention to the need to develop our understanding of host–pathogen interactions to improve mitigation strategies. Here, we show that lung cells exposed to S. pneumoniae are subject to DNA damage caused by hydrogen peroxide, which is secreted by strains of S. pneumoniae that carry the s pxB gene. The observation that S. pneumoniae secretes hydrogen peroxide at genotoxic and cytotoxic levels is consistent with a model wherein host DNA damage and repair modulate pneumococcal pathogenicity. Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H 2 O 2 , plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H 2 O 2 , greatly suppresses S. pneumoniae -induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H 2 O 2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae -induced genotoxicity. Taken together, this study shows that S. pneumoniae -induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia. Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia. Significance Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call attention to the need to develop our understanding of hostâpathogen interactions to improve mitigation strategies. Here, we show that lung cells exposed to S. pneumoniae are subject to DNA damage caused by hydrogen peroxide, which is secreted by strains of S. pneumoniae that carry the s pxB gene. The observation that S. pneumoniae secretes hydrogen peroxide at genotoxic and cytotoxic levels is consistent with a model wherein host DNA damage and repair modulate pneumococcal pathogenicity. Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H âO â, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H âO â, greatly suppresses S. pneumoniae -induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H âO â production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae -induced genotoxicity. Taken together, this study shows that S. pneumoniae -induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia. Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia. Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H ₂O ₂, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H ₂O ₂, greatly suppresses S. pneumoniae -induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H ₂O ₂ production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae -induced genotoxicity. Taken together, this study shows that S. pneumoniae -induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia. |
Author | Marcus Parrish Rai, Prashant Ian Jun Jie Tay Shelley Ackerman Jimmy Kwang Bevin P. Engelward Na Li Vincent T. Chow Fang He |
Author_xml | – sequence: 1 fullname: Rai, Prashant – sequence: 2 fullname: Marcus Parrish – sequence: 3 fullname: Ian Jun Jie Tay – sequence: 4 fullname: Na Li – sequence: 5 fullname: Shelley Ackerman – sequence: 6 fullname: Fang He – sequence: 7 fullname: Jimmy Kwang – sequence: 8 fullname: Vincent T. Chow – sequence: 9 fullname: Bevin P. Engelward |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26080406$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFMzewxKWXtGPHSZwLUlXKh1TBofRsee3Z1FViBztB9N_X0S4L9EAPli29z8y8M54jcuCDR0JeMzhl0JRno9fplAkumBCM8WdkxaBlRS1aOCArAN4UMquH5CilOwBoKwkvyCGvQYKAekXweoo4TsEEY-ZER4_zELzTSBOaiBMmentvY-jQ0xFj-OUs0h61db6jU6Afvp5TqwfdIdXeUj2GnCy5RJ2n_ZwZg32fXpLnG90nfLW7j8nNx8vvF5-Lq2-fvlycXxVGtNVUSJvtIWpuqo1tBfDlpaGSRmTvtjLrtRa5UdsIy6s6Sxa5rHlTNyWKpiyPyftt3nFeD2gN-inqXo3RDTreq6Cd-lfx7lZ14acSomWNlDnByS5BDD9mTJMaXFpa0B7DnBSTGeMNAHsabfJP5CPF02jdlkxy2S4G3j1C78IcfR7aQlVQlnW71H7zd5_7Bn__awbOtoCJIaWImz3CQC2bo5bNUX82J0dUjyKMm_TkwjIo1_8nju6sLMK-CuPZjLosBV_cvt0iGx2U7qJL6uaaA6vzfgKDipUP4Pra-Q |
CitedBy_id | crossref_primary_10_1186_s41479_023_00110_y crossref_primary_10_1007_s11739_022_03086_7 crossref_primary_10_1038_s41598_020_62846_7 crossref_primary_10_1371_journal_pone_0236389 crossref_primary_10_1371_journal_pone_0172223 crossref_primary_10_1016_j_toxicon_2024_107705 crossref_primary_10_1016_j_biomaterials_2021_121237 crossref_primary_10_1074_jbc_RA119_012226 crossref_primary_10_1186_s12964_023_01233_x crossref_primary_10_1038_s41598_019_40346_7 crossref_primary_10_1371_journal_ppat_1005951 crossref_primary_10_1016_j_toxicon_2022_106980 crossref_primary_10_1016_j_bios_2016_12_027 crossref_primary_10_1038_s41598_019_44213_3 crossref_primary_10_1177_1753425916684934 crossref_primary_10_1039_D4NR04860A crossref_primary_10_1016_j_ajo_2018_03_010 crossref_primary_10_12688_f1000research_9283_1 crossref_primary_10_17116_molgen20193702158 crossref_primary_10_4049_jimmunol_2100711 crossref_primary_10_3390_jof10080579 crossref_primary_10_1128_iai_00471_22 crossref_primary_10_32718_ujvas5_2_04 crossref_primary_10_1128_iai_00154_23 crossref_primary_10_18632_oncotarget_8451 crossref_primary_10_1111_cmi_13015 crossref_primary_10_3389_fmicb_2019_02895 crossref_primary_10_1128_spectrum_04364_22 crossref_primary_10_3389_fimmu_2018_01366 crossref_primary_10_3389_fmicb_2019_00630 crossref_primary_10_1016_j_chom_2016_12_005 crossref_primary_10_1111_1348_0421_13028 crossref_primary_10_1038_cddis_2015_354 crossref_primary_10_1128_spectrum_02912_23 crossref_primary_10_1186_s13287_021_02212_0 crossref_primary_10_3389_fimmu_2024_1414195 crossref_primary_10_3390_pathogens10101322 crossref_primary_10_1172_JCI127144 crossref_primary_10_1089_ars_2019_7964 crossref_primary_10_1128_JB_00439_21 crossref_primary_10_1371_journal_pone_0231101 crossref_primary_10_1128_mBio_01309_21 crossref_primary_10_3389_fmicb_2023_1269843 crossref_primary_10_1016_j_xcrp_2024_102074 crossref_primary_10_1186_s12879_020_4938_7 crossref_primary_10_1128_IAI_00134_16 crossref_primary_10_1016_j_jconrel_2024_09_036 crossref_primary_10_1038_s41598_019_54053_w crossref_primary_10_1016_j_csbj_2020_12_031 crossref_primary_10_1016_j_inoche_2024_113583 crossref_primary_10_1038_nrm_2016_100 crossref_primary_10_1016_j_aca_2020_01_066 crossref_primary_10_1074_jbc_M116_773176 crossref_primary_10_3389_fncel_2021_680858 crossref_primary_10_3389_fmicb_2021_738047 crossref_primary_10_1038_s41598_019_38901_3 crossref_primary_10_1186_s13059_016_1054_5 crossref_primary_10_1002_1873_3468_12352 crossref_primary_10_1016_j_ijfoodmicro_2023_110318 crossref_primary_10_1007_s00430_021_00701_w crossref_primary_10_1080_21688370_2024_2434764 crossref_primary_10_3389_fimmu_2018_00052 crossref_primary_10_3390_ijms232113004 crossref_primary_10_1128_Spectrum_00778_21 crossref_primary_10_1021_acsanm_4c06222 crossref_primary_10_1080_21678707_2016_1254618 crossref_primary_10_3390_toxins15100593 crossref_primary_10_3103_S0891416819020022 crossref_primary_10_1093_nar_gkz027 crossref_primary_10_17816_ecogen16326_36 crossref_primary_10_1186_s13287_019_1315_9 crossref_primary_10_1016_j_celrep_2024_114131 crossref_primary_10_1111_jfbc_14267 crossref_primary_10_1155_2020_2863236 crossref_primary_10_1186_s12866_016_0881_6 crossref_primary_10_1038_s41467_019_10222_z crossref_primary_10_3390_ijms19113555 crossref_primary_10_1016_j_jiac_2020_03_015 crossref_primary_10_1007_s00395_017_0625_2 crossref_primary_10_1007_s00430_022_00731_y crossref_primary_10_1021_acs_analchem_7b04798 crossref_primary_10_3389_fgene_2020_00323 crossref_primary_10_1016_j_micres_2022_127134 crossref_primary_10_3389_fcimb_2017_00210 crossref_primary_10_1016_j_cyto_2018_07_021 crossref_primary_10_1097_QCO_0000000000000643 crossref_primary_10_2139_ssrn_3648292 crossref_primary_10_3389_fmicb_2019_00311 crossref_primary_10_1016_j_mrrev_2018_04_002 crossref_primary_10_1021_acs_jmedchem_4c00775 crossref_primary_10_1016_j_jhazmat_2016_05_064 crossref_primary_10_3390_fermentation8050212 crossref_primary_10_1164_rccm_201611_2210LE crossref_primary_10_1128_msphere_00142_23 crossref_primary_10_1016_j_jhazmat_2022_128605 crossref_primary_10_1080_21655979_2016_1234544 crossref_primary_10_3389_fimmu_2020_00814 crossref_primary_10_1159_000517855 crossref_primary_10_1016_j_chemosphere_2018_05_112 crossref_primary_10_3389_fcimb_2022_886901 crossref_primary_10_1007_s00418_020_01871_z crossref_primary_10_1080_15384101_2019_1610241 |
Cites_doi | 10.1038/nature03442 10.1016/j.febslet.2008.04.023 10.1128/iai.64.9.3772-3777.1996 10.1093/infdis/jit008 10.1093/mutage/gel032 10.1096/fj.02-0752rev 10.1128/JVI.00318-09 10.1128/IAI.73.10.6479-6487.2005 10.1128/JB.185.23.6815-6825.2003 10.1074/jbc.C300117200 10.1046/j.1365-2249.2000.01336.x 10.1086/591708 10.1073/pnas.1100600108 10.1128/IAI.00815-10 10.1016/j.dnarep.2014.03.002 10.1046/j.1365-2958.1996.425954.x 10.4049/jimmunol.171.5.2354 10.1073/pnas.1002175107 10.1128/JVI.00358-08 10.1128/IAI.72.5.2521-2527.2004 10.1016/S0140-6736(09)61114-4 10.1165/rcmb.2009-0047TR 10.1146/annurev.mi.47.100193.000513 10.1164/ajrccm.161.6.9806158 10.1074/jbc.C100466200 10.1073/pnas.0603779103 10.1128/CMR.00058-05 10.1093/jac/dkq480 10.1165/rcmb.2007-0328OC 10.1371/journal.pone.0026587 10.1093/nar/gkn302 10.1086/322021 10.1128/JB.00813-07 10.1016/j.vaccine.2010.05.030 10.1128/AAC.00148-13 10.1128/iai.55.5.1184-1189.1987 10.1038/sj.emboj.7601446 10.3201/eid1907.121830 10.1073/pnas.1100959108 10.1016/j.chom.2013.05.010 10.1111/j.1523-5378.2010.00749.x 10.1186/1465-9921-8-3 10.1086/315658 10.1093/cid/cit640 10.1016/S0006-2952(03)00510-0 10.1128/IAI.00575-08 10.1128/IAI.72.2.1116-1125.2004 10.1128/MCB.01476-09 10.1016/j.molcel.2006.05.023 10.1086/340400 10.3109/10408449709021617 10.1086/424596 10.1128/JB.183.10.3108-3116.2001 10.1086/378675 10.4161/hv.7.10.16794 10.1073/pnas.94.25.13588 10.1128/JB.01517-07 10.4161/cc.9.2.10475 10.1160/TH04-12-0822 10.1128/AAC.43.10.2484 10.1269/jrr.07096 10.1016/j.dnarep.2007.02.006 10.1007/s10753-010-9255-7 10.1007/s004180050317 10.1016/S1097-2765(01)00419-1 10.1093/infdis/142.6.923 10.1128/iai.65.4.1237-1244.1997 10.1128/IAI.72.9.4940-4947.2004 10.1093/nar/gkt304 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 30, 2015 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 30, 2015 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1424144112 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) CrossRef MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | S. pneumoniae induces DNA damage and apoptosis |
EISSN | 1091-6490 |
EndPage | E3430 |
ExternalDocumentID | PMC4491788 3738688381 26080406 10_1073_pnas_1424144112 112_26_E3421 US201600201051 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P30 ES002109 – fundername: NIEHS NIH HHS grantid: T32 ES007020 – fundername: NCI NIH HHS grantid: P01 CA026731 – fundername: National Research Foundation-Prime Minister's office, Republic of Singapore (NRF) grantid: S920270 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c495t-8d580eea2c5fd9402a2c5a058c4000d5cbba4441d74d2565a0de28627673e4733 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:09:52 EDT 2025 Thu Sep 04 17:42:47 EDT 2025 Fri Sep 05 00:39:52 EDT 2025 Fri Sep 05 04:54:15 EDT 2025 Mon Jun 30 08:26:29 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Tue Jul 01 01:53:28 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Wed Nov 11 00:29:41 EST 2020 Wed Dec 27 19:13:50 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | Ku80 DNA damage γH2AX hydrogen peroxide Streptococcus pneumoniae |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-8d580eea2c5fd9402a2c5a058c4000d5cbba4441d74d2565a0de28627673e4733 |
Notes | http://dx.doi.org/10.1073/pnas.1424144112 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: P.R., V.T.C., and B.P.E. designed research; P.R., M.P., I.J.J.T., N.L., S.A., and F.H. performed research; F.H. and J.K. contributed new reagents/analytic tools; P.R., N.L., V.T.C., and B.P.E. analyzed data; and P.R. and B.P.E. wrote the paper. Edited by Hasan Yesilkaya, University of Leicester, Leicester, United Kingdom, and accepted by the Editorial Board May 11, 2015 (received for review December 17, 2014) |
PMID | 26080406 |
PQID | 1695033691 |
PQPubID | 42026 |
ParticipantIDs | pnas_primary_112_26_E3421 pubmed_primary_26080406 proquest_miscellaneous_1693182898 proquest_miscellaneous_1709170984 proquest_miscellaneous_1817827001 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4491788 proquest_journals_1695033691 crossref_primary_10_1073_pnas_1424144112 fao_agris_US201600201051 crossref_citationtrail_10_1073_pnas_1424144112 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-30 |
PublicationDateYYYYMMDD | 2015-06-30 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 Wright DT (e_1_3_3_68_2) 1994; 102 e_1_3_3_69_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_70_2 N’Guessan PD (e_1_3_3_25_2) 2005; 94 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 8751928 - Infect Immun. 1996 Sep;64(9):3772-7 12832285 - FASEB J. 2003 Jul;17(10):1195-214 19880020 - Lancet. 2009 Oct 31;374(9700):1543-56 24680221 - DNA Repair (Amst). 2014 Jun;18:31-43 12697768 - J Biol Chem. 2003 May 30;278(22):19579-82 16113818 - Thromb Haemost. 2005 Aug;94(2):295-303 14617646 - J Bacteriol. 2003 Dec;185(23):6815-25 19339345 - J Virol. 2009 Jun;83(12):6269-78 7462701 - J Infect Dis. 1980 Dec;142(6):923-33 9391070 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13588-93 19738160 - Am J Respir Cell Mol Biol. 2010 Jul;43(1):5-16 8820650 - Mol Microbiol. 1996 Feb;19(4):803-13 16177320 - Infect Immun. 2005 Oct;73(10):6479-87 21896770 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9 20479123 - Mol Cell Biol. 2010 Jul;30(14):3582-95 18663006 - Infect Immun. 2008 Oct;76(10):4405-13 11571274 - J Biol Chem. 2001 Nov 9;276(45):42462-7 16870698 - Mutagenesis. 2006 Jul;21(4):225-36 11779493 - Mol Cell. 2001 Dec;8(6):1163-74 7903033 - Annu Rev Microbiol. 1993;47:89-115 20956573 - Infect Immun. 2011 Jan;79(1):75-87 9119457 - Infect Immun. 1997 Apr;65(4):1237-44 11012619 - Clin Exp Immunol. 2000 Oct;122(1):61-6 23877681 - Antimicrob Agents Chemother. 2013 Oct;57(10):4825-30 21193476 - J Antimicrob Chemother. 2011 Mar;66(3):487-93 23768498 - Cell Host Microbe. 2013 Jun 12;13(6):746-58 15321985 - Infect Immun. 2004 Sep;72(9):4940-7 7705313 - Environ Health Perspect. 1994 Dec;102 Suppl 10:85-90 20872058 - Inflammation. 2011 Oct;34(5):471-86 21941097 - Hum Vaccin. 2011 Oct;7(10):1012-8 17257395 - Respir Res. 2007;8:3 14742559 - Infect Immun. 2004 Feb;72(2):1116-25 10508029 - Antimicrob Agents Chemother. 1999 Oct;43(10):2484-92 15102759 - Infect Immun. 2004 May;72(5):2521-7 12928382 - J Immunol. 2003 Sep 1;171(5):2354-65 23620287 - Nucleic Acids Res. 2013 Jul;41(12):6109-18 10882622 - J Infect Dis. 2000 Jul;182(1):347-50 9860253 - Histochem Cell Biol. 1998 Dec;110(6):553-8 15478073 - J Infect Dis. 2004 Nov 1;190(9):1661-9 18483419 - Am J Respir Cell Mol Biol. 2008 Nov;39(5):522-9 17631628 - J Bacteriol. 2007 Sep;189(18):6532-9 18492718 - Nucleic Acids Res. 2008 Jun;36(11):3781-90 14555233 - Biochem Pharmacol. 2003 Oct 15;66(8):1547-54 3552992 - Infect Immun. 1987 May;55(5):1184-9 20046100 - Cell Cycle. 2010 Jan 15;9(2):389-97 20402812 - Helicobacter. 2010 Apr;15(2):98-107 23303809 - J Infect Dis. 2013 Apr;207(7):1135-43 23763847 - Emerg Infect Dis. 2013 Jul;19(7):1074-83 18439913 - FEBS Lett. 2008 May 28;582(12):1672-8 11325939 - J Bacteriol. 2001 May;183(10):3108-16 12032897 - Clin Infect Dis. 2002 Jun 15;34(12):1613-20 24065334 - Clin Infect Dis. 2013 Dec;57(12):1722-30 16818236 - Mol Cell. 2006 Jul 7;23(1):121-32 18463154 - J Virol. 2008 Aug;82(15):7379-87 17363343 - DNA Repair (Amst). 2007 Jul 1;6(7):923-35 10852786 - Am J Respir Crit Care Med. 2000 Jun;161(6):2043-50 16847087 - Clin Microbiol Rev. 2006 Jul;19(3):571-82 14551881 - J Infect Dis. 2003 Oct 15;188(8):1119-31 9099517 - Crit Rev Toxicol. 1997 Mar;27(2):155-74 17124492 - EMBO J. 2006 Dec 13;25(24):5775-82 18403903 - J Radiat Res. 2008 Jul;49(4):399-407 11443554 - J Infect Dis. 2001 Aug 1;184(3):292-300 18710327 - J Infect Dis. 2008 Oct 1;198(7):962-70 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5 18065543 - J Bacteriol. 2008 Feb;190(4):1184-9 20576535 - Vaccine. 2010 Jul 12;28(31):4955-60 15758953 - Nature. 2005 Mar 31;434(7033):605-11 16788066 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9891-6 22028914 - PLoS One. 2011;6(10):e26587 20351298 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1038/nature03442 – ident: e_1_3_3_53_2 doi: 10.1016/j.febslet.2008.04.023 – ident: e_1_3_3_54_2 doi: 10.1128/iai.64.9.3772-3777.1996 – ident: e_1_3_3_44_2 doi: 10.1093/infdis/jit008 – ident: e_1_3_3_9_2 doi: 10.1093/mutage/gel032 – ident: e_1_3_3_10_2 doi: 10.1096/fj.02-0752rev – ident: e_1_3_3_58_2 doi: 10.1128/JVI.00318-09 – ident: e_1_3_3_4_2 doi: 10.1128/IAI.73.10.6479-6487.2005 – ident: e_1_3_3_69_2 doi: 10.1128/JB.185.23.6815-6825.2003 – ident: e_1_3_3_13_2 doi: 10.1074/jbc.C300117200 – ident: e_1_3_3_26_2 doi: 10.1046/j.1365-2249.2000.01336.x – ident: e_1_3_3_45_2 doi: 10.1086/591708 – volume: 102 start-page: 85 year: 1994 ident: e_1_3_3_68_2 article-title: Interactions of oxygen radicals with airway epithelium publication-title: Environ Health Perspect – ident: e_1_3_3_37_2 doi: 10.1073/pnas.1100600108 – ident: e_1_3_3_22_2 doi: 10.1128/IAI.00815-10 – ident: e_1_3_3_48_2 doi: 10.1016/j.dnarep.2014.03.002 – ident: e_1_3_3_28_2 doi: 10.1046/j.1365-2958.1996.425954.x – ident: e_1_3_3_27_2 doi: 10.4049/jimmunol.171.5.2354 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.1002175107 – ident: e_1_3_3_60_2 doi: 10.1128/JVI.00358-08 – ident: e_1_3_3_49_2 doi: 10.1128/IAI.72.5.2521-2527.2004 – ident: e_1_3_3_2_2 doi: 10.1016/S0140-6736(09)61114-4 – ident: e_1_3_3_8_2 doi: 10.1165/rcmb.2009-0047TR – ident: e_1_3_3_64_2 doi: 10.1146/annurev.mi.47.100193.000513 – ident: e_1_3_3_3_2 doi: 10.1164/ajrccm.161.6.9806158 – ident: e_1_3_3_35_2 doi: 10.1074/jbc.C100466200 – ident: e_1_3_3_61_2 doi: 10.1073/pnas.0603779103 – ident: e_1_3_3_1_2 doi: 10.1128/CMR.00058-05 – ident: e_1_3_3_46_2 doi: 10.1093/jac/dkq480 – ident: e_1_3_3_7_2 doi: 10.1165/rcmb.2007-0328OC – ident: e_1_3_3_55_2 doi: 10.1371/journal.pone.0026587 – ident: e_1_3_3_29_2 doi: 10.1093/nar/gkn302 – ident: e_1_3_3_6_2 doi: 10.1086/322021 – ident: e_1_3_3_52_2 doi: 10.1128/JB.00813-07 – ident: e_1_3_3_43_2 doi: 10.1016/j.vaccine.2010.05.030 – ident: e_1_3_3_19_2 doi: 10.1128/AAC.00148-13 – ident: e_1_3_3_39_2 doi: 10.1128/iai.55.5.1184-1189.1987 – ident: e_1_3_3_62_2 doi: 10.1038/sj.emboj.7601446 – ident: e_1_3_3_65_2 doi: 10.3201/eid1907.121830 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.1100959108 – ident: e_1_3_3_33_2 doi: 10.1016/j.chom.2013.05.010 – ident: e_1_3_3_38_2 doi: 10.1111/j.1523-5378.2010.00749.x – ident: e_1_3_3_5_2 doi: 10.1186/1465-9921-8-3 – ident: e_1_3_3_67_2 doi: 10.1086/315658 – ident: e_1_3_3_66_2 doi: 10.1093/cid/cit640 – ident: e_1_3_3_11_2 doi: 10.1016/S0006-2952(03)00510-0 – ident: e_1_3_3_21_2 doi: 10.1128/IAI.00575-08 – ident: e_1_3_3_50_2 doi: 10.1128/IAI.72.2.1116-1125.2004 – ident: e_1_3_3_31_2 doi: 10.1128/MCB.01476-09 – ident: e_1_3_3_63_2 doi: 10.1016/j.molcel.2006.05.023 – ident: e_1_3_3_47_2 doi: 10.1086/340400 – ident: e_1_3_3_12_2 doi: 10.3109/10408449709021617 – ident: e_1_3_3_51_2 doi: 10.1086/424596 – ident: e_1_3_3_41_2 doi: 10.1128/JB.183.10.3108-3116.2001 – ident: e_1_3_3_23_2 doi: 10.1086/378675 – ident: e_1_3_3_42_2 doi: 10.4161/hv.7.10.16794 – ident: e_1_3_3_56_2 doi: 10.1073/pnas.94.25.13588 – ident: e_1_3_3_70_2 doi: 10.1128/JB.01517-07 – ident: e_1_3_3_14_2 doi: 10.4161/cc.9.2.10475 – volume: 94 start-page: 295 year: 2005 ident: e_1_3_3_25_2 article-title: Streptococcus pneumoniae R6x induced p38 MAPK and JNK-mediated caspase-dependent apoptosis in human endothelial cells publication-title: Thromb Haemost doi: 10.1160/TH04-12-0822 – ident: e_1_3_3_34_2 doi: 10.1128/AAC.43.10.2484 – ident: e_1_3_3_57_2 doi: 10.1269/jrr.07096 – ident: e_1_3_3_15_2 doi: 10.1016/j.dnarep.2007.02.006 – ident: e_1_3_3_18_2 doi: 10.1007/s10753-010-9255-7 – ident: e_1_3_3_36_2 doi: 10.1007/s004180050317 – ident: e_1_3_3_17_2 doi: 10.1016/S1097-2765(01)00419-1 – ident: e_1_3_3_59_2 doi: 10.1093/infdis/142.6.923 – ident: e_1_3_3_40_2 doi: 10.1128/iai.65.4.1237-1244.1997 – ident: e_1_3_3_24_2 doi: 10.1128/IAI.72.9.4940-4947.2004 – ident: e_1_3_3_30_2 doi: 10.1093/nar/gkt304 – reference: 22028914 - PLoS One. 2011;6(10):e26587 – reference: 11779493 - Mol Cell. 2001 Dec;8(6):1163-74 – reference: 17257395 - Respir Res. 2007;8:3 – reference: 18663006 - Infect Immun. 2008 Oct;76(10):4405-13 – reference: 15321985 - Infect Immun. 2004 Sep;72(9):4940-7 – reference: 18403903 - J Radiat Res. 2008 Jul;49(4):399-407 – reference: 23303809 - J Infect Dis. 2013 Apr;207(7):1135-43 – reference: 17124492 - EMBO J. 2006 Dec 13;25(24):5775-82 – reference: 11325939 - J Bacteriol. 2001 May;183(10):3108-16 – reference: 18463154 - J Virol. 2008 Aug;82(15):7379-87 – reference: 11012619 - Clin Exp Immunol. 2000 Oct;122(1):61-6 – reference: 16177320 - Infect Immun. 2005 Oct;73(10):6479-87 – reference: 24065334 - Clin Infect Dis. 2013 Dec;57(12):1722-30 – reference: 15478073 - J Infect Dis. 2004 Nov 1;190(9):1661-9 – reference: 10508029 - Antimicrob Agents Chemother. 1999 Oct;43(10):2484-92 – reference: 10882622 - J Infect Dis. 2000 Jul;182(1):347-50 – reference: 12928382 - J Immunol. 2003 Sep 1;171(5):2354-65 – reference: 16113818 - Thromb Haemost. 2005 Aug;94(2):295-303 – reference: 23620287 - Nucleic Acids Res. 2013 Jul;41(12):6109-18 – reference: 3552992 - Infect Immun. 1987 May;55(5):1184-9 – reference: 16818236 - Mol Cell. 2006 Jul 7;23(1):121-32 – reference: 20046100 - Cell Cycle. 2010 Jan 15;9(2):389-97 – reference: 20479123 - Mol Cell Biol. 2010 Jul;30(14):3582-95 – reference: 14742559 - Infect Immun. 2004 Feb;72(2):1116-25 – reference: 20872058 - Inflammation. 2011 Oct;34(5):471-86 – reference: 11571274 - J Biol Chem. 2001 Nov 9;276(45):42462-7 – reference: 19738160 - Am J Respir Cell Mol Biol. 2010 Jul;43(1):5-16 – reference: 20956573 - Infect Immun. 2011 Jan;79(1):75-87 – reference: 18439913 - FEBS Lett. 2008 May 28;582(12):1672-8 – reference: 12832285 - FASEB J. 2003 Jul;17(10):1195-214 – reference: 9099517 - Crit Rev Toxicol. 1997 Mar;27(2):155-74 – reference: 12032897 - Clin Infect Dis. 2002 Jun 15;34(12):1613-20 – reference: 7462701 - J Infect Dis. 1980 Dec;142(6):923-33 – reference: 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5 – reference: 23768498 - Cell Host Microbe. 2013 Jun 12;13(6):746-58 – reference: 20576535 - Vaccine. 2010 Jul 12;28(31):4955-60 – reference: 9391070 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13588-93 – reference: 9860253 - Histochem Cell Biol. 1998 Dec;110(6):553-8 – reference: 12697768 - J Biol Chem. 2003 May 30;278(22):19579-82 – reference: 8751928 - Infect Immun. 1996 Sep;64(9):3772-7 – reference: 20351298 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5 – reference: 19880020 - Lancet. 2009 Oct 31;374(9700):1543-56 – reference: 9119457 - Infect Immun. 1997 Apr;65(4):1237-44 – reference: 21896770 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9 – reference: 23877681 - Antimicrob Agents Chemother. 2013 Oct;57(10):4825-30 – reference: 14555233 - Biochem Pharmacol. 2003 Oct 15;66(8):1547-54 – reference: 17363343 - DNA Repair (Amst). 2007 Jul 1;6(7):923-35 – reference: 20402812 - Helicobacter. 2010 Apr;15(2):98-107 – reference: 16847087 - Clin Microbiol Rev. 2006 Jul;19(3):571-82 – reference: 16788066 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9891-6 – reference: 23763847 - Emerg Infect Dis. 2013 Jul;19(7):1074-83 – reference: 16870698 - Mutagenesis. 2006 Jul;21(4):225-36 – reference: 17631628 - J Bacteriol. 2007 Sep;189(18):6532-9 – reference: 14617646 - J Bacteriol. 2003 Dec;185(23):6815-25 – reference: 18483419 - Am J Respir Cell Mol Biol. 2008 Nov;39(5):522-9 – reference: 24680221 - DNA Repair (Amst). 2014 Jun;18:31-43 – reference: 15102759 - Infect Immun. 2004 May;72(5):2521-7 – reference: 19339345 - J Virol. 2009 Jun;83(12):6269-78 – reference: 15758953 - Nature. 2005 Mar 31;434(7033):605-11 – reference: 18492718 - Nucleic Acids Res. 2008 Jun;36(11):3781-90 – reference: 11443554 - J Infect Dis. 2001 Aug 1;184(3):292-300 – reference: 10852786 - Am J Respir Crit Care Med. 2000 Jun;161(6):2043-50 – reference: 21193476 - J Antimicrob Chemother. 2011 Mar;66(3):487-93 – reference: 7705313 - Environ Health Perspect. 1994 Dec;102 Suppl 10:85-90 – reference: 14551881 - J Infect Dis. 2003 Oct 15;188(8):1119-31 – reference: 7903033 - Annu Rev Microbiol. 1993;47:89-115 – reference: 8820650 - Mol Microbiol. 1996 Feb;19(4):803-13 – reference: 18065543 - J Bacteriol. 2008 Feb;190(4):1184-9 – reference: 21941097 - Hum Vaccin. 2011 Oct;7(10):1012-8 – reference: 18710327 - J Infect Dis. 2008 Oct 1;198(7):962-70 |
SSID | ssj0009580 |
Score | 2.5154374 |
Snippet | Significance Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines... Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call... Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E3421 |
SubjectTerms | Animals antibiotics Apoptosis Biological Sciences Cells cytotoxicity death Deoxyribonucleic acid DNA DNA Damage DNA Repair Epithelial Cells - pathology Female genes Genotoxicity Gram-positive bacteria host-pathogen relationships Hydrogen peroxide Hydrogen Peroxide - metabolism Ku80 Lungs Mice Mice, Inbred BALB C pathogenicity PNAS Plus pneumonia Pulmonary Alveoli - cytology Pulmonary Alveoli - metabolism Streptococcus Streptococcus pneumoniae Streptococcus pneumoniae - metabolism Streptococcus pneumoniae - pathogenicity vaccines Virulence γH2AX |
Title | Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells |
URI | http://www.pnas.org/content/112/26/E3421.abstract https://www.ncbi.nlm.nih.gov/pubmed/26080406 https://www.proquest.com/docview/1695033691 https://www.proquest.com/docview/1693182898 https://www.proquest.com/docview/1709170984 https://www.proquest.com/docview/1817827001 https://pubmed.ncbi.nlm.nih.gov/PMC4491788 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeOEFMb5WGMhIPAxVKYnjxM7jBJsmNJUJWmlvkeO4a6QuqZpGAv47_jPu4iRNx6iAh0RRfLUT3y93Z_c-CHkrtAi01qGTCpE4XEaBk3hq5jCG_DeJAgL0thiH51P-6Sq42tv72fNaqtbJSP-4M67kf7gK94CvGCX7D5ztOoUbcA38hTNwGM5_xWP8S3m5LkCm6aocLnNTwdCZMsMSjUHcUZ1_T1fFNfphmVXxLUsNlomo41jA5vw4Phmm6ga9duqUrcsCOsMEJVk-XFQYjGsWi7Jvvl526q5snQvG7W7iySY2pREY5dAZXo43lY6_2NLXlytVzlXeD7zGMvdN5JCuOit_ouy-LkZYVXBkHQgvMqsZ-nsWXtA62LUuHTuerC-sGShQbkOsR8bKZzBvnJDbCqOdAPdYD6msL49PfW4DsH_TFCDasLxxrsoRBvvhurLpZisn9_hzfDa9uIgnp1eT7VZrA2DNVCl9DP6_zwSYb-2GUZf3WdooqOZd2uxSwn9_a-wtw-jeTBWYbhdI7lr63Pbg7ZlEk0fkYbOWoScWmAdkz-SPyUE7xfS4SWn-7gkxW0ilG6TSFqm0RSptkUobpNJ1QQGp1CKVAlJph1Sa5RSRSmukPiXTs9PJh3OnKfDhaFiXrx2ZwuwYo5gOZmnEXYZXyg2kBs3ipoFOEsVhclLBUzDNoSk1DJbgIhS-4cL3n5H9vMjNIaGgJ1PPVVGomebJLIhcPlM8SWehcBPJvQEZtbMb6yb7PRZhWcS1F4bwY5zreMOOATnufrC0iV_-THoI7IrVNXws8fQrw6SNLnqZBDDsoCbuevBYzMK4huWAHLWMjRuhAr2GEToWhBE0v-maQeTjPKrcFFVNA5qYyUjuoBHwpcAh-Q4a6cH6AB1PBuS5xVP3oCyEpSQY-wMitpDWEWBa-u2WPJvX6ek5h5GlfLH79V6SBxvJcET216vKvAL7fp28rr-gX6hH-v8 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streptococcus+pneumoniae+secretes+hydrogen+peroxide+leading+to+DNA+damage+and+apoptosis+in+lung+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rai%2C+Prashant&rft.au=Parrish%2C+Marcus&rft.au=Tay%2C+Ian+Jun+Jie&rft.au=Li%2C+Na&rft.date=2015-06-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=26&rft.spage=E3421&rft_id=info:doi/10.1073%2Fpnas.1424144112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3738688381 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F26.cover.gif |