Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells

Significance Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call attention to the need to develop our understanding of host–pathogen interactions to improve mitigation strategies. Here, we show that...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 26; pp. E3421 - E3430
Main Authors Rai, Prashant, Marcus Parrish, Ian Jun Jie Tay, Na Li, Shelley Ackerman, Fang He, Jimmy Kwang, Vincent T. Chow, Bevin P. Engelward
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 30.06.2015
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1424144112

Cover

Abstract Significance Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call attention to the need to develop our understanding of host–pathogen interactions to improve mitigation strategies. Here, we show that lung cells exposed to S. pneumoniae are subject to DNA damage caused by hydrogen peroxide, which is secreted by strains of S. pneumoniae that carry the s pxB gene. The observation that S. pneumoniae secretes hydrogen peroxide at genotoxic and cytotoxic levels is consistent with a model wherein host DNA damage and repair modulate pneumococcal pathogenicity. Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H ₂O ₂, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H ₂O ₂, greatly suppresses S. pneumoniae -induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H ₂O ₂ production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae -induced genotoxicity. Taken together, this study shows that S. pneumoniae -induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
AbstractList Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of ..., plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes ..., greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and ... production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia. (ProQuest: ... denotes formulae/symbols omitted.)
Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call attention to the need to develop our understanding of host–pathogen interactions to improve mitigation strategies. Here, we show that lung cells exposed to S. pneumoniae are subject to DNA damage caused by hydrogen peroxide, which is secreted by strains of S. pneumoniae that carry the s pxB gene. The observation that S. pneumoniae secretes hydrogen peroxide at genotoxic and cytotoxic levels is consistent with a model wherein host DNA damage and repair modulate pneumococcal pathogenicity. Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H 2 O 2 , plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H 2 O 2 , greatly suppresses S. pneumoniae -induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H 2 O 2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae -induced genotoxicity. Taken together, this study shows that S. pneumoniae -induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
Significance Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call attention to the need to develop our understanding of host–pathogen interactions to improve mitigation strategies. Here, we show that lung cells exposed to S. pneumoniae are subject to DNA damage caused by hydrogen peroxide, which is secreted by strains of S. pneumoniae that carry the s pxB gene. The observation that S. pneumoniae secretes hydrogen peroxide at genotoxic and cytotoxic levels is consistent with a model wherein host DNA damage and repair modulate pneumococcal pathogenicity. Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H ₂O ₂, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H ₂O ₂, greatly suppresses S. pneumoniae -induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H ₂O ₂ production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae -induced genotoxicity. Taken together, this study shows that S. pneumoniae -induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H ₂O ₂, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H ₂O ₂, greatly suppresses S. pneumoniae -induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H ₂O ₂ production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae -induced genotoxicity. Taken together, this study shows that S. pneumoniae -induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
Author Marcus Parrish
Rai, Prashant
Ian Jun Jie Tay
Shelley Ackerman
Jimmy Kwang
Bevin P. Engelward
Na Li
Vincent T. Chow
Fang He
Author_xml – sequence: 1
  fullname: Rai, Prashant
– sequence: 2
  fullname: Marcus Parrish
– sequence: 3
  fullname: Ian Jun Jie Tay
– sequence: 4
  fullname: Na Li
– sequence: 5
  fullname: Shelley Ackerman
– sequence: 6
  fullname: Fang He
– sequence: 7
  fullname: Jimmy Kwang
– sequence: 8
  fullname: Vincent T. Chow
– sequence: 9
  fullname: Bevin P. Engelward
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26080406$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFMzewxKWXtGPHSZwLUlXKh1TBofRsee3Z1FViBztB9N_X0S4L9EAPli29z8y8M54jcuCDR0JeMzhl0JRno9fplAkumBCM8WdkxaBlRS1aOCArAN4UMquH5CilOwBoKwkvyCGvQYKAekXweoo4TsEEY-ZER4_zELzTSBOaiBMmentvY-jQ0xFj-OUs0h61db6jU6Afvp5TqwfdIdXeUj2GnCy5RJ2n_ZwZg32fXpLnG90nfLW7j8nNx8vvF5-Lq2-fvlycXxVGtNVUSJvtIWpuqo1tBfDlpaGSRmTvtjLrtRa5UdsIy6s6Sxa5rHlTNyWKpiyPyftt3nFeD2gN-inqXo3RDTreq6Cd-lfx7lZ14acSomWNlDnByS5BDD9mTJMaXFpa0B7DnBSTGeMNAHsabfJP5CPF02jdlkxy2S4G3j1C78IcfR7aQlVQlnW71H7zd5_7Bn__awbOtoCJIaWImz3CQC2bo5bNUX82J0dUjyKMm_TkwjIo1_8nju6sLMK-CuPZjLosBV_cvt0iGx2U7qJL6uaaA6vzfgKDipUP4Pra-Q
CitedBy_id crossref_primary_10_1186_s41479_023_00110_y
crossref_primary_10_1007_s11739_022_03086_7
crossref_primary_10_1038_s41598_020_62846_7
crossref_primary_10_1371_journal_pone_0236389
crossref_primary_10_1371_journal_pone_0172223
crossref_primary_10_1016_j_toxicon_2024_107705
crossref_primary_10_1016_j_biomaterials_2021_121237
crossref_primary_10_1074_jbc_RA119_012226
crossref_primary_10_1186_s12964_023_01233_x
crossref_primary_10_1038_s41598_019_40346_7
crossref_primary_10_1371_journal_ppat_1005951
crossref_primary_10_1016_j_toxicon_2022_106980
crossref_primary_10_1016_j_bios_2016_12_027
crossref_primary_10_1038_s41598_019_44213_3
crossref_primary_10_1177_1753425916684934
crossref_primary_10_1039_D4NR04860A
crossref_primary_10_1016_j_ajo_2018_03_010
crossref_primary_10_12688_f1000research_9283_1
crossref_primary_10_17116_molgen20193702158
crossref_primary_10_4049_jimmunol_2100711
crossref_primary_10_3390_jof10080579
crossref_primary_10_1128_iai_00471_22
crossref_primary_10_32718_ujvas5_2_04
crossref_primary_10_1128_iai_00154_23
crossref_primary_10_18632_oncotarget_8451
crossref_primary_10_1111_cmi_13015
crossref_primary_10_3389_fmicb_2019_02895
crossref_primary_10_1128_spectrum_04364_22
crossref_primary_10_3389_fimmu_2018_01366
crossref_primary_10_3389_fmicb_2019_00630
crossref_primary_10_1016_j_chom_2016_12_005
crossref_primary_10_1111_1348_0421_13028
crossref_primary_10_1038_cddis_2015_354
crossref_primary_10_1128_spectrum_02912_23
crossref_primary_10_1186_s13287_021_02212_0
crossref_primary_10_3389_fimmu_2024_1414195
crossref_primary_10_3390_pathogens10101322
crossref_primary_10_1172_JCI127144
crossref_primary_10_1089_ars_2019_7964
crossref_primary_10_1128_JB_00439_21
crossref_primary_10_1371_journal_pone_0231101
crossref_primary_10_1128_mBio_01309_21
crossref_primary_10_3389_fmicb_2023_1269843
crossref_primary_10_1016_j_xcrp_2024_102074
crossref_primary_10_1186_s12879_020_4938_7
crossref_primary_10_1128_IAI_00134_16
crossref_primary_10_1016_j_jconrel_2024_09_036
crossref_primary_10_1038_s41598_019_54053_w
crossref_primary_10_1016_j_csbj_2020_12_031
crossref_primary_10_1016_j_inoche_2024_113583
crossref_primary_10_1038_nrm_2016_100
crossref_primary_10_1016_j_aca_2020_01_066
crossref_primary_10_1074_jbc_M116_773176
crossref_primary_10_3389_fncel_2021_680858
crossref_primary_10_3389_fmicb_2021_738047
crossref_primary_10_1038_s41598_019_38901_3
crossref_primary_10_1186_s13059_016_1054_5
crossref_primary_10_1002_1873_3468_12352
crossref_primary_10_1016_j_ijfoodmicro_2023_110318
crossref_primary_10_1007_s00430_021_00701_w
crossref_primary_10_1080_21688370_2024_2434764
crossref_primary_10_3389_fimmu_2018_00052
crossref_primary_10_3390_ijms232113004
crossref_primary_10_1128_Spectrum_00778_21
crossref_primary_10_1021_acsanm_4c06222
crossref_primary_10_1080_21678707_2016_1254618
crossref_primary_10_3390_toxins15100593
crossref_primary_10_3103_S0891416819020022
crossref_primary_10_1093_nar_gkz027
crossref_primary_10_17816_ecogen16326_36
crossref_primary_10_1186_s13287_019_1315_9
crossref_primary_10_1016_j_celrep_2024_114131
crossref_primary_10_1111_jfbc_14267
crossref_primary_10_1155_2020_2863236
crossref_primary_10_1186_s12866_016_0881_6
crossref_primary_10_1038_s41467_019_10222_z
crossref_primary_10_3390_ijms19113555
crossref_primary_10_1016_j_jiac_2020_03_015
crossref_primary_10_1007_s00395_017_0625_2
crossref_primary_10_1007_s00430_022_00731_y
crossref_primary_10_1021_acs_analchem_7b04798
crossref_primary_10_3389_fgene_2020_00323
crossref_primary_10_1016_j_micres_2022_127134
crossref_primary_10_3389_fcimb_2017_00210
crossref_primary_10_1016_j_cyto_2018_07_021
crossref_primary_10_1097_QCO_0000000000000643
crossref_primary_10_2139_ssrn_3648292
crossref_primary_10_3389_fmicb_2019_00311
crossref_primary_10_1016_j_mrrev_2018_04_002
crossref_primary_10_1021_acs_jmedchem_4c00775
crossref_primary_10_1016_j_jhazmat_2016_05_064
crossref_primary_10_3390_fermentation8050212
crossref_primary_10_1164_rccm_201611_2210LE
crossref_primary_10_1128_msphere_00142_23
crossref_primary_10_1016_j_jhazmat_2022_128605
crossref_primary_10_1080_21655979_2016_1234544
crossref_primary_10_3389_fimmu_2020_00814
crossref_primary_10_1159_000517855
crossref_primary_10_1016_j_chemosphere_2018_05_112
crossref_primary_10_3389_fcimb_2022_886901
crossref_primary_10_1007_s00418_020_01871_z
crossref_primary_10_1080_15384101_2019_1610241
Cites_doi 10.1038/nature03442
10.1016/j.febslet.2008.04.023
10.1128/iai.64.9.3772-3777.1996
10.1093/infdis/jit008
10.1093/mutage/gel032
10.1096/fj.02-0752rev
10.1128/JVI.00318-09
10.1128/IAI.73.10.6479-6487.2005
10.1128/JB.185.23.6815-6825.2003
10.1074/jbc.C300117200
10.1046/j.1365-2249.2000.01336.x
10.1086/591708
10.1073/pnas.1100600108
10.1128/IAI.00815-10
10.1016/j.dnarep.2014.03.002
10.1046/j.1365-2958.1996.425954.x
10.4049/jimmunol.171.5.2354
10.1073/pnas.1002175107
10.1128/JVI.00358-08
10.1128/IAI.72.5.2521-2527.2004
10.1016/S0140-6736(09)61114-4
10.1165/rcmb.2009-0047TR
10.1146/annurev.mi.47.100193.000513
10.1164/ajrccm.161.6.9806158
10.1074/jbc.C100466200
10.1073/pnas.0603779103
10.1128/CMR.00058-05
10.1093/jac/dkq480
10.1165/rcmb.2007-0328OC
10.1371/journal.pone.0026587
10.1093/nar/gkn302
10.1086/322021
10.1128/JB.00813-07
10.1016/j.vaccine.2010.05.030
10.1128/AAC.00148-13
10.1128/iai.55.5.1184-1189.1987
10.1038/sj.emboj.7601446
10.3201/eid1907.121830
10.1073/pnas.1100959108
10.1016/j.chom.2013.05.010
10.1111/j.1523-5378.2010.00749.x
10.1186/1465-9921-8-3
10.1086/315658
10.1093/cid/cit640
10.1016/S0006-2952(03)00510-0
10.1128/IAI.00575-08
10.1128/IAI.72.2.1116-1125.2004
10.1128/MCB.01476-09
10.1016/j.molcel.2006.05.023
10.1086/340400
10.3109/10408449709021617
10.1086/424596
10.1128/JB.183.10.3108-3116.2001
10.1086/378675
10.4161/hv.7.10.16794
10.1073/pnas.94.25.13588
10.1128/JB.01517-07
10.4161/cc.9.2.10475
10.1160/TH04-12-0822
10.1128/AAC.43.10.2484
10.1269/jrr.07096
10.1016/j.dnarep.2007.02.006
10.1007/s10753-010-9255-7
10.1007/s004180050317
10.1016/S1097-2765(01)00419-1
10.1093/infdis/142.6.923
10.1128/iai.65.4.1237-1244.1997
10.1128/IAI.72.9.4940-4947.2004
10.1093/nar/gkt304
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jun 30, 2015
Copyright_xml – notice: Copyright National Academy of Sciences Jun 30, 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1424144112
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
Bacteriology Abstracts (Microbiology B)

CrossRef
MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate S. pneumoniae induces DNA damage and apoptosis
EISSN 1091-6490
EndPage E3430
ExternalDocumentID PMC4491788
3738688381
26080406
10_1073_pnas_1424144112
112_26_E3421
US201600201051
Genre Journal Article
Feature
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P30 ES002109
– fundername: NIEHS NIH HHS
  grantid: T32 ES007020
– fundername: NCI NIH HHS
  grantid: P01 CA026731
– fundername: National Research Foundation-Prime Minister's office, Republic of Singapore (NRF)
  grantid: S920270
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c495t-8d580eea2c5fd9402a2c5a058c4000d5cbba4441d74d2565a0de28627673e4733
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:09:52 EDT 2025
Thu Sep 04 17:42:47 EDT 2025
Fri Sep 05 00:39:52 EDT 2025
Fri Sep 05 04:54:15 EDT 2025
Mon Jun 30 08:26:29 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Tue Jul 01 01:53:28 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Wed Nov 11 00:29:41 EST 2020
Wed Dec 27 19:13:50 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Ku80
DNA damage
γH2AX
hydrogen peroxide
Streptococcus pneumoniae
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-8d580eea2c5fd9402a2c5a058c4000d5cbba4441d74d2565a0de28627673e4733
Notes http://dx.doi.org/10.1073/pnas.1424144112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: P.R., V.T.C., and B.P.E. designed research; P.R., M.P., I.J.J.T., N.L., S.A., and F.H. performed research; F.H. and J.K. contributed new reagents/analytic tools; P.R., N.L., V.T.C., and B.P.E. analyzed data; and P.R. and B.P.E. wrote the paper.
Edited by Hasan Yesilkaya, University of Leicester, Leicester, United Kingdom, and accepted by the Editorial Board May 11, 2015 (received for review December 17, 2014)
PMID 26080406
PQID 1695033691
PQPubID 42026
ParticipantIDs pnas_primary_112_26_E3421
pubmed_primary_26080406
proquest_miscellaneous_1693182898
proquest_miscellaneous_1709170984
proquest_miscellaneous_1817827001
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4491788
proquest_journals_1695033691
crossref_primary_10_1073_pnas_1424144112
fao_agris_US201600201051
crossref_citationtrail_10_1073_pnas_1424144112
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-30
PublicationDateYYYYMMDD 2015-06-30
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
Wright DT (e_1_3_3_68_2) 1994; 102
e_1_3_3_69_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
N’Guessan PD (e_1_3_3_25_2) 2005; 94
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
8751928 - Infect Immun. 1996 Sep;64(9):3772-7
12832285 - FASEB J. 2003 Jul;17(10):1195-214
19880020 - Lancet. 2009 Oct 31;374(9700):1543-56
24680221 - DNA Repair (Amst). 2014 Jun;18:31-43
12697768 - J Biol Chem. 2003 May 30;278(22):19579-82
16113818 - Thromb Haemost. 2005 Aug;94(2):295-303
14617646 - J Bacteriol. 2003 Dec;185(23):6815-25
19339345 - J Virol. 2009 Jun;83(12):6269-78
7462701 - J Infect Dis. 1980 Dec;142(6):923-33
9391070 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13588-93
19738160 - Am J Respir Cell Mol Biol. 2010 Jul;43(1):5-16
8820650 - Mol Microbiol. 1996 Feb;19(4):803-13
16177320 - Infect Immun. 2005 Oct;73(10):6479-87
21896770 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9
20479123 - Mol Cell Biol. 2010 Jul;30(14):3582-95
18663006 - Infect Immun. 2008 Oct;76(10):4405-13
11571274 - J Biol Chem. 2001 Nov 9;276(45):42462-7
16870698 - Mutagenesis. 2006 Jul;21(4):225-36
11779493 - Mol Cell. 2001 Dec;8(6):1163-74
7903033 - Annu Rev Microbiol. 1993;47:89-115
20956573 - Infect Immun. 2011 Jan;79(1):75-87
9119457 - Infect Immun. 1997 Apr;65(4):1237-44
11012619 - Clin Exp Immunol. 2000 Oct;122(1):61-6
23877681 - Antimicrob Agents Chemother. 2013 Oct;57(10):4825-30
21193476 - J Antimicrob Chemother. 2011 Mar;66(3):487-93
23768498 - Cell Host Microbe. 2013 Jun 12;13(6):746-58
15321985 - Infect Immun. 2004 Sep;72(9):4940-7
7705313 - Environ Health Perspect. 1994 Dec;102 Suppl 10:85-90
20872058 - Inflammation. 2011 Oct;34(5):471-86
21941097 - Hum Vaccin. 2011 Oct;7(10):1012-8
17257395 - Respir Res. 2007;8:3
14742559 - Infect Immun. 2004 Feb;72(2):1116-25
10508029 - Antimicrob Agents Chemother. 1999 Oct;43(10):2484-92
15102759 - Infect Immun. 2004 May;72(5):2521-7
12928382 - J Immunol. 2003 Sep 1;171(5):2354-65
23620287 - Nucleic Acids Res. 2013 Jul;41(12):6109-18
10882622 - J Infect Dis. 2000 Jul;182(1):347-50
9860253 - Histochem Cell Biol. 1998 Dec;110(6):553-8
15478073 - J Infect Dis. 2004 Nov 1;190(9):1661-9
18483419 - Am J Respir Cell Mol Biol. 2008 Nov;39(5):522-9
17631628 - J Bacteriol. 2007 Sep;189(18):6532-9
18492718 - Nucleic Acids Res. 2008 Jun;36(11):3781-90
14555233 - Biochem Pharmacol. 2003 Oct 15;66(8):1547-54
3552992 - Infect Immun. 1987 May;55(5):1184-9
20046100 - Cell Cycle. 2010 Jan 15;9(2):389-97
20402812 - Helicobacter. 2010 Apr;15(2):98-107
23303809 - J Infect Dis. 2013 Apr;207(7):1135-43
23763847 - Emerg Infect Dis. 2013 Jul;19(7):1074-83
18439913 - FEBS Lett. 2008 May 28;582(12):1672-8
11325939 - J Bacteriol. 2001 May;183(10):3108-16
12032897 - Clin Infect Dis. 2002 Jun 15;34(12):1613-20
24065334 - Clin Infect Dis. 2013 Dec;57(12):1722-30
16818236 - Mol Cell. 2006 Jul 7;23(1):121-32
18463154 - J Virol. 2008 Aug;82(15):7379-87
17363343 - DNA Repair (Amst). 2007 Jul 1;6(7):923-35
10852786 - Am J Respir Crit Care Med. 2000 Jun;161(6):2043-50
16847087 - Clin Microbiol Rev. 2006 Jul;19(3):571-82
14551881 - J Infect Dis. 2003 Oct 15;188(8):1119-31
9099517 - Crit Rev Toxicol. 1997 Mar;27(2):155-74
17124492 - EMBO J. 2006 Dec 13;25(24):5775-82
18403903 - J Radiat Res. 2008 Jul;49(4):399-407
11443554 - J Infect Dis. 2001 Aug 1;184(3):292-300
18710327 - J Infect Dis. 2008 Oct 1;198(7):962-70
21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5
18065543 - J Bacteriol. 2008 Feb;190(4):1184-9
20576535 - Vaccine. 2010 Jul 12;28(31):4955-60
15758953 - Nature. 2005 Mar 31;434(7033):605-11
16788066 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9891-6
22028914 - PLoS One. 2011;6(10):e26587
20351298 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5
References_xml – ident: e_1_3_3_16_2
  doi: 10.1038/nature03442
– ident: e_1_3_3_53_2
  doi: 10.1016/j.febslet.2008.04.023
– ident: e_1_3_3_54_2
  doi: 10.1128/iai.64.9.3772-3777.1996
– ident: e_1_3_3_44_2
  doi: 10.1093/infdis/jit008
– ident: e_1_3_3_9_2
  doi: 10.1093/mutage/gel032
– ident: e_1_3_3_10_2
  doi: 10.1096/fj.02-0752rev
– ident: e_1_3_3_58_2
  doi: 10.1128/JVI.00318-09
– ident: e_1_3_3_4_2
  doi: 10.1128/IAI.73.10.6479-6487.2005
– ident: e_1_3_3_69_2
  doi: 10.1128/JB.185.23.6815-6825.2003
– ident: e_1_3_3_13_2
  doi: 10.1074/jbc.C300117200
– ident: e_1_3_3_26_2
  doi: 10.1046/j.1365-2249.2000.01336.x
– ident: e_1_3_3_45_2
  doi: 10.1086/591708
– volume: 102
  start-page: 85
  year: 1994
  ident: e_1_3_3_68_2
  article-title: Interactions of oxygen radicals with airway epithelium
  publication-title: Environ Health Perspect
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.1100600108
– ident: e_1_3_3_22_2
  doi: 10.1128/IAI.00815-10
– ident: e_1_3_3_48_2
  doi: 10.1016/j.dnarep.2014.03.002
– ident: e_1_3_3_28_2
  doi: 10.1046/j.1365-2958.1996.425954.x
– ident: e_1_3_3_27_2
  doi: 10.4049/jimmunol.171.5.2354
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.1002175107
– ident: e_1_3_3_60_2
  doi: 10.1128/JVI.00358-08
– ident: e_1_3_3_49_2
  doi: 10.1128/IAI.72.5.2521-2527.2004
– ident: e_1_3_3_2_2
  doi: 10.1016/S0140-6736(09)61114-4
– ident: e_1_3_3_8_2
  doi: 10.1165/rcmb.2009-0047TR
– ident: e_1_3_3_64_2
  doi: 10.1146/annurev.mi.47.100193.000513
– ident: e_1_3_3_3_2
  doi: 10.1164/ajrccm.161.6.9806158
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.C100466200
– ident: e_1_3_3_61_2
  doi: 10.1073/pnas.0603779103
– ident: e_1_3_3_1_2
  doi: 10.1128/CMR.00058-05
– ident: e_1_3_3_46_2
  doi: 10.1093/jac/dkq480
– ident: e_1_3_3_7_2
  doi: 10.1165/rcmb.2007-0328OC
– ident: e_1_3_3_55_2
  doi: 10.1371/journal.pone.0026587
– ident: e_1_3_3_29_2
  doi: 10.1093/nar/gkn302
– ident: e_1_3_3_6_2
  doi: 10.1086/322021
– ident: e_1_3_3_52_2
  doi: 10.1128/JB.00813-07
– ident: e_1_3_3_43_2
  doi: 10.1016/j.vaccine.2010.05.030
– ident: e_1_3_3_19_2
  doi: 10.1128/AAC.00148-13
– ident: e_1_3_3_39_2
  doi: 10.1128/iai.55.5.1184-1189.1987
– ident: e_1_3_3_62_2
  doi: 10.1038/sj.emboj.7601446
– ident: e_1_3_3_65_2
  doi: 10.3201/eid1907.121830
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.1100959108
– ident: e_1_3_3_33_2
  doi: 10.1016/j.chom.2013.05.010
– ident: e_1_3_3_38_2
  doi: 10.1111/j.1523-5378.2010.00749.x
– ident: e_1_3_3_5_2
  doi: 10.1186/1465-9921-8-3
– ident: e_1_3_3_67_2
  doi: 10.1086/315658
– ident: e_1_3_3_66_2
  doi: 10.1093/cid/cit640
– ident: e_1_3_3_11_2
  doi: 10.1016/S0006-2952(03)00510-0
– ident: e_1_3_3_21_2
  doi: 10.1128/IAI.00575-08
– ident: e_1_3_3_50_2
  doi: 10.1128/IAI.72.2.1116-1125.2004
– ident: e_1_3_3_31_2
  doi: 10.1128/MCB.01476-09
– ident: e_1_3_3_63_2
  doi: 10.1016/j.molcel.2006.05.023
– ident: e_1_3_3_47_2
  doi: 10.1086/340400
– ident: e_1_3_3_12_2
  doi: 10.3109/10408449709021617
– ident: e_1_3_3_51_2
  doi: 10.1086/424596
– ident: e_1_3_3_41_2
  doi: 10.1128/JB.183.10.3108-3116.2001
– ident: e_1_3_3_23_2
  doi: 10.1086/378675
– ident: e_1_3_3_42_2
  doi: 10.4161/hv.7.10.16794
– ident: e_1_3_3_56_2
  doi: 10.1073/pnas.94.25.13588
– ident: e_1_3_3_70_2
  doi: 10.1128/JB.01517-07
– ident: e_1_3_3_14_2
  doi: 10.4161/cc.9.2.10475
– volume: 94
  start-page: 295
  year: 2005
  ident: e_1_3_3_25_2
  article-title: Streptococcus pneumoniae R6x induced p38 MAPK and JNK-mediated caspase-dependent apoptosis in human endothelial cells
  publication-title: Thromb Haemost
  doi: 10.1160/TH04-12-0822
– ident: e_1_3_3_34_2
  doi: 10.1128/AAC.43.10.2484
– ident: e_1_3_3_57_2
  doi: 10.1269/jrr.07096
– ident: e_1_3_3_15_2
  doi: 10.1016/j.dnarep.2007.02.006
– ident: e_1_3_3_18_2
  doi: 10.1007/s10753-010-9255-7
– ident: e_1_3_3_36_2
  doi: 10.1007/s004180050317
– ident: e_1_3_3_17_2
  doi: 10.1016/S1097-2765(01)00419-1
– ident: e_1_3_3_59_2
  doi: 10.1093/infdis/142.6.923
– ident: e_1_3_3_40_2
  doi: 10.1128/iai.65.4.1237-1244.1997
– ident: e_1_3_3_24_2
  doi: 10.1128/IAI.72.9.4940-4947.2004
– ident: e_1_3_3_30_2
  doi: 10.1093/nar/gkt304
– reference: 22028914 - PLoS One. 2011;6(10):e26587
– reference: 11779493 - Mol Cell. 2001 Dec;8(6):1163-74
– reference: 17257395 - Respir Res. 2007;8:3
– reference: 18663006 - Infect Immun. 2008 Oct;76(10):4405-13
– reference: 15321985 - Infect Immun. 2004 Sep;72(9):4940-7
– reference: 18403903 - J Radiat Res. 2008 Jul;49(4):399-407
– reference: 23303809 - J Infect Dis. 2013 Apr;207(7):1135-43
– reference: 17124492 - EMBO J. 2006 Dec 13;25(24):5775-82
– reference: 11325939 - J Bacteriol. 2001 May;183(10):3108-16
– reference: 18463154 - J Virol. 2008 Aug;82(15):7379-87
– reference: 11012619 - Clin Exp Immunol. 2000 Oct;122(1):61-6
– reference: 16177320 - Infect Immun. 2005 Oct;73(10):6479-87
– reference: 24065334 - Clin Infect Dis. 2013 Dec;57(12):1722-30
– reference: 15478073 - J Infect Dis. 2004 Nov 1;190(9):1661-9
– reference: 10508029 - Antimicrob Agents Chemother. 1999 Oct;43(10):2484-92
– reference: 10882622 - J Infect Dis. 2000 Jul;182(1):347-50
– reference: 12928382 - J Immunol. 2003 Sep 1;171(5):2354-65
– reference: 16113818 - Thromb Haemost. 2005 Aug;94(2):295-303
– reference: 23620287 - Nucleic Acids Res. 2013 Jul;41(12):6109-18
– reference: 3552992 - Infect Immun. 1987 May;55(5):1184-9
– reference: 16818236 - Mol Cell. 2006 Jul 7;23(1):121-32
– reference: 20046100 - Cell Cycle. 2010 Jan 15;9(2):389-97
– reference: 20479123 - Mol Cell Biol. 2010 Jul;30(14):3582-95
– reference: 14742559 - Infect Immun. 2004 Feb;72(2):1116-25
– reference: 20872058 - Inflammation. 2011 Oct;34(5):471-86
– reference: 11571274 - J Biol Chem. 2001 Nov 9;276(45):42462-7
– reference: 19738160 - Am J Respir Cell Mol Biol. 2010 Jul;43(1):5-16
– reference: 20956573 - Infect Immun. 2011 Jan;79(1):75-87
– reference: 18439913 - FEBS Lett. 2008 May 28;582(12):1672-8
– reference: 12832285 - FASEB J. 2003 Jul;17(10):1195-214
– reference: 9099517 - Crit Rev Toxicol. 1997 Mar;27(2):155-74
– reference: 12032897 - Clin Infect Dis. 2002 Jun 15;34(12):1613-20
– reference: 7462701 - J Infect Dis. 1980 Dec;142(6):923-33
– reference: 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5
– reference: 23768498 - Cell Host Microbe. 2013 Jun 12;13(6):746-58
– reference: 20576535 - Vaccine. 2010 Jul 12;28(31):4955-60
– reference: 9391070 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13588-93
– reference: 9860253 - Histochem Cell Biol. 1998 Dec;110(6):553-8
– reference: 12697768 - J Biol Chem. 2003 May 30;278(22):19579-82
– reference: 8751928 - Infect Immun. 1996 Sep;64(9):3772-7
– reference: 20351298 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5
– reference: 19880020 - Lancet. 2009 Oct 31;374(9700):1543-56
– reference: 9119457 - Infect Immun. 1997 Apr;65(4):1237-44
– reference: 21896770 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9
– reference: 23877681 - Antimicrob Agents Chemother. 2013 Oct;57(10):4825-30
– reference: 14555233 - Biochem Pharmacol. 2003 Oct 15;66(8):1547-54
– reference: 17363343 - DNA Repair (Amst). 2007 Jul 1;6(7):923-35
– reference: 20402812 - Helicobacter. 2010 Apr;15(2):98-107
– reference: 16847087 - Clin Microbiol Rev. 2006 Jul;19(3):571-82
– reference: 16788066 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9891-6
– reference: 23763847 - Emerg Infect Dis. 2013 Jul;19(7):1074-83
– reference: 16870698 - Mutagenesis. 2006 Jul;21(4):225-36
– reference: 17631628 - J Bacteriol. 2007 Sep;189(18):6532-9
– reference: 14617646 - J Bacteriol. 2003 Dec;185(23):6815-25
– reference: 18483419 - Am J Respir Cell Mol Biol. 2008 Nov;39(5):522-9
– reference: 24680221 - DNA Repair (Amst). 2014 Jun;18:31-43
– reference: 15102759 - Infect Immun. 2004 May;72(5):2521-7
– reference: 19339345 - J Virol. 2009 Jun;83(12):6269-78
– reference: 15758953 - Nature. 2005 Mar 31;434(7033):605-11
– reference: 18492718 - Nucleic Acids Res. 2008 Jun;36(11):3781-90
– reference: 11443554 - J Infect Dis. 2001 Aug 1;184(3):292-300
– reference: 10852786 - Am J Respir Crit Care Med. 2000 Jun;161(6):2043-50
– reference: 21193476 - J Antimicrob Chemother. 2011 Mar;66(3):487-93
– reference: 7705313 - Environ Health Perspect. 1994 Dec;102 Suppl 10:85-90
– reference: 14551881 - J Infect Dis. 2003 Oct 15;188(8):1119-31
– reference: 7903033 - Annu Rev Microbiol. 1993;47:89-115
– reference: 8820650 - Mol Microbiol. 1996 Feb;19(4):803-13
– reference: 18065543 - J Bacteriol. 2008 Feb;190(4):1184-9
– reference: 21941097 - Hum Vaccin. 2011 Oct;7(10):1012-8
– reference: 18710327 - J Infect Dis. 2008 Oct 1;198(7):962-70
SSID ssj0009580
Score 2.5154374
Snippet Significance Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines...
Streptococcus pneumoniae is the most common cause of pneumonia, a leading cause of death globally. Limitations in antibiotic efficacy and vaccines call...
Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E3421
SubjectTerms Animals
antibiotics
Apoptosis
Biological Sciences
Cells
cytotoxicity
death
Deoxyribonucleic acid
DNA
DNA Damage
DNA Repair
Epithelial Cells - pathology
Female
genes
Genotoxicity
Gram-positive bacteria
host-pathogen relationships
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Ku80
Lungs
Mice
Mice, Inbred BALB C
pathogenicity
PNAS Plus
pneumonia
Pulmonary Alveoli - cytology
Pulmonary Alveoli - metabolism
Streptococcus
Streptococcus pneumoniae
Streptococcus pneumoniae - metabolism
Streptococcus pneumoniae - pathogenicity
vaccines
Virulence
γH2AX
Title Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells
URI http://www.pnas.org/content/112/26/E3421.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26080406
https://www.proquest.com/docview/1695033691
https://www.proquest.com/docview/1693182898
https://www.proquest.com/docview/1709170984
https://www.proquest.com/docview/1817827001
https://pubmed.ncbi.nlm.nih.gov/PMC4491788
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeOEFMb5WGMhIPAxVKYnjxM7jBJsmNJUJWmlvkeO4a6QuqZpGAv47_jPu4iRNx6iAh0RRfLUT3y93Z_c-CHkrtAi01qGTCpE4XEaBk3hq5jCG_DeJAgL0thiH51P-6Sq42tv72fNaqtbJSP-4M67kf7gK94CvGCX7D5ztOoUbcA38hTNwGM5_xWP8S3m5LkCm6aocLnNTwdCZMsMSjUHcUZ1_T1fFNfphmVXxLUsNlomo41jA5vw4Phmm6ga9duqUrcsCOsMEJVk-XFQYjGsWi7Jvvl526q5snQvG7W7iySY2pREY5dAZXo43lY6_2NLXlytVzlXeD7zGMvdN5JCuOit_ouy-LkZYVXBkHQgvMqsZ-nsWXtA62LUuHTuerC-sGShQbkOsR8bKZzBvnJDbCqOdAPdYD6msL49PfW4DsH_TFCDasLxxrsoRBvvhurLpZisn9_hzfDa9uIgnp1eT7VZrA2DNVCl9DP6_zwSYb-2GUZf3WdooqOZd2uxSwn9_a-wtw-jeTBWYbhdI7lr63Pbg7ZlEk0fkYbOWoScWmAdkz-SPyUE7xfS4SWn-7gkxW0ilG6TSFqm0RSptkUobpNJ1QQGp1CKVAlJph1Sa5RSRSmukPiXTs9PJh3OnKfDhaFiXrx2ZwuwYo5gOZmnEXYZXyg2kBs3ipoFOEsVhclLBUzDNoSk1DJbgIhS-4cL3n5H9vMjNIaGgJ1PPVVGomebJLIhcPlM8SWehcBPJvQEZtbMb6yb7PRZhWcS1F4bwY5zreMOOATnufrC0iV_-THoI7IrVNXws8fQrw6SNLnqZBDDsoCbuevBYzMK4huWAHLWMjRuhAr2GEToWhBE0v-maQeTjPKrcFFVNA5qYyUjuoBHwpcAh-Q4a6cH6AB1PBuS5xVP3oCyEpSQY-wMitpDWEWBa-u2WPJvX6ek5h5GlfLH79V6SBxvJcET216vKvAL7fp28rr-gX6hH-v8
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streptococcus+pneumoniae+secretes+hydrogen+peroxide+leading+to+DNA+damage+and+apoptosis+in+lung+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rai%2C+Prashant&rft.au=Parrish%2C+Marcus&rft.au=Tay%2C+Ian+Jun+Jie&rft.au=Li%2C+Na&rft.date=2015-06-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=26&rft.spage=E3421&rft_id=info:doi/10.1073%2Fpnas.1424144112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3738688381
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F26.cover.gif