An Essential Role of Antibodies in the Control of Chikungunya Virus Infection
In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be crucial during CHIKV infection in both humans and mice, their exact role in the control of CHIKV infection remains unclear. In this study, wild-...
Saved in:
Published in | The Journal of immunology (1950) Vol. 190; no. 12; pp. 6295 - 6302 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AAI
15.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1767 1550-6606 1550-6606 |
DOI | 10.4049/jimmunol.1300304 |
Cover
Abstract | In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be crucial during CHIKV infection in both humans and mice, their exact role in the control of CHIKV infection remains unclear. In this study, wild-type (WT), CD4−/−, and B cell (μMT) knockout mice were infected with CHIKV. Sera were taken at different days postinfection and measured for anti-CHIKV Ab levels. Isotype and neutralizing capacity of these Abs were assessed in vitro, and specific linear epitopes were mapped. Viremia in CHIKV-infected μMT mice persisted for more than a year, indicating a direct role for B cells in mediating CHIKV clearance. These animals exhibited a more severe disease than WT mice during the acute phase. Characterization of CHIKV-specific Abs revealed that anti-CHIKV Abs were elicited early and targeted epitopes mainly at the C terminus of the virus E2 glycoprotein. Furthermore, CD4−/− mice could still control CHIKV infection despite having lower anti-CHIKV Ab levels with reduced neutralizing capacity. Lastly, pre-existing natural Abs in the sera of normal WT mice recognized CHIKV and were able to partially inhibit CHIKV. Taken together, natural and CHIKV infection–induced specific Abs are essential for controlling CHIKV infections. |
---|---|
AbstractList | In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be crucial during CHIKV infection in both humans and mice, their exact role in the control of CHIKV infection remains unclear. In this study, wild-type (WT), CD4-/-, and B cell ( mu MT) knockout mice were infected with CHIKV. Sera were taken at different days postinfection and measured for anti-CHIKV Ab levels. Isotype and neutralizing capacity of these Abs were assessed in vitro, and specific linear epitopes were mapped. Viremia in CHIKV-infected mu MT mice persisted for more than a year, indicating a direct role for B cells in mediating CHIKV clearance. These animals exhibited a more severe disease than WT mice during the acute phase. Characterization of CHIKV-specific Abs revealed that anti-CHIKV Abs were elicited early and targeted epitopes mainly at the C terminus of the virus E2 glycoprotein. Furthermore, CD4-/- mice could still control CHIKV infection despite having lower anti-CHIKV Ab levels with reduced neutralizing capacity. Lastly, pre-existing natural Abs in the sera of normal WT mice recognized CHIKV and were able to partially inhibit CHIKV. Taken together, natural and CHIKV infection-induced specific Abs are essential for controlling CHIKV infections. In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be crucial during CHIKV infection in both humans and mice, their exact role in the control of CHIKV infection remains unclear. In this study, wild-type (WT), CD4(-/-), and B cell (μMT) knockout mice were infected with CHIKV. Sera were taken at different days postinfection and measured for anti-CHIKV Ab levels. Isotype and neutralizing capacity of these Abs were assessed in vitro, and specific linear epitopes were mapped. Viremia in CHIKV-infected μMT mice persisted for more than a year, indicating a direct role for B cells in mediating CHIKV clearance. These animals exhibited a more severe disease than WT mice during the acute phase. Characterization of CHIKV-specific Abs revealed that anti-CHIKV Abs were elicited early and targeted epitopes mainly at the C terminus of the virus E2 glycoprotein. Furthermore, CD4(-/-) mice could still control CHIKV infection despite having lower anti-CHIKV Ab levels with reduced neutralizing capacity. Lastly, pre-existing natural Abs in the sera of normal WT mice recognized CHIKV and were able to partially inhibit CHIKV. Taken together, natural and CHIKV infection-induced specific Abs are essential for controlling CHIKV infections.In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be crucial during CHIKV infection in both humans and mice, their exact role in the control of CHIKV infection remains unclear. In this study, wild-type (WT), CD4(-/-), and B cell (μMT) knockout mice were infected with CHIKV. Sera were taken at different days postinfection and measured for anti-CHIKV Ab levels. Isotype and neutralizing capacity of these Abs were assessed in vitro, and specific linear epitopes were mapped. Viremia in CHIKV-infected μMT mice persisted for more than a year, indicating a direct role for B cells in mediating CHIKV clearance. These animals exhibited a more severe disease than WT mice during the acute phase. Characterization of CHIKV-specific Abs revealed that anti-CHIKV Abs were elicited early and targeted epitopes mainly at the C terminus of the virus E2 glycoprotein. Furthermore, CD4(-/-) mice could still control CHIKV infection despite having lower anti-CHIKV Ab levels with reduced neutralizing capacity. Lastly, pre-existing natural Abs in the sera of normal WT mice recognized CHIKV and were able to partially inhibit CHIKV. Taken together, natural and CHIKV infection-induced specific Abs are essential for controlling CHIKV infections. In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be crucial during CHIKV infection in both humans and mice, their exact role in the control of CHIKV infection remains unclear. In this study, wild-type (WT), CD4(-/-), and B cell (μMT) knockout mice were infected with CHIKV. Sera were taken at different days postinfection and measured for anti-CHIKV Ab levels. Isotype and neutralizing capacity of these Abs were assessed in vitro, and specific linear epitopes were mapped. Viremia in CHIKV-infected μMT mice persisted for more than a year, indicating a direct role for B cells in mediating CHIKV clearance. These animals exhibited a more severe disease than WT mice during the acute phase. Characterization of CHIKV-specific Abs revealed that anti-CHIKV Abs were elicited early and targeted epitopes mainly at the C terminus of the virus E2 glycoprotein. Furthermore, CD4(-/-) mice could still control CHIKV infection despite having lower anti-CHIKV Ab levels with reduced neutralizing capacity. Lastly, pre-existing natural Abs in the sera of normal WT mice recognized CHIKV and were able to partially inhibit CHIKV. Taken together, natural and CHIKV infection-induced specific Abs are essential for controlling CHIKV infections. In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be crucial during CHIKV infection in both humans and mice, their exact role in the control of CHIKV infection remains unclear. In this study, wild-type (WT), CD4−/−, and B cell (μMT) knockout mice were infected with CHIKV. Sera were taken at different days postinfection and measured for anti-CHIKV Ab levels. Isotype and neutralizing capacity of these Abs were assessed in vitro, and specific linear epitopes were mapped. Viremia in CHIKV-infected μMT mice persisted for more than a year, indicating a direct role for B cells in mediating CHIKV clearance. These animals exhibited a more severe disease than WT mice during the acute phase. Characterization of CHIKV-specific Abs revealed that anti-CHIKV Abs were elicited early and targeted epitopes mainly at the C terminus of the virus E2 glycoprotein. Furthermore, CD4−/− mice could still control CHIKV infection despite having lower anti-CHIKV Ab levels with reduced neutralizing capacity. Lastly, pre-existing natural Abs in the sera of normal WT mice recognized CHIKV and were able to partially inhibit CHIKV. Taken together, natural and CHIKV infection–induced specific Abs are essential for controlling CHIKV infections. |
Author | Ng, Lisa F P Lum, Fok-Moon Teo, Teck-Hui Rénia, Laurent Lee, Wendy W L Kam, Yiu-Wing |
Author_xml | – sequence: 1 givenname: Fok-Moon surname: Lum fullname: Lum, Fok-Moon – sequence: 2 givenname: Teck-Hui surname: Teo fullname: Teo, Teck-Hui – sequence: 3 givenname: Wendy W L surname: Lee fullname: Lee, Wendy W L – sequence: 4 givenname: Yiu-Wing surname: Kam fullname: Kam, Yiu-Wing – sequence: 5 givenname: Laurent surname: Rénia fullname: Rénia, Laurent – sequence: 6 givenname: Lisa F P surname: Ng fullname: Ng, Lisa F P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23670192$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFPGzEQha0KVALtvSfkI5elY3vXTi6VoiiFSEFIiPZqeb02MfXaYb0Lyr-vo4S2cKCcLGvee5r3zTE6CDEYhL4QOC-hnHy9d207hOjPCQNgUH5AI1JVUHAO_ACNACgtiODiCB2ndA8AHGj5ER1RxgWQCR2hq2nA85RM6J3y-CZ6g6PF0_ytY-NMwi7gfmXwLIa-i347nK3cryHcDWGj8E_XDQkvgjW6dzF8QodW-WQ-798T9OP7_HZ2WSyvLxaz6bLQ5aTqC8G1NVXFhCqtagidKFvVRDMFY6oYG4taCVqPCRFgxtAwUlvDSss0AV01pmQniOxyh7BWmyflvVx3rlXdRhKQWzTyGY3co8mebzvPeqhb0-hcuVN_fVE5-XIS3ErexUeZWQkiSA442wd08WEwqZetS9p4r4KJQ5KZPOE0t3mHlHFeCSHoVnr671p_9nk-URbwnUB3MaXOWKldr7a085bOv1UYXhn_y-g3yJK5Nw |
CitedBy_id | crossref_primary_10_1128_JVI_02159_15 crossref_primary_10_1128_JVI_00998_15 crossref_primary_10_2217_fvl_15_107 crossref_primary_10_1186_1743_422X_11_183 crossref_primary_10_1016_j_vaccine_2015_05_104 crossref_primary_10_1371_journal_pntd_0002719 crossref_primary_10_1002_cti2_1126 crossref_primary_10_1007_s00705_021_05049_3 crossref_primary_10_1007_s12250_017_4072_x crossref_primary_10_1016_j_celrep_2015_11_043 crossref_primary_10_1080_19420862_2015_1083664 crossref_primary_10_3390_v15071479 crossref_primary_10_1016_j_virs_2022_01_032 crossref_primary_10_15252_emmm_201404459 crossref_primary_10_1080_21505594_2024_2396484 crossref_primary_10_1016_j_jaci_2015_01_039 crossref_primary_10_1371_journal_pone_0209292 crossref_primary_10_4103_0971_5916_176639 crossref_primary_10_1128_JCM_02744_14 crossref_primary_10_5501_wjv_v14_i1_100489 crossref_primary_10_1128_JVI_03453_13 crossref_primary_10_3390_v10040147 crossref_primary_10_1016_j_vaccine_2017_07_065 crossref_primary_10_1111_imm_12799 crossref_primary_10_1016_j_ijid_2020_03_073 crossref_primary_10_3390_microorganisms9050899 crossref_primary_10_1128_JCM_01892_18 crossref_primary_10_1371_journal_pntd_0004163 crossref_primary_10_1038_s41467_023_42330_2 crossref_primary_10_1242_dmm_049804 crossref_primary_10_1038_srep37603 crossref_primary_10_1007_s40475_015_0037_z crossref_primary_10_1016_j_vaccine_2018_10_033 crossref_primary_10_1016_j_celrep_2016_06_076 crossref_primary_10_1016_j_pt_2025_02_004 crossref_primary_10_1371_journal_pone_0208851 crossref_primary_10_1021_acsomega_1c05975 crossref_primary_10_3389_fviro_2021_693439 crossref_primary_10_1093_infdis_jiz658 crossref_primary_10_1371_journal_pntd_0003354 crossref_primary_10_36106_ijsr_6008984 crossref_primary_10_1002_rmv_1876 crossref_primary_10_1371_journal_ppat_1005891 crossref_primary_10_3390_medsci3030064 crossref_primary_10_1089_vbz_2014_1710 crossref_primary_10_3390_ijms241310517 crossref_primary_10_1172_JCI84417 crossref_primary_10_1038_s41598_018_20305_4 crossref_primary_10_1016_j_ymthe_2017_06_017 crossref_primary_10_1146_annurev_immunol_101220_014952 crossref_primary_10_1371_journal_ppat_1003619 crossref_primary_10_3389_fimmu_2020_00695 crossref_primary_10_1002_art_40403 crossref_primary_10_1007_s00335_018_9776_1 crossref_primary_10_1093_infdis_jiw284 crossref_primary_10_1111_imr_12825 crossref_primary_10_1016_j_virol_2014_05_038 crossref_primary_10_1016_j_actatropica_2018_09_003 crossref_primary_10_1093_infdis_jiac066 crossref_primary_10_1056_NEJMra1406035 crossref_primary_10_3390_v15010048 crossref_primary_10_4049_jimmunol_1401833 crossref_primary_10_1371_journal_pone_0171989 crossref_primary_10_1016_j_antiviral_2015_07_002 crossref_primary_10_1126_scitranslmed_aal1333 crossref_primary_10_1128_JVI_02666_13 crossref_primary_10_1080_08820139_2017_1319383 crossref_primary_10_2147_DDDT_S366112 crossref_primary_10_1016_j_cell_2015_10_050 crossref_primary_10_15252_emmm_201810092 crossref_primary_10_1016_j_microb_2023_100018 crossref_primary_10_1128_JVI_01926_14 crossref_primary_10_3389_fimmu_2020_00287 crossref_primary_10_3390_v13122360 crossref_primary_10_1093_infdis_jiw324 crossref_primary_10_1128_mbio_02687_22 crossref_primary_10_1371_journal_pntd_0005637 crossref_primary_10_1016_j_lansea_2023_100269 crossref_primary_10_1016_S1473_3099_22_00226_2 crossref_primary_10_1371_journal_pone_0111305 crossref_primary_10_1371_journal_pntd_0011742 crossref_primary_10_1016_j_jcv_2019_06_001 crossref_primary_10_4236_jbm_2020_85001 crossref_primary_10_1186_s12951_022_01417_6 crossref_primary_10_1016_j_semcdb_2022_12_004 crossref_primary_10_1038_s44321_024_00028_y crossref_primary_10_1038_s41467_018_06227_9 crossref_primary_10_1016_j_chom_2015_06_009 crossref_primary_10_1089_vim_2017_0052 crossref_primary_10_1146_annurev_virology_101416_041808 crossref_primary_10_1371_journal_pntd_0003684 crossref_primary_10_1016_j_humimm_2022_01_006 crossref_primary_10_1371_journal_ppat_1006155 crossref_primary_10_2139_ssrn_3364377 crossref_primary_10_1371_journal_ppat_1008292 crossref_primary_10_1371_journal_pntd_0003445 crossref_primary_10_1371_journal_pntd_0009427 crossref_primary_10_30895_2221_996X_2023_23_1_42_64 crossref_primary_10_3389_fimmu_2023_1129118 crossref_primary_10_3389_fmicb_2020_01297 crossref_primary_10_1371_journal_pone_0108169 crossref_primary_10_1128_JVI_01032_14 crossref_primary_10_1016_j_actatropica_2017_08_007 crossref_primary_10_1016_j_vaccine_2020_01_091 crossref_primary_10_1128_JVI_00816_17 crossref_primary_10_26508_lsa_201900298 crossref_primary_10_1038_s41598_018_19174_8 crossref_primary_10_3389_fcimb_2018_00345 crossref_primary_10_1172_jci_insight_160173 crossref_primary_10_1128_JVI_01122_21 crossref_primary_10_1080_21505594_2024_2355201 crossref_primary_10_1016_j_jviromet_2013_10_015 crossref_primary_10_1038_s41467_021_24906_y crossref_primary_10_1128_mbio_02930_24 crossref_primary_10_1016_j_antiviral_2015_06_009 crossref_primary_10_1099_jgv_0_001644 crossref_primary_10_1007_s11882_017_0680_7 crossref_primary_10_1128_JVI_00909_15 crossref_primary_10_1128_JVI_03418_13 crossref_primary_10_1038_s41426_017_0010_0 crossref_primary_10_1371_journal_pone_0095647 crossref_primary_10_1371_journal_pone_0180415 crossref_primary_10_1007_s13365_015_0372_9 crossref_primary_10_1371_journal_pntd_0002970 crossref_primary_10_1016_j_matcom_2016_12_011 crossref_primary_10_1089_vim_2014_0031 crossref_primary_10_3390_v16071098 crossref_primary_10_4049_jimmunol_1601426 |
Cites_doi | 10.1128/JVI.01780-12 10.1172/JCI40104 10.1038/350423a0 10.1186/1471-2334-9-200 10.1099/vir.0.82858-0 10.1038/nprot.2010.5 10.4269/ajtmh.2007.76.1189 10.1007/s12026-012-8266-x 10.1128/JVI.00956-12 10.1016/j.medmal.2011.12.002 10.4049/jimmunol.0904181 10.1084/jem.20090851 10.1371/journal.ppat.0040029 10.1086/529444 10.4049/jimmunol.1202177 10.1086/600381 10.1128/JVI.02603-09 10.1097/QAD.0b013e328354622a 10.1172/JCI117892 10.1016/S0255-0857(21)02403-8 10.1016/S0022-1759(98)00015-5 10.4103/0028-3886.51289 10.3174/ajnr.A1133 10.1016/j.micinf.2009.09.004 10.1371/journal.ppat.1002322 10.4049/jimmunol.0803706 10.4269/ajtmh.2012.11-0393 10.1002/jcc.20084 10.4103/0971-5916.92618 10.1016/0167-5699(93)90063-Q 10.1002/emmm.201200213 10.1016/j.virol.2011.12.020 10.1093/infdis/jis033 10.1172/JCI63120 10.1371/journal.pntd.0000623 10.1016/S0167-5699(00)01754-0 10.1016/0035-9203(55)90080-8 10.1371/journal.ppat.1002390 10.1086/517537 10.1038/nri3152 10.1016/S0065-2776(08)60692-6 10.1126/science.286.5447.2156 10.1073/pnas.70.2.416 |
ContentType | Journal Article |
Copyright | Copyright © 2013 by The American Association of Immunologists, Inc. 2013 Copyright © 2013 by The American Association of Immunologists, Inc. |
Copyright_xml | – notice: Copyright © 2013 by The American Association of Immunologists, Inc. 2013 Copyright © 2013 by The American Association of Immunologists, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 C1K F1W H94 H95 H97 L.G 5PM ADTOC UNPAY |
DOI | 10.4049/jimmunol.1300304 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 6302 |
ExternalDocumentID | 10.4049/jimmunol.1300304 PMC3677171 23670192 10_4049_jimmunol_1300304 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 0R~ 18M 1KJ 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 79B 85S AARDX AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABOCM ABPPZ ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADIPN ADNWM AENEX AETEA AFHIN AFRAH AHMMS AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS ARBBW BAWUL BCRHZ BTFSW CITATION D0L DIK DU5 E3Z EBS EJD F5P GX1 IH2 K-O KOP KQ8 L7B OCZFY OK1 OWPYF P0W P2P PQQKQ R.V RHI ROX RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XJT XSW XTH YHG AFOSN CGR CUY CVF ECM EIF FRP NPM 7X8 7T5 7U9 C1K F1W H94 H95 H97 L.G 5PM .GJ .HR 3O- ABDPE ABEFU ACVCV ADTOC ADXHL AFFNX AI. AJBYB AJDVS H13 J5H MVM NEJ OHT SKT UNPAY VH1 WHG ZE2 ZGI ZXP |
ID | FETCH-LOGICAL-c495t-76cfe5537a4fad129af5b1c3a082a3387ba72b81170e80d31bfe34f3c10c5de43 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Wed Oct 01 16:05:09 EDT 2025 Tue Sep 30 17:14:49 EDT 2025 Sun Sep 28 06:26:42 EDT 2025 Mon Sep 29 03:52:35 EDT 2025 Thu Apr 03 07:06:20 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Wed Oct 01 06:39:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights This article is distributed under The American Association of Immunologists, Inc., Reuse Terms and Conditions for Author Choice articles. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-76cfe5537a4fad129af5b1c3a082a3387ba72b81170e80d31bfe34f3c10c5de43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 F.-M.L. and T.-H.T. contributed equally to this work. L.R. and L.F.P.N. directed this work equally. |
OpenAccessLink | https://www.jimmunol.org/content/jimmunol/190/12/6295.full.pdf |
PMID | 23670192 |
PQID | 1366577721 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | unpaywall_primary_10_4049_jimmunol_1300304 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3677171 proquest_miscellaneous_1551621291 proquest_miscellaneous_1366577721 pubmed_primary_23670192 crossref_citationtrail_10_4049_jimmunol_1300304 crossref_primary_10_4049_jimmunol_1300304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-15 |
PublicationDateYYYYMMDD | 2013-06-15 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2013 |
Publisher | AAI |
Publisher_xml | – name: AAI |
References | Teo (2025032407074148000_r20) 2013; 190 Swain (2025032407074148000_r33) 2012; 12 Roederer (2025032407074148000_r44) 1995; 95 Powers (2025032407074148000_r7) 2007; 88 Her (2025032407074148000_r13) 2010; 184 Pettersen (2025032407074148000_r28) 2004; 25 Borgherini (2025032407074148000_r3) 2007; 44 Teo (2025032407074148000_r19) 2012; 53 Malvy (2025032407074148000_r34) 2009; 9 Kam (2025032407074148000_r26) 2012; 205 Ochsenbein (2025032407074148000_r37) 1999; 286 Andersson (2025032407074148000_r30) 1973; 70 Herzenberg (2025032407074148000_r36) 1993; 14 Lakshmi (2025032407074148000_r4) 2008; 46 Labadie (2025032407074148000_r14) 2010; 120 Couderc (2025032407074148000_r16) 2008; 4 Kitamura (2025032407074148000_r23) 1991; 350 Her (2025032407074148000_r1) 2009; 11 Werneke (2025032407074148000_r12) 2011; 7 Hertz (2025032407074148000_r43) 2012; 86 Barr (2025032407074148000_r31) 2009; 183 Lee (2025032407074148000_r22) 2011; 7 De Cock (2025032407074148000_r39) 2012; 26 Vitetta (2025032407074148000_r32) 1989; 45 Chandak (2025032407074148000_r5) 2009; 57 Ganesan (2025032407074148000_r6) 2008; 29 Rudd (2025032407074148000_r17) 2012; 86 Ochsenbein (2025032407074148000_r35) 2000; 21 Robinson (2025032407074148000_r2) 1955; 49 Gardner (2025032407074148000_r11) 2012; 425 Kam (2025032407074148000_r24) 2012; 4 Kam (2025032407074148000_r25) 2012; 86 Mayer (2025032407074148000_r38) 2011; 134 Schilte (2025032407074148000_r15) 2010; 207 Renault (2025032407074148000_r8) 2012; 42 Thiboutot (2025032407074148000_r40) 2010; 4 Roy (2025032407074148000_r29) 2010; 5 Gardner (2025032407074148000_r10) 2010; 84 Martin (2025032407074148000_r27) 1998; 212 Chua (2025032407074148000_r9) 2010; 65 Teng (2025032407074148000_r18) 2012; 122 Sergon (2025032407074148000_r42) 2007; 76 Ravi (2025032407074148000_r41) 2006; 24 Couderc (2025032407074148000_r21) 2009; 200 22706007 - AIDS. 2012 Jun 19;26(10):1205-13 18282093 - PLoS Pathog. 2008 Feb 8;4(2):e29 18566010 - AJNR Am J Neuroradiol. 2008 Oct;29(9):1636-7 19572805 - J Infect Dis. 2009 Aug 15;200(4):516-23 10591647 - Science. 1999 Dec 10;286(5447):2156-9 18419449 - Clin Infect Dis. 2008 May 1;46(9):1436-42 20404274 - J Immunol. 2010 May 15;184(10):5903-13 20179353 - J Clin Invest. 2010 Mar;120(3):894-906 9672206 - J Immunol Methods. 1998 Mar 15;212(2):187-92 16687855 - Indian J Med Microbiol. 2006 Apr;24(2):83-4 20436958 - PLoS Negl Trop Dis. 2010;4(4):e623 22028657 - PLoS Pathog. 2011 Oct;7(10):e1002322 22761364 - J Virol. 2012 Sep;86(18):9888-98 20360767 - Nat Protoc. 2010 Apr;5(4):725-38 7738173 - J Clin Invest. 1995 May;95(5):2061-6 21901945 - Med J Malaysia. 2010 Dec;65(4):277-82 22389226 - J Infect Dis. 2012 Apr 1;205(7):1147-54 20123960 - J Exp Med. 2010 Feb 15;207(2):429-42 23160199 - J Clin Invest. 2012 Dec;122(12):4447-60 19747979 - Microbes Infect. 2009 Dec;11(14-15):1165-76 20519386 - J Virol. 2010 Aug;84(16):8021-32 8447936 - Immunol Today. 1993 Feb;14(2):79-83; discussion 88-90 19542370 - J Immunol. 2009 Jul 15;183(2):1005-12 22389221 - EMBO Mol Med. 2012 Apr;4(4):330-43 22418724 - Immunol Res. 2012 Sep;53(1-3):136-47 23209328 - J Immunol. 2013 Jan 1;190(1):259-69 20003320 - BMC Infect Dis. 2009;9:200 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 22305131 - Virology. 2012 Apr 10;425(2):103-12 2665437 - Adv Immunol. 1989;45:1-105 17698645 - J Gen Virol. 2007 Sep;88(Pt 9):2363-77 22280563 - Med Mal Infect. 2012 Mar;42(3):93-101 4568727 - Proc Natl Acad Sci U S A. 1973 Feb;70(2):416-20 17479933 - Clin Infect Dis. 2007 Jun 1;44(11):1401-7 22310809 - Indian J Med Res. 2011 Dec;134(6):739-41 11114423 - Immunol Today. 2000 Dec;21(12):624-30 19439849 - Neurol India. 2009 Mar-Apr;57(2):177-80 22144891 - PLoS Pathog. 2011 Dec;7(12):e1002390 23015702 - J Virol. 2012 Dec;86(23):13005-15 14373834 - Trans R Soc Trop Med Hyg. 1955 Jan;49(1):28-32 22232469 - Am J Trop Med Hyg. 2012 Jan;86(1):171-7 17556634 - Am J Trop Med Hyg. 2007 Jun;76(6):1189-93 22266691 - Nat Rev Immunol. 2012 Feb;12(2):136-48 1901381 - Nature. 1991 Apr 4;350(6317):423-6 |
References_xml | – volume: 86 start-page: 13005 year: 2012 ident: 2025032407074148000_r25 article-title: Longitudinal analysis of the human antibody response to Chikungunya virus infection: implications for serodiagnosis and vaccine development publication-title: J. Virol. doi: 10.1128/JVI.01780-12 – volume: 120 start-page: 894 year: 2010 ident: 2025032407074148000_r14 article-title: Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages publication-title: J. Clin. Invest. doi: 10.1172/JCI40104 – volume: 350 start-page: 423 year: 1991 ident: 2025032407074148000_r23 article-title: A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene publication-title: Nature doi: 10.1038/350423a0 – volume: 9 start-page: 200 year: 2009 ident: 2025032407074148000_r34 article-title: Destructive arthritis in a patient with chikungunya virus infection with persistent specific IgM antibodies publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-9-200 – volume: 88 start-page: 2363 year: 2007 ident: 2025032407074148000_r7 article-title: Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus publication-title: J. Gen. Virol. doi: 10.1099/vir.0.82858-0 – volume: 5 start-page: 725 year: 2010 ident: 2025032407074148000_r29 article-title: I-TASSER: a unified platform for automated protein structure and function prediction publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.5 – volume: 76 start-page: 1189 year: 2007 ident: 2025032407074148000_r42 article-title: Seroprevalence of Chikungunya virus infection on Grande Comore Island, union of the Comoros, 2005 publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2007.76.1189 – volume: 53 start-page: 136 year: 2012 ident: 2025032407074148000_r19 article-title: Mouse models for Chikungunya virus: deciphering immune mechanisms responsible for disease and pathology publication-title: Immunol. Res. doi: 10.1007/s12026-012-8266-x – volume: 86 start-page: 9888 year: 2012 ident: 2025032407074148000_r17 article-title: Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock publication-title: J. Virol. doi: 10.1128/JVI.00956-12 – volume: 42 start-page: 93 year: 2012 ident: 2025032407074148000_r8 article-title: Epidemiology of Chikungunya infection on Reunion Island, Mayotte, and neighboring countries publication-title: Med. Mal. Infect. doi: 10.1016/j.medmal.2011.12.002 – volume: 184 start-page: 5903 year: 2010 ident: 2025032407074148000_r13 article-title: Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response publication-title: J. Immunol. doi: 10.4049/jimmunol.0904181 – volume: 207 start-page: 429 year: 2010 ident: 2025032407074148000_r15 article-title: Type I IFN controls chikungunya virus via its action on nonhematopoietic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20090851 – volume: 4 start-page: e29 year: 2008 ident: 2025032407074148000_r16 article-title: A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0040029 – volume: 46 start-page: 1436 year: 2008 ident: 2025032407074148000_r4 article-title: Clinical features and molecular diagnosis of Chikungunya fever from South India publication-title: Clin. Infect. Dis. doi: 10.1086/529444 – volume: 190 start-page: 259 year: 2013 ident: 2025032407074148000_r20 article-title: A pathogenic role for CD4+ T cells during Chikungunya virus infection in mice publication-title: J. Immunol. doi: 10.4049/jimmunol.1202177 – volume: 65 start-page: 277 year: 2010 ident: 2025032407074148000_r9 article-title: Epidemiology of chikungunya in Malaysia: 2006-2009 publication-title: Med. J. Malaysia – volume: 200 start-page: 516 year: 2009 ident: 2025032407074148000_r21 article-title: Prophylaxis and therapy for Chikungunya virus infection publication-title: J. Infect. Dis. doi: 10.1086/600381 – volume: 84 start-page: 8021 year: 2010 ident: 2025032407074148000_r10 article-title: Chikungunya virus arthritis in adult wild-type mice publication-title: J. Virol. doi: 10.1128/JVI.02603-09 – volume: 26 start-page: 1205 year: 2012 ident: 2025032407074148000_r39 article-title: The evolving epidemiology of HIV/AIDS publication-title: AIDS doi: 10.1097/QAD.0b013e328354622a – volume: 95 start-page: 2061 year: 1995 ident: 2025032407074148000_r44 article-title: CD8 naive T cell counts decrease progressively in HIV-infected adults publication-title: J. Clin. Invest. doi: 10.1172/JCI117892 – volume: 24 start-page: 83 year: 2006 ident: 2025032407074148000_r41 article-title: Re-emergence of chikungunya virus in India publication-title: Indian J. Med. Microbiol. doi: 10.1016/S0255-0857(21)02403-8 – volume: 212 start-page: 187 year: 1998 ident: 2025032407074148000_r27 article-title: The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice publication-title: J. Immunol. Methods doi: 10.1016/S0022-1759(98)00015-5 – volume: 57 start-page: 177 year: 2009 ident: 2025032407074148000_r5 article-title: Neurological complications of Chikungunya virus infection publication-title: Neurol. India doi: 10.4103/0028-3886.51289 – volume: 29 start-page: 1636 year: 2008 ident: 2025032407074148000_r6 article-title: Chikungunya encephalomyeloradiculitis: report of 2 cases with neuroimaging and 1 case with autopsy findings publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A1133 – volume: 11 start-page: 1165 year: 2009 ident: 2025032407074148000_r1 article-title: Chikungunya: a bending reality publication-title: Microbes Infect. doi: 10.1016/j.micinf.2009.09.004 – volume: 7 start-page: e1002322 year: 2011 ident: 2025032407074148000_r12 article-title: ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002322 – volume: 183 start-page: 1005 year: 2009 ident: 2025032407074148000_r31 article-title: B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c publication-title: J. Immunol. doi: 10.4049/jimmunol.0803706 – volume: 86 start-page: 171 year: 2012 ident: 2025032407074148000_r43 article-title: Chikungunya and dengue fever among hospitalized febrile patients in northern Tanzania publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2012.11-0393 – volume: 25 start-page: 1605 year: 2004 ident: 2025032407074148000_r28 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 134 start-page: 739 year: 2011 ident: 2025032407074148000_r38 article-title: The evolving Indian AIDS epidemic: hope & challenges of the fourth decade publication-title: Indian J. Med. Res. doi: 10.4103/0971-5916.92618 – volume: 14 start-page: 79 year: 1993 ident: 2025032407074148000_r36 article-title: B-cell lineages exist in the mouse publication-title: Immunol. Today doi: 10.1016/0167-5699(93)90063-Q – volume: 4 start-page: 330 year: 2012 ident: 2025032407074148000_r24 article-title: Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201200213 – volume: 425 start-page: 103 year: 2012 ident: 2025032407074148000_r11 article-title: Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate publication-title: Virology doi: 10.1016/j.virol.2011.12.020 – volume: 205 start-page: 1147 year: 2012 ident: 2025032407074148000_r26 article-title: Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection publication-title: J. Infect. Dis. doi: 10.1093/infdis/jis033 – volume: 122 start-page: 4447 year: 2012 ident: 2025032407074148000_r18 article-title: Viperin restricts chikungunya virus replication and pathology publication-title: J. Clin. Invest. doi: 10.1172/JCI63120 – volume: 4 start-page: e623 year: 2010 ident: 2025032407074148000_r40 article-title: Chikungunya: a potentially emerging epidemic? publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0000623 – volume: 21 start-page: 624 year: 2000 ident: 2025032407074148000_r35 article-title: Natural antibodies and complement link innate and acquired immunity publication-title: Immunol. Today doi: 10.1016/S0167-5699(00)01754-0 – volume: 49 start-page: 28 year: 1955 ident: 2025032407074148000_r2 article-title: An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1016/0035-9203(55)90080-8 – volume: 7 start-page: e1002390 year: 2011 ident: 2025032407074148000_r22 article-title: Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002390 – volume: 44 start-page: 1401 year: 2007 ident: 2025032407074148000_r3 article-title: Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients publication-title: Clin. Infect. Dis. doi: 10.1086/517537 – volume: 12 start-page: 136 year: 2012 ident: 2025032407074148000_r33 article-title: Expanding roles for CD4+ T cells in immunity to viruses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3152 – volume: 45 start-page: 1 year: 1989 ident: 2025032407074148000_r32 article-title: Cellular interactions in the humoral immune response publication-title: Adv. Immunol. doi: 10.1016/S0065-2776(08)60692-6 – volume: 286 start-page: 2156 year: 1999 ident: 2025032407074148000_r37 article-title: Control of early viral and bacterial distribution and disease by natural antibodies publication-title: Science doi: 10.1126/science.286.5447.2156 – volume: 70 start-page: 416 year: 1973 ident: 2025032407074148000_r30 article-title: Induction of immunoglobulin M synthesis and secretion in bone-marrow-derived lymphocytes by locally concentrated concanavalin A publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.70.2.416 – reference: 20404274 - J Immunol. 2010 May 15;184(10):5903-13 – reference: 22761364 - J Virol. 2012 Sep;86(18):9888-98 – reference: 22389221 - EMBO Mol Med. 2012 Apr;4(4):330-43 – reference: 8447936 - Immunol Today. 1993 Feb;14(2):79-83; discussion 88-90 – reference: 20360767 - Nat Protoc. 2010 Apr;5(4):725-38 – reference: 22310809 - Indian J Med Res. 2011 Dec;134(6):739-41 – reference: 23015702 - J Virol. 2012 Dec;86(23):13005-15 – reference: 20123960 - J Exp Med. 2010 Feb 15;207(2):429-42 – reference: 22028657 - PLoS Pathog. 2011 Oct;7(10):e1002322 – reference: 22389226 - J Infect Dis. 2012 Apr 1;205(7):1147-54 – reference: 20436958 - PLoS Negl Trop Dis. 2010;4(4):e623 – reference: 7738173 - J Clin Invest. 1995 May;95(5):2061-6 – reference: 18419449 - Clin Infect Dis. 2008 May 1;46(9):1436-42 – reference: 22266691 - Nat Rev Immunol. 2012 Feb;12(2):136-48 – reference: 22305131 - Virology. 2012 Apr 10;425(2):103-12 – reference: 20179353 - J Clin Invest. 2010 Mar;120(3):894-906 – reference: 4568727 - Proc Natl Acad Sci U S A. 1973 Feb;70(2):416-20 – reference: 22144891 - PLoS Pathog. 2011 Dec;7(12):e1002390 – reference: 20003320 - BMC Infect Dis. 2009;9:200 – reference: 17479933 - Clin Infect Dis. 2007 Jun 1;44(11):1401-7 – reference: 17698645 - J Gen Virol. 2007 Sep;88(Pt 9):2363-77 – reference: 22232469 - Am J Trop Med Hyg. 2012 Jan;86(1):171-7 – reference: 23160199 - J Clin Invest. 2012 Dec;122(12):4447-60 – reference: 18282093 - PLoS Pathog. 2008 Feb 8;4(2):e29 – reference: 19439849 - Neurol India. 2009 Mar-Apr;57(2):177-80 – reference: 1901381 - Nature. 1991 Apr 4;350(6317):423-6 – reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 – reference: 11114423 - Immunol Today. 2000 Dec;21(12):624-30 – reference: 22280563 - Med Mal Infect. 2012 Mar;42(3):93-101 – reference: 19572805 - J Infect Dis. 2009 Aug 15;200(4):516-23 – reference: 22418724 - Immunol Res. 2012 Sep;53(1-3):136-47 – reference: 14373834 - Trans R Soc Trop Med Hyg. 1955 Jan;49(1):28-32 – reference: 2665437 - Adv Immunol. 1989;45:1-105 – reference: 19747979 - Microbes Infect. 2009 Dec;11(14-15):1165-76 – reference: 10591647 - Science. 1999 Dec 10;286(5447):2156-9 – reference: 18566010 - AJNR Am J Neuroradiol. 2008 Oct;29(9):1636-7 – reference: 23209328 - J Immunol. 2013 Jan 1;190(1):259-69 – reference: 20519386 - J Virol. 2010 Aug;84(16):8021-32 – reference: 19542370 - J Immunol. 2009 Jul 15;183(2):1005-12 – reference: 17556634 - Am J Trop Med Hyg. 2007 Jun;76(6):1189-93 – reference: 22706007 - AIDS. 2012 Jun 19;26(10):1205-13 – reference: 9672206 - J Immunol Methods. 1998 Mar 15;212(2):187-92 – reference: 16687855 - Indian J Med Microbiol. 2006 Apr;24(2):83-4 – reference: 21901945 - Med J Malaysia. 2010 Dec;65(4):277-82 |
SSID | ssj0006024 |
Score | 2.4735978 |
Snippet | In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6295 |
SubjectTerms | Alphavirus Infections - immunology Animals Antibodies, Neutralizing - blood Antibodies, Neutralizing - immunology Antibodies, Viral - blood Antibodies, Viral - immunology B-Lymphocytes - immunology Chikungunya Fever Chikungunya virus Female Infectious Disease and Host Response Mice Mice, Inbred C57BL Mice, Knockout |
Title | An Essential Role of Antibodies in the Control of Chikungunya Virus Infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23670192 https://www.proquest.com/docview/1366577721 https://www.proquest.com/docview/1551621291 https://pubmed.ncbi.nlm.nih.gov/PMC3677171 https://www.jimmunol.org/content/jimmunol/190/12/6295.full.pdf |
UnpaywallVersion | publishedVersion |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1550-6606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006024 issn: 0022-1767 databaseCode: KQ8 dateStart: 19980101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1550-6606 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0006024 issn: 0022-1767 databaseCode: DIK dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1550-6606 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0006024 issn: 0022-1767 databaseCode: GX1 dateStart: 19160101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZgEccLguUql4IESFCZTeLEzj5Wq5YK2kVCKe0-RU7iiKqVU7aNUPn1jGPn6BYtCy9RmziX54s94zk-hF4HmcgymthY0SJhLxMM88RLMIHJw-WUOKJknhuf0uHE-zTzZ02sapldsok_JL_-mFfyP1KFfSBXlSX7D5KtLwo74DfIF7YgYdheScY92e2vVfaQWvb-auIEe_A3zlVwYBXDeGLC0XXkxQI-70Jueffb_LxYwwCho7FkW01tEsZ0TQmVRKKLNb0pXWJ2awFhpJmSB_kCj_PGqR_qRdhQJAs8LOYXAn-mQqbb7rReef6scXk2L_C0mkzNWkTJC4F1NmYrN8BhmmCjHl81H2gFJLc1XFJXM2yaqZeSMvt6b1j3wIxRw7p525LBmmjW4t0K2qdfosFkNIrC_ix8u_qBFbmYcsIbppXr6IbLKFVEFx9nTSQQtV2vKiqvHl57s9VNjy7ecld72TNJ9iNrbxdyxbc_-XLZUlvCe-iuEaLV0-C5j64JeYhuagbS7SG6NTaxFQ_QuCetGk2WQpOVZ1aDJmsuLUCTZdCkDrbQZJVosmo0PUSTQT88GWJDtoETsJE3mNEkE75PGPcynoIWyDM_dhLCQUfkhAQs5syNVVqyLQI7JU6cCeJlJHHsxE-FRx6hA5lL8QRZNMgSn2RUBCz1GPNjcexxaA62svBoGnTQUdWJUWIq0StClGUEFqnq9qjq9sh0ewe9q89Y6Sosl7R9VcklgqFS-b-4FHmxhgbKzQjmpHNJG-U4BnXuGNo81rKs71gWOwSLqIPYjpTrBqpU--4ROf9elmyHM5nD4Jrvazz89UWeXuEhn6E7zXf4HB1szgvxArTkTfyyxPhv8RPAKw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Essential+Role+of+Antibodies+in+the+Control+of+Chikungunya+Virus+Infection&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Lum%2C+Fok-Moon&rft.au=Teo%2C+Teck-Hui&rft.au=Lee%2C+Wendy+WL&rft.au=Kam%2C+Yiu-Wing&rft.date=2013-06-15&rft.issn=0022-1767&rft.volume=190&rft.issue=12&rft.spage=6295&rft.epage=6302&rft_id=info:doi/10.4049%2Fjimmunol.1300304&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |