Bayesian k -Means as a “Maximization-Expectation” Algorithm
We introduce a new class of “maximization-expectation” (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue t...
Saved in:
| Published in | Neural computation Vol. 21; no. 4; pp. 1145 - 1172 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.04.2009
MIT Press Journals, The |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0899-7667 1530-888X |
| DOI | 10.1162/neco.2008.12-06-421 |
Cover
| Abstract | We introduce a new class of “maximization-expectation” (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian
-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. |
|---|---|
| AbstractList | We introduce a new class of “maximization-expectation” (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian
-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. [PUBLICATION ABSTRACT] We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. |
| Author | Welling, Max Kurihara, Kenichi |
| Author_xml | – sequence: 1 givenname: Kenichi surname: Kurihara fullname: Kurihara, Kenichi email: kurihara@mi.cs.titech.ac.jp organization: Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan kurihara@mi.cs.titech.ac.jp – sequence: 2 givenname: Max surname: Welling fullname: Welling, Max email: welling@ics.uci.edu organization: Department of Computer Science, University of California, Irvine, CA 92697-3425, U.S.A. welling@ics.uci.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21230872$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19199394$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkd1qFDEYhoNU7Hb1CgQZBD3L9vuSTDI5krbUKrR4ouBZyGQzmjo_azIrbY96IXpzvRIz7vpDUQsJycHzvPl598hOP_SekMcIC0TJ9nvvhgUDqBbIKEgqGN4jMyw50Kqq3u-QGVRaUyWl2iV7KZ0DgEQoH5Bd1Kg112JGXhzaS5-C7YtPBT3ztk-FzaO4uf56Zi9CF67sGIaeHl-svBt_7G-uvxUH7YchhvFj95Dcb2yb_KPtOifvXh6_PXpFT9-cvD46OKVO6HKkyBzwZWmt1MpxJ30DUCPXltdKN66ulXeihLq2AIqjFmpZacCmFrDk05yT55vcVRw-r30aTReS821rez-sk5EKQTFe3QkyECUKITP49BZ4Pqxjnx9hGGLGJOgMPdlC67rzS7OKobPx0vz8wAw82wI2Ods20fYupF8cQ8ahyhebE77hXBxSir75HQVmqtNMdZqpToPMgDS5zmzpW5YLmxLGaEN7h3uycbvwx9Mm8gvDIAwHJiRmi2EOMdm9Cqt_JO3_Jel_Z38HzQ_KJg |
| CODEN | NEUCEB |
| CitedBy_id | crossref_primary_10_3390_a11100151 crossref_primary_10_1016_j_patcog_2014_03_006 crossref_primary_10_1016_j_jspi_2020_05_009 crossref_primary_10_1002_sim_9924 crossref_primary_10_1007_s00500_017_2565_z crossref_primary_10_1016_j_patcog_2020_107783 crossref_primary_10_1007_s41870_024_02279_x crossref_primary_10_1111_eea_13123 crossref_primary_10_1162_NECO_a_00534 crossref_primary_10_1016_j_ijar_2017_11_001 crossref_primary_10_1109_ACCESS_2019_2927593 crossref_primary_10_1007_s10994_023_06491_x crossref_primary_10_1016_j_ijepes_2014_11_029 crossref_primary_10_1038_s41467_020_20753_5 crossref_primary_10_1098_rsta_2022_0149 crossref_primary_10_1109_TMI_2019_2897112 crossref_primary_10_1155_2013_251905 |
| Cites_doi | 10.1145/233269.233324 10.1162/089976600300015088 10.1145/168304.168306 10.1145/312129.312248 |
| ContentType | Journal Article |
| Copyright | 2009 INIST-CNRS Copyright MIT Press Journals Apr 2009 |
| Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright MIT Press Journals Apr 2009 |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7TK 7X8 |
| DOI | 10.1162/neco.2008.12-06-421 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE Neurosciences Abstracts CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Mathematics Applied Sciences Statistics |
| EISSN | 1530-888X |
| EndPage | 1172 |
| ExternalDocumentID | 1666841101 19199394 21230872 10_1162_neco_2008_12_06_421 neco.2008.12-06-421.pdf |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
| GroupedDBID | --- -~X .4S .DC 0R~ 123 36B 4.4 6IK AAJGR AALMD AAPBV AAYOK ABDBF ABDNZ ABIVO ABPTK ACGFO ADIYS AEGXH AENEX AFHIN AIAGR ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CAG COF CS3 DU5 EAP EAS EBC EBD EBS ECS EDO EJD EMB EMK EMOBN EPL EPS EST ESX F5P FEDTE FNEHJ HZ~ H~9 I-F IPLJI JAVBF MCG MINIK MKJ O9- OCL P2P PK0 PQQKQ RMI SV3 TUS WG8 WH7 XJE ZWS 41~ 53G AAFWJ AAYXX ABAZT ABEFU ABJNI ABVLG ACUHS ACYGS ADMLS AMVHM CITATION HVGLF AEILP IQODW CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7TK 7X8 |
| ID | FETCH-LOGICAL-c495t-12c03d5aa697c3c6ef00b139a3b79fcbb7ec450bba00731947d8901fb40d340d3 |
| ISSN | 0899-7667 |
| IngestDate | Thu Sep 04 16:07:46 EDT 2025 Fri Sep 05 13:20:16 EDT 2025 Sat Aug 16 21:42:47 EDT 2025 Mon Jul 21 06:04:34 EDT 2025 Mon Jul 21 09:13:35 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Wed Oct 01 02:03:05 EDT 2025 Fri Oct 27 04:04:41 EDT 2023 Tue Mar 01 17:18:10 EST 2022 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Bayes estimation Data analysis Neural computation Maximization Cluster analysis (statistics) Tree structure Neural network Algorithm Implementation Assignment Tree Data structure Random variable |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c495t-12c03d5aa697c3c6ef00b139a3b79fcbb7ec450bba00731947d8901fb40d340d3 |
| Notes | April, 2009 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19199394 |
| PQID | 211204609 |
| PQPubID | 37252 |
| PageCount | 28 |
| ParticipantIDs | crossref_primary_10_1162_neco_2008_12_06_421 proquest_miscellaneous_20451446 proquest_journals_211204609 crossref_citationtrail_10_1162_neco_2008_12_06_421 pubmed_primary_19199394 mit_journals_necov21i4_302461_2021_11_08_zip_neco_2008_12_06_421 pascalfrancis_primary_21230872 proquest_miscellaneous_67107238 mit_journals_10_1162_neco_2008_12_06_421 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-04-01 |
| PublicationDateYYYYMMDD | 2009-04-01 |
| PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
| PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: Cambridge, MA – name: United States – name: Cambridge |
| PublicationTitle | Neural computation |
| PublicationTitleAlternate | Neural Comput |
| PublicationYear | 2009 |
| Publisher | MIT Press MIT Press Journals, The |
| Publisher_xml | – name: MIT Press – name: MIT Press Journals, The |
| References | B12 Moore A. (B11) 2000 B15 Eppstein D. (B4) 1998 B17 Hamerly G. (B7) 2003; 17 MacEachern S. N. (B9) 1998; 7 Shannon C. E. (B14) 1948; 27 Dasgupta S. (B2) 2000 Verbeek J. (B16) 2003 Attias H. (B1) 2000; 12 Griffiths T. (B6) 2006; 18 B8 Moore A. (B10) 1998; 10 Ghahramani Z. (B5) 2000; 12 Pelleg D. (B13) 2000 Elkan C. (B3) 2003 |
| References_xml | – start-page: 147 volume-title: Proc. 20 International Conf. on Machine Learning year: 2003 ident: B3 – volume: 18 start-page: 475 volume-title: Advances in neural information processing systems year: 2006 ident: B6 – volume: 12 volume-title: Advances in neural information processing systems year: 2000 ident: B1 – volume-title: SODA: ACM-SIAM Symposium on Discrete Algorithms year: 1998 ident: B4 – ident: B17 doi: 10.1145/233269.233324 – volume-title: Accelerated variants of the EM algorithm for gaussian mixtures (Tech. Rep.) year: 2003 ident: B16 – start-page: 143 volume-title: Proceedings of the 16th Annual Conference on Uncertainty in Artificial Intelligence year: 2000 ident: B2 – start-page: 397 volume-title: Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence year: 2000 ident: B11 – start-page: 727 volume-title: Proceedings of the 17th International Conference on Machine Learning year: 2000 ident: B13 – ident: B15 doi: 10.1162/089976600300015088 – ident: B8 doi: 10.1145/168304.168306 – volume: 27 start-page: 379 volume-title: Bell Sys. Tech. Journal year: 1948 ident: B14 – volume: 12 volume-title: Advances in neural information processing systems year: 2000 ident: B5 – volume: 7 start-page: 223 year: 1998 ident: B9 publication-title: Communications in Statistics – ident: B12 doi: 10.1145/312129.312248 – volume: 17 volume-title: Advances in neural information processing systems year: 2003 ident: B7 – volume: 10 volume-title: Advances in neural information processing systems year: 1998 ident: B10 |
| SSID | ssj0006105 |
| Score | 2.1028483 |
| Snippet | We introduce a new class of “maximization-expectation” (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This... We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This... |
| SourceID | proquest pubmed pascalfrancis crossref mit |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1145 |
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Bayes Theorem Bayesian analysis Biological and medical sciences Computer science; control theory; systems Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects Learning and adaptive systems Letters Mathematics Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Miscellaneous Models, Neurological Multivariate analysis Nervous system Parameter optimization Probability and statistics Sciences and techniques of general use Statistics |
| Title | Bayesian k -Means as a “Maximization-Expectation” Algorithm |
| URI | https://direct.mit.edu/neco/article/doi/10.1162/neco.2008.12-06-421 https://www.ncbi.nlm.nih.gov/pubmed/19199394 https://www.proquest.com/docview/211204609 https://www.proquest.com/docview/20451446 https://www.proquest.com/docview/67107238 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1530-888X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: ABDBF dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1530-888X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: AMVHM dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1530-888X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: ADMLS dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R9MKF9yMUig8ckMKGtb1eZ08QWlBBhAuplJu1L1OrzUOpg0pP_SHw5_pLmLXXTgxJVZASy3Jm187O7OyMd-YbhF7Ing4jGfRwZKTAVGuOpSYGs1RoyYkJeIEzO_jCDg7pp1E0WobyFtklueyq87V5Jf_DVbgGfLVZsv_A2bpTuADnwF84AofheC0evxM_TJEEedzBAwOLjq0aIzpVAMPeQJxlY5doiS2osSo33iuC_U7_5Nt0nuVH41Uj1QJ2FLAhtuBDc6d-Mc8swrPL6MnUUbbc2inQvcv8n7PGywS-EoNSBBR9HDZCPwotxDmOWVkzo2sqLUkwuM6jVTVaJjo7caErOhE8rmhlffX9slbP37qbFViw4HWXIa42ZoRh6vptIGX_sYLVcYVrGndnOt1C2wEofdJC2_39weev9VLNXIxr9R8dLBU8yes1XTVMl61xlttAWnEKcykti6Bs9lIKa2V4B91ybobXL2XmLrphJvfQ7aqEh-c0-n30phIh79grRcgT8PEuL35uEp7Li19eLTYP0OGH98O9A-xqamAFrnCO_UCRUEdCMB6rUDGTEiLBCxChjHmqpIyNohGRUtg9XJ_TWPfAZEwlJTq034eoNZlOzGPkKcVJZDQ4xFJQKSkPCzhArZUCs5eJNgqq4UqUA5y3dU9OksLxZEFix7isg-oHCWEJjHEbvaobzUq8lavJXwIfEjcnT68mfdsgtSTfAz-jSUgsqCKQBz60TqDReTZb38Vug9_1E1r7j_TioI12KgFY3igAl8aGH_A2el7_Ckrc7syJiZkugMSiPFHKNlMw8ARsfcA2elTK1XJ0uI3B5fTJ9YdiB91cTv6nqJXPF-YZ2Na53HUz5DeYMcai |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+k+-Means+as+a+%E2%80%9CMaximization-Expectation%E2%80%9D+Algorithm&rft.jtitle=Neural+computation&rft.au=Kurihara%2C+Kenichi&rft.au=Welling%2C+Max&rft.date=2009-04-01&rft.pub=MIT+Press&rft.issn=0899-7667&rft.eissn=1530-888X&rft.volume=21&rft.issue=4&rft.spage=1145&rft.epage=1172&rft_id=info:doi/10.1162%2Fneco.2008.12-06-421&rft.externalDBID=n%2Fa&rft.externalDocID=neco.2008.12-06-421.pdf |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon |