Bayesian k -Means as a “Maximization-Expectation” Algorithm

We introduce a new class of “maximization-expectation” (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue t...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 21; no. 4; pp. 1145 - 1172
Main Authors Kurihara, Kenichi, Welling, Max
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.04.2009
MIT Press Journals, The
Subjects
Online AccessGet full text
ISSN0899-7667
1530-888X
DOI10.1162/neco.2008.12-06-421

Cover

Abstract We introduce a new class of “maximization-expectation” (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian -means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.
AbstractList We introduce a new class of “maximization-expectation” (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian -means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.
We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature. [PUBLICATION ABSTRACT]
We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.
We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This reverses the roles of expectation and maximization in the classical expectation-maximization algorithm. In the context of clustering, we argue that these hard assignments open the door to very fast implementations based on data structures such as kd-trees and conga lines. The marginalization over parameters ensures that we retain the ability to infer model structure (i.e., number of clusters). As an important example, we discuss a top-down Bayesian k-means algorithm and a bottom-up agglomerative clustering algorithm. In experiments, we compare these algorithms against a number of alternative algorithms that have recently appeared in the literature.
Author Welling, Max
Kurihara, Kenichi
Author_xml – sequence: 1
  givenname: Kenichi
  surname: Kurihara
  fullname: Kurihara, Kenichi
  email: kurihara@mi.cs.titech.ac.jp
  organization: Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan kurihara@mi.cs.titech.ac.jp
– sequence: 2
  givenname: Max
  surname: Welling
  fullname: Welling, Max
  email: welling@ics.uci.edu
  organization: Department of Computer Science, University of California, Irvine, CA 92697-3425, U.S.A. welling@ics.uci.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21230872$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19199394$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1qFDEYhoNU7Hb1CgQZBD3L9vuSTDI5krbUKrR4ouBZyGQzmjo_azIrbY96IXpzvRIz7vpDUQsJycHzvPl598hOP_SekMcIC0TJ9nvvhgUDqBbIKEgqGN4jMyw50Kqq3u-QGVRaUyWl2iV7KZ0DgEQoH5Bd1Kg112JGXhzaS5-C7YtPBT3ztk-FzaO4uf56Zi9CF67sGIaeHl-svBt_7G-uvxUH7YchhvFj95Dcb2yb_KPtOifvXh6_PXpFT9-cvD46OKVO6HKkyBzwZWmt1MpxJ30DUCPXltdKN66ulXeihLq2AIqjFmpZacCmFrDk05yT55vcVRw-r30aTReS821rez-sk5EKQTFe3QkyECUKITP49BZ4Pqxjnx9hGGLGJOgMPdlC67rzS7OKobPx0vz8wAw82wI2Ods20fYupF8cQ8ahyhebE77hXBxSir75HQVmqtNMdZqpToPMgDS5zmzpW5YLmxLGaEN7h3uycbvwx9Mm8gvDIAwHJiRmi2EOMdm9Cqt_JO3_Jel_Z38HzQ_KJg
CODEN NEUCEB
CitedBy_id crossref_primary_10_3390_a11100151
crossref_primary_10_1016_j_patcog_2014_03_006
crossref_primary_10_1016_j_jspi_2020_05_009
crossref_primary_10_1002_sim_9924
crossref_primary_10_1007_s00500_017_2565_z
crossref_primary_10_1016_j_patcog_2020_107783
crossref_primary_10_1007_s41870_024_02279_x
crossref_primary_10_1111_eea_13123
crossref_primary_10_1162_NECO_a_00534
crossref_primary_10_1016_j_ijar_2017_11_001
crossref_primary_10_1109_ACCESS_2019_2927593
crossref_primary_10_1007_s10994_023_06491_x
crossref_primary_10_1016_j_ijepes_2014_11_029
crossref_primary_10_1038_s41467_020_20753_5
crossref_primary_10_1098_rsta_2022_0149
crossref_primary_10_1109_TMI_2019_2897112
crossref_primary_10_1155_2013_251905
Cites_doi 10.1145/233269.233324
10.1162/089976600300015088
10.1145/168304.168306
10.1145/312129.312248
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright MIT Press Journals Apr 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright MIT Press Journals Apr 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7TK
7X8
DOI 10.1162/neco.2008.12-06-421
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Computer and Information Systems Abstracts
MEDLINE
Neurosciences Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1530-888X
EndPage 1172
ExternalDocumentID 1666841101
19199394
21230872
10_1162_neco_2008_12_06_421
neco.2008.12-06-421.pdf
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
6IK
AAJGR
AALMD
AAPBV
AAYOK
ABDBF
ABDNZ
ABIVO
ABPTK
ACGFO
ADIYS
AEGXH
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
COF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
41~
53G
AAFWJ
AAYXX
ABAZT
ABEFU
ABJNI
ABVLG
ACUHS
ACYGS
ADMLS
AMVHM
CITATION
HVGLF
AEILP
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7TK
7X8
ID FETCH-LOGICAL-c495t-12c03d5aa697c3c6ef00b139a3b79fcbb7ec450bba00731947d8901fb40d340d3
ISSN 0899-7667
IngestDate Thu Sep 04 16:07:46 EDT 2025
Fri Sep 05 13:20:16 EDT 2025
Sat Aug 16 21:42:47 EDT 2025
Mon Jul 21 06:04:34 EDT 2025
Mon Jul 21 09:13:35 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Wed Oct 01 02:03:05 EDT 2025
Fri Oct 27 04:04:41 EDT 2023
Tue Mar 01 17:18:10 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bayes estimation
Data analysis
Neural computation
Maximization
Cluster analysis (statistics)
Tree structure
Neural network
Algorithm
Implementation
Assignment
Tree
Data structure
Random variable
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-12c03d5aa697c3c6ef00b139a3b79fcbb7ec450bba00731947d8901fb40d340d3
Notes April, 2009
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 19199394
PQID 211204609
PQPubID 37252
PageCount 28
ParticipantIDs crossref_primary_10_1162_neco_2008_12_06_421
proquest_miscellaneous_20451446
proquest_journals_211204609
crossref_citationtrail_10_1162_neco_2008_12_06_421
pubmed_primary_19199394
mit_journals_necov21i4_302461_2021_11_08_zip_neco_2008_12_06_421
pascalfrancis_primary_21230872
proquest_miscellaneous_67107238
mit_journals_10_1162_neco_2008_12_06_421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: Cambridge, MA
– name: United States
– name: Cambridge
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2009
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References B12
Moore A. (B11) 2000
B15
Eppstein D. (B4) 1998
B17
Hamerly G. (B7) 2003; 17
MacEachern S. N. (B9) 1998; 7
Shannon C. E. (B14) 1948; 27
Dasgupta S. (B2) 2000
Verbeek J. (B16) 2003
Attias H. (B1) 2000; 12
Griffiths T. (B6) 2006; 18
B8
Moore A. (B10) 1998; 10
Ghahramani Z. (B5) 2000; 12
Pelleg D. (B13) 2000
Elkan C. (B3) 2003
References_xml – start-page: 147
  volume-title: Proc. 20 International Conf. on Machine Learning
  year: 2003
  ident: B3
– volume: 18
  start-page: 475
  volume-title: Advances in neural information processing systems
  year: 2006
  ident: B6
– volume: 12
  volume-title: Advances in neural information processing systems
  year: 2000
  ident: B1
– volume-title: SODA: ACM-SIAM Symposium on Discrete Algorithms
  year: 1998
  ident: B4
– ident: B17
  doi: 10.1145/233269.233324
– volume-title: Accelerated variants of the EM algorithm for gaussian mixtures (Tech. Rep.)
  year: 2003
  ident: B16
– start-page: 143
  volume-title: Proceedings of the 16th Annual Conference on Uncertainty in Artificial Intelligence
  year: 2000
  ident: B2
– start-page: 397
  volume-title: Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence
  year: 2000
  ident: B11
– start-page: 727
  volume-title: Proceedings of the 17th International Conference on Machine Learning
  year: 2000
  ident: B13
– ident: B15
  doi: 10.1162/089976600300015088
– ident: B8
  doi: 10.1145/168304.168306
– volume: 27
  start-page: 379
  volume-title: Bell Sys. Tech. Journal
  year: 1948
  ident: B14
– volume: 12
  volume-title: Advances in neural information processing systems
  year: 2000
  ident: B5
– volume: 7
  start-page: 223
  year: 1998
  ident: B9
  publication-title: Communications in Statistics
– ident: B12
  doi: 10.1145/312129.312248
– volume: 17
  volume-title: Advances in neural information processing systems
  year: 2003
  ident: B7
– volume: 10
  volume-title: Advances in neural information processing systems
  year: 1998
  ident: B10
SSID ssj0006105
Score 2.1028483
Snippet We introduce a new class of “maximization-expectation” (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This...
We introduce a new class of "maximization-expectation" (ME) algorithms where we maximize over hidden variables but marginalize over random parameters. This...
SourceID proquest
pubmed
pascalfrancis
crossref
mit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1145
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Bayes Theorem
Bayesian analysis
Biological and medical sciences
Computer science; control theory; systems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Learning and adaptive systems
Letters
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Miscellaneous
Models, Neurological
Multivariate analysis
Nervous system
Parameter optimization
Probability and statistics
Sciences and techniques of general use
Statistics
Title Bayesian k -Means as a “Maximization-Expectation” Algorithm
URI https://direct.mit.edu/neco/article/doi/10.1162/neco.2008.12-06-421
https://www.ncbi.nlm.nih.gov/pubmed/19199394
https://www.proquest.com/docview/211204609
https://www.proquest.com/docview/20451446
https://www.proquest.com/docview/67107238
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1530-888X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: ABDBF
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1530-888X
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: AMVHM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1530-888X
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R9MKF9yMUig8ckMKGtb1eZ08QWlBBhAuplJu1L1OrzUOpg0pP_SHw5_pLmLXXTgxJVZASy3Jm187O7OyMd-YbhF7Ing4jGfRwZKTAVGuOpSYGs1RoyYkJeIEzO_jCDg7pp1E0WobyFtklueyq87V5Jf_DVbgGfLVZsv_A2bpTuADnwF84AofheC0evxM_TJEEedzBAwOLjq0aIzpVAMPeQJxlY5doiS2osSo33iuC_U7_5Nt0nuVH41Uj1QJ2FLAhtuBDc6d-Mc8swrPL6MnUUbbc2inQvcv8n7PGywS-EoNSBBR9HDZCPwotxDmOWVkzo2sqLUkwuM6jVTVaJjo7caErOhE8rmhlffX9slbP37qbFViw4HWXIa42ZoRh6vptIGX_sYLVcYVrGndnOt1C2wEofdJC2_39weev9VLNXIxr9R8dLBU8yes1XTVMl61xlttAWnEKcykti6Bs9lIKa2V4B91ybobXL2XmLrphJvfQ7aqEh-c0-n30phIh79grRcgT8PEuL35uEp7Li19eLTYP0OGH98O9A-xqamAFrnCO_UCRUEdCMB6rUDGTEiLBCxChjHmqpIyNohGRUtg9XJ_TWPfAZEwlJTq034eoNZlOzGPkKcVJZDQ4xFJQKSkPCzhArZUCs5eJNgqq4UqUA5y3dU9OksLxZEFix7isg-oHCWEJjHEbvaobzUq8lavJXwIfEjcnT68mfdsgtSTfAz-jSUgsqCKQBz60TqDReTZb38Vug9_1E1r7j_TioI12KgFY3igAl8aGH_A2el7_Ckrc7syJiZkugMSiPFHKNlMw8ARsfcA2elTK1XJ0uI3B5fTJ9YdiB91cTv6nqJXPF-YZ2Na53HUz5DeYMcai
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+k+-Means+as+a+%E2%80%9CMaximization-Expectation%E2%80%9D+Algorithm&rft.jtitle=Neural+computation&rft.au=Kurihara%2C+Kenichi&rft.au=Welling%2C+Max&rft.date=2009-04-01&rft.pub=MIT+Press&rft.issn=0899-7667&rft.eissn=1530-888X&rft.volume=21&rft.issue=4&rft.spage=1145&rft.epage=1172&rft_id=info:doi/10.1162%2Fneco.2008.12-06-421&rft.externalDBID=n%2Fa&rft.externalDocID=neco.2008.12-06-421.pdf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon