Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China
Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R 0 , variation in the number of secondary transmissions (often characterised by so...
Saved in:
Published in | Wellcome open research Vol. 5; p. 67 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wellcome Trust Limited
10.07.2020
F1000 Research Limited Wellcome |
Subjects | |
Online Access | Get full text |
ISSN | 2398-502X 2398-502X |
DOI | 10.12688/wellcomeopenres.15842.3 |
Cover
Abstract | Background:
A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number
R
0
, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others.
Methods:
We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution.
Results:
Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of
R
0
(2-3), the overdispersion parameter
k
of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for
R
0
and
k
(95% CrIs:
R
0
1.4-12;
k
0.04-0.2); however, the upper bound of
R
0
was not well informed by the model and data, which did not notably differ from that of the prior distribution.
Conclusions:
Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events. |
---|---|
AbstractList | Background:
A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number
R
0
, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others.
Methods:
We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution.
Results:
Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of
R
0
(2-3), the overdispersion parameter
k
of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for
R
0
and
k
(95% CrIs:
R
0
1.4-12;
k
0.04-0.2); however, the upper bound of
R
0
was not well informed by the model and data, which did not notably differ from that of the prior distribution.
Conclusions:
Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events. A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number , variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of (2-3), the overdispersion parameter of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for and (95% CrIs: 1.4-12; 0.04-0.2); however, the upper bound of was not well informed by the model and data, which did not notably differ from that of the prior distribution. Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events. Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R0 and k (95% CrIs: R0 1.4-12; k 0.04-0.2); however, the upper bound of R0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events. Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R 0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R 0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R 0 and k (95% CrIs: R 0 1.4-12; k 0.04-0.2); however, the upper bound of R 0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R 0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R 0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R 0 and k (95% CrIs: R 0 1.4-12; k 0.04-0.2); however, the upper bound of R 0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events. Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R0 and k (95% CrIs: R0 1.4-12; k 0.04-0.2); however, the upper bound of R0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events. |
Author | Abbott, Sam Endo, Akira Funk, Sebastian Kucharski, Adam J. |
Author_xml | – sequence: 1 givenname: Akira orcidid: 0000-0001-6377-7296 surname: Endo fullname: Endo, Akira – sequence: 2 givenname: Sam orcidid: 0000-0001-8057-8037 surname: Abbott fullname: Abbott, Sam – sequence: 3 givenname: Adam J. surname: Kucharski fullname: Kucharski, Adam J. – sequence: 4 givenname: Sebastian orcidid: 0000-0002-2842-3406 surname: Funk fullname: Funk, Sebastian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32685698$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEUtFARLaV_Aa3EhcsGf9t7QUJpgUiVegEEJ8vrfZs4bOxg7xbBr8dJSmh74eSPN2808948RychBkCoInhGqNT6zU8YBhc3ELcQEuQZEZrTGXuCzihrdC0w_Xpy736KLnJeY4yJllRr_AydssIjZKPP0LerPPqNHX1YVuMKqngLqfN5Cyn7GCofqvnNl8VlTZpqTDbkjc_7wpR3HXEa2wT2e5X9b8i7Z_YdVPOVD_YFetrbIcPF3XmOPr-_-jT_WF_ffFjM313XjjeC1W0nGVbaEsGgB-VEI2mLnbayI0I0pGuFalTXy9aC5qylwmKOdcukkIoLwc7R4sDbRbs221TcpF8mWm_2HzEtjU2jdwMY4njXaiw5F5Rzh9ueEMocSMuAK6IL19sD13ZqN9A5CMX08ID0YSX4lVnGW6MY0w3ZiXl9R5DijwnyaMrAXNmXDRCnbBjBimuFGS3QV4-g6zilUEZlKNOaC6YVL6iX9xUdpfzdYAHoA8ClmHOC_ggh2OzzYh7lxezzYtg_t8dW58cShbjz5of_E_wBznLN6A |
CitedBy_id | crossref_primary_10_1016_j_epidem_2021_100527 crossref_primary_10_1136_bmjopen_2020_045941 crossref_primary_10_7554_eLife_63537 crossref_primary_10_1038_s41467_021_25531_5 crossref_primary_10_7554_eLife_76174 crossref_primary_10_1016_j_jhin_2021_06_002 crossref_primary_10_1016_j_biopha_2021_111310 crossref_primary_10_1016_j_idm_2021_02_002 crossref_primary_10_3389_ijph_2022_1604659 crossref_primary_10_1016_j_ijid_2020_10_016 crossref_primary_10_1371_journal_pone_0250050 crossref_primary_10_1038_s41598_021_03126_w crossref_primary_10_1016_j_jhealeco_2021_102575 crossref_primary_10_1093_cid_ciaa1433 crossref_primary_10_1186_s12976_021_00144_z crossref_primary_10_12688_wellcomeopenres_16253_1 crossref_primary_10_1016_S2666_5247_21_00004_5 crossref_primary_10_12688_wellcomeopenres_16253_2 crossref_primary_10_1098_rsos_220129 crossref_primary_10_1098_rsta_2021_0308 crossref_primary_10_1098_rsta_2021_0307 crossref_primary_10_1007_s00103_021_03391_0 crossref_primary_10_1136_thoraxjnl_2020_215337 crossref_primary_10_1103_PhysRevLett_126_118301 crossref_primary_10_1038_s43856_021_00038_8 crossref_primary_10_1126_science_abe3261 crossref_primary_10_1007_s12038_021_00221_y crossref_primary_10_1038_s41598_023_38544_5 crossref_primary_10_3390_jcm9103125 crossref_primary_10_1039_D1TB00674F crossref_primary_10_1038_s41564_021_01019_2 crossref_primary_10_1093_jtm_taaa068 crossref_primary_10_1136_bmjgh_2020_003727 crossref_primary_10_3390_v15020456 crossref_primary_10_1016_j_pec_2021_07_022 crossref_primary_10_1016_j_cub_2021_06_049 crossref_primary_10_3390_ijerph182412893 crossref_primary_10_1186_s13756_022_01070_6 crossref_primary_10_1038_s41467_023_42612_9 crossref_primary_10_1145_3530774 crossref_primary_10_1002_rmv_2285 crossref_primary_10_1016_j_ajic_2022_05_009 crossref_primary_10_1021_acs_est_1c05633 crossref_primary_10_1093_femsmc_xtac018 crossref_primary_10_1073_pnas_2018490117 crossref_primary_10_1093_cid_ciab100 crossref_primary_10_3389_fphy_2021_650943 crossref_primary_10_1038_s41598_021_93578_x crossref_primary_10_1038_s43856_022_00191_8 crossref_primary_10_1016_j_mbs_2022_108885 crossref_primary_10_1098_rsos_202169 crossref_primary_10_1098_rsos_200786 crossref_primary_10_1126_science_abm4915 crossref_primary_10_1038_s41598_023_35083_x crossref_primary_10_1371_journal_pgen_1010540 crossref_primary_10_1007_s10943_021_01282_x crossref_primary_10_1038_s41467_020_20742_8 crossref_primary_10_1186_s12879_022_07075_1 crossref_primary_10_1093_ofid_ofab350 crossref_primary_10_5694_mja2_50934 crossref_primary_10_1073_pnas_2103272118 crossref_primary_10_1136_bmjgh_2020_003978 crossref_primary_10_3390_ijerph17217884 crossref_primary_10_1007_s11377_020_00479_y crossref_primary_10_1016_j_idc_2022_01_007 crossref_primary_10_1371_journal_pone_0249525 crossref_primary_10_3390_jcm10132761 crossref_primary_10_1051_mmnp_2020025 crossref_primary_10_1186_s12889_021_12318_y crossref_primary_10_1080_15326349_2023_2201329 crossref_primary_10_1016_j_lanepe_2021_100056 crossref_primary_10_1016_S2213_2600_20_30396_9 crossref_primary_10_1016_j_cma_2021_113891 crossref_primary_10_1371_journal_pone_0286012 crossref_primary_10_1097_EDE_0000000000001563 crossref_primary_10_3390_ijerph18062838 crossref_primary_10_1002_admi_202102526 crossref_primary_10_3390_v15020470 crossref_primary_10_1016_j_envres_2021_111514 crossref_primary_10_2807_1560_7917_ES_2022_27_13_2100354 crossref_primary_10_2196_44251 crossref_primary_10_1177_14034948211031400 crossref_primary_10_1103_PhysRevE_105_064122 crossref_primary_10_1016_j_physa_2021_126754 crossref_primary_10_1016_j_epidem_2023_100670 crossref_primary_10_1016_S0140_6736_20_31689_5 crossref_primary_10_1002_jmv_28776 crossref_primary_10_3390_ijerph17103705 crossref_primary_10_1073_pnas_2015972118 crossref_primary_10_1101_gr_266221_120 crossref_primary_10_1016_j_epidem_2023_100725 crossref_primary_10_1038_s41598_021_02605_4 crossref_primary_10_1093_cid_ciac413 crossref_primary_10_1016_j_lanepe_2021_100166 crossref_primary_10_7717_peerj_12566 crossref_primary_10_1136_bmjopen_2020_045225 crossref_primary_10_1098_rsta_2023_0131 crossref_primary_10_1093_pnasnexus_pgae377 crossref_primary_10_1007_s40324_021_00260_3 crossref_primary_10_1371_journal_pgph_0000412 crossref_primary_10_1093_ve_veaa102 crossref_primary_10_1088_2632_072X_ad19e0 crossref_primary_10_1016_j_buildenv_2022_108751 crossref_primary_10_1007_s00103_021_03389_8 crossref_primary_10_1038_d41586_021_00460_x crossref_primary_10_3934_mbe_2022614 crossref_primary_10_1016_j_epidem_2020_100430 crossref_primary_10_1186_s12889_023_15915_1 crossref_primary_10_1146_annurev_ecolsys_102320_101234 crossref_primary_10_1016_j_epidem_2023_100739 crossref_primary_10_1098_rsfs_2021_0008 crossref_primary_10_1136_bmjopen_2020_044149 crossref_primary_10_36233_0507_4088_146 crossref_primary_10_1098_rsos_201546 crossref_primary_10_7326_M20_6625 crossref_primary_10_1007_s11538_025_01421_5 crossref_primary_10_1093_biomethods_bpad004 crossref_primary_10_1002_hsr2_1468 crossref_primary_10_2139_ssrn_3763376 crossref_primary_10_2139_ssrn_3590183 crossref_primary_10_1371_journal_pcbi_1008892 crossref_primary_10_1177_21650799211042518 crossref_primary_10_1098_rsif_2022_0486 crossref_primary_10_1371_journal_pcbi_1011934 crossref_primary_10_1126_science_abf8003 crossref_primary_10_3233_SJI_210808 crossref_primary_10_1186_s12879_020_05323_w crossref_primary_10_11603_mie_1996_1960_2020_2_11176 crossref_primary_10_3390_math12040550 crossref_primary_10_1093_ofid_ofac124 crossref_primary_10_1111_ina_12965 crossref_primary_10_1126_science_abf2946 crossref_primary_10_1136_bmj_2022_069940 crossref_primary_10_1016_j_healthpol_2021_06_001 crossref_primary_10_1038_s41467_020_19248_0 crossref_primary_10_1371_journal_pcbi_1010078 crossref_primary_10_1063_5_0089347 crossref_primary_10_3389_fpubh_2022_1002232 crossref_primary_10_1073_pnas_2108909118 crossref_primary_10_1098_rspb_2020_1405 crossref_primary_10_1007_s15010_020_01531_3 crossref_primary_10_1016_j_ijregi_2022_01_003 crossref_primary_10_3390_v13101921 crossref_primary_10_1093_cid_ciaa1654 crossref_primary_10_1016_j_neurol_2022_02_455 crossref_primary_10_1371_journal_pone_0263597 crossref_primary_10_1016_j_molmed_2021_09_009 crossref_primary_10_1016_j_ijid_2021_06_028 crossref_primary_10_2807_1560_7917_ES_2021_26_48_2001636 crossref_primary_10_7189_jogh_13_06018 crossref_primary_10_1002_advs_202200088 crossref_primary_10_1098_rsif_2020_0393 crossref_primary_10_1126_science_abi5273 crossref_primary_10_1371_journal_pone_0270789 crossref_primary_10_1080_07448481_2022_2089843 crossref_primary_10_1098_rsif_2021_0811 crossref_primary_10_1016_j_healthplace_2022_102848 crossref_primary_10_1038_s41586_020_2923_3 crossref_primary_10_1093_ofid_ofab144 crossref_primary_10_1098_rsos_211919 crossref_primary_10_1103_PhysRevResearch_3_033283 crossref_primary_10_1371_journal_pone_0284025 crossref_primary_10_3934_mbe_2022284 crossref_primary_10_1371_journal_pcbi_1008674 crossref_primary_10_1016_j_ijid_2021_07_058 crossref_primary_10_1073_pnas_2014297117 crossref_primary_10_1371_journal_pone_0259097 crossref_primary_10_1111_tbed_14655 crossref_primary_10_1080_02786826_2021_1877257 crossref_primary_10_1371_journal_pone_0248808 crossref_primary_10_1089_cmb_2022_0371 crossref_primary_10_1016_S1473_3099_20_30457_6 crossref_primary_10_1098_rsif_2020_1014 crossref_primary_10_1111_apm_13120 crossref_primary_10_1016_j_tmaid_2022_102452 crossref_primary_10_1038_s41598_023_44527_3 crossref_primary_10_1097_EDE_0000000000001257 crossref_primary_10_1038_s41467_022_34186_9 crossref_primary_10_1016_S1473_3099_22_00579_5 crossref_primary_10_1093_infdis_jiab386 crossref_primary_10_4236_jamp_2022_102033 crossref_primary_10_1016_j_jiph_2021_10_001 crossref_primary_10_1111_rssa_12919 crossref_primary_10_1371_journal_pone_0295242 crossref_primary_10_1038_s41598_023_49678_x crossref_primary_10_1073_pnas_2011802117 crossref_primary_10_1186_s12874_021_01225_w crossref_primary_10_1016_j_envint_2024_108762 crossref_primary_10_1103_PhysRevLett_127_158301 crossref_primary_10_1186_s12879_024_09788_x crossref_primary_10_3201_eid2903_220761 crossref_primary_10_1016_j_cell_2020_11_020 crossref_primary_10_1186_s12879_022_07180_1 crossref_primary_10_1017_S0950268824000955 crossref_primary_10_1016_S0140_6736_21_00869_2 crossref_primary_10_1038_s41467_023_38201_5 crossref_primary_10_1016_j_jmh_2022_100079 crossref_primary_10_1371_journal_pcbi_1009149 crossref_primary_10_1016_j_ijid_2021_10_007 crossref_primary_10_1038_s41467_024_55593_0 crossref_primary_10_1186_s12874_022_01517_9 crossref_primary_10_12688_f1000research_51164_1 crossref_primary_10_2807_1560_7917_ES_2022_27_6_2001953 crossref_primary_10_1073_pnas_2104547118 crossref_primary_10_1073_pnas_2203019119 crossref_primary_10_1371_journal_pgen_1010391 crossref_primary_10_1016_j_jhqr_2021_12_006 crossref_primary_10_1371_journal_pcbi_1010008 crossref_primary_10_1186_s12889_020_09669_3 crossref_primary_10_3389_fpubh_2022_879340 crossref_primary_10_1371_journal_pcbi_1010281 crossref_primary_10_3201_eid2712_204958 crossref_primary_10_7326_M20_5008 crossref_primary_10_2169_naika_109_2276 crossref_primary_10_7554_eLife_65774 crossref_primary_10_1017_dap_2021_14 crossref_primary_10_7554_eLife_64683 crossref_primary_10_1016_S1473_3099_20_30725_8 crossref_primary_10_1016_j_epidem_2022_100662 crossref_primary_10_1111_tmi_13822 crossref_primary_10_1038_s43856_022_00147_y crossref_primary_10_1016_j_epidem_2023_100716 crossref_primary_10_3390_jcm10112392 crossref_primary_10_1016_j_cell_2021_12_027 crossref_primary_10_1186_s12874_020_01119_3 crossref_primary_10_1002_sim_10046 crossref_primary_10_1016_j_csbj_2021_08_045 crossref_primary_10_1056_NEJMc2103227 crossref_primary_10_1007_s11560_020_00472_0 crossref_primary_10_1038_s41598_023_38007_x crossref_primary_10_1371_journal_pone_0259969 crossref_primary_10_1016_j_healthplace_2021_102622 crossref_primary_10_1016_j_jinf_2021_07_034 crossref_primary_10_1016_j_medj_2021_02_007 crossref_primary_10_1016_j_idm_2022_10_003 crossref_primary_10_1007_s13369_021_06419_4 crossref_primary_10_1093_nar_gkab1297 crossref_primary_10_3390_polym13234165 crossref_primary_10_1371_journal_pdig_0000485 crossref_primary_10_1371_journal_pone_0238090 crossref_primary_10_1186_s12879_021_06357_4 crossref_primary_10_1016_j_epidem_2021_100477 crossref_primary_10_1016_j_mehy_2020_110431 crossref_primary_10_1016_j_epidem_2023_100710 crossref_primary_10_1098_rsos_211710 crossref_primary_10_1186_s13756_020_00861_z crossref_primary_10_1073_pnas_2005476117 crossref_primary_10_1111_risa_14249 crossref_primary_10_1016_j_jaerosci_2020_105661 crossref_primary_10_1371_journal_pone_0271103 crossref_primary_10_1080_10496491_2023_2189204 crossref_primary_10_2217_fvl_2020_0310 crossref_primary_10_1002_jso_26561 crossref_primary_10_1093_pnasnexus_pgad201 crossref_primary_10_1016_j_cell_2020_06_040 crossref_primary_10_1098_rsos_240629 crossref_primary_10_1371_journal_pone_0238800 crossref_primary_10_5694_mja2_50835 crossref_primary_10_7554_eLife_68341 crossref_primary_10_1016_j_idm_2021_03_006 crossref_primary_10_1016_j_jhin_2022_09_023 crossref_primary_10_1126_science_abe9707 crossref_primary_10_1016_j_epidem_2021_100446 crossref_primary_10_1093_cid_ciab037 crossref_primary_10_1186_s12879_022_07663_1 crossref_primary_10_2807_1560_7917_ES_2023_28_41_2200916 crossref_primary_10_1371_journal_pone_0243026 crossref_primary_10_4103_jfmpc_jfmpc_1379_20 crossref_primary_10_1093_aje_kwab098 crossref_primary_10_1136_bmjgh_2020_003098 crossref_primary_10_21307_connections_2021_022 crossref_primary_10_1017_ice_2021_8 crossref_primary_10_1186_s41118_021_00115_9 crossref_primary_10_3389_fviro_2022_942555 crossref_primary_10_1038_s42005_020_00470_7 crossref_primary_10_1016_j_biochi_2023_03_006 crossref_primary_10_1371_journal_pone_0253011 crossref_primary_10_1371_journal_pone_0251073 crossref_primary_10_1073_pnas_2016623118 crossref_primary_10_2196_24286 crossref_primary_10_1073_pnas_2112182119 crossref_primary_10_5694_mja2_50823 crossref_primary_10_1093_aje_kwac181 crossref_primary_10_1038_s41467_022_32531_6 crossref_primary_10_1371_journal_pone_0247614 crossref_primary_10_1016_S2468_2667_20_30308_X crossref_primary_10_1016_j_jiph_2021_08_013 crossref_primary_10_1016_j_scitotenv_2021_151499 crossref_primary_10_1111_risa_13935 crossref_primary_10_3389_fpubh_2023_1202996 crossref_primary_10_1038_s41598_022_06008_x crossref_primary_10_12688_wellcomeopenres_16344_2 crossref_primary_10_1371_journal_pone_0256889 crossref_primary_10_12688_wellcomeopenres_16344_1 crossref_primary_10_1111_apm_13141 crossref_primary_10_1038_s41598_021_91338_5 crossref_primary_10_1038_s41598_022_21645_y crossref_primary_10_12688_wellcomeopenres_16344_3 crossref_primary_10_2196_30968 crossref_primary_10_1016_j_ijid_2022_01_036 crossref_primary_10_1056_NEJMsr2019953 crossref_primary_10_1016_j_eclinm_2020_100717 crossref_primary_10_1016_j_gsf_2021_101285 crossref_primary_10_3390_ijerph18010157 crossref_primary_10_2139_ssrn_3964247 crossref_primary_10_1098_rsos_210310 crossref_primary_10_1016_j_epidem_2024_100784 crossref_primary_10_1186_s12879_022_07928_9 crossref_primary_10_1371_journal_pmed_1003585 crossref_primary_10_2139_ssrn_4092973 crossref_primary_10_1097_EDE_0000000000001523 crossref_primary_10_1016_j_epidem_2022_100613 crossref_primary_10_1016_j_clinpr_2022_100134 crossref_primary_10_1093_molbev_msab049 crossref_primary_10_1186_s12889_024_18012_z crossref_primary_10_1016_j_gsf_2021_101282 crossref_primary_10_1038_s41598_021_90666_w crossref_primary_10_7759_cureus_13819 crossref_primary_10_1016_j_mbs_2022_108957 crossref_primary_10_1038_s41467_023_43769_z crossref_primary_10_1093_pubmed_fdaa119 crossref_primary_10_3201_eid2708_204875 crossref_primary_10_1038_s41467_020_20325_7 crossref_primary_10_1371_journal_pbio_3000897 crossref_primary_10_3390_v15020277 crossref_primary_10_1098_rstb_2020_0270 crossref_primary_10_1093_ve_veac017 crossref_primary_10_1016_j_onehlt_2021_100213 crossref_primary_10_1371_journal_ppat_1012090 crossref_primary_10_1098_rstb_2020_0267 crossref_primary_10_1098_rspb_2022_0232 crossref_primary_10_7554_eLife_80781 crossref_primary_10_1371_journal_pcbi_1009120 crossref_primary_10_1098_rsfs_2021_0076 crossref_primary_10_1186_s12889_020_09624_2 |
Cites_doi | 10.1088/0953-8984/23/18/184115 10.2807/1560-7917.es2015.20.25.21167 10.1038/nature04153 10.1016/S0140-6736(20)30462-1 10.1101/2020.03.03.20028423 10.1371/journal.ppat.1004452 10.2307/1390645 10.1371/journal.pcbi.1002993 10.1016/j.ijid.2020.02.033 10.1016/j.ijid.2020.01.050 10.1371/journal.pone.0000180 10.12688/wellcomeopenres.15718.1 10.1016/j.ijid.2020.02.060 10.1016/j.ijantimicag.2020.105924 10.2807/1560-7917.ES.2020.25.4.2000058 10.1056/NEJMoa2001316 10.1056/NEJMoa2001017 |
ContentType | Journal Article |
Copyright | Copyright: © 2020 Endo A et al. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2020 Endo A et al. 2020 |
Copyright_xml | – notice: Copyright: © 2020 Endo A et al. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2020 Endo A et al. 2020 |
CorporateAuthor | Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group |
CorporateAuthor_xml | – name: Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.12688/wellcomeopenres.15842.3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2398-502X |
ExternalDocumentID | oai_doaj_org_article_1c4db806445244c0bf1123ce6a3e4718 PMC7338915 32685698 10_12688_wellcomeopenres_15842_3 |
Genre | Journal Article |
GeographicLocations | Iran China Egypt Estonia |
GeographicLocations_xml | – name: China – name: Iran – name: Egypt – name: Estonia |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/S003975/1 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 206250; 210758 – fundername: The Nakajima Foundation – fundername: Alan Turing Institute |
GroupedDBID | 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BPHCQ BVXVI CCPQU CITATION FYUFA GROUPED_DOAJ HMCUK HYE M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM UKHRP NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4953-bd63078a153efe7c5962b0c8a6d15591db5797df6bae843b25a0408b365674553 |
IEDL.DBID | DOA |
ISSN | 2398-502X |
IngestDate | Wed Aug 27 01:08:51 EDT 2025 Thu Aug 21 14:08:56 EDT 2025 Thu Sep 04 20:29:06 EDT 2025 Sat Jun 28 13:41:45 EDT 2025 Mon Jul 21 06:06:38 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Tue Jul 01 04:21:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 novel coronavirus SARS-CoV-2 overdispersion branching process superspreading |
Language | English |
License | Copyright: © 2020 Endo A et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4953-bd63078a153efe7c5962b0c8a6d15591db5797df6bae843b25a0408b365674553 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing interests: AE received a research grant from Taisho Pharmaceutical Co., Ltd. |
ORCID | 0000-0001-6377-7296 0000-0001-8057-8037 0000-0002-2842-3406 |
OpenAccessLink | https://doaj.org/article/1c4db806445244c0bf1123ce6a3e4718 |
PMID | 32685698 |
PQID | 2388453874 |
PQPubID | 2050296 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1c4db806445244c0bf1123ce6a3e4718 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7338915 proquest_miscellaneous_3107487032 proquest_journals_2388453874 pubmed_primary_32685698 crossref_primary_10_12688_wellcomeopenres_15842_3 crossref_citationtrail_10_12688_wellcomeopenres_15842_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200710 |
PublicationDateYYYYMMDD | 2020-07-10 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200710 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: London, UK |
PublicationTitle | Wellcome open research |
PublicationTitleAlternate | Wellcome Open Res |
PublicationYear | 2020 |
Publisher | Wellcome Trust Limited F1000 Research Limited Wellcome |
Publisher_xml | – name: Wellcome Trust Limited – name: F1000 Research Limited – name: Wellcome |
References | (ref-11) 2020 N Zhu (ref-1) 2020; 382 Q Li (ref-22) 2020; 382 J Lloyd-Smith (ref-21) 2007; 2 A Kucharski (ref-8) 2015; 20 (ref-6) 2020 S Watanabe (ref-15) 2013; 14 Q Bi (ref-19) 2020 J Riou (ref-18) 2020; 25 S Blumberg (ref-20) 2013; 9 A Endo (ref-16) 2020 H Nishiura (ref-23) 2020; 93 J Lloyd-Smith (ref-9) 2005; 438 Y Liu (ref-17) 2020; 395 A Endo (ref-14) 2020 S Zhang (ref-4) 2020; 93 (ref-10) 2020 C Lai (ref-2) 2020; 55 S Zhao (ref-3) 2020; 92 M Hancock (ref-7) 2020 S Blumberg (ref-12) 2014; 10 S Abbott (ref-5) 2020; 5 M Chen (ref-13) 1993; 2 |
References_xml | – volume: 14 start-page: 867-897 year: 2013 ident: ref-15 article-title: A Widely Applicable Bayesian Information Criterion doi: 10.1088/0953-8984/23/18/184115 – volume: 20 start-page: 14-8 year: 2015 ident: ref-8 article-title: The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. publication-title: Euro Surveill. doi: 10.2807/1560-7917.es2015.20.25.21167 – volume: 438 start-page: 355-359 year: 2005 ident: ref-9 article-title: Superspreading and the effect of individual variation on disease emergence. publication-title: Nature. doi: 10.1038/nature04153 – volume: 395 start-page: e47 year: 2020 ident: ref-17 article-title: Secondary attack rate and superspreading events for SARS-CoV-2. publication-title: Lancet. doi: 10.1016/S0140-6736(20)30462-1 – year: 2020 ident: ref-19 article-title: Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts. publication-title: medRxiv. doi: 10.1101/2020.03.03.20028423 – volume: 10 start-page: e1004452 year: 2014 ident: ref-12 article-title: Detecting differential transmissibilities that affect the size of self-limited outbreaks publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004452 – volume: 2 start-page: 251-272 year: 1993 ident: ref-13 article-title: Performance of the Gibbs, Hit-and-Run, and Metropolis Samplers. publication-title: J Comput Graph Stat. doi: 10.2307/1390645 – year: 2020 ident: ref-11 article-title: COVID2019.app - LIVE stats and graphs – year: 2020 ident: ref-16 article-title: Extended data: Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. publication-title: Zenodo. – volume: 9 start-page: e1002993 year: 2013 ident: ref-20 article-title: Inference of R(0) and transmission heterogeneity from the size distribution of stuttering chains. publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1002993 – volume: 93 start-page: 201-204 year: 2020 ident: ref-4 article-title: Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. publication-title: Int J Infect Dis. doi: 10.1016/j.ijid.2020.02.033 – volume: 92 start-page: 214-217 year: 2020 ident: ref-3 article-title: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. publication-title: Int J Infect Dis. doi: 10.1016/j.ijid.2020.01.050 – volume: 2 start-page: e180 year: 2007 ident: ref-21 article-title: Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases publication-title: PLoS One. doi: 10.1371/journal.pone.0000180 – volume: 5 start-page: 17 year: 2020 ident: ref-5 article-title: The transmissibility of novel Coronavirus in the early stages of the 2019-20 outbreak in Wuhan: Exploring initial point-source exposure sizes and durations using scenario analysis [version 1; peer review: 1 approved]. publication-title: Wellcome Open Res. doi: 10.12688/wellcomeopenres.15718.1 – volume: 93 start-page: 284-286 year: 2020 ident: ref-23 article-title: Serial interval of novel coronavirus (COVID-19) infections. publication-title: Int J Infect Dis. doi: 10.1016/j.ijid.2020.02.060 – volume: 55 year: 2020 ident: ref-2 article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. publication-title: Int J Antimicrob Agents. doi: 10.1016/j.ijantimicag.2020.105924 – volume: 25 year: 2020 ident: ref-18 article-title: Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES.2020.25.4.2000058 – year: 2020 ident: ref-7 article-title: Press release: Government outlines further plans to support health and social care system in fight against COVID-19 – year: 2020 ident: ref-6 article-title: Basic Policies for Novel Coronavirus Disease Control – volume: 382 start-page: 1199-1207 year: 2020 ident: ref-22 article-title: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. publication-title: N Engl J Med. doi: 10.1056/NEJMoa2001316 – year: 2020 ident: ref-14 article-title: Estimating the amount of superspreading using outbreak sizes of COVID-19 outside China (Version v1.0.0). publication-title: Zenodo. – volume: 382 start-page: 727-733 year: 2020 ident: ref-1 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019. publication-title: N Engl J Med. doi: 10.1056/NEJMoa2001017 – year: 2020 ident: ref-10 article-title: Coronavirus disease 2019 (COVID-19) Situation Report – 38 |
SSID | ssj0001862880 |
Score | 2.4973152 |
Snippet | Background:
A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of... A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human... Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 67 |
SubjectTerms | Coronaviruses COVID-19 Disease transmission Epidemics Infections Peer review Severe acute respiratory syndrome coronavirus 2 Statistical analysis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96Ivgifls9JYKv1W0-mlQfRM87Th_0xZMFkZCvrovSrtvdA33wb3cmze65h4iPbZoQOjOZXyaT-RHyuGHMMedlCdBalFgBrGw42GNTBRBJCx7RpwTZd_XxiXg7ldMccBtyWuVmTUwLdeg9xsifgmvRAqxTiReL7yWyRuHpaqbQuEguVQBVUKvVVJ3FWDSS6U5yAg-rYbOHETEYNiI31RLzjsABsyd8xyul4v1_Q5znEyf_8ERH18jVDCHpy1Hm18mF2N0gl0dSyR83ya9DsFrEod2MArqjmKMZ5lgQHANjdN7Rg_cf37wuq4au0FGBoFMDZsDPaL9ewSbZfqXD_Gcc8BH5PGmi2aafTvMg_DldxLik48WXZ5TRVJv8NIbPt8jJ0eGHg-MysyyUHnNLSxdqsHNtYemLbVQe6XjcxGtbBzyyrIKTqlGhrZ2NWnDHpAXD144DElRCSn6b7HV9F-8SalsNXetg8fZrzWwTOQxdtUyEABunUBC1-cvG5xLkyITxzeBWBOVjzsnHJPkYXpBq23MxluH4jz6vUJDb77GQdnrRL2cm26WpvAhOAy4TEoCOn7gWACj3sbY8ot8uyP5GDUy27sGc6WJBHm2bQVx42GK72K8HwzHTFRZDzgpyZ9Sa7UwAMmtZNzC42tGnnanutnTzL6n2t-J4sCzv_Xta98kVhnEBLAA62Sd7q-U6PgDwtHIPk4X8BpqtHQQ priority: 102 providerName: ProQuest |
Title | Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32685698 https://www.proquest.com/docview/2388453874 https://www.proquest.com/docview/3107487032 https://pubmed.ncbi.nlm.nih.gov/PMC7338915 https://doaj.org/article/1c4db806445244c0bf1123ce6a3e4718 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4t1AWRmJayDxI7bhRMtWhUNBiKKVELL8SlmBstU-KsGB386Mk652KyQ4cNx1bCWZGc9ne_J9hDw1jHnmgywBWosSGcBKwyEeTR3BJC1kxJALZI-boxPxdiInG1JfWBPW0wP3L-55HUT0GhKnkJCJQuVbQAg8pMbxhBMrzr6VqTYWU3l3RaOMbpWV5YwuZcUmQxkPa2DJh_tiYNCEClVzrD6CNMye8a3clCn8_4Q7L5dPbuSjw1vk5gAk6av-AW6TK6m7Q6730pI_7pJfY4hdRKPdKQWMR7FSM06RFhy3x-i0owfvPr15XdaGLjFdgblzA9bBn9LZaglLZfeNLqY_0wJ_oqonzWLb9PP5MAh_Sc9SmtP-85cXlNHMUH6e4pd75ORw_PHgqBy0FsqAFaaljw1Eu3YwAaY2qYCiPL4K2jURDy7r6KUyKraNd0kL7pl0EP7ac8CDSkjJ75OdbtalXUJdq6FrEx1-A9swZxKHoeuWiRhh-RQLoi7esg0DETnqYXy3uCBB-9hL9rHZPpYXpF73POvJOP6hzz4acn090mnnP8DJ7OBk9m9OVpC9CzewQ4wvLIAdLSBfKFGQJ-tmMBceubguzVYLy7HeFaZEzgryoPea9Z0AcNayMTC42vKnrVvdbummXzMDuOJ4vCwf_o9ne0RuMNxDQLLQao_sLOer9BiA1tKPyFU1USNybX98_P7DKEfYb1eIKSQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTQheJu5kDDASPAYaO1fQhNjWqWWjILShSQgZ31IqUFJ6GRoP_DR-G-c4TkcnhHjZY-Lacnpun-3j8xHyqGBMMaWTEKB1HGIFsLDgYI9FZEAkJURE7RJkB2nvKH51nByvkF_tXRhMq2x9onPUpta4R_4UQkseg3Vm8YvxtxBZo_B0taXQkJ5awWy5EmP-Yse-Pf0OS7jpVn8X5P2Ysb3u4U4v9CwDocbcylCZFPQ8l2D6trSZRjoa1dG5TA0e2UVGJVmRmTJV0uYxVyyRoPi54oCEsjhB1ggIAWsAOzhY1dp2d_D23dkuT450vh2fQsRSWG7inhx8mEV2rAlmPgEEYE_4Ulx09AF_w7znUzf_iIV7V8m6B7H0ZaN118iKra6TSw2t5ekN8rMLfgORcDWkgC8pZomaEZYkx605Oqrozpv3_d0wKugMQyWommvAHPwhreczWKbLL3Q6-mGn-IiMotQRfdMPJ34Q_pyOrZ3Q5urNM8qoq45-Ys3Hm-ToQiRwi6xWdWXvECrLHLqmRuL925TJwnIYOipZbAws3UxAsvZfFtoXQUcujq8CF0MoH3FOPsLJR_CARIue46YQyH_02UZBLn6Ppbzdi3oyFN4ziEjHRuWADOMEoJbuqBIgMNc2ldwicgjIZqsGwvuXqTizhoA8XDSDuPC4R1a2nk8Fx1xbcMecBeR2ozWLmQBoz5O0gMGzJX1amupySzX67KqPZxyPtpONf0_rAbncO3x9IA76g_275ArDXQosR9rZJKuzydzeAyg3U_e9vVDy6aJN9Df2SV7E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTSBeJu4LDDASPIY1dhInIIRgXbUyNHhgqBJCxreUCpR0TTs0Hvhh_DrOcZKOTgjxssfEteXm3D7bx-cj5FHOmGbaJCFA6zjECmBhzsEe88iCSAqIiMYnyB6m-0fx61EyWiO_urswmFbZ-UTvqG1lcI98B0JLFoN1ininaNMi3vUHL6bHITJI4UlrR6fRqMiBO_0Oy7f6-bAPsn7M2GDv_e5-2DIMhAbzKkNtU9DxTIHZu8IJg1Q0umcylVo8rousTkQubJFq5bKYa5YoUPpMc0BBIk6QMQLc_4bgENbBlsRInO3vZEjk22uTh1gKC03cjYO_5JAXa4Y5TxD82RO-EhE9ccDf0O75pM0_ouDgKtls4St92ejbNbLmyuvkUkNoeXqD_NwDj4EYuBxTQJYU80PtBIuR46YcnZR09-2HYT-McjrHIAlK5hsw-35Mq8UcFujqK60nP1yNj8glSj3FN_140g7Cn9GpczPaXLp5Shn1ddFPnP10kxxdyPe_RdbLqnRbhKoig66pVXjzNmUqdxyGjgoWWwuLNhsQ0X1ladry58jC8U3iMgjlI8_JR3r5SB6QaNlz2pQA-Y8-r1CQy99jEW__opqNZesTZGRiqzPAhHECIMv0dAHglxuXKu4QMwRku1MD2XqWWp7ZQUAeLptBXHjQo0pXLWrJMcsWHDFnAbndaM1yJgDXsyTNYXCxok8rU11tKSdffN1xwfFQO7nz72k9IJfBMOWb4eHBXXKF4fYE1iHtbZP1-Wzh7gGGm-v73lgo-XzR1vkbdKdcYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+overdispersion+in+COVID-19+transmission+using+outbreak+sizes+outside+China&rft.jtitle=Wellcome+open+research&rft.au=Endo%2C+Akira&rft.au=Abbott%2C+Sam&rft.au=Kucharski%2C+Adam+J.&rft.au=Funk%2C+Sebastian&rft.date=2020-07-10&rft.pub=F1000+Research+Limited&rft.eissn=2398-502X&rft.volume=5&rft_id=info:doi/10.12688%2Fwellcomeopenres.15842.3&rft_id=info%3Apmid%2F32685698&rft.externalDocID=PMC7338915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-502X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-502X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-502X&client=summon |