Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China

Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R 0 , variation in the number of secondary transmissions (often characterised by so...

Full description

Saved in:
Bibliographic Details
Published inWellcome open research Vol. 5; p. 67
Main Authors Endo, Akira, Abbott, Sam, Kucharski, Adam J., Funk, Sebastian
Format Journal Article
LanguageEnglish
Published England Wellcome Trust Limited 10.07.2020
F1000 Research Limited
Wellcome
Subjects
Online AccessGet full text
ISSN2398-502X
2398-502X
DOI10.12688/wellcomeopenres.15842.3

Cover

Abstract Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R 0 , variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R 0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R 0 and k (95% CrIs: R 0 1.4-12; k 0.04-0.2); however, the upper bound of R 0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.
AbstractList Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R 0 , variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R 0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R 0 and k (95% CrIs: R 0 1.4-12; k 0.04-0.2); however, the upper bound of R 0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.
A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number , variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of (2-3), the overdispersion parameter of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for and (95% CrIs: 1.4-12; 0.04-0.2); however, the upper bound of was not well informed by the model and data, which did not notably differ from that of the prior distribution. Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.
Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R0 and k (95% CrIs: R0 1.4-12; k 0.04-0.2); however, the upper bound of R0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.
Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R 0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R 0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R 0 and k (95% CrIs: R 0 1.4-12; k 0.04-0.2); however, the upper bound of R 0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R 0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R 0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R 0 and k (95% CrIs: R 0 1.4-12; k 0.04-0.2); however, the upper bound of R 0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.
Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others. Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution. Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R0 and k (95% CrIs: R0 1.4-12; k 0.04-0.2); however, the upper bound of R0 was not well informed by the model and data, which did not notably differ from that of the prior distribution. Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.
Author Abbott, Sam
Endo, Akira
Funk, Sebastian
Kucharski, Adam J.
Author_xml – sequence: 1
  givenname: Akira
  orcidid: 0000-0001-6377-7296
  surname: Endo
  fullname: Endo, Akira
– sequence: 2
  givenname: Sam
  orcidid: 0000-0001-8057-8037
  surname: Abbott
  fullname: Abbott, Sam
– sequence: 3
  givenname: Adam J.
  surname: Kucharski
  fullname: Kucharski, Adam J.
– sequence: 4
  givenname: Sebastian
  orcidid: 0000-0002-2842-3406
  surname: Funk
  fullname: Funk, Sebastian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32685698$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEUtFARLaV_Aa3EhcsGf9t7QUJpgUiVegEEJ8vrfZs4bOxg7xbBr8dJSmh74eSPN2808948RychBkCoInhGqNT6zU8YBhc3ELcQEuQZEZrTGXuCzihrdC0w_Xpy736KLnJeY4yJllRr_AydssIjZKPP0LerPPqNHX1YVuMKqngLqfN5Cyn7GCofqvnNl8VlTZpqTDbkjc_7wpR3HXEa2wT2e5X9b8i7Z_YdVPOVD_YFetrbIcPF3XmOPr-_-jT_WF_ffFjM313XjjeC1W0nGVbaEsGgB-VEI2mLnbayI0I0pGuFalTXy9aC5qylwmKOdcukkIoLwc7R4sDbRbs221TcpF8mWm_2HzEtjU2jdwMY4njXaiw5F5Rzh9ueEMocSMuAK6IL19sD13ZqN9A5CMX08ID0YSX4lVnGW6MY0w3ZiXl9R5DijwnyaMrAXNmXDRCnbBjBimuFGS3QV4-g6zilUEZlKNOaC6YVL6iX9xUdpfzdYAHoA8ClmHOC_ggh2OzzYh7lxezzYtg_t8dW58cShbjz5of_E_wBznLN6A
CitedBy_id crossref_primary_10_1016_j_epidem_2021_100527
crossref_primary_10_1136_bmjopen_2020_045941
crossref_primary_10_7554_eLife_63537
crossref_primary_10_1038_s41467_021_25531_5
crossref_primary_10_7554_eLife_76174
crossref_primary_10_1016_j_jhin_2021_06_002
crossref_primary_10_1016_j_biopha_2021_111310
crossref_primary_10_1016_j_idm_2021_02_002
crossref_primary_10_3389_ijph_2022_1604659
crossref_primary_10_1016_j_ijid_2020_10_016
crossref_primary_10_1371_journal_pone_0250050
crossref_primary_10_1038_s41598_021_03126_w
crossref_primary_10_1016_j_jhealeco_2021_102575
crossref_primary_10_1093_cid_ciaa1433
crossref_primary_10_1186_s12976_021_00144_z
crossref_primary_10_12688_wellcomeopenres_16253_1
crossref_primary_10_1016_S2666_5247_21_00004_5
crossref_primary_10_12688_wellcomeopenres_16253_2
crossref_primary_10_1098_rsos_220129
crossref_primary_10_1098_rsta_2021_0308
crossref_primary_10_1098_rsta_2021_0307
crossref_primary_10_1007_s00103_021_03391_0
crossref_primary_10_1136_thoraxjnl_2020_215337
crossref_primary_10_1103_PhysRevLett_126_118301
crossref_primary_10_1038_s43856_021_00038_8
crossref_primary_10_1126_science_abe3261
crossref_primary_10_1007_s12038_021_00221_y
crossref_primary_10_1038_s41598_023_38544_5
crossref_primary_10_3390_jcm9103125
crossref_primary_10_1039_D1TB00674F
crossref_primary_10_1038_s41564_021_01019_2
crossref_primary_10_1093_jtm_taaa068
crossref_primary_10_1136_bmjgh_2020_003727
crossref_primary_10_3390_v15020456
crossref_primary_10_1016_j_pec_2021_07_022
crossref_primary_10_1016_j_cub_2021_06_049
crossref_primary_10_3390_ijerph182412893
crossref_primary_10_1186_s13756_022_01070_6
crossref_primary_10_1038_s41467_023_42612_9
crossref_primary_10_1145_3530774
crossref_primary_10_1002_rmv_2285
crossref_primary_10_1016_j_ajic_2022_05_009
crossref_primary_10_1021_acs_est_1c05633
crossref_primary_10_1093_femsmc_xtac018
crossref_primary_10_1073_pnas_2018490117
crossref_primary_10_1093_cid_ciab100
crossref_primary_10_3389_fphy_2021_650943
crossref_primary_10_1038_s41598_021_93578_x
crossref_primary_10_1038_s43856_022_00191_8
crossref_primary_10_1016_j_mbs_2022_108885
crossref_primary_10_1098_rsos_202169
crossref_primary_10_1098_rsos_200786
crossref_primary_10_1126_science_abm4915
crossref_primary_10_1038_s41598_023_35083_x
crossref_primary_10_1371_journal_pgen_1010540
crossref_primary_10_1007_s10943_021_01282_x
crossref_primary_10_1038_s41467_020_20742_8
crossref_primary_10_1186_s12879_022_07075_1
crossref_primary_10_1093_ofid_ofab350
crossref_primary_10_5694_mja2_50934
crossref_primary_10_1073_pnas_2103272118
crossref_primary_10_1136_bmjgh_2020_003978
crossref_primary_10_3390_ijerph17217884
crossref_primary_10_1007_s11377_020_00479_y
crossref_primary_10_1016_j_idc_2022_01_007
crossref_primary_10_1371_journal_pone_0249525
crossref_primary_10_3390_jcm10132761
crossref_primary_10_1051_mmnp_2020025
crossref_primary_10_1186_s12889_021_12318_y
crossref_primary_10_1080_15326349_2023_2201329
crossref_primary_10_1016_j_lanepe_2021_100056
crossref_primary_10_1016_S2213_2600_20_30396_9
crossref_primary_10_1016_j_cma_2021_113891
crossref_primary_10_1371_journal_pone_0286012
crossref_primary_10_1097_EDE_0000000000001563
crossref_primary_10_3390_ijerph18062838
crossref_primary_10_1002_admi_202102526
crossref_primary_10_3390_v15020470
crossref_primary_10_1016_j_envres_2021_111514
crossref_primary_10_2807_1560_7917_ES_2022_27_13_2100354
crossref_primary_10_2196_44251
crossref_primary_10_1177_14034948211031400
crossref_primary_10_1103_PhysRevE_105_064122
crossref_primary_10_1016_j_physa_2021_126754
crossref_primary_10_1016_j_epidem_2023_100670
crossref_primary_10_1016_S0140_6736_20_31689_5
crossref_primary_10_1002_jmv_28776
crossref_primary_10_3390_ijerph17103705
crossref_primary_10_1073_pnas_2015972118
crossref_primary_10_1101_gr_266221_120
crossref_primary_10_1016_j_epidem_2023_100725
crossref_primary_10_1038_s41598_021_02605_4
crossref_primary_10_1093_cid_ciac413
crossref_primary_10_1016_j_lanepe_2021_100166
crossref_primary_10_7717_peerj_12566
crossref_primary_10_1136_bmjopen_2020_045225
crossref_primary_10_1098_rsta_2023_0131
crossref_primary_10_1093_pnasnexus_pgae377
crossref_primary_10_1007_s40324_021_00260_3
crossref_primary_10_1371_journal_pgph_0000412
crossref_primary_10_1093_ve_veaa102
crossref_primary_10_1088_2632_072X_ad19e0
crossref_primary_10_1016_j_buildenv_2022_108751
crossref_primary_10_1007_s00103_021_03389_8
crossref_primary_10_1038_d41586_021_00460_x
crossref_primary_10_3934_mbe_2022614
crossref_primary_10_1016_j_epidem_2020_100430
crossref_primary_10_1186_s12889_023_15915_1
crossref_primary_10_1146_annurev_ecolsys_102320_101234
crossref_primary_10_1016_j_epidem_2023_100739
crossref_primary_10_1098_rsfs_2021_0008
crossref_primary_10_1136_bmjopen_2020_044149
crossref_primary_10_36233_0507_4088_146
crossref_primary_10_1098_rsos_201546
crossref_primary_10_7326_M20_6625
crossref_primary_10_1007_s11538_025_01421_5
crossref_primary_10_1093_biomethods_bpad004
crossref_primary_10_1002_hsr2_1468
crossref_primary_10_2139_ssrn_3763376
crossref_primary_10_2139_ssrn_3590183
crossref_primary_10_1371_journal_pcbi_1008892
crossref_primary_10_1177_21650799211042518
crossref_primary_10_1098_rsif_2022_0486
crossref_primary_10_1371_journal_pcbi_1011934
crossref_primary_10_1126_science_abf8003
crossref_primary_10_3233_SJI_210808
crossref_primary_10_1186_s12879_020_05323_w
crossref_primary_10_11603_mie_1996_1960_2020_2_11176
crossref_primary_10_3390_math12040550
crossref_primary_10_1093_ofid_ofac124
crossref_primary_10_1111_ina_12965
crossref_primary_10_1126_science_abf2946
crossref_primary_10_1136_bmj_2022_069940
crossref_primary_10_1016_j_healthpol_2021_06_001
crossref_primary_10_1038_s41467_020_19248_0
crossref_primary_10_1371_journal_pcbi_1010078
crossref_primary_10_1063_5_0089347
crossref_primary_10_3389_fpubh_2022_1002232
crossref_primary_10_1073_pnas_2108909118
crossref_primary_10_1098_rspb_2020_1405
crossref_primary_10_1007_s15010_020_01531_3
crossref_primary_10_1016_j_ijregi_2022_01_003
crossref_primary_10_3390_v13101921
crossref_primary_10_1093_cid_ciaa1654
crossref_primary_10_1016_j_neurol_2022_02_455
crossref_primary_10_1371_journal_pone_0263597
crossref_primary_10_1016_j_molmed_2021_09_009
crossref_primary_10_1016_j_ijid_2021_06_028
crossref_primary_10_2807_1560_7917_ES_2021_26_48_2001636
crossref_primary_10_7189_jogh_13_06018
crossref_primary_10_1002_advs_202200088
crossref_primary_10_1098_rsif_2020_0393
crossref_primary_10_1126_science_abi5273
crossref_primary_10_1371_journal_pone_0270789
crossref_primary_10_1080_07448481_2022_2089843
crossref_primary_10_1098_rsif_2021_0811
crossref_primary_10_1016_j_healthplace_2022_102848
crossref_primary_10_1038_s41586_020_2923_3
crossref_primary_10_1093_ofid_ofab144
crossref_primary_10_1098_rsos_211919
crossref_primary_10_1103_PhysRevResearch_3_033283
crossref_primary_10_1371_journal_pone_0284025
crossref_primary_10_3934_mbe_2022284
crossref_primary_10_1371_journal_pcbi_1008674
crossref_primary_10_1016_j_ijid_2021_07_058
crossref_primary_10_1073_pnas_2014297117
crossref_primary_10_1371_journal_pone_0259097
crossref_primary_10_1111_tbed_14655
crossref_primary_10_1080_02786826_2021_1877257
crossref_primary_10_1371_journal_pone_0248808
crossref_primary_10_1089_cmb_2022_0371
crossref_primary_10_1016_S1473_3099_20_30457_6
crossref_primary_10_1098_rsif_2020_1014
crossref_primary_10_1111_apm_13120
crossref_primary_10_1016_j_tmaid_2022_102452
crossref_primary_10_1038_s41598_023_44527_3
crossref_primary_10_1097_EDE_0000000000001257
crossref_primary_10_1038_s41467_022_34186_9
crossref_primary_10_1016_S1473_3099_22_00579_5
crossref_primary_10_1093_infdis_jiab386
crossref_primary_10_4236_jamp_2022_102033
crossref_primary_10_1016_j_jiph_2021_10_001
crossref_primary_10_1111_rssa_12919
crossref_primary_10_1371_journal_pone_0295242
crossref_primary_10_1038_s41598_023_49678_x
crossref_primary_10_1073_pnas_2011802117
crossref_primary_10_1186_s12874_021_01225_w
crossref_primary_10_1016_j_envint_2024_108762
crossref_primary_10_1103_PhysRevLett_127_158301
crossref_primary_10_1186_s12879_024_09788_x
crossref_primary_10_3201_eid2903_220761
crossref_primary_10_1016_j_cell_2020_11_020
crossref_primary_10_1186_s12879_022_07180_1
crossref_primary_10_1017_S0950268824000955
crossref_primary_10_1016_S0140_6736_21_00869_2
crossref_primary_10_1038_s41467_023_38201_5
crossref_primary_10_1016_j_jmh_2022_100079
crossref_primary_10_1371_journal_pcbi_1009149
crossref_primary_10_1016_j_ijid_2021_10_007
crossref_primary_10_1038_s41467_024_55593_0
crossref_primary_10_1186_s12874_022_01517_9
crossref_primary_10_12688_f1000research_51164_1
crossref_primary_10_2807_1560_7917_ES_2022_27_6_2001953
crossref_primary_10_1073_pnas_2104547118
crossref_primary_10_1073_pnas_2203019119
crossref_primary_10_1371_journal_pgen_1010391
crossref_primary_10_1016_j_jhqr_2021_12_006
crossref_primary_10_1371_journal_pcbi_1010008
crossref_primary_10_1186_s12889_020_09669_3
crossref_primary_10_3389_fpubh_2022_879340
crossref_primary_10_1371_journal_pcbi_1010281
crossref_primary_10_3201_eid2712_204958
crossref_primary_10_7326_M20_5008
crossref_primary_10_2169_naika_109_2276
crossref_primary_10_7554_eLife_65774
crossref_primary_10_1017_dap_2021_14
crossref_primary_10_7554_eLife_64683
crossref_primary_10_1016_S1473_3099_20_30725_8
crossref_primary_10_1016_j_epidem_2022_100662
crossref_primary_10_1111_tmi_13822
crossref_primary_10_1038_s43856_022_00147_y
crossref_primary_10_1016_j_epidem_2023_100716
crossref_primary_10_3390_jcm10112392
crossref_primary_10_1016_j_cell_2021_12_027
crossref_primary_10_1186_s12874_020_01119_3
crossref_primary_10_1002_sim_10046
crossref_primary_10_1016_j_csbj_2021_08_045
crossref_primary_10_1056_NEJMc2103227
crossref_primary_10_1007_s11560_020_00472_0
crossref_primary_10_1038_s41598_023_38007_x
crossref_primary_10_1371_journal_pone_0259969
crossref_primary_10_1016_j_healthplace_2021_102622
crossref_primary_10_1016_j_jinf_2021_07_034
crossref_primary_10_1016_j_medj_2021_02_007
crossref_primary_10_1016_j_idm_2022_10_003
crossref_primary_10_1007_s13369_021_06419_4
crossref_primary_10_1093_nar_gkab1297
crossref_primary_10_3390_polym13234165
crossref_primary_10_1371_journal_pdig_0000485
crossref_primary_10_1371_journal_pone_0238090
crossref_primary_10_1186_s12879_021_06357_4
crossref_primary_10_1016_j_epidem_2021_100477
crossref_primary_10_1016_j_mehy_2020_110431
crossref_primary_10_1016_j_epidem_2023_100710
crossref_primary_10_1098_rsos_211710
crossref_primary_10_1186_s13756_020_00861_z
crossref_primary_10_1073_pnas_2005476117
crossref_primary_10_1111_risa_14249
crossref_primary_10_1016_j_jaerosci_2020_105661
crossref_primary_10_1371_journal_pone_0271103
crossref_primary_10_1080_10496491_2023_2189204
crossref_primary_10_2217_fvl_2020_0310
crossref_primary_10_1002_jso_26561
crossref_primary_10_1093_pnasnexus_pgad201
crossref_primary_10_1016_j_cell_2020_06_040
crossref_primary_10_1098_rsos_240629
crossref_primary_10_1371_journal_pone_0238800
crossref_primary_10_5694_mja2_50835
crossref_primary_10_7554_eLife_68341
crossref_primary_10_1016_j_idm_2021_03_006
crossref_primary_10_1016_j_jhin_2022_09_023
crossref_primary_10_1126_science_abe9707
crossref_primary_10_1016_j_epidem_2021_100446
crossref_primary_10_1093_cid_ciab037
crossref_primary_10_1186_s12879_022_07663_1
crossref_primary_10_2807_1560_7917_ES_2023_28_41_2200916
crossref_primary_10_1371_journal_pone_0243026
crossref_primary_10_4103_jfmpc_jfmpc_1379_20
crossref_primary_10_1093_aje_kwab098
crossref_primary_10_1136_bmjgh_2020_003098
crossref_primary_10_21307_connections_2021_022
crossref_primary_10_1017_ice_2021_8
crossref_primary_10_1186_s41118_021_00115_9
crossref_primary_10_3389_fviro_2022_942555
crossref_primary_10_1038_s42005_020_00470_7
crossref_primary_10_1016_j_biochi_2023_03_006
crossref_primary_10_1371_journal_pone_0253011
crossref_primary_10_1371_journal_pone_0251073
crossref_primary_10_1073_pnas_2016623118
crossref_primary_10_2196_24286
crossref_primary_10_1073_pnas_2112182119
crossref_primary_10_5694_mja2_50823
crossref_primary_10_1093_aje_kwac181
crossref_primary_10_1038_s41467_022_32531_6
crossref_primary_10_1371_journal_pone_0247614
crossref_primary_10_1016_S2468_2667_20_30308_X
crossref_primary_10_1016_j_jiph_2021_08_013
crossref_primary_10_1016_j_scitotenv_2021_151499
crossref_primary_10_1111_risa_13935
crossref_primary_10_3389_fpubh_2023_1202996
crossref_primary_10_1038_s41598_022_06008_x
crossref_primary_10_12688_wellcomeopenres_16344_2
crossref_primary_10_1371_journal_pone_0256889
crossref_primary_10_12688_wellcomeopenres_16344_1
crossref_primary_10_1111_apm_13141
crossref_primary_10_1038_s41598_021_91338_5
crossref_primary_10_1038_s41598_022_21645_y
crossref_primary_10_12688_wellcomeopenres_16344_3
crossref_primary_10_2196_30968
crossref_primary_10_1016_j_ijid_2022_01_036
crossref_primary_10_1056_NEJMsr2019953
crossref_primary_10_1016_j_eclinm_2020_100717
crossref_primary_10_1016_j_gsf_2021_101285
crossref_primary_10_3390_ijerph18010157
crossref_primary_10_2139_ssrn_3964247
crossref_primary_10_1098_rsos_210310
crossref_primary_10_1016_j_epidem_2024_100784
crossref_primary_10_1186_s12879_022_07928_9
crossref_primary_10_1371_journal_pmed_1003585
crossref_primary_10_2139_ssrn_4092973
crossref_primary_10_1097_EDE_0000000000001523
crossref_primary_10_1016_j_epidem_2022_100613
crossref_primary_10_1016_j_clinpr_2022_100134
crossref_primary_10_1093_molbev_msab049
crossref_primary_10_1186_s12889_024_18012_z
crossref_primary_10_1016_j_gsf_2021_101282
crossref_primary_10_1038_s41598_021_90666_w
crossref_primary_10_7759_cureus_13819
crossref_primary_10_1016_j_mbs_2022_108957
crossref_primary_10_1038_s41467_023_43769_z
crossref_primary_10_1093_pubmed_fdaa119
crossref_primary_10_3201_eid2708_204875
crossref_primary_10_1038_s41467_020_20325_7
crossref_primary_10_1371_journal_pbio_3000897
crossref_primary_10_3390_v15020277
crossref_primary_10_1098_rstb_2020_0270
crossref_primary_10_1093_ve_veac017
crossref_primary_10_1016_j_onehlt_2021_100213
crossref_primary_10_1371_journal_ppat_1012090
crossref_primary_10_1098_rstb_2020_0267
crossref_primary_10_1098_rspb_2022_0232
crossref_primary_10_7554_eLife_80781
crossref_primary_10_1371_journal_pcbi_1009120
crossref_primary_10_1098_rsfs_2021_0076
crossref_primary_10_1186_s12889_020_09624_2
Cites_doi 10.1088/0953-8984/23/18/184115
10.2807/1560-7917.es2015.20.25.21167
10.1038/nature04153
10.1016/S0140-6736(20)30462-1
10.1101/2020.03.03.20028423
10.1371/journal.ppat.1004452
10.2307/1390645
10.1371/journal.pcbi.1002993
10.1016/j.ijid.2020.02.033
10.1016/j.ijid.2020.01.050
10.1371/journal.pone.0000180
10.12688/wellcomeopenres.15718.1
10.1016/j.ijid.2020.02.060
10.1016/j.ijantimicag.2020.105924
10.2807/1560-7917.ES.2020.25.4.2000058
10.1056/NEJMoa2001316
10.1056/NEJMoa2001017
ContentType Journal Article
Copyright Copyright: © 2020 Endo A et al.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2020 Endo A et al. 2020
Copyright_xml – notice: Copyright: © 2020 Endo A et al.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2020 Endo A et al. 2020
CorporateAuthor Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group
CorporateAuthor_xml – name: Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.12688/wellcomeopenres.15842.3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2398-502X
ExternalDocumentID oai_doaj_org_article_1c4db806445244c0bf1123ce6a3e4718
PMC7338915
32685698
10_12688_wellcomeopenres_15842_3
Genre Journal Article
GeographicLocations Iran
China
Egypt
Estonia
GeographicLocations_xml – name: China
– name: Iran
– name: Egypt
– name: Estonia
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/S003975/1
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 206250; 210758
– fundername: The Nakajima Foundation
– fundername: Alan Turing Institute
GroupedDBID 7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4953-bd63078a153efe7c5962b0c8a6d15591db5797df6bae843b25a0408b365674553
IEDL.DBID DOA
ISSN 2398-502X
IngestDate Wed Aug 27 01:08:51 EDT 2025
Thu Aug 21 14:08:56 EDT 2025
Thu Sep 04 20:29:06 EDT 2025
Sat Jun 28 13:41:45 EDT 2025
Mon Jul 21 06:06:38 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Tue Jul 01 04:21:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
novel coronavirus
SARS-CoV-2
overdispersion
branching process
superspreading
Language English
License Copyright: © 2020 Endo A et al.
This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4953-bd63078a153efe7c5962b0c8a6d15591db5797df6bae843b25a0408b365674553
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing interests: AE received a research grant from Taisho Pharmaceutical Co., Ltd.
ORCID 0000-0001-6377-7296
0000-0001-8057-8037
0000-0002-2842-3406
OpenAccessLink https://doaj.org/article/1c4db806445244c0bf1123ce6a3e4718
PMID 32685698
PQID 2388453874
PQPubID 2050296
ParticipantIDs doaj_primary_oai_doaj_org_article_1c4db806445244c0bf1123ce6a3e4718
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7338915
proquest_miscellaneous_3107487032
proquest_journals_2388453874
pubmed_primary_32685698
crossref_primary_10_12688_wellcomeopenres_15842_3
crossref_citationtrail_10_12688_wellcomeopenres_15842_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200710
PublicationDateYYYYMMDD 2020-07-10
PublicationDate_xml – month: 7
  year: 2020
  text: 20200710
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: London, UK
PublicationTitle Wellcome open research
PublicationTitleAlternate Wellcome Open Res
PublicationYear 2020
Publisher Wellcome Trust Limited
F1000 Research Limited
Wellcome
Publisher_xml – name: Wellcome Trust Limited
– name: F1000 Research Limited
– name: Wellcome
References (ref-11) 2020
N Zhu (ref-1) 2020; 382
Q Li (ref-22) 2020; 382
J Lloyd-Smith (ref-21) 2007; 2
A Kucharski (ref-8) 2015; 20
(ref-6) 2020
S Watanabe (ref-15) 2013; 14
Q Bi (ref-19) 2020
J Riou (ref-18) 2020; 25
S Blumberg (ref-20) 2013; 9
A Endo (ref-16) 2020
H Nishiura (ref-23) 2020; 93
J Lloyd-Smith (ref-9) 2005; 438
Y Liu (ref-17) 2020; 395
A Endo (ref-14) 2020
S Zhang (ref-4) 2020; 93
(ref-10) 2020
C Lai (ref-2) 2020; 55
S Zhao (ref-3) 2020; 92
M Hancock (ref-7) 2020
S Blumberg (ref-12) 2014; 10
S Abbott (ref-5) 2020; 5
M Chen (ref-13) 1993; 2
References_xml – volume: 14
  start-page: 867-897
  year: 2013
  ident: ref-15
  article-title: A Widely Applicable Bayesian Information Criterion
  doi: 10.1088/0953-8984/23/18/184115
– volume: 20
  start-page: 14-8
  year: 2015
  ident: ref-8
  article-title: The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission.
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.es2015.20.25.21167
– volume: 438
  start-page: 355-359
  year: 2005
  ident: ref-9
  article-title: Superspreading and the effect of individual variation on disease emergence.
  publication-title: Nature.
  doi: 10.1038/nature04153
– volume: 395
  start-page: e47
  year: 2020
  ident: ref-17
  article-title: Secondary attack rate and superspreading events for SARS-CoV-2.
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(20)30462-1
– year: 2020
  ident: ref-19
  article-title: Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts.
  publication-title: medRxiv.
  doi: 10.1101/2020.03.03.20028423
– volume: 10
  start-page: e1004452
  year: 2014
  ident: ref-12
  article-title: Detecting differential transmissibilities that affect the size of self-limited outbreaks
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004452
– volume: 2
  start-page: 251-272
  year: 1993
  ident: ref-13
  article-title: Performance of the Gibbs, Hit-and-Run, and Metropolis Samplers.
  publication-title: J Comput Graph Stat.
  doi: 10.2307/1390645
– year: 2020
  ident: ref-11
  article-title: COVID2019.app - LIVE stats and graphs
– year: 2020
  ident: ref-16
  article-title: Extended data: Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China.
  publication-title: Zenodo.
– volume: 9
  start-page: e1002993
  year: 2013
  ident: ref-20
  article-title: Inference of R(0) and transmission heterogeneity from the size distribution of stuttering chains.
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1002993
– volume: 93
  start-page: 201-204
  year: 2020
  ident: ref-4
  article-title: Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis.
  publication-title: Int J Infect Dis.
  doi: 10.1016/j.ijid.2020.02.033
– volume: 92
  start-page: 214-217
  year: 2020
  ident: ref-3
  article-title: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak.
  publication-title: Int J Infect Dis.
  doi: 10.1016/j.ijid.2020.01.050
– volume: 2
  start-page: e180
  year: 2007
  ident: ref-21
  article-title: Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0000180
– volume: 5
  start-page: 17
  year: 2020
  ident: ref-5
  article-title: The transmissibility of novel Coronavirus in the early stages of the 2019-20 outbreak in Wuhan: Exploring initial point-source exposure sizes and durations using scenario analysis [version 1; peer review: 1 approved].
  publication-title: Wellcome Open Res.
  doi: 10.12688/wellcomeopenres.15718.1
– volume: 93
  start-page: 284-286
  year: 2020
  ident: ref-23
  article-title: Serial interval of novel coronavirus (COVID-19) infections.
  publication-title: Int J Infect Dis.
  doi: 10.1016/j.ijid.2020.02.060
– volume: 55
  year: 2020
  ident: ref-2
  article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.
  publication-title: Int J Antimicrob Agents.
  doi: 10.1016/j.ijantimicag.2020.105924
– volume: 25
  year: 2020
  ident: ref-18
  article-title: Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020.
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES.2020.25.4.2000058
– year: 2020
  ident: ref-7
  article-title: Press release: Government outlines further plans to support health and social care system in fight against COVID-19
– year: 2020
  ident: ref-6
  article-title: Basic Policies for Novel Coronavirus Disease Control
– volume: 382
  start-page: 1199-1207
  year: 2020
  ident: ref-22
  article-title: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia.
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa2001316
– year: 2020
  ident: ref-14
  article-title: Estimating the amount of superspreading using outbreak sizes of COVID-19 outside China (Version v1.0.0).
  publication-title: Zenodo.
– volume: 382
  start-page: 727-733
  year: 2020
  ident: ref-1
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019.
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa2001017
– year: 2020
  ident: ref-10
  article-title: Coronavirus disease 2019 (COVID-19) Situation Report – 38
SSID ssj0001862880
Score 2.4973152
Snippet Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of...
A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human...
Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 67
SubjectTerms Coronaviruses
COVID-19
Disease transmission
Epidemics
Infections
Peer review
Severe acute respiratory syndrome coronavirus 2
Statistical analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96Ivgifls9JYKv1W0-mlQfRM87Th_0xZMFkZCvrovSrtvdA33wb3cmze65h4iPbZoQOjOZXyaT-RHyuGHMMedlCdBalFgBrGw42GNTBRBJCx7RpwTZd_XxiXg7ldMccBtyWuVmTUwLdeg9xsifgmvRAqxTiReL7yWyRuHpaqbQuEguVQBVUKvVVJ3FWDSS6U5yAg-rYbOHETEYNiI31RLzjsABsyd8xyul4v1_Q5znEyf_8ERH18jVDCHpy1Hm18mF2N0gl0dSyR83ya9DsFrEod2MArqjmKMZ5lgQHANjdN7Rg_cf37wuq4au0FGBoFMDZsDPaL9ewSbZfqXD_Gcc8BH5PGmi2aafTvMg_DldxLik48WXZ5TRVJv8NIbPt8jJ0eGHg-MysyyUHnNLSxdqsHNtYemLbVQe6XjcxGtbBzyyrIKTqlGhrZ2NWnDHpAXD144DElRCSn6b7HV9F-8SalsNXetg8fZrzWwTOQxdtUyEABunUBC1-cvG5xLkyITxzeBWBOVjzsnHJPkYXpBq23MxluH4jz6vUJDb77GQdnrRL2cm26WpvAhOAy4TEoCOn7gWACj3sbY8ot8uyP5GDUy27sGc6WJBHm2bQVx42GK72K8HwzHTFRZDzgpyZ9Sa7UwAMmtZNzC42tGnnanutnTzL6n2t-J4sCzv_Xta98kVhnEBLAA62Sd7q-U6PgDwtHIPk4X8BpqtHQQ
  priority: 102
  providerName: ProQuest
Title Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China
URI https://www.ncbi.nlm.nih.gov/pubmed/32685698
https://www.proquest.com/docview/2388453874
https://www.proquest.com/docview/3107487032
https://pubmed.ncbi.nlm.nih.gov/PMC7338915
https://doaj.org/article/1c4db806445244c0bf1123ce6a3e4718
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4t1AWRmJayDxI7bhRMtWhUNBiKKVELL8SlmBstU-KsGB386Mk652KyQ4cNx1bCWZGc9ne_J9hDw1jHnmgywBWosSGcBKwyEeTR3BJC1kxJALZI-boxPxdiInG1JfWBPW0wP3L-55HUT0GhKnkJCJQuVbQAg8pMbxhBMrzr6VqTYWU3l3RaOMbpWV5YwuZcUmQxkPa2DJh_tiYNCEClVzrD6CNMye8a3clCn8_4Q7L5dPbuSjw1vk5gAk6av-AW6TK6m7Q6730pI_7pJfY4hdRKPdKQWMR7FSM06RFhy3x-i0owfvPr15XdaGLjFdgblzA9bBn9LZaglLZfeNLqY_0wJ_oqonzWLb9PP5MAh_Sc9SmtP-85cXlNHMUH6e4pd75ORw_PHgqBy0FsqAFaaljw1Eu3YwAaY2qYCiPL4K2jURDy7r6KUyKraNd0kL7pl0EP7ac8CDSkjJ75OdbtalXUJdq6FrEx1-A9swZxKHoeuWiRhh-RQLoi7esg0DETnqYXy3uCBB-9hL9rHZPpYXpF73POvJOP6hzz4acn090mnnP8DJ7OBk9m9OVpC9CzewQ4wvLIAdLSBfKFGQJ-tmMBceubguzVYLy7HeFaZEzgryoPea9Z0AcNayMTC42vKnrVvdbummXzMDuOJ4vCwf_o9ne0RuMNxDQLLQao_sLOer9BiA1tKPyFU1USNybX98_P7DKEfYb1eIKSQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTQheJu5kDDASPAYaO1fQhNjWqWWjILShSQgZ31IqUFJ6GRoP_DR-G-c4TkcnhHjZY-Lacnpun-3j8xHyqGBMMaWTEKB1HGIFsLDgYI9FZEAkJURE7RJkB2nvKH51nByvkF_tXRhMq2x9onPUpta4R_4UQkseg3Vm8YvxtxBZo_B0taXQkJ5awWy5EmP-Yse-Pf0OS7jpVn8X5P2Ysb3u4U4v9CwDocbcylCZFPQ8l2D6trSZRjoa1dG5TA0e2UVGJVmRmTJV0uYxVyyRoPi54oCEsjhB1ggIAWsAOzhY1dp2d_D23dkuT450vh2fQsRSWG7inhx8mEV2rAlmPgEEYE_4Ulx09AF_w7znUzf_iIV7V8m6B7H0ZaN118iKra6TSw2t5ekN8rMLfgORcDWkgC8pZomaEZYkx605Oqrozpv3_d0wKugMQyWommvAHPwhreczWKbLL3Q6-mGn-IiMotQRfdMPJ34Q_pyOrZ3Q5urNM8qoq45-Ys3Hm-ToQiRwi6xWdWXvECrLHLqmRuL925TJwnIYOipZbAws3UxAsvZfFtoXQUcujq8CF0MoH3FOPsLJR_CARIue46YQyH_02UZBLn6Ppbzdi3oyFN4ziEjHRuWADOMEoJbuqBIgMNc2ldwicgjIZqsGwvuXqTizhoA8XDSDuPC4R1a2nk8Fx1xbcMecBeR2ozWLmQBoz5O0gMGzJX1amupySzX67KqPZxyPtpONf0_rAbncO3x9IA76g_275ArDXQosR9rZJKuzydzeAyg3U_e9vVDy6aJN9Df2SV7E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTSBeJu4LDDASPIY1dhInIIRgXbUyNHhgqBJCxreUCpR0TTs0Hvhh_DrOcZKOTgjxssfEteXm3D7bx-cj5FHOmGbaJCFA6zjECmBhzsEe88iCSAqIiMYnyB6m-0fx61EyWiO_urswmFbZ-UTvqG1lcI98B0JLFoN1ininaNMi3vUHL6bHITJI4UlrR6fRqMiBO_0Oy7f6-bAPsn7M2GDv_e5-2DIMhAbzKkNtU9DxTIHZu8IJg1Q0umcylVo8rousTkQubJFq5bKYa5YoUPpMc0BBIk6QMQLc_4bgENbBlsRInO3vZEjk22uTh1gKC03cjYO_5JAXa4Y5TxD82RO-EhE9ccDf0O75pM0_ouDgKtls4St92ejbNbLmyuvkUkNoeXqD_NwDj4EYuBxTQJYU80PtBIuR46YcnZR09-2HYT-McjrHIAlK5hsw-35Mq8UcFujqK60nP1yNj8glSj3FN_140g7Cn9GpczPaXLp5Shn1ddFPnP10kxxdyPe_RdbLqnRbhKoig66pVXjzNmUqdxyGjgoWWwuLNhsQ0X1ladry58jC8U3iMgjlI8_JR3r5SB6QaNlz2pQA-Y8-r1CQy99jEW__opqNZesTZGRiqzPAhHECIMv0dAHglxuXKu4QMwRku1MD2XqWWp7ZQUAeLptBXHjQo0pXLWrJMcsWHDFnAbndaM1yJgDXsyTNYXCxok8rU11tKSdffN1xwfFQO7nz72k9IJfBMOWb4eHBXXKF4fYE1iHtbZP1-Wzh7gGGm-v73lgo-XzR1vkbdKdcYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+overdispersion+in+COVID-19+transmission+using+outbreak+sizes+outside+China&rft.jtitle=Wellcome+open+research&rft.au=Endo%2C+Akira&rft.au=Abbott%2C+Sam&rft.au=Kucharski%2C+Adam+J.&rft.au=Funk%2C+Sebastian&rft.date=2020-07-10&rft.pub=F1000+Research+Limited&rft.eissn=2398-502X&rft.volume=5&rft_id=info:doi/10.12688%2Fwellcomeopenres.15842.3&rft_id=info%3Apmid%2F32685698&rft.externalDocID=PMC7338915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-502X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-502X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-502X&client=summon