Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data

The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional χ2 statistics and significance testing are demonstrated to be inappropriat...

Full description

Saved in:
Bibliographic Details
Published inMicroscopy research and technique Vol. 71; no. 7; pp. 542 - 550
Main Authors Moody, Michael P., Stephenson, Leigh T., Ceguerra, Anna V., Ringer, Simon P.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2008
Subjects
Online AccessGet full text
ISSN1059-910X
1097-0029
1097-0029
DOI10.1002/jemt.20582

Cover

Abstract The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional χ2 statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, μ, is shown to normalize χ2 with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of μ over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results. Microsc. Res. Tech., 2008. © 2008 Wiley‐Liss, Inc.
AbstractList The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional 2 statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, , is shown to normalize 2 with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results. Microsc. Res. Tech., 2008.
The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional χ2 statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, μ, is shown to normalize χ2 with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of μ over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results. Microsc. Res. Tech., 2008. © 2008 Wiley‐Liss, Inc.
The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional chi(2) statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, mu, is shown to normalize chi(2) with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of mu over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results.The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional chi(2) statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, mu, is shown to normalize chi(2) with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of mu over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results.
The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional chi(2) statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, mu, is shown to normalize chi(2) with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of mu over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results.
The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional χ 2 statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, μ, is shown to normalize χ 2 with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of μ over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results. Microsc. Res. Tech., 2008. © 2008 Wiley‐Liss, Inc.
Author Moody, Michael P.
Ceguerra, Anna V.
Ringer, Simon P.
Stephenson, Leigh T.
Author_xml – sequence: 1
  givenname: Michael P.
  surname: Moody
  fullname: Moody, Michael P.
  email: m.moody@usyd.edu.au
  organization: Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales 2006, Australia
– sequence: 2
  givenname: Leigh T.
  surname: Stephenson
  fullname: Stephenson, Leigh T.
  organization: Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales 2006, Australia
– sequence: 3
  givenname: Anna V.
  surname: Ceguerra
  fullname: Ceguerra, Anna V.
  organization: Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales 2006, Australia
– sequence: 4
  givenname: Simon P.
  surname: Ringer
  fullname: Ringer, Simon P.
  organization: Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales 2006, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18425800$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhgep2A-98QdIrhSUqclkPi9L6W4trSJU9C6cmTlZ02aSNcnY7m1_udmdVUFkCyE5hOc95H1PDpM9Yw0myUtGjxml2fsbHMJxRos6e5IcMNpUabxt9tZ10aQNo9_2k0PvbyhlrGD5s2Sf1XlW1JQeJA-fRzBBBQjqJ5JWGTso0KRXPjjVjkFZQ8CAXnn0xEpiwFjfgUai1S2m3uoxIIFgB9Lp0Qd0yiyioiceFw4XsOmgzIQsnW2RxMouHCy_r0gPAZ4nTyVojy-251HyZXZ2fXqeXn6afzg9uUy7vCmytC1rmXW0qbHlVSkZNF3ceI9Ae2RQ8C7nEB0XrG9kW0kJLed1V0rgUvZZy4-Sd1Pf0SxhdQdai6VTA7iVYFSskxTrJMUmyUi_mej45h8j-iAG5TvUGgza0YuG8pI3JS8i-XonWTZZzrOKPgryPM8zxurHQV7ULK4IvtqCYztg_9fPdr4RoBPQOeu9Qym6zaytCQ6U_r_xt_9IdqbEJvhOaVztIMXF2dX1b006aeIfw_s_GnC3oqx4VYivH-fi_IrOZuXFXMz5L-xF6Lc
CitedBy_id crossref_primary_10_1002_adma_202407564
crossref_primary_10_1002_adma_202004029
crossref_primary_10_1007_s11085_024_10225_2
crossref_primary_10_1016_j_actamat_2020_02_023
crossref_primary_10_1116_1_4953410
crossref_primary_10_1016_j_ultramic_2019_01_011
crossref_primary_10_1016_j_carbon_2024_119091
crossref_primary_10_1063_1_4991417
crossref_primary_10_1016_j_jallcom_2013_04_138
crossref_primary_10_1016_j_msea_2015_09_010
crossref_primary_10_1016_j_matchar_2020_110327
crossref_primary_10_1016_j_matchar_2018_02_033
crossref_primary_10_1080_21663831_2020_1741469
crossref_primary_10_1016_j_jallcom_2016_05_337
crossref_primary_10_1016_j_jallcom_2018_05_333
crossref_primary_10_1063_1_4979786
crossref_primary_10_1016_j_matlet_2012_09_059
crossref_primary_10_1038_s43246_023_00353_8
crossref_primary_10_1016_j_actamat_2021_117604
crossref_primary_10_1016_j_jallcom_2016_08_326
crossref_primary_10_1016_j_tsf_2017_06_029
crossref_primary_10_1016_j_msea_2023_145772
crossref_primary_10_1016_j_msea_2020_139152
crossref_primary_10_1039_D1TA10050E
crossref_primary_10_1063_1_4944652
crossref_primary_10_1016_j_pmatsci_2020_100740
crossref_primary_10_1021_nl4021045
crossref_primary_10_1080_21663831_2019_1601644
crossref_primary_10_1063_1_5038644
crossref_primary_10_1016_j_mtla_2019_100539
crossref_primary_10_1016_j_jallcom_2013_06_086
crossref_primary_10_1002_ange_201712952
crossref_primary_10_1016_j_actamat_2018_08_053
crossref_primary_10_1063_1_4871510
crossref_primary_10_1016_j_actamat_2012_04_030
crossref_primary_10_4236_ojmetal_2016_62003
crossref_primary_10_1088_1361_651X_ab4b3d
crossref_primary_10_1051_matecconf_202032104003
crossref_primary_10_1017_S1431927618015611
crossref_primary_10_1016_j_scriptamat_2017_07_037
crossref_primary_10_3390_ma14030692
crossref_primary_10_1016_j_corsci_2021_109525
crossref_primary_10_2355_isijinternational_ISIJINT_2020_412
crossref_primary_10_1063_5_0006519
crossref_primary_10_1016_j_ultramic_2015_04_012
crossref_primary_10_1002_anie_201712952
crossref_primary_10_1016_j_matdes_2020_109070
crossref_primary_10_1016_j_matdes_2025_113620
crossref_primary_10_2320_matertrans_MT_H2021001
crossref_primary_10_1016_j_actamat_2011_04_053
crossref_primary_10_1016_j_scriptamat_2021_114110
crossref_primary_10_1016_j_actamat_2016_08_072
crossref_primary_10_1016_j_actamat_2017_12_052
crossref_primary_10_1016_j_jallcom_2021_163155
crossref_primary_10_1088_1361_648X_aa5375
crossref_primary_10_1016_j_actamat_2020_09_055
crossref_primary_10_1016_j_archoralbio_2020_104682
crossref_primary_10_1016_j_matchar_2020_110126
crossref_primary_10_1017_S1431927617000642
crossref_primary_10_7567_APEX_11_115503
crossref_primary_10_1016_j_mex_2014_02_001
crossref_primary_10_1016_j_actamat_2023_118864
crossref_primary_10_1063_1_5082979
crossref_primary_10_1016_j_jallcom_2020_156187
crossref_primary_10_1007_s00339_010_5725_x
crossref_primary_10_1016_j_ultramic_2025_114120
crossref_primary_10_1016_j_actamat_2024_120434
crossref_primary_10_1017_S1431927621012629
crossref_primary_10_1016_j_jcrysgro_2016_08_045
crossref_primary_10_1016_j_jnucmat_2015_04_005
crossref_primary_10_1038_s41598_019_44351_8
crossref_primary_10_1063_1_4760261
crossref_primary_10_1016_j_actamat_2023_119389
crossref_primary_10_1007_s11661_009_9937_7
crossref_primary_10_1063_1_4984087
crossref_primary_10_1016_j_jnucmat_2017_04_011
crossref_primary_10_1016_j_jallcom_2017_02_077
crossref_primary_10_1016_j_msea_2021_142480
crossref_primary_10_1063_1_5113627
crossref_primary_10_1111_jace_13135
crossref_primary_10_1016_j_jcrysgro_2020_125815
crossref_primary_10_1038_srep36556
crossref_primary_10_1002_srin_201600084
crossref_primary_10_1016_j_msea_2022_144271
crossref_primary_10_1002_pssa_201532236
crossref_primary_10_1016_j_tsf_2019_04_026
crossref_primary_10_1007_s11837_019_03467_y
crossref_primary_10_1016_j_ultramic_2023_113687
crossref_primary_10_1557_mrs2009_246
crossref_primary_10_1016_j_actamat_2017_08_002
crossref_primary_10_1038_ncomms9014
crossref_primary_10_3365_KJMM_2023_61_7_524
crossref_primary_10_2139_ssrn_4174910
crossref_primary_10_1016_j_actamat_2019_07_001
crossref_primary_10_1002_srin_201200257
crossref_primary_10_1016_j_actamat_2020_08_003
crossref_primary_10_1016_j_cirp_2016_04_009
crossref_primary_10_1016_j_mtla_2023_101849
crossref_primary_10_1021_acs_jpcc_7b11989
crossref_primary_10_1016_j_actamat_2018_06_034
crossref_primary_10_1063_1_3499693
crossref_primary_10_1021_acsami_9b17525
crossref_primary_10_2355_tetsutohagane_TETSU_2019_113
crossref_primary_10_1017_S1431927618015581
crossref_primary_10_1016_j_jeurceramsoc_2021_03_035
crossref_primary_10_1016_j_pmatsci_2021_100854
crossref_primary_10_1016_j_actamat_2015_04_014
crossref_primary_10_1016_j_jmatprotec_2020_116854
crossref_primary_10_1017_S1431927620000197
crossref_primary_10_1016_j_actamat_2009_11_021
crossref_primary_10_1103_PhysRevB_85_174430
crossref_primary_10_1017_S1431927621012952
crossref_primary_10_1116_1_4986185
crossref_primary_10_1002_batt_202300403
crossref_primary_10_1038_s43586_021_00047_w
crossref_primary_10_1016_j_msea_2018_11_055
crossref_primary_10_1063_1_4943612
crossref_primary_10_1364_OE_387561
crossref_primary_10_1016_j_actamat_2019_12_020
crossref_primary_10_1088_0957_4484_25_43_435704
crossref_primary_10_3139_105_110390
crossref_primary_10_1016_j_apmt_2024_102414
crossref_primary_10_1016_j_jnucmat_2014_12_099
crossref_primary_10_1016_j_matchar_2018_07_011
crossref_primary_10_1039_D1CY01938D
crossref_primary_10_1016_j_scriptamat_2017_09_031
crossref_primary_10_1063_1_4751254
crossref_primary_10_1007_s11837_015_1591_5
crossref_primary_10_1002_smtd_202200029
crossref_primary_10_1016_j_intermet_2022_107655
crossref_primary_10_1080_14686996_2022_2132118
crossref_primary_10_4028_www_scientific_net_AMR_409_702
crossref_primary_10_1016_j_scriptamat_2013_09_030
crossref_primary_10_9729_AM_2016_46_3_117
crossref_primary_10_1016_j_ultramic_2012_12_011
crossref_primary_10_1016_j_mtla_2022_101595
crossref_primary_10_1557_s43578_020_00066_5
crossref_primary_10_1016_j_mtla_2023_101776
crossref_primary_10_1016_j_jallcom_2014_04_047
crossref_primary_10_1016_j_ultramic_2020_113151
crossref_primary_10_1016_j_inoche_2021_108852
crossref_primary_10_1063_5_0167855
crossref_primary_10_3390_nano13081341
crossref_primary_10_1063_1_4901465
crossref_primary_10_1016_j_jcrysgro_2018_04_026
crossref_primary_10_1103_PhysRevMaterials_4_054604
crossref_primary_10_1016_j_ultramic_2013_02_014
crossref_primary_10_1021_jp208553g
crossref_primary_10_1016_j_addma_2020_101561
crossref_primary_10_1093_micmic_ozac004
crossref_primary_10_1063_1_4812363
crossref_primary_10_1557_jmr_2018_247
crossref_primary_10_1016_j_actamat_2013_10_034
crossref_primary_10_3390_ma13102298
crossref_primary_10_1038_ncomms8589
crossref_primary_10_1051_epjap_2023230018
crossref_primary_10_1016_j_actamat_2022_117786
crossref_primary_10_1016_j_actamat_2022_117668
crossref_primary_10_1016_j_actamat_2020_116612
crossref_primary_10_1021_acsenergylett_3c00842
crossref_primary_10_1063_1_3589370
crossref_primary_10_1080_21663831_2023_2284321
crossref_primary_10_1016_j_actamat_2024_120707
crossref_primary_10_1038_s41524_020_00486_1
crossref_primary_10_1016_j_actamat_2022_118160
crossref_primary_10_1016_j_jnucmat_2019_151784
crossref_primary_10_1021_acsami_7b11718
crossref_primary_10_1016_j_ultramic_2010_12_004
crossref_primary_10_1017_S1431927610094535
crossref_primary_10_1021_acsphotonics_9b00600
crossref_primary_10_1016_j_actamat_2016_01_060
crossref_primary_10_7567_APEX_11_036501
crossref_primary_10_1002_jemt_20899
crossref_primary_10_1016_j_matchar_2009_02_007
crossref_primary_10_1016_j_ultramic_2010_12_007
crossref_primary_10_3390_cryst11020081
crossref_primary_10_1126_science_aba3722
crossref_primary_10_1016_j_actamat_2017_03_066
crossref_primary_10_1016_j_actamat_2017_03_069
crossref_primary_10_1016_j_jnucmat_2018_04_043
crossref_primary_10_1016_j_scriptamat_2020_01_024
crossref_primary_10_1016_j_actamat_2016_09_025
crossref_primary_10_1016_j_micron_2012_02_005
crossref_primary_10_1038_s41467_024_52628_4
crossref_primary_10_1063_1_4909514
crossref_primary_10_1016_j_ultramic_2015_05_006
crossref_primary_10_1007_s11661_024_07559_6
crossref_primary_10_1017_S1431927620024435
crossref_primary_10_1016_j_microc_2024_111624
crossref_primary_10_1021_jacsau_2c00296
crossref_primary_10_1557_jmr_2020_242
crossref_primary_10_1364_OE_27_024154
crossref_primary_10_1557_PROC_1195_B01_05
crossref_primary_10_1016_j_jallcom_2024_175273
Cites_doi 10.1007/978-1-4615-4281-0
10.2307/3538355
10.1016/S0304-3991(02)00319-4
10.1080/14786430412331333374
10.1016/S0921-5093(02)00673-1
10.1146/annurev.matsci.37.052506.084200
10.1063/1.331241
10.1016/S1359-6454(97)00039-6
10.1017/S1431927604040565
10.1007/978-1-4899-2927-3
10.1103/PhysRevA.11.1417
10.1002/jemt.20412
10.1063/1.126545
10.1016/0039-6028(91)90424-Q
10.1093/oso/9780198513872.001.0001
10.1016/S0304-3991(02)00320-0
10.1063/1.356258
10.1017/S1431927607070900
10.1017/S1431927607070948
10.1038/nmat840
10.1063/1.2709758
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ADTOC
UNPAY
DOI 10.1002/jemt.20582
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
CrossRef
Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-0029
EndPage 550
ExternalDocumentID 10.1002/jemt.20582
18425800
10_1002_jemt_20582
JEMT20582
ark_67375_WNG_HM0FF6JG_G
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TWZ
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WJL
WOHZO
WQJ
WVDHM
WXSBR
X7M
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c4952-b68f2c098eb376f1a9cf1a3dea0de1a53c43a10551d9fb7ffab338c6fa3ffd2b3
IEDL.DBID UNPAY
ISSN 1059-910X
1097-0029
IngestDate Tue Aug 19 20:38:57 EDT 2025
Fri Jul 11 10:13:40 EDT 2025
Thu Oct 02 06:55:45 EDT 2025
Fri Jul 11 17:01:09 EDT 2025
Fri Jul 11 12:14:37 EDT 2025
Mon Jul 21 06:02:48 EDT 2025
Sat Oct 25 05:27:01 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Wed Aug 20 07:25:13 EDT 2025
Sun Sep 21 06:19:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4952-b68f2c098eb376f1a9cf1a3dea0de1a53c43a10551d9fb7ffab338c6fa3ffd2b3
Notes ArticleID:JEMT20582
ark:/67375/WNG-HM0FF6JG-G
istex:5F7EC45A855C58FD640C42B18D03821510FCEEF0
Australian Research Council
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jemt.20582
PMID 18425800
PQID 33581581
PQPubID 23500
PageCount 9
ParticipantIDs unpaywall_primary_10_1002_jemt_20582
proquest_miscellaneous_903639635
proquest_miscellaneous_69243270
proquest_miscellaneous_34442118
proquest_miscellaneous_33581581
pubmed_primary_18425800
crossref_citationtrail_10_1002_jemt_20582
crossref_primary_10_1002_jemt_20582
wiley_primary_10_1002_jemt_20582_JEMT20582
istex_primary_ark_67375_WNG_HM0FF6JG_G
PublicationCentury 2000
PublicationDate July 2008
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: July 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Microscopy research and technique
PublicationTitleAlternate Microsc. Res. Tech
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Camus E,Abromeit C. 1994b. Correlation and contingency analysis of atom probe data: Diffusion-controlled dissolution of precipitates. Z Metallkd 85: 378-382.
Miller MK,Cerezo A,Hetherington MG,Smith GDW. 1996. Atom probe and field ion microscopy. New York. Oxford University Press.
Hetherington MG,Cerezo A,Hyde J,Smith GDW,Worrall GM. 1986. Statistical analysis of atom probe data. J de Phys 47: 495-501.
Vurpillot F,Bostel A,Blavette D. 2000. Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76: 3127-3129.
Hetherington MG,Miller MK. 1989. Some aspects of the measurement of composition in the atom probe. J de Phys 50‒C8: 535-540.
Stephenson LT,Moody MP,Liddicoat PV,Ringer SP. 2007. New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography data. Microsc Microanal 13: 448-463.
Sassen JM,Hetherington MG,Godfrey TJ,Smith GDW,Pumphrey PH,Akhurst KN. 1987. In: Prager M,editor. Properties of stainless steels in elevated temperature service. New York: American Society of Mechanical Engineers. p. 65.
Starink MJ,Gao N,Davin L,Yan J,Cerezo A. 2005. Room temperature precipitation in quenched Al-Cu-Mg alloys: A model for the reaction kinetics and yield strength development. Philos Mag 85: 1395-1417.
Ringer SP,Sakurai T,Polmeaer IJ. 1997. Origins of hardening in aged Al-u-Mg-(Ag) alloys. Acta Mater 45: 3731-3744.
Danoix F,Auger P,Bostel A,Blavette D. 1991. Atom probe characterization of isotropic spinodal decompositions: Spatial convolutions and related bias. Surf 246: 260-265.
Seidman DN. 2007. Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37: 127-158.
Kelly TF,Miller MK. 2007. Atom probe tomography. Rev Sci Instrum 78: 031101.
Cahn JW. 1968. 1967 Institute of metals lecture spinodal decomposition. Trans Metall Soc AIME 242: 166.
Everitt BS. 1977. The analysis of contingency tables. London: Chapman and Hall.
Geiser BP,Kelly TF,Larson DJ,Schneir J,Roberts J. 2007. Spatial distribution maps for atom probe tomography. Microsc Microanal 13: 437-447.
Tsong TT,Mc Lane SB,Ahmad M,Wu CS. 1982. Field evaporation events as Markov chains: A time-of-flight-atom-probe study of Iridium. Pt-Rh alloys and metallic glasses. J Appl Phys 53: 4180-4188.
Ringer SP. 2006. Advanced nanostructural analysis of aluminium alloys using atom probe tomography. Mater Sci Forum 25: 519-521.
Vaumousse D,Cerezo A,Warren PJ. 2003. A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95: 215-221.
Vurpillot F,Renaud L,Blavette D. 2003. A new step towards the lattice reconstruction in 3DAP. Ultramicroscopy 95: 223-229.
Kendall MG,Stuart A. 1961. The advanced theory of statistics. London: Griffin.
Castell MR,Muller DA,Voles PM. 2003. Dopant mapping for the nanotechnology age. Nat Mater 2: 129-131.
Heinrich A,Al-Kassab T,Kircheim R. 2003. Investigation of the early stages of decomposition of Cu-0.7at.% Fe with the tomographic atom probe. Mater Sci Eng A 353: 92-98.
Langer JS,Bar-on M,Miller HD. 1975. New computational method in the theory of spinodal decomposition. Phys Rev A 11: 1417-1429.
Gault B,Moody MP,Saxey DW,Cairney JM,Liu Z,Zheng R,Marceau RKW,Liddicoat PV,Stephenson LT,Ringer SP. Atom probe tomography at the University of Sydney. Advances in materials research series. Berlin: Springer-Verlag (in press).
Moody MP,Stephenson LT,Liddicoat PV,Ringer SP. 2007. Contingency table techniques for three dimensional atom probe technology. Microsc Res Tech 70: 258-268.
Camus E,Abromeit C. 1994a. Analysis of conventional and three-dimensional atom probe data for multiphase materials. J Appl Phys 75: 2373-2382.
Abramowitz M,Stegun IA, editors. 1972. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th ed. New York: Dover. pp. 940-943.
Kelly TF,Gribb TT,Olson JD,Martens RL,Shepard JD,Wiener SA,Kunicki TC,Ulfig RM,Lenz DR,Strennen EM,Oltman E,Bunton JH,Strait DR. 2004. First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10: 373.
Miller MK. 2000. Atom probe tomography: Analysis at the atomic level. New York. Kluwer Academic/Plenum Publisher.
1968; 242
1994a; 75
1982; 53
1997; 45
2005; 85
1996
2007; 70
1972
1975; 11
2003; 95
2007; 78
2007; 13
2003; 353
2007; 37
1977
2004; 10
1989; 50‒C8
1991; 246
2001
2000
2000; 76
1986; 47
2006; 25
2003; 2
1987
1961
1994b; 85
1904
Abramowitz M (e_1_2_1_2_1) 1972
Gault B (e_1_2_1_9_1)
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_29_1
Sassen JM (e_1_2_1_26_1) 1987
Cahn JW (e_1_2_1_3_1) 1968; 242
Ringer SP (e_1_2_1_24_1) 2006; 25
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_6_1
Miller MK (e_1_2_1_21_1) 1996
e_1_2_1_4_1
Camus E (e_1_2_1_5_1) 1994; 85
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_11_1
Hetherington MG (e_1_2_1_12_1) 1989; 50
e_1_2_1_32_1
e_1_2_1_16_1
Hetherington MG (e_1_2_1_13_1) 1986; 47
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Seidman DN. 2007. Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37: 127-158.
– reference: Gault B,Moody MP,Saxey DW,Cairney JM,Liu Z,Zheng R,Marceau RKW,Liddicoat PV,Stephenson LT,Ringer SP. Atom probe tomography at the University of Sydney. Advances in materials research series. Berlin: Springer-Verlag (in press).
– reference: Miller MK. 2000. Atom probe tomography: Analysis at the atomic level. New York. Kluwer Academic/Plenum Publisher.
– reference: Ringer SP,Sakurai T,Polmeaer IJ. 1997. Origins of hardening in aged Al-u-Mg-(Ag) alloys. Acta Mater 45: 3731-3744.
– reference: Everitt BS. 1977. The analysis of contingency tables. London: Chapman and Hall.
– reference: Tsong TT,Mc Lane SB,Ahmad M,Wu CS. 1982. Field evaporation events as Markov chains: A time-of-flight-atom-probe study of Iridium. Pt-Rh alloys and metallic glasses. J Appl Phys 53: 4180-4188.
– reference: Ringer SP. 2006. Advanced nanostructural analysis of aluminium alloys using atom probe tomography. Mater Sci Forum 25: 519-521.
– reference: Langer JS,Bar-on M,Miller HD. 1975. New computational method in the theory of spinodal decomposition. Phys Rev A 11: 1417-1429.
– reference: Starink MJ,Gao N,Davin L,Yan J,Cerezo A. 2005. Room temperature precipitation in quenched Al-Cu-Mg alloys: A model for the reaction kinetics and yield strength development. Philos Mag 85: 1395-1417.
– reference: Geiser BP,Kelly TF,Larson DJ,Schneir J,Roberts J. 2007. Spatial distribution maps for atom probe tomography. Microsc Microanal 13: 437-447.
– reference: Heinrich A,Al-Kassab T,Kircheim R. 2003. Investigation of the early stages of decomposition of Cu-0.7at.% Fe with the tomographic atom probe. Mater Sci Eng A 353: 92-98.
– reference: Hetherington MG,Cerezo A,Hyde J,Smith GDW,Worrall GM. 1986. Statistical analysis of atom probe data. J de Phys 47: 495-501.
– reference: Stephenson LT,Moody MP,Liddicoat PV,Ringer SP. 2007. New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography data. Microsc Microanal 13: 448-463.
– reference: Moody MP,Stephenson LT,Liddicoat PV,Ringer SP. 2007. Contingency table techniques for three dimensional atom probe technology. Microsc Res Tech 70: 258-268.
– reference: Sassen JM,Hetherington MG,Godfrey TJ,Smith GDW,Pumphrey PH,Akhurst KN. 1987. In: Prager M,editor. Properties of stainless steels in elevated temperature service. New York: American Society of Mechanical Engineers. p. 65.
– reference: Hetherington MG,Miller MK. 1989. Some aspects of the measurement of composition in the atom probe. J de Phys 50‒C8: 535-540.
– reference: Vurpillot F,Bostel A,Blavette D. 2000. Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76: 3127-3129.
– reference: Cahn JW. 1968. 1967 Institute of metals lecture spinodal decomposition. Trans Metall Soc AIME 242: 166.
– reference: Danoix F,Auger P,Bostel A,Blavette D. 1991. Atom probe characterization of isotropic spinodal decompositions: Spatial convolutions and related bias. Surf 246: 260-265.
– reference: Castell MR,Muller DA,Voles PM. 2003. Dopant mapping for the nanotechnology age. Nat Mater 2: 129-131.
– reference: Miller MK,Cerezo A,Hetherington MG,Smith GDW. 1996. Atom probe and field ion microscopy. New York. Oxford University Press.
– reference: Vurpillot F,Renaud L,Blavette D. 2003. A new step towards the lattice reconstruction in 3DAP. Ultramicroscopy 95: 223-229.
– reference: Camus E,Abromeit C. 1994a. Analysis of conventional and three-dimensional atom probe data for multiphase materials. J Appl Phys 75: 2373-2382.
– reference: Kelly TF,Gribb TT,Olson JD,Martens RL,Shepard JD,Wiener SA,Kunicki TC,Ulfig RM,Lenz DR,Strennen EM,Oltman E,Bunton JH,Strait DR. 2004. First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10: 373.
– reference: Vaumousse D,Cerezo A,Warren PJ. 2003. A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95: 215-221.
– reference: Abramowitz M,Stegun IA, editors. 1972. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th ed. New York: Dover. pp. 940-943.
– reference: Camus E,Abromeit C. 1994b. Correlation and contingency analysis of atom probe data: Diffusion-controlled dissolution of precipitates. Z Metallkd 85: 378-382.
– reference: Kelly TF,Miller MK. 2007. Atom probe tomography. Rev Sci Instrum 78: 031101.
– reference: Kendall MG,Stuart A. 1961. The advanced theory of statistics. London: Griffin.
– volume: 75
  start-page: 2373
  year: 1994a
  end-page: 2382
  article-title: Analysis of conventional and three‐dimensional atom probe data for multiphase materials
  publication-title: J Appl Phys
– volume: 11
  start-page: 1417
  year: 1975
  end-page: 1429
  article-title: New computational method in the theory of spinodal decomposition
  publication-title: Phys Rev A
– start-page: 65
  year: 1987
– start-page: 27
  year: 2001
  end-page: 29
– volume: 45
  start-page: 3731
  year: 1997
  end-page: 3744
  article-title: Origins of hardening in aged Al‐u‐Mg‐(Ag) alloys
  publication-title: Acta Mater
– start-page: 940
  year: 1972
  end-page: 943
– volume: 50‒C8
  start-page: 535
  year: 1989
  end-page: 540
  article-title: Some aspects of the measurement of composition in the atom probe
  publication-title: J de Phys
– volume: 76
  start-page: 3127
  year: 2000
  end-page: 3129
  article-title: Trajectory overlaps and local magnification in three‐dimensional atom probe
  publication-title: Appl Phys Lett
– year: 2000
– year: 1996
– volume: 95
  start-page: 223
  year: 2003
  end-page: 229
  article-title: A new step towards the lattice reconstruction in 3DAP
  publication-title: Ultramicroscopy
– volume: 353
  start-page: 92
  year: 2003
  end-page: 98
  article-title: Investigation of the early stages of decomposition of Cu‐0.7at.% Fe with the tomographic atom probe
  publication-title: Mater Sci Eng A
– volume: 37
  start-page: 127
  year: 2007
  end-page: 158
  article-title: Three‐dimensional atom‐probe tomography: Advances and applications
  publication-title: Annu Rev Mater Res
– volume: 53
  start-page: 4180
  year: 1982
  end-page: 4188
  article-title: Field evaporation events as Markov chains: A time‐of‐flight‐atom‐probe study of Iridium. Pt‐Rh alloys and metallic glasses
  publication-title: J Appl Phys
– volume: 10
  start-page: 373
  year: 2004
  article-title: First data from a commercial local electrode atom probe (LEAP)
  publication-title: Microsc Microanal
– volume: 85
  start-page: 378
  year: 1994b
  end-page: 382
  article-title: Correlation and contingency analysis of atom probe data: Diffusion‐controlled dissolution of precipitates
  publication-title: Z Metallkd
– volume: 13
  start-page: 437
  year: 2007
  end-page: 447
  article-title: Spatial distribution maps for atom probe tomography
  publication-title: Microsc Microanal
– year: 1977
– year: 1904
– volume: 13
  start-page: 448
  year: 2007
  end-page: 463
  article-title: New techniques for the analysis of fine‐scaled clustering phenomena within atom probe tomography data
  publication-title: Microsc Microanal
– volume: 47
  start-page: 495
  year: 1986
  end-page: 501
  article-title: Statistical analysis of atom probe data
  publication-title: J de Phys
– year: 1961
– volume: 25
  start-page: 519
  year: 2006
  end-page: 521
  article-title: Advanced nanostructural analysis of aluminium alloys using atom probe tomography
  publication-title: Mater Sci Forum
– volume: 95
  start-page: 215
  year: 2003
  end-page: 221
  article-title: A procedure for quantification of precipitate microstructures from three‐dimensional atom probe data
  publication-title: Ultramicroscopy
– volume: 2
  start-page: 129
  year: 2003
  end-page: 131
  article-title: Dopant mapping for the nanotechnology age
  publication-title: Nat Mater
– volume: 242
  start-page: 166
  year: 1968
  article-title: 1967 Institute of metals lecture spinodal decomposition
  publication-title: Trans Metall Soc AIME
– volume: 78
  start-page: 031101
  year: 2007
  article-title: Atom probe tomography
  publication-title: Rev Sci Instrum
– volume: 85
  start-page: 1395
  year: 2005
  end-page: 1417
  article-title: Room temperature precipitation in quenched Al‐Cu‐Mg alloys: A model for the reaction kinetics and yield strength development
  publication-title: Philos Mag
– volume: 246
  start-page: 260
  year: 1991
  end-page: 265
  article-title: Atom probe characterization of isotropic spinodal decompositions: Spatial convolutions and related bias
  publication-title: Surf
– volume: 70
  start-page: 258
  year: 2007
  end-page: 268
  article-title: Contingency table techniques for three dimensional atom probe technology
  publication-title: Microsc Res Tech
– ident: e_1_2_1_19_1
  doi: 10.1007/978-1-4615-4281-0
– ident: e_1_2_1_17_1
  doi: 10.2307/3538355
– ident: e_1_2_1_31_1
  doi: 10.1016/S0304-3991(02)00319-4
– ident: e_1_2_1_28_1
  doi: 10.1080/14786430412331333374
– volume: 50
  start-page: 535
  year: 1989
  ident: e_1_2_1_12_1
  article-title: Some aspects of the measurement of composition in the atom probe
  publication-title: J de Phys
– ident: e_1_2_1_11_1
  doi: 10.1016/S0921-5093(02)00673-1
– ident: e_1_2_1_27_1
  doi: 10.1146/annurev.matsci.37.052506.084200
– volume: 242
  start-page: 166
  year: 1968
  ident: e_1_2_1_3_1
  article-title: 1967 Institute of metals lecture spinodal decomposition
  publication-title: Trans Metall Soc AIME
– ident: e_1_2_1_23_1
– ident: e_1_2_1_30_1
  doi: 10.1063/1.331241
– ident: e_1_2_1_20_1
– ident: e_1_2_1_25_1
  doi: 10.1016/S1359-6454(97)00039-6
– ident: e_1_2_1_16_1
  doi: 10.1017/S1431927604040565
– volume: 47
  start-page: 495
  year: 1986
  ident: e_1_2_1_13_1
  article-title: Statistical analysis of atom probe data
  publication-title: J de Phys
– ident: e_1_2_1_8_1
  doi: 10.1007/978-1-4899-2927-3
– ident: e_1_2_1_18_1
  doi: 10.1103/PhysRevA.11.1417
– start-page: 940
  volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables
  year: 1972
  ident: e_1_2_1_2_1
– ident: e_1_2_1_14_1
– start-page: 65
  volume-title: Properties of stainless steels in elevated temperature service
  year: 1987
  ident: e_1_2_1_26_1
– ident: e_1_2_1_22_1
  doi: 10.1002/jemt.20412
– ident: e_1_2_1_32_1
  doi: 10.1063/1.126545
– ident: e_1_2_1_7_1
  doi: 10.1016/0039-6028(91)90424-Q
– volume-title: Atom probe and field ion microscopy
  year: 1996
  ident: e_1_2_1_21_1
  doi: 10.1093/oso/9780198513872.001.0001
– ident: e_1_2_1_33_1
  doi: 10.1016/S0304-3991(02)00320-0
– ident: e_1_2_1_4_1
  doi: 10.1063/1.356258
– volume-title: Atom probe tomography at the University of Sydney. Advances in materials research series
  ident: e_1_2_1_9_1
– volume: 85
  start-page: 378
  year: 1994
  ident: e_1_2_1_5_1
  article-title: Correlation and contingency analysis of atom probe data: Diffusion‐controlled dissolution of precipitates
  publication-title: Z Metallkd
– volume: 25
  start-page: 519
  year: 2006
  ident: e_1_2_1_24_1
  article-title: Advanced nanostructural analysis of aluminium alloys using atom probe tomography
  publication-title: Mater Sci Forum
– ident: e_1_2_1_29_1
  doi: 10.1017/S1431927607070900
– ident: e_1_2_1_10_1
  doi: 10.1017/S1431927607070948
– ident: e_1_2_1_6_1
  doi: 10.1038/nmat840
– ident: e_1_2_1_15_1
  doi: 10.1063/1.2709758
SSID ssj0011514
Score 2.348868
Snippet The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 542
SubjectTerms Alloys - chemistry
atom probe tomography
Binomial Distribution
Computer Simulation
frequency distribution
Image Processing, Computer-Assisted
Models, Statistical
solute clustering
solute segregation
Tomography
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KRbQP3lvjdcAiKKTNZTJJwBeR7i4LW1Ba3BcJk7lI3WxSmg1an3zwB_gb_SWeM8lmqbQLCssyD18eZvY7M-fbOfkOIbsqkB5jsXAD0F4uE75xE51EbpQnac5MFHJbTTg55KNjNp5G0w3yZvkuTOsP0f_hhpFh92sMcJHX-yvT0C96jrWQUYIbsB9yq6c-9N5RkOlYY2_MHyCivWnvTRrsrx69cBpdw4X9dlmquUVuNOWpOP8qiuJiFmuPocFt8mk5gbb6ZLbXLPI9-f0vb8f_neEdcqvLT-nbllB3yYYu75HrbcfK8_vk5_tGlPa9NNglKajqag4Epgrtd7vOWVRYnxNd08rQUpRVDTTQtDiZ6d8_flmqawpSf05l0aBNAxye8IyitQbt_9kyhZ6ULQT73WgKo85Zm2JF6wNyPDg4ejdyu0YOrgT9Fbg5TwxwIk1Aucfc-CKV8BUqLTylfRGFkoUCO3X6KjV5bIzIQTlLbkRojArycJtsllWpHxKqEyk150KJWDHlmxyvZhWMRWywc7JDXi1_0Ex2LufYbKPIWn_mIMNVzeyqOuRFjz1tvT0uRb20vOgh4myG1XBxlH08HGajiTcY8PEwGzrk-ZI4GcQoXryIUldNnYVoMgefNQjGGEjx5GoEB6EcBrHnEHoFIsU7edhPI4fstLRdzQovW0EaOGS35_HaKb-2vFwDycYHkyM7evQv4MfkZltwg_XOT8jm4qzRTyGrW-TPbPT-AXGbTaY
  priority: 102
  providerName: Wiley-Blackwell
Title Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data
URI https://api.istex.fr/ark:/67375/WNG-HM0FF6JG-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjemt.20582
https://www.ncbi.nlm.nih.gov/pubmed/18425800
https://www.proquest.com/docview/33581581
https://www.proquest.com/docview/34442118
https://www.proquest.com/docview/69243270
https://www.proquest.com/docview/903639635
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jemt.20582
UnpaywallVersion publishedVersion
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1059-910X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011514
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9NAFB6kRXQfvOvGyzrgIihkzWVye1xk21JoUdlifRomc1nWpklpG3R98sEf4G_0l3hmJo27slsEIZR5OAnM9Dtn5ss5-Q5C-yLgHiEJcwPgXi5hvnJTmUZulKdZTlQUxqaacDSOBxMynEbTc1_xW32I9oWb9gwTr7WDL4Sycb7J7gdvPsu5roeMUgjC3TiC03gHdSfjd4efTJIzysCXvakZa9FRL8hahdLzN1_Yk7p6eb9eduDcQTfqcsHOvrCiuHiWNZtR7zZim2nYGpTZQb3OD_i3vxQe_2eed9Ct5qSKDy207qJrsryHrtvelWf30Y_3NSvNF2oQLzHw62oOUMZCC_E2PbQwM4oncoUrhUtWVisAhMTF6Uz--v7TgF5iIP1zzItaCzbANgr3CLySJ0t5YjCDT0trojvfSAyjRmMb69rWB2jSOzp-O3Cblg4uByYWuHmcKkBHlgKHT2Lls4zDTygk84T0WRRyEjLds9MXmcoTpVgOHJrHioVKiSAPH6JOWZVyF2GZci7jmAmWCCJ8leskrYAxS5TuoeygV5s_lfJG71y33SioVWoOqF5ValbVQS9a24VV-bjU6qXBRmvCljNdF5dE9OO4Twcjr9eLh33ad9DzDXgoeKtOwbBSVvWKhlpuDq4tFoQQIOXp1RYxUOYwSDwH4SssMp2dh8gaOeiRhe6fWem0K5AEB-23WN465dcGm1tM6PBodGxGj__tmU_QTVt0o2uen6LOelnLZ3CyW-d7wGk-BHuNC_8GK8RSvw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQK1Q48C6EVy1RIYGUNg_ndUSou8vSXQm0FXuzHD9Q2d2kajaCcuLAD-A38kuYcdKsitqVQIoiH8YHO9_Y88XjbwjZVYH0GEuEGwD3cpnwjZvqNHKjPM1yZqIwttmEo3E8OGLDaTRtc3PwLkyjD9H9cEPPsOs1Ojj-kN5fqYZ-0QtMhoxSWIE3WQxEBWOij516FMQ6VtobIwjwaW_aqZMG-6u-F_ajTZzab5cFmzfJVl2ciLOvYj6_GMfajah3u6m2Wln9Qsw_me3Vy3xPfv9L3fG_x3iH3GpDVPqmwdRdck0X98j1pmjl2X3y80MtCns1DRZKCsS6XACGqUIF3rZ4FhVW6kRXtDS0EEVZARI0nR_P9O8fvyzaNQW2v6ByXqNSA-yf0EfRSgP9_2zBQo-LxgRL3mgKrVZcm2JS6wNy1DuYvB24bS0HVwIFC9w8Tg3AIkuBvCex8UUm4RUqLTylfRGFkoUCi3X6KjN5YozIgTzL2IjQGBXk4TbZKMpCPyJUp1LqOBZKJIop3-R4OqugLRKDxZMd8ur8i3LZCp1jvY05bySaA46zyu2sOuRFZ3vSyHtcavXSAqMzEaczTIhLIv5p3OeDkdfrxcM-7ztk5xw5HNwUz15Eocu64iHqzMGzxoIxBmw8vdoiBq4cBonnEHqFRYbH8rCkRg552OB2NSo8bwV24JDdDshrh_zaAnONCR8ejCa29fhfjHfI1mAyOuSH78bvn5AbTf4Npj8_JRvL01o_gyBvmT-3rvwHHgVRxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJm4P3C_hNktMSCBly8W5PSK2tBRaAdq0vllObE9b26RaGsF44oEfwG_kl3COk6Ua2iqBVFV-OHmw-x37fPWX7xCyKb3cYSwStgfcy2bC1Xas4sAOsjjJmA780KgJh6Owv88G42DcanPwXZjGH6L7ww0zw-zXmOBqLvX20jX0WM1QDBnEsAOvsyCJUdG386Vzj4Jax1h7YwUBOe2MO3dSb3v57LnzaB2X9ttFxeZNcr0u5uL0q5hOz9ex5iBKbzfdVivjX4j6k8lWvci28u9_uTv-9xzvkFttiUrfNpi6S66o4h652jStPL1Pfn6uRWFeTYONkgKxLmeAYSrRgbdtnkWFsTpRFS01LURRVoAERadHE_X7xy-DdkWB7c9oPq3RqQHOT3hG0koB_T80YKFHRROCLW8UhVFrrk1R1PqA7Ke7e-_6dtvLwc6Bgnl2FsYaYJHEQN6jULsiyeHLl0o4Urki8HPmC2zW6cpEZ5HWIgPynIda-FpLL_MfkrWiLNRjQlWc5yoMhRSRZNLVGd7OShiLSGPzZIu8PvtFed4anWO_jSlvLJo9jqvKzapa5GUXO2_sPS6MemWA0YWIkwkK4qKAH4x6vD900jQc9HjPIhtnyOGQpnj3IgpV1hX30WcOPisiGGPAxuPLI0Lgyr4XORahl0QkeC0PW2pgkUcNbpezwvtWYAcW2eyAvHLKbwwwV4Twwe5wz4ye_EvwBrn2aSflH9-PPjwlNxr5Daqfn5G1xUmtnkONt8hemEz-A1mvUUs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBYlobQ99P1wn4IuhRa8dWxJto9L2SQEElrY0PQkZEtatnHskMS021MP_QH9jf0lHUmOu1t2Q6FgjA5jg-RvRjOe0TcI7ckwDwiJhR9C7OUT0dN-ohLq0yxJM6JpxGw14XjChlMymtHZmVP8jh-i_eFmNMPaa6PgS6mdnW-y--Hbz2ph6iFpAka4yyh44x3UnU7eH3yySU6agi4HMzs2pKNBmLYMpWcfPrcndc3yfr3I4byBrtXlUpx-EUVx3pe1m1H_FhLbabgalPl-vcn2829_MTz-zzxvo5uNp4oPHLTuoCuqvIuuut6Vp_fQjw-1KO0JNbCXGOLragFQxtIQ8TY9tLCwjCdqjSuNS1FWawCEwsXJXP36_tOCXmEI-hc4L2pD2ADbKDwj8Vodr9SxxQw-KZ2I6XyjMIwajm1salvvo2n_8Ojd0G9aOvg5RGKhn7FEAzrSBGL4mOmeSHO4RVKJQKqeoFFOImF6dvZkqrNYa5FBDJ0zLSKtZZhFD1CnrEr1CGGV5LliTEgRSyJ7OjNJWgljEWvTQ9lDr7cflecN37lpu1Fwx9QccrOq3K6qh162skvH8nGh1CuLjVZErOamLi6m_ONkwIfjoN9nowEfeOjFFjwctNWkYESpqnrNI0M3B9cOCUIIBOXJ5RIMQuYojAMP4UskUpOdB8tKPfTQQffPrEzaFYIED-21WN455TcWmztE-OhwfGRHj__tnU_QdVd0Y2qen6LOZlWrZ-DZbbLnjfL-BkEYUdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+binomial+distribution+analyses+of+nanoscale+like-solute+atom+clustering+and+segregation+in+atom+probe+tomography+data&rft.jtitle=Microscopy+research+and+technique&rft.au=Moody%2C+Michael+P&rft.au=Stephenson%2C+Leigh+T&rft.au=Ceguerra%2C+Anna+V&rft.au=Ringer%2C+Simon+P&rft.date=2008-07-01&rft.issn=1059-910X&rft.volume=71&rft.issue=7&rft.spage=542&rft_id=info:doi/10.1002%2Fjemt.20582&rft_id=info%3Apmid%2F18425800&rft.externalDocID=18425800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-910X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-910X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-910X&client=summon