Giant intrinsic electrocaloric effect in ferroelectrics by local structural engineering

The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a hig...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 7515 - 10
Main Authors Wu, Bo, Tao, Hong, Chen, Kui, Xing, Zhipeng, Wu, Yan-Qi, Thong, Hao-Cheng, Zhao, Lin, Zhao, Chunlin, Xu, Ze, Liu, Yi-Xuan, Yao, Fang-Zhou, Zhou, Tianhang, Ma, Jian, Wei, Yan, Wang, Ke, Zhang, Shujun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-61860-5

Cover

Abstract The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect. The authors introduce a structural design with a well-ordered local structure for barium titanate-based ceramics, which decreases Curie temperature while preserves a sharp phase transition, enabling tunable polarization, large dielectric constant and intrinsic electrocaloric effect near room temperature.
AbstractList The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect.
The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect.The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect.
The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect. The authors introduce a structural design with a well-ordered local structure for barium titanate-based ceramics, which decreases Curie temperature while preserves a sharp phase transition, enabling tunable polarization, large dielectric constant and intrinsic electrocaloric effect near room temperature.
The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect.The authors introduce a structural design with a well-ordered local structure for barium titanate-based ceramics, which decreases Curie temperature while preserves a sharp phase transition, enabling tunable polarization, large dielectric constant and intrinsic electrocaloric effect near room temperature.
Abstract The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect.
ArticleNumber 7515
Author Tao, Hong
Zhao, Chunlin
Liu, Yi-Xuan
Wu, Bo
Ma, Jian
Wang, Ke
Thong, Hao-Cheng
Zhao, Lin
Zhang, Shujun
Xing, Zhipeng
Wu, Yan-Qi
Xu, Ze
Yao, Fang-Zhou
Wei, Yan
Chen, Kui
Zhou, Tianhang
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0003-4710-3923
  surname: Wu
  fullname: Wu, Bo
  organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 2
  givenname: Hong
  surname: Tao
  fullname: Tao, Hong
  organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University
– sequence: 3
  givenname: Kui
  surname: Chen
  fullname: Chen, Kui
  organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University
– sequence: 4
  givenname: Zhipeng
  surname: Xing
  fullname: Xing, Zhipeng
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 5
  givenname: Yan-Qi
  surname: Wu
  fullname: Wu, Yan-Qi
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 6
  givenname: Hao-Cheng
  surname: Thong
  fullname: Thong, Hao-Cheng
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 7
  givenname: Lin
  surname: Zhao
  fullname: Zhao, Lin
  organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University
– sequence: 8
  givenname: Chunlin
  orcidid: 0000-0003-1333-1864
  surname: Zhao
  fullname: Zhao, Chunlin
  email: zhaochunlin@fzu.edu.cn
  organization: College of Materials Science and Engineering, Fuzhou University
– sequence: 9
  givenname: Ze
  orcidid: 0000-0002-3117-9934
  surname: Xu
  fullname: Xu, Ze
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 10
  givenname: Yi-Xuan
  orcidid: 0000-0002-9522-8651
  surname: Liu
  fullname: Liu, Yi-Xuan
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 11
  givenname: Fang-Zhou
  orcidid: 0000-0003-1975-7452
  surname: Yao
  fullname: Yao, Fang-Zhou
  organization: Research Center for Advanced Functional Ceramics, Wuzhen Laboratory
– sequence: 12
  givenname: Tianhang
  orcidid: 0000-0002-4007-9935
  surname: Zhou
  fullname: Zhou, Tianhang
  email: zhouth@cup.edu.cn
  organization: State Key Laboratory of Heavy Oil Processing, College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing)
– sequence: 13
  givenname: Jian
  surname: Ma
  fullname: Ma, Jian
  organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University
– sequence: 14
  givenname: Yan
  orcidid: 0000-0003-3484-8811
  surname: Wei
  fullname: Wei, Yan
  email: kqweiyan@bjmu.edu.cn
  organization: Department of Geriatric Dentistry & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology
– sequence: 15
  givenname: Ke
  orcidid: 0000-0001-9840-2427
  surname: Wang
  fullname: Wang, Ke
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 16
  givenname: Shujun
  orcidid: 0000-0001-6139-6887
  surname: Zhang
  fullname: Zhang, Shujun
  email: shujun@uow.edu.au
  organization: Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Department of Chemistry, City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40804249$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLwB8TJz4hVEGpVIlLJY6WMztevMrai50g9d_jbEppOeCLZzzvPY9m3svqJMRAVfWas_ecyf5DBg6qa5hoG8V7xZr2WXUmGPCGd0KePIpPq4ucd6wcqXkP8KI6BdYzEKDPqu9X3oap9mFKPmSPNY2EU4pox5iW1LmSl3rtKKW4Vj3merirxwVV5ynNOM2phBS2PhAVpe2r6rmzY6aL-_u8uv3y-fbya3Pz7er68tNNg6BhapxAJ6xEtMo51YFjirDvNi3ChgbNBg1Si14MSkOJBiILw9BLWSggnDyvrlfZTbQ7c0h-b9Odidab40NMW2PT5HEk47juJXSck-0BFVrRoUQhmMJWc4Ki9XHVOszDnjZIZSZ2fCL6tBL8D7ONvwwXsmUKFoV39wop_pwpT2bvM9I42kBxzkYKqaXuNJcF-vYf6C7OKZRRHVFCKMYWwTePW3ro5c_-CkCsAEwx50TuAcKZWXxiVp-Y4hNz9IlpC0mupHxYVkXp79__Yf0G0Q7Apg
Cites_doi 10.1021/acsnano.4c03127
10.1103/PhysRevLett.120.207603
10.1038/s41586-019-1634-0
10.1016/j.cej.2021.133386
10.1039/D1TA10899A
10.1038/s41586-018-0434-2
10.1063/5.0017348
10.1021/jacs.9b07188
10.1126/science.aaw2781
10.1002/9783527841233
10.1016/j.joule.2019.03.021
10.1002/adma.201802402
10.1002/aelm.202200352
10.7498/aps.69.20200296
10.1103/PhysRevB.49.14251
10.1039/D1TA02543K
10.1007/978-3-642-40264-7
10.1016/j.nanoen.2020.104944
10.1021/acs.chemrev.3c00767
10.1063/1.1829794
10.1016/j.pmatsci.2012.02.001
10.7498/aps.69.20200540
10.1146/annurev-environ-012220-034103
10.1038/s41586-025-08768-8
10.1038/s41563-024-01831-1
10.1038/s41467-024-52031-z
10.1103/PhysRevLett.100.136406
10.1038/srep02895
10.1063/1.4958327
10.1021/acs.chemrev.9b00507
10.1093/acprof:oso/9780198507789.001.0001
10.1021/jacs.8b07844
10.1063/1.5090183
10.1016/j.jeurceramsoc.2024.05.031
10.1126/science.abb8045
10.1002/adfm.202108182
10.1002/adfm.202405241
10.1038/s41560-020-00715-3
10.1016/j.actamat.2004.07.028
10.1103/PhysRevB.46.8003
10.1063/1.2715522
10.1103/PhysRevApplied.15.054019
10.1002/inf2.12147
10.1007/s40145-020-0450-1
10.1002/adfm.202101176
10.1016/j.jeurceramsoc.2016.10.024
10.1038/srep40916
10.1038/s41586-021-04189-5
10.1126/science.adi5477
10.1103/PhysRevB.54.11169
10.1039/C9TC06443E
10.1016/j.actamat.2024.120576
10.1063/1.3641975
10.1063/1.4990046
10.1126/science.adi7812
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-61860-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_f19834711ea84c6ca27c3c2206c591e4
PMC12350644
40804249
10_1038_s41467_025_61860_5
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: Nos. 52325204, 52032005
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: Nos. 52325204, 52032005
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AARCD
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
PUEGO
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c494t-f2cf2a3cca6ff674f06ec87d5c4deb90b9439282b694439beea4bb8333cc42f3
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:00:49 EDT 2025
Thu Aug 21 18:24:55 EDT 2025
Fri Sep 05 15:09:28 EDT 2025
Sat Aug 23 13:24:43 EDT 2025
Sun Aug 17 02:22:10 EDT 2025
Thu Sep 11 00:13:28 EDT 2025
Thu Aug 14 01:17:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-f2cf2a3cca6ff674f06ec87d5c4deb90b9439282b694439beea4bb8333cc42f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6139-6887
0000-0001-9840-2427
0000-0003-3484-8811
0000-0002-9522-8651
0000-0003-4710-3923
0000-0002-3117-9934
0000-0003-1333-1864
0000-0003-1975-7452
0000-0002-4007-9935
OpenAccessLink https://doaj.org/article/f19834711ea84c6ca27c3c2206c591e4
PMID 40804249
PQID 3239226004
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f19834711ea84c6ca27c3c2206c591e4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12350644
proquest_miscellaneous_3239397913
proquest_journals_3239226004
pubmed_primary_40804249
crossref_primary_10_1038_s41467_025_61860_5
springer_journals_10_1038_s41467_025_61860_5
PublicationCentury 2000
PublicationDate 2025-08-13
PublicationDateYYYYMMDD 2025-08-13
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References W Xu (61860_CR23) 2024; 44
H Tao (61860_CR46) 2022; 10
W Lin (61860_CR11) 2024; 18
M Acosta (61860_CR28) 2017; 4
C Zhao (61860_CR31) 2018; 140
Y Dong (61860_CR1) 2021; 46
61860_CR13
61860_CR15
C Zhao (61860_CR20) 2020; 2
B Nair (61860_CR8) 2019; 575
61860_CR50
Y Yu (61860_CR18) 2020; 35
D Wang (61860_CR52) 2020; 76
J Li (61860_CR49) 2021; 31
R Yin (61860_CR19) 2022; 32
Feng (61860_CR27) 2020; 120
H Tao (61860_CR56) 2019; 141
C Lei (61860_CR38) 2007; 101
F Li (61860_CR55) 2019; 364
G Kresse (61860_CR58) 1994; 49
Y Son (61860_CR9) 2025; 283
Z Gu (61860_CR53) 2018; 560
SG Lu (61860_CR16) 2020; 69
H Wu (61860_CR54) 2018; 30
J Li (61860_CR6) 2023; 382
A Pramanick (61860_CR29) 2018; 120
X Niu (61860_CR43) 2021; 10
J Fu (61860_CR51) 2017; 37
X Hou (61860_CR17) 2021; 15
G Kresse (61860_CR57) 1996; 54
G Li (61860_CR41) 2022; 431
Y Bai (61860_CR25) 2013; 3
S Zheng (61860_CR4) 2023; 382
Y Son (61860_CR10) 2022; 8
M Valant (61860_CR14) 2012; 57
S Lu (61860_CR37) 2004; 85
61860_CR39
D Viehland (61860_CR35) 1992; 46
Y Liu (61860_CR40) 2016; 3
JP Perdew (61860_CR59) 2008; 100
F Du (61860_CR22) 2025; 640
X Tang (61860_CR36) 2004; 52
X Qian (61860_CR5) 2021; 600
61860_CR33
XW Wei (61860_CR45) 2020; 69
T Shi (61860_CR34) 2015; 5
A Torelló (61860_CR7) 2020; 370
W Xiao (61860_CR21) 2024; 34
Y Meng (61860_CR12) 2020; 5
L Zhang (61860_CR42) 2021; 9
J Shi (61860_CR2) 2019; 3
J Yang (61860_CR44) 2020; 8
B Wu (61860_CR24) 2024; 15
J Gao (61860_CR32) 2017; 7
T Li (61860_CR30) 2024; 124
S Patel (61860_CR26) 2020; 10
B Rožič (61860_CR47) 2011; 110
S Zhang (61860_CR3) 2024; 23
M Wu (61860_CR48) 2019; 114
References_xml – volume: 18
  start-page: 13322
  year: 2024
  ident: 61860_CR11
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c03127
– volume: 120
  start-page: 207603
  year: 2018
  ident: 61860_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.207603
– volume: 575
  start-page: 468
  year: 2019
  ident: 61860_CR8
  publication-title: Nature
  doi: 10.1038/s41586-019-1634-0
– volume: 431
  start-page: 133386
  year: 2022
  ident: 61860_CR41
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133386
– volume: 10
  start-page: 5262
  year: 2022
  ident: 61860_CR46
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10899A
– volume: 560
  start-page: 622
  year: 2018
  ident: 61860_CR53
  publication-title: Nature
  doi: 10.1038/s41586-018-0434-2
– volume: 10
  start-page: 085302
  year: 2020
  ident: 61860_CR26
  publication-title: AIP Adv.
  doi: 10.1063/5.0017348
– ident: 61860_CR33
– volume: 141
  start-page: 13987
  year: 2019
  ident: 61860_CR56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07188
– volume: 364
  start-page: 264
  year: 2019
  ident: 61860_CR55
  publication-title: Science
  doi: 10.1126/science.aaw2781
– ident: 61860_CR13
  doi: 10.1002/9783527841233
– volume: 3
  start-page: 1200
  year: 2019
  ident: 61860_CR2
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.021
– volume: 30
  start-page: 1802402
  year: 2018
  ident: 61860_CR54
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802402
– volume: 8
  start-page: 2200352
  year: 2022
  ident: 61860_CR10
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202200352
– volume: 69
  start-page: 127701
  year: 2020
  ident: 61860_CR16
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.69.20200296
– volume: 49
  start-page: 14251
  year: 1994
  ident: 61860_CR58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 9
  start-page: 12772
  year: 2021
  ident: 61860_CR42
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02543K
– ident: 61860_CR15
  doi: 10.1007/978-3-642-40264-7
– volume: 76
  year: 2020
  ident: 61860_CR52
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104944
– volume: 124
  start-page: 7045
  year: 2024
  ident: 61860_CR30
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00767
– volume: 85
  start-page: 5319
  year: 2004
  ident: 61860_CR37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1829794
– volume: 57
  start-page: 980
  year: 2012
  ident: 61860_CR14
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2012.02.001
– volume: 69
  start-page: 217705
  year: 2020
  ident: 61860_CR45
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.69.20200540
– volume: 46
  start-page: 59
  year: 2021
  ident: 61860_CR1
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-012220-034103
– volume: 640
  start-page: 924
  year: 2025
  ident: 61860_CR22
  publication-title: Nature
  doi: 10.1038/s41586-025-08768-8
– volume: 23
  start-page: 639
  year: 2024
  ident: 61860_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-024-01831-1
– volume: 15
  year: 2024
  ident: 61860_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-52031-z
– volume: 100
  start-page: 136406
  year: 2008
  ident: 61860_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 3
  year: 2013
  ident: 61860_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/srep02895
– volume: 3
  start-page: 031102
  year: 2016
  ident: 61860_CR40
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4958327
– volume: 120
  start-page: 1710
  year: 2020
  ident: 61860_CR27
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00507
– ident: 61860_CR39
  doi: 10.1093/acprof:oso/9780198507789.001.0001
– volume: 140
  start-page: 15252
  year: 2018
  ident: 61860_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07844
– volume: 114
  start-page: 142901
  year: 2019
  ident: 61860_CR48
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5090183
– volume: 44
  start-page: 7071
  year: 2024
  ident: 61860_CR23
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2024.05.031
– ident: 61860_CR50
– volume: 370
  start-page: 125
  year: 2020
  ident: 61860_CR7
  publication-title: Science
  doi: 10.1126/science.abb8045
– volume: 32
  start-page: 2108182
  year: 2022
  ident: 61860_CR19
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108182
– volume: 34
  start-page: 2405241
  year: 2024
  ident: 61860_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202405241
– volume: 5
  start-page: 1
  year: 2015
  ident: 61860_CR34
  publication-title: Sci. Rep.
– volume: 5
  start-page: 996
  year: 2020
  ident: 61860_CR12
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00715-3
– volume: 52
  start-page: 5177
  year: 2004
  ident: 61860_CR36
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.07.028
– volume: 46
  start-page: 8003
  year: 1992
  ident: 61860_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.8003
– volume: 101
  start-page: 084105
  year: 2007
  ident: 61860_CR38
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2715522
– volume: 15
  year: 2021
  ident: 61860_CR17
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.15.054019
– volume: 2
  start-page: 1163
  year: 2020
  ident: 61860_CR20
  publication-title: InfoMat
  doi: 10.1002/inf2.12147
– volume: 10
  start-page: 482
  year: 2021
  ident: 61860_CR43
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-020-0450-1
– volume: 31
  start-page: 2101176
  year: 2021
  ident: 61860_CR49
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101176
– volume: 37
  start-page: 975
  year: 2017
  ident: 61860_CR51
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.10.024
– volume: 7
  year: 2017
  ident: 61860_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/srep40916
– volume: 600
  start-page: 664
  year: 2021
  ident: 61860_CR5
  publication-title: Nature
  doi: 10.1038/s41586-021-04189-5
– volume: 382
  start-page: 801
  year: 2023
  ident: 61860_CR6
  publication-title: Science
  doi: 10.1126/science.adi5477
– volume: 54
  start-page: 11169
  year: 1996
  ident: 61860_CR57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 8
  start-page: 4030
  year: 2020
  ident: 61860_CR44
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06443E
– volume: 283
  start-page: 120576
  year: 2025
  ident: 61860_CR9
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2024.120576
– volume: 110
  start-page: 064118
  year: 2011
  ident: 61860_CR47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3641975
– volume: 35
  start-page: 633
  year: 2020
  ident: 61860_CR18
  publication-title: J. Inorg. Mater.
– volume: 4
  start-page: 041305
  year: 2017
  ident: 61860_CR28
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4990046
– volume: 382
  start-page: 1020
  year: 2023
  ident: 61860_CR4
  publication-title: Science
  doi: 10.1126/science.adi7812
SSID ssj0000391844
Score 2.4818003
Snippet The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration...
Abstract The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7515
SubjectTerms 140/133
140/146
147/137
639/301/1005/1007
639/301/299/2736
Barium
Barium titanates
Cations
Ceramics
Cooling
Curie temperature
Design
Dielectric constant
Dielectric properties
Dipoles
Electric fields
Energy
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Humanities and Social Sciences
multidisciplinary
Phase transitions
Polarization
Refrigeration
Room temperature
Rotation
Science
Science (multidisciplinary)
Structural design
Structural engineering
Vapor compression refrigeration
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLVd6hBRmJG1h1bMfrnBAgthUSnIrozYpfsJek7G4P_ffM2N5dLa9bFDuJM5_tGc_Y3xDyKg08n9dkTg2cKaMDcykGJpIObXS85wFdA5-_6POv6tNld1kdbqu6rXIzJ-aJOkwefeSnUoAmRzZ19fbqJ8OsURhdrSk0bpM7rQBdiyfF52dbHwuynxul6lkZLs3pSuWZAXO4IlE8Z92ePsq0_X-zNf_cMvlb3DSro_kROax2JH1XgL9PbsXxAblbMkvePCTfzgD2NV3AaxYjAEFruhtABElBaNnGAeU0xeVyKqULv6Luhmb1RguxLJJy0LjjLHxELuYfLz6cs5pDgXnVqzVLwicxSMBJp6RnKnEdvZmFzqsQXc9dDxYJLLuc7hVcuRgH5ZyREh5RIsnH5GCcxviU0MH4hARxCdeUbQzOgP4TPvZuFrsQfUNebwRprwpThs0RbmlsEbsFsdssdts15D3KelsTWa7zjWn53dZBY1PbGwnas42DUV77Qcy89EJw7bu-jaohJxukbB16K7vrKA15uS2GQYORkGGM03WpgwHNVjbkSQF22xIFNrSCRWlDzB7ke03dLxkXPzIxN547BhMPPvxm0zt27fq3LJ79_zeOyT2BHRZ5eOUJOQD443OwhNbuRe7uvwDq3Ahp
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9QwDLaWWSFxQSzPwi4KEjeoSJM0TY8D2odGgguL2FvUpA7MpbOaGQ7773GSdlYDy4FbVSdtase1k9ifAd6Gjqd8zdKpjpfK6L50AftSBN1X6HjL-7g18PmLvvimFlf11QGIKRcmBe0nSMv0m56iwz5sVFLpWHw1Irzzsr4Hh6ah3-8MDufzxdfFbmclYp4bpcYMGS7NHZ33rFAC67_Lw_w7UPKP09JkhM4ewcPRe2TzPN4jOMDhMdzP9SRvnsD3cxL2li3pMcuB2M_GIjckhwgFwnLwBtFZwPV6lalLv2HuhiWjxjKcbITiYHiLVPgULs9OLz9dlGPlhNKrVm3LIHwQnSTp6BB0owLX6E3T11716FruWvJDaLHldKvoyiF2yjkjJXVRIshnMBtWA74A1hkfIixciCvJCntnyOoJj61rsO7RF_BuYqS9zvgYNp1rS2Mz2y2x3Sa227qAj5HXu5YR2zrdWK1_2FHWNlStkWQzK-yM8tp3ovHSC8G1r9sKVQHHk6TsqHAbKwV9UATbJ_KbHZlUJZ5_dAOufuU28RizkgU8z4LdjUSR56xoKVqA2RP53lD3KcPyZ4LjjtnG5NjRi99Ps-N2XP_mxcv_a_4KHog4gSMarzyGGU0HPCF_aOtejwrwGx8CB60
  priority: 102
  providerName: Springer Nature
Title Giant intrinsic electrocaloric effect in ferroelectrics by local structural engineering
URI https://link.springer.com/article/10.1038/s41467-025-61860-5
https://www.ncbi.nlm.nih.gov/pubmed/40804249
https://www.proquest.com/docview/3239226004
https://www.proquest.com/docview/3239397913
https://pubmed.ncbi.nlm.nih.gov/PMC12350644
https://doaj.org/article/f19834711ea84c6ca27c3c2206c591e4
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXVN6hZWUkbhA1sR3HOW5X3VYrUSEoYm9W7IzVvWRRdzn03zO2s9tuKeLCJYk8iePM58dMbH8D8MG3RdyvmVvZFrnUqsutxy7nXnUl2qIpuvBr4PO5OvsuZ_NqfivUV1gTluiBk-KOPHnFgnrQElstnXItr51wnBfKVU2JkQmUcrzlTMU-WDTkushhl0wh9NFKxj4hRG8NFPFFXu2MRJGw_z4r88_FkndmTONANN2Hp4MFycap5M_gAfbP4XGKKXn9An6cEuBrtqBsFj1BwIZAN4RFoANhaQEHyZnHq6tlki7citlrFgc2lihlAx0Hwxu2wpdwMT25mJzlQ_SE3MlGrnPPneetIISU96qWvlDodN1VTnZom8I2ZIuQw2VVI-nKIrbSWi0EPSK5F69gr1_2-AZYq50P1HA-eJMldlbTyMcdNrbGqkOXwceNIs3PxJFh4ty20Cap3ZDaTVS7qTI4Drre3hn4rWMCoW4G1M2_UM_gcIOUGRrdyghOHxQI90n8fium5hLmQNoel7_SPWEqsxQZvE7AbksiyXqW5I5moHcg3ynqrqRfXEZK7rDjmIw7evGnTe24KdffdfH2f-jiAJ7wUK0DT684hD2qJPiOLKW1HcHDel7TUU9PR_BoPJ59m9H5-OT8y1dKnajJKDab31K_FiA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEM8SKGAkOEHUxHayzqFCFFq2tF0htIjerNixYS9J2V2E9sfx35hxkl0tr1tvUZyHPf7sGXs83wA882US4jVjI8skliqvYuNdFXOfV6kzSZFUtDVwNs5Hn-T78-x8C372sTB0rLKfE8NEXTWW9sj3BEdNTmzq8tXFt5iyRpF3tU-hUXapFar9QDHWBXacuOUPXMLN94_fYn8_5_zocPJmFHdZBmIrC7mIPbeelwJbknufD6VPcmfVsMqsrJwpElOgzsaFickLiVfGuVIao4TAVyT3Aj97BbYl7Z8MYPvgcPzh42qTh-jXlZRdsE4i1N5chqmJksgSU30SZxsKMeQN-Jux--eZzd8ct0EfHt2EG50hy163yLsFW66-DVfb1JbLO_D5HeJuwab4mWmNSGBdvh2EBLGSsPYcCZYz72azpi2d2jkzSxb0K2uZbYkVhLk1aeJdmFyGeO_BoG5qdx9YqawnhjpPi9rUVUahAubWFWbossrZCF70gtQXLVWHDi52oXQrdo1i10HsOovggGS9epJotsONZvZFd6NW-7RQAtV36kolbW5LPrTCcp7kNitSJyPY7XtKd2N_rtdIjeDpqhhHLbliyto139tnyKOaigh22o5d1USiES9xVRyB2ujyjapultTTr4EZnAKf0cbEH7_s0bGu179l8eD_zXgC10aTs1N9ejw-eQjXOYGXSIHFLgwQCu4RmmUL87gDPwN9ycPtF_j9TNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiGcJFDASnCDaxHayzqFClHZpKawqVERvVvxq95KU3UVofyL_irHj7Gp53XqL1tnEGX_2zHg83wC8cHUW8jVTxess5aI0qXLWpNSVJrcqqzLjtwY-jcvDL_zDWXG2AT_7XBh_rLJfE8NCbVrt98gHjKIm92zqfODisYiT_dGby2-pryDlI619OY06llkwu4FuLCZ5HNvFD3TnZrtH-zj2LykdHZy-O0xjxYFU84rPU0e1ozXDryqdK4fcZaXVYmgKzY1VVaYq1N_opKiy4nilrK25UoIx_AunjuFjr8HWEJU--oFbewfjk8_LDR9PxS44j4k7GRODGQ_LlC8o61nrs7RYU46hhsDfDN8_z2_-FsQNunF0G25Fo5a87VB4BzZscxeud2UuF_fg63vE4JxM8DGTBlFBYu0dhIdnKCHdmRJsJ85Op23XOtEzohYk6FrSsdx6hhBiVwSK9-H0KsT7ADabtrEPgdRCO89W57yDm1ujBCpjqm2lhrYwVifwqhekvOxoO2QItzMhO7FLFLsMYpdFAnte1ss7PeV2-KGdnss4g6XLK8FQlee2FlyXuqZDzTSlWamLKrc8gZ1-pGRcB2ZyhdoEni-bcQb7sEzd2PZ7d4-PruYsge1uYJc94WjQc_SQExBrQ77W1fWWZnIRWMJ9EjTam_ji1z06Vv36tywe_f8znsENnHby49H4-DHcpB67nh-Y7cAmIsE-QQttrp5G7BOQVzzbfgGF_FEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+intrinsic+electrocaloric+effect+in+ferroelectrics+by+local+structural+engineering&rft.jtitle=Nature+communications&rft.au=Wu%2C+Bo&rft.au=Tao%2C+Hong&rft.au=Chen%2C+Kui&rft.au=Xing%2C+Zhipeng&rft.date=2025-08-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-61860-5&rft_id=info%3Apmid%2F40804249&rft.externalDocID=PMC12350644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon