Giant intrinsic electrocaloric effect in ferroelectrics by local structural engineering
The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a hig...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 7515 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.08.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-025-61860-5 |
Cover
Abstract | The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect.
The authors introduce a structural design with a well-ordered local structure for barium titanate-based ceramics, which decreases Curie temperature while preserves a sharp phase transition, enabling tunable polarization, large dielectric constant and intrinsic electrocaloric effect near room temperature. |
---|---|
AbstractList | The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect. The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect.The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect. The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect. The authors introduce a structural design with a well-ordered local structure for barium titanate-based ceramics, which decreases Curie temperature while preserves a sharp phase transition, enabling tunable polarization, large dielectric constant and intrinsic electrocaloric effect near room temperature. The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect.The authors introduce a structural design with a well-ordered local structure for barium titanate-based ceramics, which decreases Curie temperature while preserves a sharp phase transition, enabling tunable polarization, large dielectric constant and intrinsic electrocaloric effect near room temperature. Abstract The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration systems. However, achieving adequate electrocaloric cooling capacity at room temperature remains a formidable challenge due to the need for a high intrinsic electrocaloric effect. While barium titanate ceramic exhibits a pronounced electrocaloric effect near its Curie temperature, typical chemical modifications to enhance electrocaloric properties at room temperature often reduce this intrinsic electrocaloric effect. Herein, a structural design is introduced for barium titanate-based ceramics by incorporating isovalent cations. This leads to a well-ordered local structure that decreases the Curie temperature to room temperature while preserving a sharp phase transition, enabling a large dielectric constant and tunable polarization. This design achieves a remarkable electrocaloric strength of ~1.0 K·mm/kV, surpassing previous reports. Atomic-resolution structural analyses reveal that the presence of multiscale nanodomains (from ~10 nm to >100 nm), and the dipole polarization distribution with gradual dipole rotation enable rapid phase transition and facile polarization rotation, accounting for the giant electrocaloric response. This work provides a strategy for achieving a strong intrinsic electrocaloric effect in ferroelectrics near room temperature and offers key insights into the microstructure landscapes driving this enhanced electrocaloric effect. |
ArticleNumber | 7515 |
Author | Tao, Hong Zhao, Chunlin Liu, Yi-Xuan Wu, Bo Ma, Jian Wang, Ke Thong, Hao-Cheng Zhao, Lin Zhang, Shujun Xing, Zhipeng Wu, Yan-Qi Xu, Ze Yao, Fang-Zhou Wei, Yan Chen, Kui Zhou, Tianhang |
Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0003-4710-3923 surname: Wu fullname: Wu, Bo organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 2 givenname: Hong surname: Tao fullname: Tao, Hong organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University – sequence: 3 givenname: Kui surname: Chen fullname: Chen, Kui organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University – sequence: 4 givenname: Zhipeng surname: Xing fullname: Xing, Zhipeng organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 5 givenname: Yan-Qi surname: Wu fullname: Wu, Yan-Qi organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 6 givenname: Hao-Cheng surname: Thong fullname: Thong, Hao-Cheng organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 7 givenname: Lin surname: Zhao fullname: Zhao, Lin organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University – sequence: 8 givenname: Chunlin orcidid: 0000-0003-1333-1864 surname: Zhao fullname: Zhao, Chunlin email: zhaochunlin@fzu.edu.cn organization: College of Materials Science and Engineering, Fuzhou University – sequence: 9 givenname: Ze orcidid: 0000-0002-3117-9934 surname: Xu fullname: Xu, Ze organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 10 givenname: Yi-Xuan orcidid: 0000-0002-9522-8651 surname: Liu fullname: Liu, Yi-Xuan organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 11 givenname: Fang-Zhou orcidid: 0000-0003-1975-7452 surname: Yao fullname: Yao, Fang-Zhou organization: Research Center for Advanced Functional Ceramics, Wuzhen Laboratory – sequence: 12 givenname: Tianhang orcidid: 0000-0002-4007-9935 surname: Zhou fullname: Zhou, Tianhang email: zhouth@cup.edu.cn organization: State Key Laboratory of Heavy Oil Processing, College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing) – sequence: 13 givenname: Jian surname: Ma fullname: Ma, Jian organization: Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station & Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University – sequence: 14 givenname: Yan orcidid: 0000-0003-3484-8811 surname: Wei fullname: Wei, Yan email: kqweiyan@bjmu.edu.cn organization: Department of Geriatric Dentistry & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology – sequence: 15 givenname: Ke orcidid: 0000-0001-9840-2427 surname: Wang fullname: Wang, Ke organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 16 givenname: Shujun orcidid: 0000-0001-6139-6887 surname: Zhang fullname: Zhang, Shujun email: shujun@uow.edu.au organization: Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Department of Chemistry, City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40804249$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOKxIVLwB8TJz4hVEGpVIlLJY6WMztevMrai50g9d_jbEppOeCLZzzvPY9m3svqJMRAVfWas_ecyf5DBg6qa5hoG8V7xZr2WXUmGPCGd0KePIpPq4ucd6wcqXkP8KI6BdYzEKDPqu9X3oap9mFKPmSPNY2EU4pox5iW1LmSl3rtKKW4Vj3merirxwVV5ynNOM2phBS2PhAVpe2r6rmzY6aL-_u8uv3y-fbya3Pz7er68tNNg6BhapxAJ6xEtMo51YFjirDvNi3ChgbNBg1Si14MSkOJBiILw9BLWSggnDyvrlfZTbQ7c0h-b9Odidab40NMW2PT5HEk47juJXSck-0BFVrRoUQhmMJWc4Ki9XHVOszDnjZIZSZ2fCL6tBL8D7ONvwwXsmUKFoV39wop_pwpT2bvM9I42kBxzkYKqaXuNJcF-vYf6C7OKZRRHVFCKMYWwTePW3ro5c_-CkCsAEwx50TuAcKZWXxiVp-Y4hNz9IlpC0mupHxYVkXp79__Yf0G0Q7Apg |
Cites_doi | 10.1021/acsnano.4c03127 10.1103/PhysRevLett.120.207603 10.1038/s41586-019-1634-0 10.1016/j.cej.2021.133386 10.1039/D1TA10899A 10.1038/s41586-018-0434-2 10.1063/5.0017348 10.1021/jacs.9b07188 10.1126/science.aaw2781 10.1002/9783527841233 10.1016/j.joule.2019.03.021 10.1002/adma.201802402 10.1002/aelm.202200352 10.7498/aps.69.20200296 10.1103/PhysRevB.49.14251 10.1039/D1TA02543K 10.1007/978-3-642-40264-7 10.1016/j.nanoen.2020.104944 10.1021/acs.chemrev.3c00767 10.1063/1.1829794 10.1016/j.pmatsci.2012.02.001 10.7498/aps.69.20200540 10.1146/annurev-environ-012220-034103 10.1038/s41586-025-08768-8 10.1038/s41563-024-01831-1 10.1038/s41467-024-52031-z 10.1103/PhysRevLett.100.136406 10.1038/srep02895 10.1063/1.4958327 10.1021/acs.chemrev.9b00507 10.1093/acprof:oso/9780198507789.001.0001 10.1021/jacs.8b07844 10.1063/1.5090183 10.1016/j.jeurceramsoc.2024.05.031 10.1126/science.abb8045 10.1002/adfm.202108182 10.1002/adfm.202405241 10.1038/s41560-020-00715-3 10.1016/j.actamat.2004.07.028 10.1103/PhysRevB.46.8003 10.1063/1.2715522 10.1103/PhysRevApplied.15.054019 10.1002/inf2.12147 10.1007/s40145-020-0450-1 10.1002/adfm.202101176 10.1016/j.jeurceramsoc.2016.10.024 10.1038/srep40916 10.1038/s41586-021-04189-5 10.1126/science.adi5477 10.1103/PhysRevB.54.11169 10.1039/C9TC06443E 10.1016/j.actamat.2024.120576 10.1063/1.3641975 10.1063/1.4990046 10.1126/science.adi7812 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-61860-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_f19834711ea84c6ca27c3c2206c591e4 PMC12350644 40804249 10_1038_s41467_025_61860_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: Nos. 52325204, 52032005 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: Nos. 52325204, 52032005 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AARCD AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION PUEGO NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c494t-f2cf2a3cca6ff674f06ec87d5c4deb90b9439282b694439beea4bb8333cc42f3 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:00:49 EDT 2025 Thu Aug 21 18:24:55 EDT 2025 Fri Sep 05 15:09:28 EDT 2025 Sat Aug 23 13:24:43 EDT 2025 Sun Aug 17 02:22:10 EDT 2025 Thu Sep 11 00:13:28 EDT 2025 Thu Aug 14 01:17:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-f2cf2a3cca6ff674f06ec87d5c4deb90b9439282b694439beea4bb8333cc42f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6139-6887 0000-0001-9840-2427 0000-0003-3484-8811 0000-0002-9522-8651 0000-0003-4710-3923 0000-0002-3117-9934 0000-0003-1333-1864 0000-0003-1975-7452 0000-0002-4007-9935 |
OpenAccessLink | https://doaj.org/article/f19834711ea84c6ca27c3c2206c591e4 |
PMID | 40804249 |
PQID | 3239226004 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f19834711ea84c6ca27c3c2206c591e4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12350644 proquest_miscellaneous_3239397913 proquest_journals_3239226004 pubmed_primary_40804249 crossref_primary_10_1038_s41467_025_61860_5 springer_journals_10_1038_s41467_025_61860_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-13 |
PublicationDateYYYYMMDD | 2025-08-13 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | W Xu (61860_CR23) 2024; 44 H Tao (61860_CR46) 2022; 10 W Lin (61860_CR11) 2024; 18 M Acosta (61860_CR28) 2017; 4 C Zhao (61860_CR31) 2018; 140 Y Dong (61860_CR1) 2021; 46 61860_CR13 61860_CR15 C Zhao (61860_CR20) 2020; 2 B Nair (61860_CR8) 2019; 575 61860_CR50 Y Yu (61860_CR18) 2020; 35 D Wang (61860_CR52) 2020; 76 J Li (61860_CR49) 2021; 31 R Yin (61860_CR19) 2022; 32 Feng (61860_CR27) 2020; 120 H Tao (61860_CR56) 2019; 141 C Lei (61860_CR38) 2007; 101 F Li (61860_CR55) 2019; 364 G Kresse (61860_CR58) 1994; 49 Y Son (61860_CR9) 2025; 283 Z Gu (61860_CR53) 2018; 560 SG Lu (61860_CR16) 2020; 69 H Wu (61860_CR54) 2018; 30 J Li (61860_CR6) 2023; 382 A Pramanick (61860_CR29) 2018; 120 X Niu (61860_CR43) 2021; 10 J Fu (61860_CR51) 2017; 37 X Hou (61860_CR17) 2021; 15 G Kresse (61860_CR57) 1996; 54 G Li (61860_CR41) 2022; 431 Y Bai (61860_CR25) 2013; 3 S Zheng (61860_CR4) 2023; 382 Y Son (61860_CR10) 2022; 8 M Valant (61860_CR14) 2012; 57 S Lu (61860_CR37) 2004; 85 61860_CR39 D Viehland (61860_CR35) 1992; 46 Y Liu (61860_CR40) 2016; 3 JP Perdew (61860_CR59) 2008; 100 F Du (61860_CR22) 2025; 640 X Tang (61860_CR36) 2004; 52 X Qian (61860_CR5) 2021; 600 61860_CR33 XW Wei (61860_CR45) 2020; 69 T Shi (61860_CR34) 2015; 5 A Torelló (61860_CR7) 2020; 370 W Xiao (61860_CR21) 2024; 34 Y Meng (61860_CR12) 2020; 5 L Zhang (61860_CR42) 2021; 9 J Shi (61860_CR2) 2019; 3 J Yang (61860_CR44) 2020; 8 B Wu (61860_CR24) 2024; 15 J Gao (61860_CR32) 2017; 7 T Li (61860_CR30) 2024; 124 S Patel (61860_CR26) 2020; 10 B Rožič (61860_CR47) 2011; 110 S Zhang (61860_CR3) 2024; 23 M Wu (61860_CR48) 2019; 114 |
References_xml | – volume: 18 start-page: 13322 year: 2024 ident: 61860_CR11 publication-title: ACS Nano doi: 10.1021/acsnano.4c03127 – volume: 120 start-page: 207603 year: 2018 ident: 61860_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.207603 – volume: 575 start-page: 468 year: 2019 ident: 61860_CR8 publication-title: Nature doi: 10.1038/s41586-019-1634-0 – volume: 431 start-page: 133386 year: 2022 ident: 61860_CR41 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133386 – volume: 10 start-page: 5262 year: 2022 ident: 61860_CR46 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10899A – volume: 560 start-page: 622 year: 2018 ident: 61860_CR53 publication-title: Nature doi: 10.1038/s41586-018-0434-2 – volume: 10 start-page: 085302 year: 2020 ident: 61860_CR26 publication-title: AIP Adv. doi: 10.1063/5.0017348 – ident: 61860_CR33 – volume: 141 start-page: 13987 year: 2019 ident: 61860_CR56 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07188 – volume: 364 start-page: 264 year: 2019 ident: 61860_CR55 publication-title: Science doi: 10.1126/science.aaw2781 – ident: 61860_CR13 doi: 10.1002/9783527841233 – volume: 3 start-page: 1200 year: 2019 ident: 61860_CR2 publication-title: Joule doi: 10.1016/j.joule.2019.03.021 – volume: 30 start-page: 1802402 year: 2018 ident: 61860_CR54 publication-title: Adv. Mater. doi: 10.1002/adma.201802402 – volume: 8 start-page: 2200352 year: 2022 ident: 61860_CR10 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202200352 – volume: 69 start-page: 127701 year: 2020 ident: 61860_CR16 publication-title: Acta Phys. Sin. doi: 10.7498/aps.69.20200296 – volume: 49 start-page: 14251 year: 1994 ident: 61860_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 9 start-page: 12772 year: 2021 ident: 61860_CR42 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02543K – ident: 61860_CR15 doi: 10.1007/978-3-642-40264-7 – volume: 76 year: 2020 ident: 61860_CR52 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104944 – volume: 124 start-page: 7045 year: 2024 ident: 61860_CR30 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00767 – volume: 85 start-page: 5319 year: 2004 ident: 61860_CR37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1829794 – volume: 57 start-page: 980 year: 2012 ident: 61860_CR14 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2012.02.001 – volume: 69 start-page: 217705 year: 2020 ident: 61860_CR45 publication-title: Acta Phys. Sin. doi: 10.7498/aps.69.20200540 – volume: 46 start-page: 59 year: 2021 ident: 61860_CR1 publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-012220-034103 – volume: 640 start-page: 924 year: 2025 ident: 61860_CR22 publication-title: Nature doi: 10.1038/s41586-025-08768-8 – volume: 23 start-page: 639 year: 2024 ident: 61860_CR3 publication-title: Nat. Mater. doi: 10.1038/s41563-024-01831-1 – volume: 15 year: 2024 ident: 61860_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-024-52031-z – volume: 100 start-page: 136406 year: 2008 ident: 61860_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 3 year: 2013 ident: 61860_CR25 publication-title: Sci. Rep. doi: 10.1038/srep02895 – volume: 3 start-page: 031102 year: 2016 ident: 61860_CR40 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4958327 – volume: 120 start-page: 1710 year: 2020 ident: 61860_CR27 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00507 – ident: 61860_CR39 doi: 10.1093/acprof:oso/9780198507789.001.0001 – volume: 140 start-page: 15252 year: 2018 ident: 61860_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07844 – volume: 114 start-page: 142901 year: 2019 ident: 61860_CR48 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5090183 – volume: 44 start-page: 7071 year: 2024 ident: 61860_CR23 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2024.05.031 – ident: 61860_CR50 – volume: 370 start-page: 125 year: 2020 ident: 61860_CR7 publication-title: Science doi: 10.1126/science.abb8045 – volume: 32 start-page: 2108182 year: 2022 ident: 61860_CR19 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108182 – volume: 34 start-page: 2405241 year: 2024 ident: 61860_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202405241 – volume: 5 start-page: 1 year: 2015 ident: 61860_CR34 publication-title: Sci. Rep. – volume: 5 start-page: 996 year: 2020 ident: 61860_CR12 publication-title: Nat. Energy doi: 10.1038/s41560-020-00715-3 – volume: 52 start-page: 5177 year: 2004 ident: 61860_CR36 publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.07.028 – volume: 46 start-page: 8003 year: 1992 ident: 61860_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.8003 – volume: 101 start-page: 084105 year: 2007 ident: 61860_CR38 publication-title: J. Appl. Phys. doi: 10.1063/1.2715522 – volume: 15 year: 2021 ident: 61860_CR17 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.054019 – volume: 2 start-page: 1163 year: 2020 ident: 61860_CR20 publication-title: InfoMat doi: 10.1002/inf2.12147 – volume: 10 start-page: 482 year: 2021 ident: 61860_CR43 publication-title: J. Adv. Ceram. doi: 10.1007/s40145-020-0450-1 – volume: 31 start-page: 2101176 year: 2021 ident: 61860_CR49 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101176 – volume: 37 start-page: 975 year: 2017 ident: 61860_CR51 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.10.024 – volume: 7 year: 2017 ident: 61860_CR32 publication-title: Sci. Rep. doi: 10.1038/srep40916 – volume: 600 start-page: 664 year: 2021 ident: 61860_CR5 publication-title: Nature doi: 10.1038/s41586-021-04189-5 – volume: 382 start-page: 801 year: 2023 ident: 61860_CR6 publication-title: Science doi: 10.1126/science.adi5477 – volume: 54 start-page: 11169 year: 1996 ident: 61860_CR57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 8 start-page: 4030 year: 2020 ident: 61860_CR44 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06443E – volume: 283 start-page: 120576 year: 2025 ident: 61860_CR9 publication-title: Acta Mater. doi: 10.1016/j.actamat.2024.120576 – volume: 110 start-page: 064118 year: 2011 ident: 61860_CR47 publication-title: J. Appl. Phys. doi: 10.1063/1.3641975 – volume: 35 start-page: 633 year: 2020 ident: 61860_CR18 publication-title: J. Inorg. Mater. – volume: 4 start-page: 041305 year: 2017 ident: 61860_CR28 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4990046 – volume: 382 start-page: 1020 year: 2023 ident: 61860_CR4 publication-title: Science doi: 10.1126/science.adi7812 |
SSID | ssj0000391844 |
Score | 2.4818003 |
Snippet | The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression refrigeration... Abstract The electrocaloric effect of ferroelectrics holds great promise for solid-state cooling, potentially replacing traditional vapor-compression... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 7515 |
SubjectTerms | 140/133 140/146 147/137 639/301/1005/1007 639/301/299/2736 Barium Barium titanates Cations Ceramics Cooling Curie temperature Design Dielectric constant Dielectric properties Dipoles Electric fields Energy Ferroelectric materials Ferroelectricity Ferroelectrics Humanities and Social Sciences multidisciplinary Phase transitions Polarization Refrigeration Room temperature Rotation Science Science (multidisciplinary) Structural design Structural engineering Vapor compression refrigeration |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLVd6hBRmJG1h1bMfrnBAgthUSnIrozYpfsJek7G4P_ffM2N5dLa9bFDuJM5_tGc_Y3xDyKg08n9dkTg2cKaMDcykGJpIObXS85wFdA5-_6POv6tNld1kdbqu6rXIzJ-aJOkwefeSnUoAmRzZ19fbqJ8OsURhdrSk0bpM7rQBdiyfF52dbHwuynxul6lkZLs3pSuWZAXO4IlE8Z92ePsq0_X-zNf_cMvlb3DSro_kROax2JH1XgL9PbsXxAblbMkvePCTfzgD2NV3AaxYjAEFruhtABElBaNnGAeU0xeVyKqULv6Luhmb1RguxLJJy0LjjLHxELuYfLz6cs5pDgXnVqzVLwicxSMBJp6RnKnEdvZmFzqsQXc9dDxYJLLuc7hVcuRgH5ZyREh5RIsnH5GCcxviU0MH4hARxCdeUbQzOgP4TPvZuFrsQfUNebwRprwpThs0RbmlsEbsFsdssdts15D3KelsTWa7zjWn53dZBY1PbGwnas42DUV77Qcy89EJw7bu-jaohJxukbB16K7vrKA15uS2GQYORkGGM03WpgwHNVjbkSQF22xIFNrSCRWlDzB7ke03dLxkXPzIxN547BhMPPvxm0zt27fq3LJ79_zeOyT2BHRZ5eOUJOQD443OwhNbuRe7uvwDq3Ahp priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9QwDLaWWSFxQSzPwi4KEjeoSJM0TY8D2odGgguL2FvUpA7MpbOaGQ7773GSdlYDy4FbVSdtase1k9ifAd6Gjqd8zdKpjpfK6L50AftSBN1X6HjL-7g18PmLvvimFlf11QGIKRcmBe0nSMv0m56iwz5sVFLpWHw1Irzzsr4Hh6ah3-8MDufzxdfFbmclYp4bpcYMGS7NHZ33rFAC67_Lw_w7UPKP09JkhM4ewcPRe2TzPN4jOMDhMdzP9SRvnsD3cxL2li3pMcuB2M_GIjckhwgFwnLwBtFZwPV6lalLv2HuhiWjxjKcbITiYHiLVPgULs9OLz9dlGPlhNKrVm3LIHwQnSTp6BB0owLX6E3T11716FruWvJDaLHldKvoyiF2yjkjJXVRIshnMBtWA74A1hkfIixciCvJCntnyOoJj61rsO7RF_BuYqS9zvgYNp1rS2Mz2y2x3Sa227qAj5HXu5YR2zrdWK1_2FHWNlStkWQzK-yM8tp3ovHSC8G1r9sKVQHHk6TsqHAbKwV9UATbJ_KbHZlUJZ5_dAOufuU28RizkgU8z4LdjUSR56xoKVqA2RP53lD3KcPyZ4LjjtnG5NjRi99Ps-N2XP_mxcv_a_4KHog4gSMarzyGGU0HPCF_aOtejwrwGx8CB60 priority: 102 providerName: Springer Nature |
Title | Giant intrinsic electrocaloric effect in ferroelectrics by local structural engineering |
URI | https://link.springer.com/article/10.1038/s41467-025-61860-5 https://www.ncbi.nlm.nih.gov/pubmed/40804249 https://www.proquest.com/docview/3239226004 https://www.proquest.com/docview/3239397913 https://pubmed.ncbi.nlm.nih.gov/PMC12350644 https://doaj.org/article/f19834711ea84c6ca27c3c2206c591e4 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXVN6hZWUkbhA1sR3HOW5X3VYrUSEoYm9W7IzVvWRRdzn03zO2s9tuKeLCJYk8iePM58dMbH8D8MG3RdyvmVvZFrnUqsutxy7nXnUl2qIpuvBr4PO5OvsuZ_NqfivUV1gTluiBk-KOPHnFgnrQElstnXItr51wnBfKVU2JkQmUcrzlTMU-WDTkushhl0wh9NFKxj4hRG8NFPFFXu2MRJGw_z4r88_FkndmTONANN2Hp4MFycap5M_gAfbP4XGKKXn9An6cEuBrtqBsFj1BwIZAN4RFoANhaQEHyZnHq6tlki7citlrFgc2lihlAx0Hwxu2wpdwMT25mJzlQ_SE3MlGrnPPneetIISU96qWvlDodN1VTnZom8I2ZIuQw2VVI-nKIrbSWi0EPSK5F69gr1_2-AZYq50P1HA-eJMldlbTyMcdNrbGqkOXwceNIs3PxJFh4ty20Cap3ZDaTVS7qTI4Drre3hn4rWMCoW4G1M2_UM_gcIOUGRrdyghOHxQI90n8fium5hLmQNoel7_SPWEqsxQZvE7AbksiyXqW5I5moHcg3ynqrqRfXEZK7rDjmIw7evGnTe24KdffdfH2f-jiAJ7wUK0DT684hD2qJPiOLKW1HcHDel7TUU9PR_BoPJ59m9H5-OT8y1dKnajJKDab31K_FiA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEM8SKGAkOEHUxHayzqFCFFq2tF0htIjerNixYS9J2V2E9sfx35hxkl0tr1tvUZyHPf7sGXs83wA882US4jVjI8skliqvYuNdFXOfV6kzSZFUtDVwNs5Hn-T78-x8C372sTB0rLKfE8NEXTWW9sj3BEdNTmzq8tXFt5iyRpF3tU-hUXapFar9QDHWBXacuOUPXMLN94_fYn8_5_zocPJmFHdZBmIrC7mIPbeelwJbknufD6VPcmfVsMqsrJwpElOgzsaFickLiVfGuVIao4TAVyT3Aj97BbYl7Z8MYPvgcPzh42qTh-jXlZRdsE4i1N5chqmJksgSU30SZxsKMeQN-Jux--eZzd8ct0EfHt2EG50hy163yLsFW66-DVfb1JbLO_D5HeJuwab4mWmNSGBdvh2EBLGSsPYcCZYz72azpi2d2jkzSxb0K2uZbYkVhLk1aeJdmFyGeO_BoG5qdx9YqawnhjpPi9rUVUahAubWFWbossrZCF70gtQXLVWHDi52oXQrdo1i10HsOovggGS9epJotsONZvZFd6NW-7RQAtV36kolbW5LPrTCcp7kNitSJyPY7XtKd2N_rtdIjeDpqhhHLbliyto139tnyKOaigh22o5d1USiES9xVRyB2ujyjapultTTr4EZnAKf0cbEH7_s0bGu179l8eD_zXgC10aTs1N9ejw-eQjXOYGXSIHFLgwQCu4RmmUL87gDPwN9ycPtF_j9TNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiGcJFDASnCDaxHayzqFClHZpKawqVERvVvxq95KU3UVofyL_irHj7Gp53XqL1tnEGX_2zHg83wC8cHUW8jVTxess5aI0qXLWpNSVJrcqqzLjtwY-jcvDL_zDWXG2AT_7XBh_rLJfE8NCbVrt98gHjKIm92zqfODisYiT_dGby2-pryDlI619OY06llkwu4FuLCZ5HNvFD3TnZrtH-zj2LykdHZy-O0xjxYFU84rPU0e1ozXDryqdK4fcZaXVYmgKzY1VVaYq1N_opKiy4nilrK25UoIx_AunjuFjr8HWEJU--oFbewfjk8_LDR9PxS44j4k7GRODGQ_LlC8o61nrs7RYU46hhsDfDN8_z2_-FsQNunF0G25Fo5a87VB4BzZscxeud2UuF_fg63vE4JxM8DGTBlFBYu0dhIdnKCHdmRJsJ85Op23XOtEzohYk6FrSsdx6hhBiVwSK9-H0KsT7ADabtrEPgdRCO89W57yDm1ujBCpjqm2lhrYwVifwqhekvOxoO2QItzMhO7FLFLsMYpdFAnte1ss7PeV2-KGdnss4g6XLK8FQlee2FlyXuqZDzTSlWamLKrc8gZ1-pGRcB2ZyhdoEni-bcQb7sEzd2PZ7d4-PruYsge1uYJc94WjQc_SQExBrQ77W1fWWZnIRWMJ9EjTam_ji1z06Vv36tywe_f8znsENnHby49H4-DHcpB67nh-Y7cAmIsE-QQttrp5G7BOQVzzbfgGF_FEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+intrinsic+electrocaloric+effect+in+ferroelectrics+by+local+structural+engineering&rft.jtitle=Nature+communications&rft.au=Wu%2C+Bo&rft.au=Tao%2C+Hong&rft.au=Chen%2C+Kui&rft.au=Xing%2C+Zhipeng&rft.date=2025-08-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-61860-5&rft_id=info%3Apmid%2F40804249&rft.externalDocID=PMC12350644 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |