Exploration and analysis of risk factors for coronary artery disease with type 2 diabetes based on SHAP explainable machine learning algorithm
T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the perfor...
        Saved in:
      
    
          | Published in | Scientific reports Vol. 15; no. 1; pp. 29521 - 19 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        12.08.2025
     Nature Publishing Group Nature Portfolio  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2045-2322 2045-2322  | 
| DOI | 10.1038/s41598-025-11142-3 | 
Cover
| Abstract | T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly. | 
    
|---|---|
| AbstractList | T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly.T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly. Abstract T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly. T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly.  | 
    
| ArticleNumber | 29521 | 
    
| Author | Tang, Dandan Jin, Yuanyuan Liang, Fengwei Liu, Fen Hu, Xuanjie Gu, Xingli Yang, Yining  | 
    
| Author_xml | – sequence: 1 givenname: Dandan surname: Tang fullname: Tang, Dandan organization: Postdoctoral Research Station of Clinical Medicine, Xinjiang Medical University, College of Medical Engineering and Technology, Xinjiang Medical University, Institute of Medical Engineering Interdisciplinary Research, Xinjiang Medical University – sequence: 2 givenname: Fengwei surname: Liang fullname: Liang, Fengwei organization: College of Medical Engineering and Technology, Xinjiang Medical University – sequence: 3 givenname: Xingli surname: Gu fullname: Gu, Xingli organization: The First Affiliated Hospital of Xinjiang Medical University – sequence: 4 givenname: Yuanyuan surname: Jin fullname: Jin, Yuanyuan organization: College of Basic Medical Science, Xinjiang Medical University – sequence: 5 givenname: Xuanjie surname: Hu fullname: Hu, Xuanjie organization: College of Medical Engineering and Technology, Xinjiang Medical University – sequence: 6 givenname: Fen surname: Liu fullname: Liu, Fen email: fenliu82@163.com organization: Heart Center, The First Affiliated Hospital of Xinjiang Medical University – sequence: 7 givenname: Yining surname: Yang fullname: Yang, Yining email: yangyn5126@163.com organization: Department of Cardiology, Xinjiang Uyghur Autonomous Region People’s Hospital  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40796917$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkstuFDEQRVsoiISQH2CBLLFh0-BnP1YoigKJFAkkYG2V3dUzHjz2YPcQ5if4ZjwPQsICYcmyZd86VeXrp9VRiAGr6jmjrxkV3Zssmeq7mnJVM8Ykr8Wj6oRTqWouOD-6tz-uznJe0DIU7yXrn1THkrZ907P2pPp5-WPlY4LJxUAgDGWC32SXSRxJcvkrGcFOMWUyxkRsTDFA2hBIE5ZlcBkhI7l105xMmxUSXs7A4ISZmHIzkIL9dHX-kWDJAy6A8UiWYOcuIPEIKbgwI-BnMRXG8ln1eASf8eywnlZf3l1-vriqbz68v744v6mt7OVUY9MyqgaGo-lVQwcjmMKeGdmzDoXolBgEg7YbTcMBLNBWWsNGMLQdheFcnFbXe-4QYaFXyS1LVzqC07uDmGa6tOisR92oRkmBTTewTgqJMAoqoBfCWK4aNIUl9qx1WMHmFry_AzKqt2bpvVm6mKV3ZmlRot7uo1Zrs8TBYpgS-AelPLwJbq5n8btmXMjiX1MIrw6EFL-tMU966bJF7yFgXGctuOgZU5JupS__ki7iOhWnd6quU7wVW9WL-yXd1fL7txQB3wtsijknHP-v0cPz5CIOM0x_cv8j6heJK-N5 | 
    
| Cites_doi | 10.1111/cns.13913 10.2196/35373 10.1038/s41598-021-82098-3 10.1016/j.aap.2019.105405 10.1002/9781118548387 10.1186/s12872-022-02727-1 10.3390/ijms222413471 10.1016/j.ins.2019.11.004 10.1186/s12913-015-0698-2 10.1161/CIRCGEN.120.003201 10.1016/j.compbiomed.2019.103346 10.1038/s41580-021-00407-0 10.1056/NEJMoa052187 10.1001/jamacardio.2022.3926 10.1111/jcpt.13713 10.3390/nu15183937 10.1038/s41598-025-02072-1 10.3389/fpubh.2022.842104 10.4249/scholarpedia.1883 10.1016/j.scitotenv.2021.150674 10.7763/IJMLC.2013.V3.307 10.1016/j.pcd.2017.04.007 10.1186/s12933-023-01939-9 10.1177/09544119231186074 10.1186/s12874-023-02078-1 10.1016/S0140-6736(22)02079-7 10.1186/s12933-022-01715-1 10.1038/s41598-025-97817-3 10.1177/030089169508100204 10.1161/CIRCHEARTFAILURE.122.010377 10.2196/20298 10.1371/journal.pone.0205639 10.1016/j.chemosphere.2022.137039 10.1023/A:1022627411411 10.1007/s00262-021-02896-6 10.1186/s12872-023-03087-0  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025  | 
    
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1038/s41598-025-11142-3 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 2045-2322 | 
    
| EndPage | 19 | 
    
| ExternalDocumentID | oai_doaj_org_article_656543e68d18434eaf303a933bc256eb 10.1038/s41598-025-11142-3 PMC12344076 40796917 10_1038_s41598_025_11142_3  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: Special Funds for Talents of Xinjiang Medical University grantid: 0103010211 – fundername: Youth Science Fund of the Natural Science Foundation of Xinjiang Uyghur Autonomous Region grantid: 2022D01C718  | 
    
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AARCD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c494t-e67105d1efb9560db315e91b4918e33853d31a78fb62aaca074cb1fab07f3b223 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2045-2322 | 
    
| IngestDate | Fri Oct 03 12:52:45 EDT 2025 Sun Oct 26 01:45:11 EDT 2025 Tue Sep 30 17:01:13 EDT 2025 Fri Sep 05 15:11:19 EDT 2025 Tue Oct 07 09:21:18 EDT 2025 Thu Sep 04 05:02:29 EDT 2025 Wed Oct 01 05:29:19 EDT 2025 Wed Aug 13 01:27:02 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Imbalance processing SHAP Coronary heart disease combined with type 2 diabetes Machine learning  | 
    
| Language | English | 
    
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c494t-e67105d1efb9560db315e91b4918e33853d31a78fb62aaca074cb1fab07f3b223 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://doaj.org/article/656543e68d18434eaf303a933bc256eb | 
    
| PMID | 40796917 | 
    
| PQID | 3238852736 | 
    
| PQPubID | 2041939 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_656543e68d18434eaf303a933bc256eb unpaywall_primary_10_1038_s41598_025_11142_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12344076 proquest_miscellaneous_3239115406 proquest_journals_3238852736 pubmed_primary_40796917 crossref_primary_10_1038_s41598_025_11142_3 springer_journals_10_1038_s41598_025_11142_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-08-12 | 
    
| PublicationDateYYYYMMDD | 2025-08-12 | 
    
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-12 day: 12  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | Scientific reports | 
    
| PublicationTitleAbbrev | Sci Rep | 
    
| PublicationTitleAlternate | Sci Rep | 
    
| PublicationYear | 2025 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio  | 
    
| References | C Bähler (11142_CR2) 2015; 22 H Zhang (11142_CR34) 2022; 28 T Kondo (11142_CR29) 2023; 16 JG Greener (11142_CR32) 2022; 23 DM Nathan (11142_CR40) 2005; 353 Z Yuan (11142_CR25) 2025; 15 H Xiao (11142_CR8) 2022; 21 F Thabtah (11142_CR12) 2020; 513 X Li (11142_CR38) 2023; 311 Q Xu (11142_CR7) 2022; 4 MM Rahman (11142_CR11) 2013; 3 Y Abdel Majeed (11142_CR13) 2018; 13 MF Feitosa (11142_CR37) 2021; 14 H Xu (11142_CR1) 2022; 19 A Martin-Morales (11142_CR33) 2023; 15 D Aronson (11142_CR6) 2014; 32 PH Stone (11142_CR4) 2023; 8 DW Hosmer Jr (11142_CR23) 2013 Y Ma (11142_CR24) 2023; 23 M Sagris (11142_CR3) 2021; 22 M Hu (11142_CR35) 2021; 23 TC Turin (11142_CR5) 2017; 11 Y Ou-Yang (11142_CR19) 2025; 15 VS Thakur (11142_CR36) 2023; 237 IS Forrest (11142_CR10) 2023; 401 H Wei (11142_CR14) 2022; 806 AB Parsa (11142_CR27) 2020; 136 C Cortes (11142_CR21) 1995; 20 SR Mirjalili (11142_CR9) 2023; 22 11142_CR20 L Shao (11142_CR16) 2022; 47 LE Peterson (11142_CR22) 2009; 4 R Thapa (11142_CR30) 2022; 5 Y Huang (11142_CR17) 2023; 23 X Tian (11142_CR39) 2022; 22 M Mangiagalli (11142_CR28) 1995; 81 KK Mujeeb Rahman (11142_CR18) 2022; 12 S El-Sappagh (11142_CR26) 2021; 11 XN Wu (11142_CR31) 2021; 70 R Alizadehsani (11142_CR15) 2019; 111  | 
    
| References_xml | – volume: 28 start-page: 1748 issue: 11 year: 2022 ident: 11142_CR34 publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.13913 – volume: 5 issue: 2 year: 2022 ident: 11142_CR30 publication-title: JMIR Aging doi: 10.2196/35373 – volume: 11 start-page: 2660 issue: 1 year: 2021 ident: 11142_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-021-82098-3 – volume: 136 year: 2020 ident: 11142_CR27 publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2019.105405 – volume: 12 start-page: 2292 issue: 9 year: 2022 ident: 11142_CR18 publication-title: Diagnostics (Basel) – volume-title: Applied Logistic Regression year: 2013 ident: 11142_CR23 doi: 10.1002/9781118548387 – volume: 22 start-page: 281 issue: 1 year: 2022 ident: 11142_CR39 publication-title: BMC Cardiovasc. Disord. doi: 10.1186/s12872-022-02727-1 – volume: 22 start-page: 13471 issue: 24 year: 2021 ident: 11142_CR3 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222413471 – volume: 513 start-page: 429 year: 2020 ident: 11142_CR12 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.11.004 – volume: 22 start-page: 23 issue: 15 year: 2015 ident: 11142_CR2 publication-title: BMC Health Serv. Res. doi: 10.1186/s12913-015-0698-2 – volume: 14 issue: 3 year: 2021 ident: 11142_CR37 publication-title: Circ. Genom. Precis. Med. doi: 10.1161/CIRCGEN.120.003201 – volume: 111 year: 2019 ident: 11142_CR15 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103346 – volume: 23 start-page: 40 issue: 1 year: 2022 ident: 11142_CR32 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00407-0 – volume: 353 start-page: 2643 issue: 25 year: 2005 ident: 11142_CR40 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa052187 – volume: 8 start-page: 192 issue: 2 year: 2023 ident: 11142_CR4 publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2022.3926 – volume: 47 start-page: 1627 issue: 10 year: 2022 ident: 11142_CR16 publication-title: J. Clin. Pharm. Ther. doi: 10.1111/jcpt.13713 – volume: 15 start-page: 3937 issue: 18 year: 2023 ident: 11142_CR33 publication-title: Nutrients doi: 10.3390/nu15183937 – volume: 15 start-page: 18268 year: 2025 ident: 11142_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-025-02072-1 – volume: 4 issue: 10 year: 2022 ident: 11142_CR7 publication-title: Front. Public Health doi: 10.3389/fpubh.2022.842104 – volume: 4 start-page: 1883 year: 2009 ident: 11142_CR22 publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – volume: 19 start-page: 445 issue: 6 year: 2022 ident: 11142_CR1 publication-title: J. Geriatr. Cardiol. – volume: 806 issue: Pt 2 year: 2022 ident: 11142_CR14 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150674 – volume: 3 start-page: 224 issue: 2 year: 2013 ident: 11142_CR11 publication-title: Int. J. Mach. Learn. Comput. doi: 10.7763/IJMLC.2013.V3.307 – volume: 11 start-page: 461 issue: 5 year: 2017 ident: 11142_CR5 publication-title: Prim. Care Diabetes doi: 10.1016/j.pcd.2017.04.007 – volume: 32 start-page: 439 issue: 3 year: 2014 ident: 11142_CR6 publication-title: Cardiol. Clin. – volume: 22 start-page: 200 issue: 1 year: 2023 ident: 11142_CR9 publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-023-01939-9 – volume: 237 start-page: 958 issue: 8 year: 2023 ident: 11142_CR36 publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/09544119231186074 – volume: 23 start-page: 268 issue: 1 year: 2023 ident: 11142_CR17 publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-023-02078-1 – volume: 401 start-page: 215 issue: 10372 year: 2023 ident: 11142_CR10 publication-title: Lancet doi: 10.1016/S0140-6736(22)02079-7 – volume: 21 start-page: 276 issue: 1 year: 2022 ident: 11142_CR8 publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-022-01715-1 – volume: 15 start-page: 13793 year: 2025 ident: 11142_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-025-97817-3 – ident: 11142_CR20 – volume: 81 start-page: 91 issue: 2 year: 1995 ident: 11142_CR28 publication-title: Tumori J. doi: 10.1177/030089169508100204 – volume: 16 issue: 7 year: 2023 ident: 11142_CR29 publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.122.010377 – volume: 23 issue: 2 year: 2021 ident: 11142_CR35 publication-title: J. Med. Internet Res. doi: 10.2196/20298 – volume: 13 issue: 10 year: 2018 ident: 11142_CR13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0205639 – volume: 311 issue: Pt 1 year: 2023 ident: 11142_CR38 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.137039 – volume: 20 start-page: 273 year: 1995 ident: 11142_CR21 publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 70 start-page: 2835 issue: 10 year: 2021 ident: 11142_CR31 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-021-02896-6 – volume: 23 start-page: 91 issue: 1 year: 2023 ident: 11142_CR24 publication-title: BMC Cardiovasc. Disord. doi: 10.1186/s12872-023-03087-0  | 
    
| SSID | ssj0000529419 | 
    
| Score | 2.4582286 | 
    
| Snippet | T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy;... Abstract T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 29521 | 
    
| SubjectTerms | 631/1647/767 692/4019 692/699 Aged Algorithms Angina pectoris Cardiovascular disease Comorbidity Coronary artery disease Coronary Artery Disease - diagnosis Coronary Artery Disease - epidemiology Coronary Artery Disease - etiology Coronary heart disease combined with type 2 diabetes Datasets Decision making Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - complications Ethics Feature selection Female Heart diseases Hospitals Humanities and Social Sciences Humans Imbalance processing Informed consent Ischemia Learning algorithms Machine Learning Male Medical imaging Medical records Metabolism Middle Aged multidisciplinary Older people Patients Population Regression analysis Risk analysis Risk Assessment Risk Factors ROC Curve Science Science (multidisciplinary) SHAP Variables  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgh4QHxTGMhIvDFrtZ3PB4Q2tKnioZqASXuzbMfpJnVp6Vqh_hP8zdw5TkYFmnjIS-Ikju-c-53v_DuA9ya3uRPSc-kzyxMEGNxk0nKJ1g4BCBoYG9g-J9n4LPlynp7vwKTbC0Npld0_Mfyoq7mjNfIDhbalILaw7NPiB6eqURRd7UpomFhaofoYKMbuwK4kZqwB7B4dT06_9qsuFNdKRBl3z4xUcXCNFox2mcmUC9pXytWWhQpE_v9Cn38nUfaR1Adwb90szOanmc3-MFYnj-BhRJnssFWLx7Djmydwt607uXkKv9rMuyAUZpoKj5aahM1rRsnmLJbhYQhpmSOSA7PcsJD-uWExpsNoCZfREi6TrFvCZWQVK4aP_TY-PGUe3xO3Z7GrkLbpWaxTMWVmNsUBXl1cPYOzk-Pvn8c8FmbgLimTFfcZ4pK0Er625F5VVonUl8ImpSg8-rypqpQweVHbTBrjDMIUZ0Vt7CivlUVA8hwGzbzxLwF7he5wLlyeGsKGrqyFF07U-CKDZ9QQPnTC0IuWf0OHuLkqdCs6jaLTQXQaWx-RvPqWxJ0dTsyXUx2nokYEmybKZ0VFtW4Sb2o046ZUyjrEf94OYa-Tto4T-lrfqN8Q3vWXcSpSfMU0fr4ObUpiNxphmxetcvQ9Qb-5zNA1HkKxpTZbXd2-0lxeBLpvxBYJ3o4P3e807KZft43Ffq-F_zF0r27_6tdwX9IcITJguQeD1XLt3yAcW9m3cY79BjJLMq4 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFdE-FL97WmUE37xgk-zn41ksxz2IUAt9C0k2WwvXvXK9Q-6f6N_cSTa7ulREH_ZlN8mGzIT5TWbmF4APOje55cIx4TLDEgIYTGfCMEHWjgAIGRgT2D6_ZrOzZH6enu_ApKuFGcTvA3X3DZkYXwYmUsZ94SeTD2C3IMUsRrA7nc5P5_2Zio9aJbyMtTHU_dP9zgP7E2j6_4Qt76dI9nHSPXi0aa719qdeLH4zRSdPYD9iSJy2Qn8KO655Bg_bWyW3z-G2zasLS466qehpiUdwWaNPJcd4yQ4SYEXrKQz0aoshuXOLMWKD_oAW_QEtCuwOaNHbvApp2NPZ9Bs6-k8svsKrkJTpMN5CcYF6cbFc0RhXL-Ds5Mv34xmL1y4wm5TJmrmMUEdacVcb7zxVRvLUldwkJS8cebSprCTXeVGbTGhtNYEQa3itzVFeS0Nw4yWMmmXjDoBmRc5uzm2eao_8bFlzxy2v6Uea3sgxfOyEoa5bdg0VouKyUK3oFIlOBdEpav3Zy6tv6ZmxwwtSGBU3miJ8mibSZUXlb7JJnK7JSOtSSmMJ3TkzhsNO2ipu1xslCbgUnoouG8P7_jNtNB890Y1bbkKb0nMXHVGbV61y9DMhr7jMyPEdQzFQm8FUh1-ayx-BzJuQQ0LdadBJp2G_5vW3tZj0WvgPS_f6_0Z_A4-F3zOe-lccwmi92ri3BL7W5l3cc3dkCibF priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceBZYKGiQuFG3tZ3ncUFUKw5VJVipnCzbcQpim632IbT8iP7mzjjeQKBC5ZBL4jiOPdZ845n5hrE3Jre5E9Jz6TPLEwQY3GTSconaDgEIKhgb2D6PsvEk-XiSnkSaHMqF6fnvVbG_QAVDSWAy5YLSPrm6ybayFHH3gG1Njo5HX6h6HOISjtBAxqyYq1_saZ5A0H8Vqvw7OLLzkN5lt1fNuVn_MNPpb0ro8H5bzWgRuAsp9uT73mpp99zPP5gdr_d_D9i9iEVh1ArPQ3bDN4_YrbY65foxu2jj88LSgWkqvFoCE5jVQCHpEIv1AAJfcESFYOZrCEGia4ieH6CDXqCDXpCwOegF0p0VYLefxqNj8PidmMQFZyG400OsZnEKZno6m2MfZ9tscvjh8_sxj-UbuEvKZMl9huglrYSvLRlhlVUi9aWwSSkKj5ZxqiolTF7UNpPGOINgxllRG3uQ18oibHnCBs2s8c8YjgqN5ly4PDWEIF1ZCy-cqPFDBu-oIXu7WVp93rJ06OBdV4VuZ1jjDOswwxpbv6PV71oSw3a4gQuj44bViHPTRPmsqKgiTuJNjcrelEpZhyjR2yHb2ciOjtt-oRUCoIIo7bIhe909xg1LXhjT-NkqtCmJA-kA2zxtRa0bCVrXZYYG9JAVPSHsDbX_pPn2NZCCIwJJ8HXsdHcjr7_G9a-52O1k-hpT9_z_mr9gdySJNlEIyx02WM5X_iWCuKV9FXfvJTqIPLA priority: 102 providerName: Unpaywall  | 
    
| Title | Exploration and analysis of risk factors for coronary artery disease with type 2 diabetes based on SHAP explainable machine learning algorithm | 
    
| URI | https://link.springer.com/article/10.1038/s41598-025-11142-3 https://www.ncbi.nlm.nih.gov/pubmed/40796917 https://www.proquest.com/docview/3238852736 https://www.proquest.com/docview/3239115406 https://pubmed.ncbi.nlm.nih.gov/PMC12344076 https://doi.org/10.1038/s41598-025-11142-3 https://doaj.org/article/656543e68d18434eaf303a933bc256eb  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx9j6MPbdtF24wd5W00jy56MbWkIeQlgXyJ6EZMvtIHVKmlDyT-xv3p3kuAkb2x72YAKyLCu6k-930ul3jH3SiUkKLmwgbGyCEAFGoGNhAoHWDgEIGhjj2D5H8WASDqfRdCvVF8WEeXpgP3CniDeiUNo4LSkzSWh1hR9djW64KdBaW0Nf316abTlTntVbZCHPmlMyPZme3qGlotNkIgo4nR8N5I4lcoT9v0OZvwZLtjum--zZqr7V63s9m20ZpYuX7EWDJiH3_-IVe2Tr1-ypzy-5fsN--Ag7N_ig6xIvT0EC8wooqByadDuA0BUKIjPQizW4MM81NHs3QEu1QEu1IGCzVAtk_UrAZi8H-Rgsvqc5hgU3LjzTQpOP4gr07Gq-wDZu3rLJxfnX_iBoEjAERZiFy8DGiD-iktvKkBtVGskjm3ETZjy16NtGspRcJ2llYqF1oRGOFIZX2vSSShoEHu_YXj2v7QHDXqHbm_AiiTRhwCKruOUFr_BFGktkh33eCEPdep4N5fbHZaq86BSKTjnRKax9RvJqaxJHtitAzVGN5qi_aU6HHW-krZqJe6ckQpiUSOniDvvY3sYpR_sourbzlauTEYtRD-u898rR9gT94yxGF7jD0h212enq7p36-7Wj9UYMEeLj2OjJRsMe-vWnsThptfAfhu7wfwzdEXsuaCYRNbA4ZnvLxcp-QHC2NF32OJkmXfYkz4eXQ_w9Ox-Nv2BpP-533RzFsslonH_7Cb2nOpc | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqhwQLxZKGAkONGo60dehwq10GpLy6qCVurN2ImzRdomyz5U5U_wk_htzDhOygpUcelhL4k3cTLjzDeemW8IeaNjE2eM24DbyAQSAEagI24CDtYOAAgYGOPYPofR4FR-OgvPVsivthYG0yrbb6L7UOdVhnvkWwJsS4JsYdH7yY8Au0ZhdLVtoaF9a4V821GM-cKOQ1tfggs32z74CPJ-y_n-3smHQeC7DASZTOU8sBEY2TBntjDoK-RGsNCmzMiUJRYcuFDkguk4KUzEtc402NzMsEKbflwIw5H4AEzAmhQyBedvbXdvePyl2-XBOJpkqa_W6YtkawYWE6vaeBgwrGMNxJJFdI0D_oV2_07a7CK3d8j6opzo-lKPx38Yx_175K5HtXSnUcP7ZMWWD8itps9l_ZD8bDL9nBJQXebwa6hQaFVQTG6nvu0PBQhNMyRV0NOaunTTmvoYEsUtY4pbxpTTdsuYohXOKVz262DnmFq4jy8HoxcuTdRS3xdjRPV4BAKdn188Iqc3IqLHZLWsSvuUwKzA_Y5ZFocasWiWFsyyjBVwIw1HRI-8a4WhJg3fh3JxepGoRnQKRKec6BSM3kV5dSORq9sdqKYj5Ze-AsQcSmGjJMfeOtLqAmCDToUwGeBNa3pko5W28h-QmbpS9x553Z2GpY_xHF3aauHGpMim1IcxTxrl6GYCfnoagSveI8mS2ixNdflM-f3c0YsDlpHwd7joZqthV_O67l1sdlr4H6_u2fVP_YqsD04-H6mjg-Hhc3Kb43pBImK-QVbn04V9AVBwbl769UbJt5te4r8BLYVvpg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxLsLBYwEJxrt2s7zgFChrLYUVZWg0t5c23G2SNtkuw9V-RP8IH4dM46TsgJVXHrIJXESJzPj-ebhGULeqEQnhnEbcBvrIASAEaiY64CDtgMAAgpGu2qfh_HoOPwyjsYb5Fe7FwbTKts10S3UeWXQR94XoFtSrBYW9wufFnG0N_wwOw-wgxRGWtt2Gg2LHNj6Asy3xfv9PaD1W86Hn79_GgW-w0BgwixcBjYGBRvlzBYa7YRcCxbZjOkwY6kF4y0SuWAqSQsdc6WMAn1rNCuUHiSF0ByLHsDyfyMRIsN0wmScdP4djKCFLPP7dAYi7S9AV-J-Nh4FDHewBmJNF7qWAf_CuX-na3Yx27vk9qqcqfpCTad_qMXhfXLP41m62zDgA7Jhy4fkZtPhsn5EfjY5fo78VJU5HE0RFFoVFNPaqW_4QwE8U4PlFNS8pi7RtKY-ekTRWUzRWUw5bZ3FFPVvTuGx30a7R9TCe_xGMHrmEkQt9R0xJlRNJ0C-5enZY3J8LQR6QjbLqrRbBGYFhnfCTBIpRKEmK5hlhhXwIgVnRI-8a4khZ02lD-ki9CKVDekkkE460kkY_RHp1Y3EKt3uRDWfSC_0ErByFAobpzl21QmtKgAwqEwIbQBpWt0j2y21pV86FvKS0XvkdXcZhB4jOaq01cqNybCO0gDGPG2Yo5sJWOhZDEZ4j6RrbLM21fUr5Y9TV1gcUEwIt8NDd1oOu5zXVf9ip-PC__h1z67-6lfkFgi2_Lp_ePCc3OEoLliBmG-TzeV8ZV8ABlzql07YKDm5bun-DRpcbUA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceBZYKGiQuFG3tZ3ncUFUKw5VJVipnCzbcQpim632IbT8iP7mzjjeQKBC5ZBL4jiOPdZ845n5hrE3Jre5E9Jz6TPLEwQY3GTSconaDgEIKhgb2D6PsvEk-XiSnkSaHMqF6fnvVbG_QAVDSWAy5YLSPrm6ybayFHH3gG1Njo5HX6h6HOISjtBAxqyYq1_saZ5A0H8Vqvw7OLLzkN5lt1fNuVn_MNPpb0ro8H5bzWgRuAsp9uT73mpp99zPP5gdr_d_D9i9iEVh1ArPQ3bDN4_YrbY65foxu2jj88LSgWkqvFoCE5jVQCHpEIv1AAJfcESFYOZrCEGia4ieH6CDXqCDXpCwOegF0p0VYLefxqNj8PidmMQFZyG400OsZnEKZno6m2MfZ9tscvjh8_sxj-UbuEvKZMl9huglrYSvLRlhlVUi9aWwSSkKj5ZxqiolTF7UNpPGOINgxllRG3uQ18oibHnCBs2s8c8YjgqN5ly4PDWEIF1ZCy-cqPFDBu-oIXu7WVp93rJ06OBdV4VuZ1jjDOswwxpbv6PV71oSw3a4gQuj44bViHPTRPmsqKgiTuJNjcrelEpZhyjR2yHb2ciOjtt-oRUCoIIo7bIhe909xg1LXhjT-NkqtCmJA-kA2zxtRa0bCVrXZYYG9JAVPSHsDbX_pPn2NZCCIwJJ8HXsdHcjr7_G9a-52O1k-hpT9_z_mr9gdySJNlEIyx02WM5X_iWCuKV9FXfvJTqIPLA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+and+analysis+of+risk+factors+for+coronary+artery+disease+with+type+2+diabetes+based+on+SHAP+explainable+machine+learning+algorithm&rft.jtitle=Scientific+reports&rft.au=Dandan+Tang&rft.au=Fengwei+Liang&rft.au=Xingli+Gu&rft.au=Yuanyuan+Jin&rft.date=2025-08-12&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1038%2Fs41598-025-11142-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_656543e68d18434eaf303a933bc256eb | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |