Exploration and analysis of risk factors for coronary artery disease with type 2 diabetes based on SHAP explainable machine learning algorithm

T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the perfor...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 29521 - 19
Main Authors Tang, Dandan, Liang, Fengwei, Gu, Xingli, Jin, Yuanyuan, Hu, Xuanjie, Liu, Fen, Yang, Yining
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-11142-3

Cover

Abstract T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly.
AbstractList T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly.T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly.
Abstract T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly.
T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy; however, studies applying these methods for clinical prediction and diagnosis of CHD-DM2 remain limited. This study aims to evaluate the performance of machine learning models and to develop an interpretable model to identify critical risk factors of CHD-DM2, thereby supporting clinical decision-making. Data were collected from cardiovascular inpatients admitted to the First Affiliated Hospital of Xinjiang Medical University between 2001 and 2018. A total of 12,400 patients were included, comprising 10,257 cases of CHD and 2143 cases of CHD-DM2.To address the class imbalance in the dataset, the SMOTENC algorithm was applied in conjunction with the themis package for data preprocessing. Final predictors were identified through a combined approach of univariate analysis and Lasso regression. We then developed and validated seven machine learning models: Logistic, Logistic_Lasso, KNN, SVM, XGBoost, RF, and LightGBM. The predictive performance of the five models was compared using evaluation metrics including accuracy, sensitivity, specificity, AUC, ROC and DCA. Additionally, SHAP values were employed to provide interpretability of the model outputs. The dataset was split into a training set (n = 8460) and a validation set (n = 3680) at a 7:3 ratio. A total of 25 predictive variables were ultimately identified through Lasso regression analysis. Among the seven machine learning models, the RF model demonstrated significantly superior performance and achieved the highest net benefit in the DCA. According to SHAP analysis, Diabetes.History, BG, and HbA1c were identified as the top contributors to CHD-DM2 risk. This study identified Diabetes.History, blood glucose (BG), and HbA1c as the primary risk factors for CHD-DM2. It is recommended that hospitals enhance monitoring of such patients, document the presence of high-risk factors, and implement targeted intervention strategies accordingly.
ArticleNumber 29521
Author Tang, Dandan
Jin, Yuanyuan
Liang, Fengwei
Liu, Fen
Hu, Xuanjie
Gu, Xingli
Yang, Yining
Author_xml – sequence: 1
  givenname: Dandan
  surname: Tang
  fullname: Tang, Dandan
  organization: Postdoctoral Research Station of Clinical Medicine, Xinjiang Medical University, College of Medical Engineering and Technology, Xinjiang Medical University, Institute of Medical Engineering Interdisciplinary Research, Xinjiang Medical University
– sequence: 2
  givenname: Fengwei
  surname: Liang
  fullname: Liang, Fengwei
  organization: College of Medical Engineering and Technology, Xinjiang Medical University
– sequence: 3
  givenname: Xingli
  surname: Gu
  fullname: Gu, Xingli
  organization: The First Affiliated Hospital of Xinjiang Medical University
– sequence: 4
  givenname: Yuanyuan
  surname: Jin
  fullname: Jin, Yuanyuan
  organization: College of Basic Medical Science, Xinjiang Medical University
– sequence: 5
  givenname: Xuanjie
  surname: Hu
  fullname: Hu, Xuanjie
  organization: College of Medical Engineering and Technology, Xinjiang Medical University
– sequence: 6
  givenname: Fen
  surname: Liu
  fullname: Liu, Fen
  email: fenliu82@163.com
  organization: Heart Center, The First Affiliated Hospital of Xinjiang Medical University
– sequence: 7
  givenname: Yining
  surname: Yang
  fullname: Yang, Yining
  email: yangyn5126@163.com
  organization: Department of Cardiology, Xinjiang Uyghur Autonomous Region People’s Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40796917$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuFDEQRVsoiISQH2CBLLFh0-BnP1YoigKJFAkkYG2V3dUzHjz2YPcQ5if4ZjwPQsICYcmyZd86VeXrp9VRiAGr6jmjrxkV3Zssmeq7mnJVM8Ykr8Wj6oRTqWouOD-6tz-uznJe0DIU7yXrn1THkrZ907P2pPp5-WPlY4LJxUAgDGWC32SXSRxJcvkrGcFOMWUyxkRsTDFA2hBIE5ZlcBkhI7l105xMmxUSXs7A4ISZmHIzkIL9dHX-kWDJAy6A8UiWYOcuIPEIKbgwI-BnMRXG8ln1eASf8eywnlZf3l1-vriqbz68v744v6mt7OVUY9MyqgaGo-lVQwcjmMKeGdmzDoXolBgEg7YbTcMBLNBWWsNGMLQdheFcnFbXe-4QYaFXyS1LVzqC07uDmGa6tOisR92oRkmBTTewTgqJMAoqoBfCWK4aNIUl9qx1WMHmFry_AzKqt2bpvVm6mKV3ZmlRot7uo1Zrs8TBYpgS-AelPLwJbq5n8btmXMjiX1MIrw6EFL-tMU966bJF7yFgXGctuOgZU5JupS__ki7iOhWnd6quU7wVW9WL-yXd1fL7txQB3wtsijknHP-v0cPz5CIOM0x_cv8j6heJK-N5
Cites_doi 10.1111/cns.13913
10.2196/35373
10.1038/s41598-021-82098-3
10.1016/j.aap.2019.105405
10.1002/9781118548387
10.1186/s12872-022-02727-1
10.3390/ijms222413471
10.1016/j.ins.2019.11.004
10.1186/s12913-015-0698-2
10.1161/CIRCGEN.120.003201
10.1016/j.compbiomed.2019.103346
10.1038/s41580-021-00407-0
10.1056/NEJMoa052187
10.1001/jamacardio.2022.3926
10.1111/jcpt.13713
10.3390/nu15183937
10.1038/s41598-025-02072-1
10.3389/fpubh.2022.842104
10.4249/scholarpedia.1883
10.1016/j.scitotenv.2021.150674
10.7763/IJMLC.2013.V3.307
10.1016/j.pcd.2017.04.007
10.1186/s12933-023-01939-9
10.1177/09544119231186074
10.1186/s12874-023-02078-1
10.1016/S0140-6736(22)02079-7
10.1186/s12933-022-01715-1
10.1038/s41598-025-97817-3
10.1177/030089169508100204
10.1161/CIRCHEARTFAILURE.122.010377
10.2196/20298
10.1371/journal.pone.0205639
10.1016/j.chemosphere.2022.137039
10.1023/A:1022627411411
10.1007/s00262-021-02896-6
10.1186/s12872-023-03087-0
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-11142-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_656543e68d18434eaf303a933bc256eb
10.1038/s41598-025-11142-3
PMC12344076
40796917
10_1038_s41598_025_11142_3
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Special Funds for Talents of Xinjiang Medical University
  grantid: 0103010211
– fundername: Youth Science Fund of the Natural Science Foundation of Xinjiang Uyghur Autonomous Region
  grantid: 2022D01C718
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AARCD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c494t-e67105d1efb9560db315e91b4918e33853d31a78fb62aaca074cb1fab07f3b223
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:45 EDT 2025
Sun Oct 26 01:45:11 EDT 2025
Tue Sep 30 17:01:13 EDT 2025
Fri Sep 05 15:11:19 EDT 2025
Tue Oct 07 09:21:18 EDT 2025
Thu Sep 04 05:02:29 EDT 2025
Wed Oct 01 05:29:19 EDT 2025
Wed Aug 13 01:27:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Imbalance processing
SHAP
Coronary heart disease combined with type 2 diabetes
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-e67105d1efb9560db315e91b4918e33853d31a78fb62aaca074cb1fab07f3b223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/656543e68d18434eaf303a933bc256eb
PMID 40796917
PQID 3238852736
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_656543e68d18434eaf303a933bc256eb
unpaywall_primary_10_1038_s41598_025_11142_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12344076
proquest_miscellaneous_3239115406
proquest_journals_3238852736
pubmed_primary_40796917
crossref_primary_10_1038_s41598_025_11142_3
springer_journals_10_1038_s41598_025_11142_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-12
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Bähler (11142_CR2) 2015; 22
H Zhang (11142_CR34) 2022; 28
T Kondo (11142_CR29) 2023; 16
JG Greener (11142_CR32) 2022; 23
DM Nathan (11142_CR40) 2005; 353
Z Yuan (11142_CR25) 2025; 15
H Xiao (11142_CR8) 2022; 21
F Thabtah (11142_CR12) 2020; 513
X Li (11142_CR38) 2023; 311
Q Xu (11142_CR7) 2022; 4
MM Rahman (11142_CR11) 2013; 3
Y Abdel Majeed (11142_CR13) 2018; 13
MF Feitosa (11142_CR37) 2021; 14
H Xu (11142_CR1) 2022; 19
A Martin-Morales (11142_CR33) 2023; 15
D Aronson (11142_CR6) 2014; 32
PH Stone (11142_CR4) 2023; 8
DW Hosmer Jr (11142_CR23) 2013
Y Ma (11142_CR24) 2023; 23
M Sagris (11142_CR3) 2021; 22
M Hu (11142_CR35) 2021; 23
TC Turin (11142_CR5) 2017; 11
Y Ou-Yang (11142_CR19) 2025; 15
VS Thakur (11142_CR36) 2023; 237
IS Forrest (11142_CR10) 2023; 401
H Wei (11142_CR14) 2022; 806
AB Parsa (11142_CR27) 2020; 136
C Cortes (11142_CR21) 1995; 20
SR Mirjalili (11142_CR9) 2023; 22
11142_CR20
L Shao (11142_CR16) 2022; 47
LE Peterson (11142_CR22) 2009; 4
R Thapa (11142_CR30) 2022; 5
Y Huang (11142_CR17) 2023; 23
X Tian (11142_CR39) 2022; 22
M Mangiagalli (11142_CR28) 1995; 81
KK Mujeeb Rahman (11142_CR18) 2022; 12
S El-Sappagh (11142_CR26) 2021; 11
XN Wu (11142_CR31) 2021; 70
R Alizadehsani (11142_CR15) 2019; 111
References_xml – volume: 28
  start-page: 1748
  issue: 11
  year: 2022
  ident: 11142_CR34
  publication-title: CNS Neurosci. Ther.
  doi: 10.1111/cns.13913
– volume: 5
  issue: 2
  year: 2022
  ident: 11142_CR30
  publication-title: JMIR Aging
  doi: 10.2196/35373
– volume: 11
  start-page: 2660
  issue: 1
  year: 2021
  ident: 11142_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82098-3
– volume: 136
  year: 2020
  ident: 11142_CR27
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2019.105405
– volume: 12
  start-page: 2292
  issue: 9
  year: 2022
  ident: 11142_CR18
  publication-title: Diagnostics (Basel)
– volume-title: Applied Logistic Regression
  year: 2013
  ident: 11142_CR23
  doi: 10.1002/9781118548387
– volume: 22
  start-page: 281
  issue: 1
  year: 2022
  ident: 11142_CR39
  publication-title: BMC Cardiovasc. Disord.
  doi: 10.1186/s12872-022-02727-1
– volume: 22
  start-page: 13471
  issue: 24
  year: 2021
  ident: 11142_CR3
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222413471
– volume: 513
  start-page: 429
  year: 2020
  ident: 11142_CR12
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.11.004
– volume: 22
  start-page: 23
  issue: 15
  year: 2015
  ident: 11142_CR2
  publication-title: BMC Health Serv. Res.
  doi: 10.1186/s12913-015-0698-2
– volume: 14
  issue: 3
  year: 2021
  ident: 11142_CR37
  publication-title: Circ. Genom. Precis. Med.
  doi: 10.1161/CIRCGEN.120.003201
– volume: 111
  year: 2019
  ident: 11142_CR15
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103346
– volume: 23
  start-page: 40
  issue: 1
  year: 2022
  ident: 11142_CR32
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00407-0
– volume: 353
  start-page: 2643
  issue: 25
  year: 2005
  ident: 11142_CR40
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa052187
– volume: 8
  start-page: 192
  issue: 2
  year: 2023
  ident: 11142_CR4
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2022.3926
– volume: 47
  start-page: 1627
  issue: 10
  year: 2022
  ident: 11142_CR16
  publication-title: J. Clin. Pharm. Ther.
  doi: 10.1111/jcpt.13713
– volume: 15
  start-page: 3937
  issue: 18
  year: 2023
  ident: 11142_CR33
  publication-title: Nutrients
  doi: 10.3390/nu15183937
– volume: 15
  start-page: 18268
  year: 2025
  ident: 11142_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-02072-1
– volume: 4
  issue: 10
  year: 2022
  ident: 11142_CR7
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2022.842104
– volume: 4
  start-page: 1883
  year: 2009
  ident: 11142_CR22
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 19
  start-page: 445
  issue: 6
  year: 2022
  ident: 11142_CR1
  publication-title: J. Geriatr. Cardiol.
– volume: 806
  issue: Pt 2
  year: 2022
  ident: 11142_CR14
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150674
– volume: 3
  start-page: 224
  issue: 2
  year: 2013
  ident: 11142_CR11
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/IJMLC.2013.V3.307
– volume: 11
  start-page: 461
  issue: 5
  year: 2017
  ident: 11142_CR5
  publication-title: Prim. Care Diabetes
  doi: 10.1016/j.pcd.2017.04.007
– volume: 32
  start-page: 439
  issue: 3
  year: 2014
  ident: 11142_CR6
  publication-title: Cardiol. Clin.
– volume: 22
  start-page: 200
  issue: 1
  year: 2023
  ident: 11142_CR9
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-023-01939-9
– volume: 237
  start-page: 958
  issue: 8
  year: 2023
  ident: 11142_CR36
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/09544119231186074
– volume: 23
  start-page: 268
  issue: 1
  year: 2023
  ident: 11142_CR17
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-023-02078-1
– volume: 401
  start-page: 215
  issue: 10372
  year: 2023
  ident: 11142_CR10
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)02079-7
– volume: 21
  start-page: 276
  issue: 1
  year: 2022
  ident: 11142_CR8
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-022-01715-1
– volume: 15
  start-page: 13793
  year: 2025
  ident: 11142_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-97817-3
– ident: 11142_CR20
– volume: 81
  start-page: 91
  issue: 2
  year: 1995
  ident: 11142_CR28
  publication-title: Tumori J.
  doi: 10.1177/030089169508100204
– volume: 16
  issue: 7
  year: 2023
  ident: 11142_CR29
  publication-title: Circ. Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.122.010377
– volume: 23
  issue: 2
  year: 2021
  ident: 11142_CR35
  publication-title: J. Med. Internet Res.
  doi: 10.2196/20298
– volume: 13
  issue: 10
  year: 2018
  ident: 11142_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0205639
– volume: 311
  issue: Pt 1
  year: 2023
  ident: 11142_CR38
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.137039
– volume: 20
  start-page: 273
  year: 1995
  ident: 11142_CR21
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 70
  start-page: 2835
  issue: 10
  year: 2021
  ident: 11142_CR31
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-021-02896-6
– volume: 23
  start-page: 91
  issue: 1
  year: 2023
  ident: 11142_CR24
  publication-title: BMC Cardiovasc. Disord.
  doi: 10.1186/s12872-023-03087-0
SSID ssj0000529419
Score 2.4582286
Snippet T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive accuracy;...
Abstract T2DM is a major risk factor for CHD. In recent years, machine learning algorithms have demonstrated significant advantages in improving predictive...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 29521
SubjectTerms 631/1647/767
692/4019
692/699
Aged
Algorithms
Angina pectoris
Cardiovascular disease
Comorbidity
Coronary artery disease
Coronary Artery Disease - diagnosis
Coronary Artery Disease - epidemiology
Coronary Artery Disease - etiology
Coronary heart disease combined with type 2 diabetes
Datasets
Decision making
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - complications
Ethics
Feature selection
Female
Heart diseases
Hospitals
Humanities and Social Sciences
Humans
Imbalance processing
Informed consent
Ischemia
Learning algorithms
Machine Learning
Male
Medical imaging
Medical records
Metabolism
Middle Aged
multidisciplinary
Older people
Patients
Population
Regression analysis
Risk analysis
Risk Assessment
Risk Factors
ROC Curve
Science
Science (multidisciplinary)
SHAP
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgh4QHxTGMhIvDFrtZ3PB4Q2tKnioZqASXuzbMfpJnVp6Vqh_hP8zdw5TkYFmnjIS-Ikju-c-53v_DuA9ya3uRPSc-kzyxMEGNxk0nKJ1g4BCBoYG9g-J9n4LPlynp7vwKTbC0Npld0_Mfyoq7mjNfIDhbalILaw7NPiB6eqURRd7UpomFhaofoYKMbuwK4kZqwB7B4dT06_9qsuFNdKRBl3z4xUcXCNFox2mcmUC9pXytWWhQpE_v9Cn38nUfaR1Adwb90szOanmc3-MFYnj-BhRJnssFWLx7Djmydwt607uXkKv9rMuyAUZpoKj5aahM1rRsnmLJbhYQhpmSOSA7PcsJD-uWExpsNoCZfREi6TrFvCZWQVK4aP_TY-PGUe3xO3Z7GrkLbpWaxTMWVmNsUBXl1cPYOzk-Pvn8c8FmbgLimTFfcZ4pK0Er625F5VVonUl8ImpSg8-rypqpQweVHbTBrjDMIUZ0Vt7CivlUVA8hwGzbzxLwF7he5wLlyeGsKGrqyFF07U-CKDZ9QQPnTC0IuWf0OHuLkqdCs6jaLTQXQaWx-RvPqWxJ0dTsyXUx2nokYEmybKZ0VFtW4Sb2o046ZUyjrEf94OYa-Tto4T-lrfqN8Q3vWXcSpSfMU0fr4ObUpiNxphmxetcvQ9Qb-5zNA1HkKxpTZbXd2-0lxeBLpvxBYJ3o4P3e807KZft43Ffq-F_zF0r27_6tdwX9IcITJguQeD1XLt3yAcW9m3cY79BjJLMq4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFdE-FL97WmUE37xgk-zn41ksxz2IUAt9C0k2WwvXvXK9Q-6f6N_cSTa7ulREH_ZlN8mGzIT5TWbmF4APOje55cIx4TLDEgIYTGfCMEHWjgAIGRgT2D6_ZrOzZH6enu_ApKuFGcTvA3X3DZkYXwYmUsZ94SeTD2C3IMUsRrA7nc5P5_2Zio9aJbyMtTHU_dP9zgP7E2j6_4Qt76dI9nHSPXi0aa719qdeLH4zRSdPYD9iSJy2Qn8KO655Bg_bWyW3z-G2zasLS466qehpiUdwWaNPJcd4yQ4SYEXrKQz0aoshuXOLMWKD_oAW_QEtCuwOaNHbvApp2NPZ9Bs6-k8svsKrkJTpMN5CcYF6cbFc0RhXL-Ds5Mv34xmL1y4wm5TJmrmMUEdacVcb7zxVRvLUldwkJS8cebSprCTXeVGbTGhtNYEQa3itzVFeS0Nw4yWMmmXjDoBmRc5uzm2eao_8bFlzxy2v6Uea3sgxfOyEoa5bdg0VouKyUK3oFIlOBdEpav3Zy6tv6ZmxwwtSGBU3miJ8mibSZUXlb7JJnK7JSOtSSmMJ3TkzhsNO2ipu1xslCbgUnoouG8P7_jNtNB890Y1bbkKb0nMXHVGbV61y9DMhr7jMyPEdQzFQm8FUh1-ayx-BzJuQQ0LdadBJp2G_5vW3tZj0WvgPS_f6_0Z_A4-F3zOe-lccwmi92ri3BL7W5l3cc3dkCibF
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceBZYKGiQuFG3tZ3ncUFUKw5VJVipnCzbcQpim632IbT8iP7mzjjeQKBC5ZBL4jiOPdZ845n5hrE3Jre5E9Jz6TPLEwQY3GTSconaDgEIKhgb2D6PsvEk-XiSnkSaHMqF6fnvVbG_QAVDSWAy5YLSPrm6ybayFHH3gG1Njo5HX6h6HOISjtBAxqyYq1_saZ5A0H8Vqvw7OLLzkN5lt1fNuVn_MNPpb0ro8H5bzWgRuAsp9uT73mpp99zPP5gdr_d_D9i9iEVh1ArPQ3bDN4_YrbY65foxu2jj88LSgWkqvFoCE5jVQCHpEIv1AAJfcESFYOZrCEGia4ieH6CDXqCDXpCwOegF0p0VYLefxqNj8PidmMQFZyG400OsZnEKZno6m2MfZ9tscvjh8_sxj-UbuEvKZMl9huglrYSvLRlhlVUi9aWwSSkKj5ZxqiolTF7UNpPGOINgxllRG3uQ18oibHnCBs2s8c8YjgqN5ly4PDWEIF1ZCy-cqPFDBu-oIXu7WVp93rJ06OBdV4VuZ1jjDOswwxpbv6PV71oSw3a4gQuj44bViHPTRPmsqKgiTuJNjcrelEpZhyjR2yHb2ciOjtt-oRUCoIIo7bIhe909xg1LXhjT-NkqtCmJA-kA2zxtRa0bCVrXZYYG9JAVPSHsDbX_pPn2NZCCIwJJ8HXsdHcjr7_G9a-52O1k-hpT9_z_mr9gdySJNlEIyx02WM5X_iWCuKV9FXfvJTqIPLA
  priority: 102
  providerName: Unpaywall
Title Exploration and analysis of risk factors for coronary artery disease with type 2 diabetes based on SHAP explainable machine learning algorithm
URI https://link.springer.com/article/10.1038/s41598-025-11142-3
https://www.ncbi.nlm.nih.gov/pubmed/40796917
https://www.proquest.com/docview/3238852736
https://www.proquest.com/docview/3239115406
https://pubmed.ncbi.nlm.nih.gov/PMC12344076
https://doi.org/10.1038/s41598-025-11142-3
https://doaj.org/article/656543e68d18434eaf303a933bc256eb
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx9j6MPbdtF24wd5W00jy56MbWkIeQlgXyJ6EZMvtIHVKmlDyT-xv3p3kuAkb2x72YAKyLCu6k-930ul3jH3SiUkKLmwgbGyCEAFGoGNhAoHWDgEIGhjj2D5H8WASDqfRdCvVF8WEeXpgP3CniDeiUNo4LSkzSWh1hR9djW64KdBaW0Nf316abTlTntVbZCHPmlMyPZme3qGlotNkIgo4nR8N5I4lcoT9v0OZvwZLtjum--zZqr7V63s9m20ZpYuX7EWDJiH3_-IVe2Tr1-ypzy-5fsN--Ag7N_ig6xIvT0EC8wooqByadDuA0BUKIjPQizW4MM81NHs3QEu1QEu1IGCzVAtk_UrAZi8H-Rgsvqc5hgU3LjzTQpOP4gr07Gq-wDZu3rLJxfnX_iBoEjAERZiFy8DGiD-iktvKkBtVGskjm3ETZjy16NtGspRcJ2llYqF1oRGOFIZX2vSSShoEHu_YXj2v7QHDXqHbm_AiiTRhwCKruOUFr_BFGktkh33eCEPdep4N5fbHZaq86BSKTjnRKax9RvJqaxJHtitAzVGN5qi_aU6HHW-krZqJe6ckQpiUSOniDvvY3sYpR_sourbzlauTEYtRD-u898rR9gT94yxGF7jD0h212enq7p36-7Wj9UYMEeLj2OjJRsMe-vWnsThptfAfhu7wfwzdEXsuaCYRNbA4ZnvLxcp-QHC2NF32OJkmXfYkz4eXQ_w9Ox-Nv2BpP-533RzFsslonH_7Cb2nOpc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqhwQLxZKGAkONGo60dehwq10GpLy6qCVurN2ImzRdomyz5U5U_wk_htzDhOygpUcelhL4k3cTLjzDeemW8IeaNjE2eM24DbyAQSAEagI24CDtYOAAgYGOPYPofR4FR-OgvPVsivthYG0yrbb6L7UOdVhnvkWwJsS4JsYdH7yY8Au0ZhdLVtoaF9a4V821GM-cKOQ1tfggs32z74CPJ-y_n-3smHQeC7DASZTOU8sBEY2TBntjDoK-RGsNCmzMiUJRYcuFDkguk4KUzEtc402NzMsEKbflwIw5H4AEzAmhQyBedvbXdvePyl2-XBOJpkqa_W6YtkawYWE6vaeBgwrGMNxJJFdI0D_oV2_07a7CK3d8j6opzo-lKPx38Yx_175K5HtXSnUcP7ZMWWD8itps9l_ZD8bDL9nBJQXebwa6hQaFVQTG6nvu0PBQhNMyRV0NOaunTTmvoYEsUtY4pbxpTTdsuYohXOKVz262DnmFq4jy8HoxcuTdRS3xdjRPV4BAKdn188Iqc3IqLHZLWsSvuUwKzA_Y5ZFocasWiWFsyyjBVwIw1HRI-8a4WhJg3fh3JxepGoRnQKRKec6BSM3kV5dSORq9sdqKYj5Ze-AsQcSmGjJMfeOtLqAmCDToUwGeBNa3pko5W28h-QmbpS9x553Z2GpY_xHF3aauHGpMim1IcxTxrl6GYCfnoagSveI8mS2ixNdflM-f3c0YsDlpHwd7joZqthV_O67l1sdlr4H6_u2fVP_YqsD04-H6mjg-Hhc3Kb43pBImK-QVbn04V9AVBwbl769UbJt5te4r8BLYVvpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxLsLBYwEJxrt2s7zgFChrLYUVZWg0t5c23G2SNtkuw9V-RP8IH4dM46TsgJVXHrIJXESJzPj-ebhGULeqEQnhnEbcBvrIASAEaiY64CDtgMAAgpGu2qfh_HoOPwyjsYb5Fe7FwbTKts10S3UeWXQR94XoFtSrBYW9wufFnG0N_wwOw-wgxRGWtt2Gg2LHNj6Asy3xfv9PaD1W86Hn79_GgW-w0BgwixcBjYGBRvlzBYa7YRcCxbZjOkwY6kF4y0SuWAqSQsdc6WMAn1rNCuUHiSF0ByLHsDyfyMRIsN0wmScdP4djKCFLPP7dAYi7S9AV-J-Nh4FDHewBmJNF7qWAf_CuX-na3Yx27vk9qqcqfpCTad_qMXhfXLP41m62zDgA7Jhy4fkZtPhsn5EfjY5fo78VJU5HE0RFFoVFNPaqW_4QwE8U4PlFNS8pi7RtKY-ekTRWUzRWUw5bZ3FFPVvTuGx30a7R9TCe_xGMHrmEkQt9R0xJlRNJ0C-5enZY3J8LQR6QjbLqrRbBGYFhnfCTBIpRKEmK5hlhhXwIgVnRI-8a4khZ02lD-ki9CKVDekkkE460kkY_RHp1Y3EKt3uRDWfSC_0ErByFAobpzl21QmtKgAwqEwIbQBpWt0j2y21pV86FvKS0XvkdXcZhB4jOaq01cqNybCO0gDGPG2Yo5sJWOhZDEZ4j6RrbLM21fUr5Y9TV1gcUEwIt8NDd1oOu5zXVf9ip-PC__h1z67-6lfkFgi2_Lp_ePCc3OEoLliBmG-TzeV8ZV8ABlzql07YKDm5bun-DRpcbUA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceBZYKGiQuFG3tZ3ncUFUKw5VJVipnCzbcQpim632IbT8iP7mzjjeQKBC5ZBL4jiOPdZ845n5hrE3Jre5E9Jz6TPLEwQY3GTSconaDgEIKhgb2D6PsvEk-XiSnkSaHMqF6fnvVbG_QAVDSWAy5YLSPrm6ybayFHH3gG1Njo5HX6h6HOISjtBAxqyYq1_saZ5A0H8Vqvw7OLLzkN5lt1fNuVn_MNPpb0ro8H5bzWgRuAsp9uT73mpp99zPP5gdr_d_D9i9iEVh1ArPQ3bDN4_YrbY65foxu2jj88LSgWkqvFoCE5jVQCHpEIv1AAJfcESFYOZrCEGia4ieH6CDXqCDXpCwOegF0p0VYLefxqNj8PidmMQFZyG400OsZnEKZno6m2MfZ9tscvjh8_sxj-UbuEvKZMl9huglrYSvLRlhlVUi9aWwSSkKj5ZxqiolTF7UNpPGOINgxllRG3uQ18oibHnCBs2s8c8YjgqN5ly4PDWEIF1ZCy-cqPFDBu-oIXu7WVp93rJ06OBdV4VuZ1jjDOswwxpbv6PV71oSw3a4gQuj44bViHPTRPmsqKgiTuJNjcrelEpZhyjR2yHb2ciOjtt-oRUCoIIo7bIhe909xg1LXhjT-NkqtCmJA-kA2zxtRa0bCVrXZYYG9JAVPSHsDbX_pPn2NZCCIwJJ8HXsdHcjr7_G9a-52O1k-hpT9_z_mr9gdySJNlEIyx02WM5X_iWCuKV9FXfvJTqIPLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+and+analysis+of+risk+factors+for+coronary+artery+disease+with+type+2+diabetes+based+on+SHAP+explainable+machine+learning+algorithm&rft.jtitle=Scientific+reports&rft.au=Dandan+Tang&rft.au=Fengwei+Liang&rft.au=Xingli+Gu&rft.au=Yuanyuan+Jin&rft.date=2025-08-12&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1038%2Fs41598-025-11142-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_656543e68d18434eaf303a933bc256eb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon