A hybrid learning approach for MRI-based detection of alzheimer’s disease stages using dual CNNs and ensemble classifier

Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 25342 - 10
Main Authors Zolfaghari, Sepideh, Joudaki, Atra, Sarbaz, Yashar
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-11743-y

Cover

Abstract Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability.
AbstractList Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability.
Alzheimer's Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability.Alzheimer's Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability.
Abstract Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability.
ArticleNumber 25342
Author Zolfaghari, Sepideh
Sarbaz, Yashar
Joudaki, Atra
Author_xml – sequence: 1
  givenname: Sepideh
  surname: Zolfaghari
  fullname: Zolfaghari, Sepideh
  organization: Biological System Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz
– sequence: 2
  givenname: Atra
  surname: Joudaki
  fullname: Joudaki, Atra
  organization: Biological System Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz
– sequence: 3
  givenname: Yashar
  surname: Sarbaz
  fullname: Sarbaz, Yashar
  email: yashar.sarbaz@tabrizu.ac.ir
  organization: Biological System Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40659854$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhUeoiJbSF2CBLLFhM2B7PD9eoSriJ1IpEoK1dce-kzhy7GDPFKUrXoPX40lwk1BaFghvbPme8_nax4-LIx88FsVTRl8yWnWvkmC17ErK65KxVlTl9kFxwqmoS15xfnRnfVycpbSiedRcCiYfFceCNtlci5Pi-pwst320hjiE6K1fENhsYgC9JEOI5MOnedlDQkMMjqhHGzwJAwF3vUS7xvjz-49EjE2YNSSNsMBEpnSDMRM4Mru8TAS8IegTrnuHRDtIyQ4W45Pi4QAu4dlhPi2-vH3zefa-vPj4bj47vyi1kGIskXYU-UBBakGpaaDtKmpo12Ije9k3EqXsWM9xaAxKWlHZ5jLVxsDAmhqq02K-55oAK7WJdg1xqwJYtdsIcaEgjlY7VE3Nad0hNjhUwrRdJ_sW-lZygbrTvM2sas-a_Aa238C5WyCj6iYYtQ9G5WDULhi1za7Xe9dm6tdoNPoxgrvXyv2Kt0u1CFeKcZ5ZlciEFwdCDF8nTKNa26TROfAYpqQqXlHOasa6LH3-l3QVpujzC-9UlAnZ8qx6drel215-_4ws4HuBjiGliMP_XfTwPCmL_QLjn7P_4foFJHXdoA
Cites_doi 10.1007/s004060050027
10.1007/978-981-19-3575-6_22
10.1186/s40708-018-0080-3
10.1016/j.neuroimage.2017.03.057
10.1007/s13369-022-07538-2
10.1007/s13369-021-06131-3
10.1080/21681163.2024.2383219
10.3389/fnins.2022.807085
10.1007/s11042-023-15738-7
10.1148/ryai.2021200267
10.1101/070441
10.1016/j.engappai.2018.04.024
10.1007/s11042-024-18306-9
10.1016/j.neures.2023.01.010
10.1002/widm.1249
10.1007/s12021-018-9370-4
10.1109/IST.2017.8261460
10.1016/j.ecoinf.2020.101093
10.1109/CISP-BMEI.2018.8633126
10.1177/20552076241295577
10.1016/j.bspc.2023.105189
10.1038/s41598-025-86635-2
10.1177/15500594241234836
10.1088/1741-2552/ac16b4
10.31887/DCNS.2003.5.1/hhippius
10.1007/s00500-022-06762-0
10.1007/s11065-014-9249-6
10.1038/s41598-024-69919-x
10.3390/diagnostics13071216
10.1016/j.ejmech.2021.113291
10.3390/diagnostics11112103
10.1111/adb.13362
10.1016/j.jalz.2019.01.010
10.1109/access.2021.3090474
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-11743-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Public Health
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_652058ee6ef34d7889b7ab7924ec8c27
10.1038/s41598-025-11743-y
PMC12259834
40659854
10_1038_s41598_025_11743_y
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PJZUB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c494t-e080e2f0a9c400d6a7830d087e69b9b69e9981b2ef6de9030970d00cddaf165a3
IEDL.DBID UNPAY
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:38 EDT 2025
Sun Oct 26 03:50:09 EDT 2025
Tue Sep 30 17:01:15 EDT 2025
Fri Sep 05 15:40:15 EDT 2025
Tue Oct 07 07:35:35 EDT 2025
Fri Jul 18 01:41:25 EDT 2025
Wed Oct 01 05:22:13 EDT 2025
Tue Jul 15 01:10:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Alzheimer’s disease staging
Magnetic resonance imaging
Decision support system
Ensemble learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-e080e2f0a9c400d6a7830d087e69b9b69e9981b2ef6de9030970d00cddaf165a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-025-11743-y.pdf
PMID 40659854
PQID 3230014972
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_652058ee6ef34d7889b7ab7924ec8c27
unpaywall_primary_10_1038_s41598_025_11743_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12259834
proquest_miscellaneous_3230215118
proquest_journals_3230014972
pubmed_primary_40659854
crossref_primary_10_1038_s41598_025_11743_y
springer_journals_10_1038_s41598_025_11743_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-14
PublicationDateYYYYMMDD 2025-07-14
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References E Hosseini-Asl (11743_CR17) 2016; arXiv
AAA El-Latif (11743_CR33) 2023; 13
HJ Möller (11743_CR2) 1998; 248
G Battineni (11743_CR8) 2021; 11
A Balasundaram (11743_CR35) 2023; 48
J Xin (11743_CR37) 2023; 86
S Savaş (11743_CR15) 2022; 47
J Qin (11743_CR24) 2020; 58
A Association (11743_CR1) 2019; 15
MZ Hussain (11743_CR38) 2025; 15
S Zolfaghari (11743_CR27) 2024; 29
M Yildirim (11743_CR20) 2020; 25
G Hanns (11743_CR4) 2003; 5
F Antony (11743_CR16) 2023
S Zolfaghari (11743_CR23) 2024; 55
Z Chen (11743_CR13) 2022; 16
11743_CR21
A Joudaki (11743_CR10) 2024
MA Sahid (11743_CR32) 2024; 10
M Liu (11743_CR19) 2018; 16
S Murugan (11743_CR31) 2021; 9
DA Arafa (11743_CR14) 2023
G Gupta (11743_CR7) 2019; 11
J Islam (11743_CR36) 2018; 5
MH Al-Adhaileh (11743_CR29) 2022; 26
LHS Vogado (11743_CR22) 2018; 72
EL Dennis (11743_CR9) 2014; 24
M Geravanchizadeh (11743_CR26) 2021; 18
S Sukriti (11743_CR3) 2021; 216
F Ahmad (11743_CR5) 2023; 192
N Arun (11743_CR39) 2021; 3
11743_CR18
S Rathore (11743_CR6) 2017; 155
A Assmi (11743_CR30) 2024; 83
11743_CR11
11743_CR12
O Sagi (11743_CR28) 2018; 8
11743_CR34
M Jafari Malali (11743_CR25) 2024; 14
References_xml – volume: 248
  start-page: 111
  year: 1998
  ident: 11743_CR2
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s004060050027
– start-page: 199
  volume-title: IoT with Smart Systems
  year: 2023
  ident: 11743_CR16
  doi: 10.1007/978-981-19-3575-6_22
– volume: 5
  start-page: 2
  issue: 2
  year: 2018
  ident: 11743_CR36
  publication-title: Brain Inf.
  doi: 10.1186/s40708-018-0080-3
– volume: 155
  start-page: 530
  year: 2017
  ident: 11743_CR6
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 48
  start-page: 1
  issue: 8
  year: 2023
  ident: 11743_CR35
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-07538-2
– volume: 47
  start-page: 2201
  issue: 2
  year: 2022
  ident: 11743_CR15
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-06131-3
– start-page: 37
  volume-title: Proc 13th Natl Tech Sem Unmanned Syst Technol (NUSYS 2023)
  year: 2024
  ident: 11743_CR10
– ident: 11743_CR34
  doi: 10.1080/21681163.2024.2383219
– volume: arXiv
  start-page: 160700556
  year: 2016
  ident: 11743_CR17
  publication-title: ArXiv Prepr
– volume: 16
  start-page: 807085
  year: 2022
  ident: 11743_CR13
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.807085
– year: 2023
  ident: 11743_CR14
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-023-15738-7
– volume: 3
  start-page: e200267
  issue: 6
  year: 2021
  ident: 11743_CR39
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2021200267
– ident: 11743_CR11
  doi: 10.1101/070441
– volume: 72
  start-page: 415
  year: 2018
  ident: 11743_CR22
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.024
– volume: 83
  start-page: 70193
  issue: 27
  year: 2024
  ident: 11743_CR30
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-024-18306-9
– volume: 192
  start-page: 77
  year: 2023
  ident: 11743_CR5
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2023.01.010
– volume: 8
  start-page: e1249
  year: 2018
  ident: 11743_CR28
  publication-title: Wiley Interdiscip Rev. Data Min. Knowl. Discov
  doi: 10.1002/widm.1249
– volume: 16
  start-page: 295
  year: 2018
  ident: 11743_CR19
  publication-title: Neuroinform
  doi: 10.1007/s12021-018-9370-4
– ident: 11743_CR18
  doi: 10.1109/IST.2017.8261460
– volume: 58
  start-page: 101093
  year: 2020
  ident: 11743_CR24
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2020.101093
– ident: 11743_CR12
  doi: 10.1109/CISP-BMEI.2018.8633126
– volume: 10
  start-page: 205520762412955
  year: 2024
  ident: 11743_CR32
  publication-title: Digit. Health
  doi: 10.1177/20552076241295577
– volume: 86
  start-page: 105189
  year: 2023
  ident: 11743_CR37
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2023.105189
– volume: 15
  start-page: 11616
  issue: 1
  year: 2025
  ident: 11743_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-86635-2
– volume: 25
  start-page: 413
  issue: 4
  year: 2020
  ident: 11743_CR20
  publication-title: Ing. Syst. Inf.
– ident: 11743_CR21
– volume: 55
  start-page: 486
  issue: 4
  year: 2024
  ident: 11743_CR23
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/15500594241234836
– volume: 18
  start-page: 046082
  issue: 4
  year: 2021
  ident: 11743_CR26
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac16b4
– volume: 5
  start-page: 101
  year: 2003
  ident: 11743_CR4
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2003.5.1/hhippius
– volume: 26
  start-page: 7751
  issue: 16
  year: 2022
  ident: 11743_CR29
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-06762-0
– volume: 24
  start-page: 49
  issue: 1
  year: 2014
  ident: 11743_CR9
  publication-title: Neuropsychol. Rev.
  doi: 10.1007/s11065-014-9249-6
– volume: 14
  start-page: 18846
  issue: 1
  year: 2024
  ident: 11743_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-69919-x
– volume: 13
  start-page: 1216
  issue: 7
  year: 2023
  ident: 11743_CR33
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13071216
– volume: 216
  start-page: 113291
  year: 2021
  ident: 11743_CR3
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2021.113291
– volume: 11
  start-page: 2103
  issue: 11
  year: 2021
  ident: 11743_CR8
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics11112103
– volume: 11
  start-page: 199
  year: 2019
  ident: 11743_CR7
  publication-title: Biol. Forum Int. J.
– volume: 29
  start-page: e13362
  issue: 2
  year: 2024
  ident: 11743_CR27
  publication-title: Addict. Biol.
  doi: 10.1111/adb.13362
– volume: 15
  start-page: 321
  year: 2019
  ident: 11743_CR1
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2019.01.010
– volume: 9
  start-page: 90319
  year: 2021
  ident: 11743_CR31
  publication-title: IEEE Access.
  doi: 10.1109/access.2021.3090474
SSID ssj0000529419
Score 2.4559872
Snippet Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss....
Alzheimer's Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss....
Abstract Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss....
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25342
SubjectTerms 692/308
692/699
692/700
Accuracy
Aged
Alzheimer Disease - diagnosis
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Alzheimer’s disease staging
Biomarkers
Classification
Cognitive ability
Datasets
Decision support system
Deep learning
Disease
Ensemble learning
Female
Global health
Humanities and Social Sciences
Humans
Learning
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
multidisciplinary
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Older people
Public health
Science
Science (multidisciplinary)
Support Vector Machine
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQpQo4oPLblIKMxI1GTWwnsY9t1aogdQ-ISr1ZdjzeXWmbrZpdofTU1-D1eBI8STbsCgQcuMZJ5MxP5hvNzGdC3jNVpkWaQVyUSKqdehNbEDx2hnkODgthOJx8McrPL8Wnq-xq7agv7Anr6IE7wR3mGUsyCZCD58KFhE3ZwtgipA1QypK1c-SJVGvJVMfqzZRIVT8lk3B5WIdIhdNkLItTROFxsxGJWsL-36HMX5slh4rpY_JwWd2Y5quZzdaC0tkOedKjSXrUfcVT8gCqZ2S7O1-yeU7ujuikwZEs2h8OMaYrDnEawCq9-PwxxjDmqINF25NV0bmnZnY3gek13H6__1bTvoRDA4wcQ02xUX5McYKLnoxGNTWVoyEVhms7A1oiFp_6EGpfkMuz0y8n53F_2EJcCiUWMQToCMwnRpXBrV1uCskTl8gCcmWVzRWExCy1DHzuQGFhpgjLSemc8WmeGf6SbFXzCnYJNdJ55LW3JuEivF1aUxoJQhnPmJRZRD6sBK9vOk4N3dbCudSdmnRQk27VpJuIHKNuhjuRD7u9EKxE91ai_2YlEdlfaVb3TlprHtIvzBALFpF3w3JwL6yZmArmy-4eREWpjMirzhCGnQisSctMRERumMjGVjdXqumkpfBOw29USR4ePVhZ0899_UkWB4PF_YPo9v6H6F6TRwy9BslExT7ZWtwu4U0AYgv7tvW5HwYyL8c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTggmhGAMFhjISLyxaInjJPYDQtu0aSAtQhOT9hY58aWt1KWlaYW6J_4N_j3-Enz5NSrQxGudVm7uzvfZn-87gHdc5X7sh-jGOYlq-4V2MxSBazQvAjREhFFx8nkSnV2Kz1fh1QYkXS0MXavs1sR6oTbTnM7IDwKLlQnOx_zj7JtLXaOIXe1aaOi2tYL5UEuM3YNNTspYA9g8Okm-XPSnLsRrCV-11TNeIA8qm8GoyoyHrk_o3F2tZahayP9f6PPvS5Q9k7oFD5blTK--68nkj2R1-gQetyiTHTZu8RQ2sNyG-03fydU2PGoO61hTg_QMbg7ZaEWlW6xtIjFkndY4s6CWnV98cindGWZwUd_dKtm0YHpyM8LxNc5__fhZsZbqYRZuDrFidKF-yKjSix0nScV0aZjdMuN1NkGWE2YfFzYl78Dl6cnX4zO3bcrg5kKJhYsWYiIvPK1yG_4m0rEMPOPJGCOVqSxSaDdwfsaxiAwqInBiO-zlxujCj0IdPIdBOS1xF5iWpiD9-0x7gbC_LjOda4lC6YJzKUMH3neGSGeN9kZac-aBTBuzpdZsaW22dOXAEdmqf5J0s-sPpvNh2oZhGoXcCyVihEUgjN3-qyzWWWw3oZjLnMcO7HWWTttgrtJb13PgbT9sw5C4FV3idNk8Q-jJlw68aByjn4kg7lqGwgG55jJrU10fKcejWurbt8utkoH96n7nXbfzuutd7Pce-B-v7uXd__oVPOQUHyQnKvZgsJgv8bWFYovsTRtfvwGGnzK3
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2VVAg4IL4KhoIWiRuxsNdre_cYKqoSqTkAlXqz1t5xEil1qjoRSk_8Df4ev4QZ2zFERQiuWa-12pnxvMnbeQvwRpoiTMMY_bRgUe2wtH6OKvKdlWWEjokwbk4-nSQnZ2p8Hp_vwXDbC7PD3zfS3TWlGG4Dk7EfMnz2N7dgX5Nj6gHsj0bjz-P-PxVmrVRout4Ymv7u5uSd_NPI9P8JW948ItnzpPfgzrq6tJuvdrH4LRUdP4D7HYYUo9boD2EPq0dwu71VcvMYrkdituFGLNFdCTEVW-VwQRBVnH766HPycsLhqjmJVYllKezieobzC7z68e17LTriRhB4nGIt-Hj8VHDfljiaTGphKyeoAMaLfIGiYAQ-LynBPoGz4w9fjk787ooFv1BGrXwkwIiyDKwpKJhdYlMdBS7QKSYmN3likMqxMJdYJg4N0zEpDQeFc7YMk9hGBzColhU-A2G1K1nNPrdBpOjtOreF1aiMLaXUOvbg7Xbjs8tWSSNrGPBIZ62ZMjJT1pgp23jwnm3TP8kq2M0P5BxZF1RZEssg1ogJlpFyVMybPLV5SiUlFrqQqQeHW8tmXWjWWURFF9eFqfTgdT9MQcVMia1wuW6fYSwUag-eto7Qr0QxE61j5YHecZGdpe6OVPNZI9wd0sfT6IimDrfe9Gtdf9uLYe9x_7B1z__v7S_gruT4YLFQdQiD1dUaXxLQWuWvuvj6CSNLIpM
  priority: 102
  providerName: Springer Nature
Title A hybrid learning approach for MRI-based detection of alzheimer’s disease stages using dual CNNs and ensemble classifier
URI https://link.springer.com/article/10.1038/s41598-025-11743-y
https://www.ncbi.nlm.nih.gov/pubmed/40659854
https://www.proquest.com/docview/3230014972
https://www.proquest.com/docview/3230215118
https://pubmed.ncbi.nlm.nih.gov/PMC12259834
https://www.nature.com/articles/s41598-025-11743-y.pdf
https://doaj.org/article/652058ee6ef34d7889b7ab7924ec8c27
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7ttkLAgfcjsFRG4samJE5iO8dutaul0larhYrlFNnxpK3oplUfQu2Jv8Hf45dg51EorBB7ihQ7kTMee77JzHwGeEPj1Od-hC5PLam2n0lXYRi4WtIsQG0DYbY4-azPTgdh7zK63ANW18IUSfsFpWWxTdfZYe8WxtDYYjAaub4F0e66PdPZPjRZZDB4A5qD_nnnsz1JzmAU18AEWlXIeIG45uEdK1SQ9V-HMP9OlNxGS-_C7VU-k-uvcjL5zSCd3IdP9aeUeShf2qulaqebP1geb_6tD-BehVFJp-z5EPYwfwS3ylMr149h0yGjtS30ItWRE0NSM5MTA4HJ2cV71xpHTTQui0yvnEwzIiebEY6vcP7j2_cFqQJDxIDTIS6ITb8fElsXRrr9_oLIXBPjYOOVmiBJLcIfZ8aAP4HByfHH7qlbHeHgpmEcLl00gBRp5sk4NZuFZpKLwNOe4MhiFSsWo3H3fEUxYxpjG-7hptlLtZaZzyIZPIVGPs3xORApdGbZ8pX0gtC8XSiZSoFhLDNKhYgceFtPaTIrmTqSIsIeiKSUaGIkmhQSTdYOHNlZ3_a0LNvFjel8mFQzkbCIepFAZJgFoeZCxIpLxY3LiqlIKXfgoNaZpFr6iyQwTp31Ozl14PW22SxaG4mROU5XZR-LtXzhwLNSxbYjCW2kW0ShA2JH-XaGutuSj0cFMbhvNudYBObRw1pPf43rX7I43Oryf4juxc26v4Q71KqyJSMND6CxnK_wlQFyS9WCfX7JW9DsdHofeuZ6dNw_vzB3u6zbKn6OtKp1_RPRKEtE
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVKgghKD8GQosEpyoVXv9tz5UqC2tEtpEqGql3ty1d5xESp0QJ6rcE6_By_AwPAk7_kmJQBWXXr32ar0zs_vNfjszAO95mNiB7aEZJJRU206lGaPrmEry1EFFRBgFJ3d7fvvU_XLmna3AzyYWhq5VNmtiuVCrcUJn5FuOxsoE5wP-afLNpKpRxK42JTRkXVpBbZcpxurAjkMsLrULl293Pmt5f-D8YP9kr23WVQbMxA3dmYkaMyFPLRkmWp-VLwPhWMoSAfphHMZ-iNojsWOOqa8wJEYi0M1WopRMbd-Tju73Dqy6jh5bC1Z393tfjxenPMSjuXZYR-tYjtjK9Y5JUW3cM23yBsxiaUcsCwf8C-3-fWlzwdzeh7V5NpHFpRyN_tgcDx7BwxrVsp1KDR_DCmbrcLeqc1msw4PqcJBVMU9P4GqHDQoKFWN10Yo-a3KbMw2iWfe4Y9L2qpjCWXlXLGPjlMnR1QCHFzj99f1HzmpqiWl428ec0QX-PqPIMrbX6-VMZoppFx0v4hGyhHyEYaohwFM4vRXxPINWNs7wBTApVEr59mNpOa7uXcQykQLdUKacC-EZ8LERRDSpcn1EJUfviKgSW6TFFpViiwoDdklWizcpT3f5YDztR7XZR77HLU8g-pg6rgqECONAxoF2ejERCQ8M2GgkHdWLRx5dq7oB7xbN2uyJy5EZjufVO4TWbGHA80oxFiNxiSsXnmuAWFKZpaEut2TDQZla3NbLeygc_elmo13X47ppLjYXGvgfU_fy5r9-C2vtk-5RdNTpHb6Ce5xshVKZuhvQmk3n-FrDwFn8prY1Bue3bd6_AQHlb4U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEDchBONWGGAkeNqiJnYS2w8IjY1pZaxCiEl9C0580lbq0tK0mrIn_gZ_hZ_DL8Ent1GBJl72GieW43OOz3d8boS8YirxhBeAIxIsqu2l2onB547RLOVg0BGGyclH_fDg2P8wCAZr5GeTC4Nhlc2ZWB7UZprgHXmXW6yMcF6wblqHRXza2387--ZgByn0tDbtNCoWOYTi1Jpv-ZvenqX1a8b233_ZPXDqDgNO4it_4YDFS8BSV6vE8rIJtZDcNa4UEKpYxaECa414MYM0NKDQGyHssJsYo1MvDDS3814hVwXnCsMJxUC09zvoQfM9VefpuFx2c6srMZ-NBY6HdoBTrOjCsmXAv3Du3-Garc_2FrmxzGa6ONWTyR9qcf8uuVPjWbpTMeA9sgbZBrlWdbgsNsjt6lqQVtlO98nZDh0VmCRG63YVQ9pUNacWPtOjzz0HFauhBhZllFhGpynVk7MRjE9g_uv7j5zWTiVqge0Qcoqh-0OKOWV0t9_Pqc4MtcY5nMQToAlaB-PUKv8H5PhSiPOQrGfTDB4TqqVJsdJ-rF3u29llrBMtwVc6ZUzKoEO2GkJEs6rKR1R657mMKrJFlmxRSbao6JB3SKv2TazQXT6YzodRLfBRGDA3kAAhpNw3QkoVCx0La-5CIhMmOmSzoXRUHxt5dM7kHfKyHbYCj14cncF0Wb2DOM2THfKoYox2JT56yWXgd4hcYZmVpa6OZONRWVTcswe7ktx-ut1w1_m6LtqL7ZYD_2Prnlz81y_IdSvU0cde__ApuclQVLCGqb9J1hfzJTyz-G8RPy8FjZKvly3ZvwHwIG0f
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHgwPsRWJCRuLEpifNyjmXFakHaCiEqllNkx-O2optWTSvUnvgb_D1-CZ68oLBC7DW2I3s89nyjmfkM8IKnuZ_4EbpJTqTavpGuwjBwteQmQE2BMCpOPh3GJ6Pw3Vl0tgdxWwtTJe1XlJbVNd1mh70qraGhYjAeuT6BaHfTX2hzBfbjyGLwHuyPhu8Hn-klOYtRXAsTeFMh4wXigsE7Vqgi678IYf6dKNlFS2_AtXWxkJuvcjb7zSAd34JP7VLqPJQv_fVK9fPtHyyPl1_rbbjZYFQ2qHvegT0s7sLV-tXKzT3YDthkQ4VerHlyYsxaZnJmITA7_fDWJeOomcZVlelVsLlhcrad4PQclz--fS9ZExhiFpyOsWSUfj9mVBfGjobDkslCM-tg47maIcsJ4U-NNeD3YXT85uPRids84eDmYRquXLSAFLnxZJrby0LHMhGBpz2RYJyqVMUpWnfPVxxNrDGlcE9im71ca2n8OJLBA-gV8wIfAZNCG2LLV9ILQvt3oWQuBYapNJwLETnwst3SbFEzdWRVhD0QWS3RzEo0qySabRx4Tbve9SSW7erDfDnOmp3I4oh7kUCM0QShToRIVSJVYl1WzEXOEwcOWp3JmqNfZoF16sjvTLgDz7tme2gpEiMLnK_rPoS1fOHAw1rFupmEFOkWUeiA2FG-nanuthTTSUUM7tvLORWBHXrY6umvef1LFoedLv-H6B5frvsTuM5JlYmMNDyA3mq5xqcWyK3Us-bU_gRBqUVl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+learning+approach+for+MRI-based+detection+of+alzheimer%E2%80%99s+disease+stages+using+dual+CNNs+and+ensemble+classifier&rft.jtitle=Scientific+reports&rft.au=Zolfaghari%2C+Sepideh&rft.au=Joudaki%2C+Atra&rft.au=Sarbaz%2C+Yashar&rft.date=2025-07-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-11743-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_11743_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon