A hybrid learning approach for MRI-based detection of alzheimer’s disease stages using dual CNNs and ensemble classifier
Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 25342 - 10 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
14.07.2025
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-11743-y |
Cover
| Abstract | Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability. |
|---|---|
| AbstractList | Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability. Alzheimer's Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability.Alzheimer's Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability. Abstract Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss. Computer-aided systems can help physicians in the early and accurate detection of AD, enabling timely intervention and effective management. This study presents a combination of two parallel Convolutional Neural Networks (CNNs) and an ensemble learning method for classifying AD stages using Magnetic Resonance Imaging (MRI) data. Initially, these images were resized and augmented before being input into Network 1 and Network 2, which have different structures and layers to extract important features. These features were then fused and fed into an ensemble learning classifier containing Support Vector Machine, Random Forest, and K-Nearest Neighbors, with hyperparameters optimized by the Grid Search Cross-Validation technique. Considering distinct Network 1 and Network 2 along with ensemble learning, four classes were identified with accuracies of 95.16% and 97.97%, respectively. However, using the derived features from both networks resulted in an acceptable classification accuracy of 99.06%. These findings imply the potential of the proposed hybrid approach in the classification of AD stages. As the evaluation was conducted at the slice-level using a Kaggle dataset, additional subject-level validation and clinical testing are required to determine its real-world applicability. |
| ArticleNumber | 25342 |
| Author | Zolfaghari, Sepideh Sarbaz, Yashar Joudaki, Atra |
| Author_xml | – sequence: 1 givenname: Sepideh surname: Zolfaghari fullname: Zolfaghari, Sepideh organization: Biological System Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz – sequence: 2 givenname: Atra surname: Joudaki fullname: Joudaki, Atra organization: Biological System Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz – sequence: 3 givenname: Yashar surname: Sarbaz fullname: Sarbaz, Yashar email: yashar.sarbaz@tabrizu.ac.ir organization: Biological System Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40659854$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1uEzEUhUeoiJbSF2CBLLFhM2B7PD9eoSriJ1IpEoK1dce-kzhy7GDPFKUrXoPX40lwk1BaFghvbPme8_nax4-LIx88FsVTRl8yWnWvkmC17ErK65KxVlTl9kFxwqmoS15xfnRnfVycpbSiedRcCiYfFceCNtlci5Pi-pwst320hjiE6K1fENhsYgC9JEOI5MOnedlDQkMMjqhHGzwJAwF3vUS7xvjz-49EjE2YNSSNsMBEpnSDMRM4Mru8TAS8IegTrnuHRDtIyQ4W45Pi4QAu4dlhPi2-vH3zefa-vPj4bj47vyi1kGIskXYU-UBBakGpaaDtKmpo12Ije9k3EqXsWM9xaAxKWlHZ5jLVxsDAmhqq02K-55oAK7WJdg1xqwJYtdsIcaEgjlY7VE3Nad0hNjhUwrRdJ_sW-lZygbrTvM2sas-a_Aa238C5WyCj6iYYtQ9G5WDULhi1za7Xe9dm6tdoNPoxgrvXyv2Kt0u1CFeKcZ5ZlciEFwdCDF8nTKNa26TROfAYpqQqXlHOasa6LH3-l3QVpujzC-9UlAnZ8qx6drel215-_4ws4HuBjiGliMP_XfTwPCmL_QLjn7P_4foFJHXdoA |
| Cites_doi | 10.1007/s004060050027 10.1007/978-981-19-3575-6_22 10.1186/s40708-018-0080-3 10.1016/j.neuroimage.2017.03.057 10.1007/s13369-022-07538-2 10.1007/s13369-021-06131-3 10.1080/21681163.2024.2383219 10.3389/fnins.2022.807085 10.1007/s11042-023-15738-7 10.1148/ryai.2021200267 10.1101/070441 10.1016/j.engappai.2018.04.024 10.1007/s11042-024-18306-9 10.1016/j.neures.2023.01.010 10.1002/widm.1249 10.1007/s12021-018-9370-4 10.1109/IST.2017.8261460 10.1016/j.ecoinf.2020.101093 10.1109/CISP-BMEI.2018.8633126 10.1177/20552076241295577 10.1016/j.bspc.2023.105189 10.1038/s41598-025-86635-2 10.1177/15500594241234836 10.1088/1741-2552/ac16b4 10.31887/DCNS.2003.5.1/hhippius 10.1007/s00500-022-06762-0 10.1007/s11065-014-9249-6 10.1038/s41598-024-69919-x 10.3390/diagnostics13071216 10.1016/j.ejmech.2021.113291 10.3390/diagnostics11112103 10.1111/adb.13362 10.1016/j.jalz.2019.01.010 10.1109/access.2021.3090474 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-11743-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Public Health |
| EISSN | 2045-2322 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_652058ee6ef34d7889b7ab7924ec8c27 10.1038/s41598-025-11743-y PMC12259834 40659854 10_1038_s41598_025_11743_y |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PJZUB PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c494t-e080e2f0a9c400d6a7830d087e69b9b69e9981b2ef6de9030970d00cddaf165a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:43:38 EDT 2025 Sun Oct 26 03:50:09 EDT 2025 Tue Sep 30 17:01:15 EDT 2025 Fri Sep 05 15:40:15 EDT 2025 Tue Oct 07 07:35:35 EDT 2025 Fri Jul 18 01:41:25 EDT 2025 Wed Oct 01 05:22:13 EDT 2025 Tue Jul 15 01:10:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Alzheimer’s disease staging Magnetic resonance imaging Decision support system Ensemble learning |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-e080e2f0a9c400d6a7830d087e69b9b69e9981b2ef6de9030970d00cddaf165a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-025-11743-y.pdf |
| PMID | 40659854 |
| PQID | 3230014972 |
| PQPubID | 2041939 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_652058ee6ef34d7889b7ab7924ec8c27 unpaywall_primary_10_1038_s41598_025_11743_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_12259834 proquest_miscellaneous_3230215118 proquest_journals_3230014972 pubmed_primary_40659854 crossref_primary_10_1038_s41598_025_11743_y springer_journals_10_1038_s41598_025_11743_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-14 |
| PublicationDateYYYYMMDD | 2025-07-14 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | E Hosseini-Asl (11743_CR17) 2016; arXiv AAA El-Latif (11743_CR33) 2023; 13 HJ Möller (11743_CR2) 1998; 248 G Battineni (11743_CR8) 2021; 11 A Balasundaram (11743_CR35) 2023; 48 J Xin (11743_CR37) 2023; 86 S Savaş (11743_CR15) 2022; 47 J Qin (11743_CR24) 2020; 58 A Association (11743_CR1) 2019; 15 MZ Hussain (11743_CR38) 2025; 15 S Zolfaghari (11743_CR27) 2024; 29 M Yildirim (11743_CR20) 2020; 25 G Hanns (11743_CR4) 2003; 5 F Antony (11743_CR16) 2023 S Zolfaghari (11743_CR23) 2024; 55 Z Chen (11743_CR13) 2022; 16 11743_CR21 A Joudaki (11743_CR10) 2024 MA Sahid (11743_CR32) 2024; 10 M Liu (11743_CR19) 2018; 16 S Murugan (11743_CR31) 2021; 9 DA Arafa (11743_CR14) 2023 G Gupta (11743_CR7) 2019; 11 J Islam (11743_CR36) 2018; 5 MH Al-Adhaileh (11743_CR29) 2022; 26 LHS Vogado (11743_CR22) 2018; 72 EL Dennis (11743_CR9) 2014; 24 M Geravanchizadeh (11743_CR26) 2021; 18 S Sukriti (11743_CR3) 2021; 216 F Ahmad (11743_CR5) 2023; 192 N Arun (11743_CR39) 2021; 3 11743_CR18 S Rathore (11743_CR6) 2017; 155 A Assmi (11743_CR30) 2024; 83 11743_CR11 11743_CR12 O Sagi (11743_CR28) 2018; 8 11743_CR34 M Jafari Malali (11743_CR25) 2024; 14 |
| References_xml | – volume: 248 start-page: 111 year: 1998 ident: 11743_CR2 publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/s004060050027 – start-page: 199 volume-title: IoT with Smart Systems year: 2023 ident: 11743_CR16 doi: 10.1007/978-981-19-3575-6_22 – volume: 5 start-page: 2 issue: 2 year: 2018 ident: 11743_CR36 publication-title: Brain Inf. doi: 10.1186/s40708-018-0080-3 – volume: 155 start-page: 530 year: 2017 ident: 11743_CR6 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 48 start-page: 1 issue: 8 year: 2023 ident: 11743_CR35 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-07538-2 – volume: 47 start-page: 2201 issue: 2 year: 2022 ident: 11743_CR15 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-06131-3 – start-page: 37 volume-title: Proc 13th Natl Tech Sem Unmanned Syst Technol (NUSYS 2023) year: 2024 ident: 11743_CR10 – ident: 11743_CR34 doi: 10.1080/21681163.2024.2383219 – volume: arXiv start-page: 160700556 year: 2016 ident: 11743_CR17 publication-title: ArXiv Prepr – volume: 16 start-page: 807085 year: 2022 ident: 11743_CR13 publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.807085 – year: 2023 ident: 11743_CR14 publication-title: Multimed Tools Appl. doi: 10.1007/s11042-023-15738-7 – volume: 3 start-page: e200267 issue: 6 year: 2021 ident: 11743_CR39 publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2021200267 – ident: 11743_CR11 doi: 10.1101/070441 – volume: 72 start-page: 415 year: 2018 ident: 11743_CR22 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.024 – volume: 83 start-page: 70193 issue: 27 year: 2024 ident: 11743_CR30 publication-title: Multimed Tools Appl. doi: 10.1007/s11042-024-18306-9 – volume: 192 start-page: 77 year: 2023 ident: 11743_CR5 publication-title: Neurosci. Res. doi: 10.1016/j.neures.2023.01.010 – volume: 8 start-page: e1249 year: 2018 ident: 11743_CR28 publication-title: Wiley Interdiscip Rev. Data Min. Knowl. Discov doi: 10.1002/widm.1249 – volume: 16 start-page: 295 year: 2018 ident: 11743_CR19 publication-title: Neuroinform doi: 10.1007/s12021-018-9370-4 – ident: 11743_CR18 doi: 10.1109/IST.2017.8261460 – volume: 58 start-page: 101093 year: 2020 ident: 11743_CR24 publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2020.101093 – ident: 11743_CR12 doi: 10.1109/CISP-BMEI.2018.8633126 – volume: 10 start-page: 205520762412955 year: 2024 ident: 11743_CR32 publication-title: Digit. Health doi: 10.1177/20552076241295577 – volume: 86 start-page: 105189 year: 2023 ident: 11743_CR37 publication-title: Biomed. Signal. Process. Control doi: 10.1016/j.bspc.2023.105189 – volume: 15 start-page: 11616 issue: 1 year: 2025 ident: 11743_CR38 publication-title: Sci. Rep. doi: 10.1038/s41598-025-86635-2 – volume: 25 start-page: 413 issue: 4 year: 2020 ident: 11743_CR20 publication-title: Ing. Syst. Inf. – ident: 11743_CR21 – volume: 55 start-page: 486 issue: 4 year: 2024 ident: 11743_CR23 publication-title: Clin. EEG Neurosci. doi: 10.1177/15500594241234836 – volume: 18 start-page: 046082 issue: 4 year: 2021 ident: 11743_CR26 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac16b4 – volume: 5 start-page: 101 year: 2003 ident: 11743_CR4 publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2003.5.1/hhippius – volume: 26 start-page: 7751 issue: 16 year: 2022 ident: 11743_CR29 publication-title: Soft Comput. doi: 10.1007/s00500-022-06762-0 – volume: 24 start-page: 49 issue: 1 year: 2014 ident: 11743_CR9 publication-title: Neuropsychol. Rev. doi: 10.1007/s11065-014-9249-6 – volume: 14 start-page: 18846 issue: 1 year: 2024 ident: 11743_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-024-69919-x – volume: 13 start-page: 1216 issue: 7 year: 2023 ident: 11743_CR33 publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics13071216 – volume: 216 start-page: 113291 year: 2021 ident: 11743_CR3 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2021.113291 – volume: 11 start-page: 2103 issue: 11 year: 2021 ident: 11743_CR8 publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics11112103 – volume: 11 start-page: 199 year: 2019 ident: 11743_CR7 publication-title: Biol. Forum Int. J. – volume: 29 start-page: e13362 issue: 2 year: 2024 ident: 11743_CR27 publication-title: Addict. Biol. doi: 10.1111/adb.13362 – volume: 15 start-page: 321 year: 2019 ident: 11743_CR1 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2019.01.010 – volume: 9 start-page: 90319 year: 2021 ident: 11743_CR31 publication-title: IEEE Access. doi: 10.1109/access.2021.3090474 |
| SSID | ssj0000529419 |
| Score | 2.4559872 |
| Snippet | Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss.... Alzheimer's Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss.... Abstract Alzheimer’s Disease (AD) and related dementias are significant global health issues characterized by progressive cognitive decline and memory loss.... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 25342 |
| SubjectTerms | 692/308 692/699 692/700 Accuracy Aged Alzheimer Disease - diagnosis Alzheimer Disease - diagnostic imaging Alzheimer's disease Alzheimer’s disease staging Biomarkers Classification Cognitive ability Datasets Decision support system Deep learning Disease Ensemble learning Female Global health Humanities and Social Sciences Humans Learning Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male multidisciplinary Neural networks Neural Networks, Computer Neurodegenerative diseases Older people Public health Science Science (multidisciplinary) Support Vector Machine Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQpQo4oPLblIKMxI1GTWwnsY9t1aogdQ-ISr1ZdjzeXWmbrZpdofTU1-D1eBI8STbsCgQcuMZJ5MxP5hvNzGdC3jNVpkWaQVyUSKqdehNbEDx2hnkODgthOJx8McrPL8Wnq-xq7agv7Anr6IE7wR3mGUsyCZCD58KFhE3ZwtgipA1QypK1c-SJVGvJVMfqzZRIVT8lk3B5WIdIhdNkLItTROFxsxGJWsL-36HMX5slh4rpY_JwWd2Y5quZzdaC0tkOedKjSXrUfcVT8gCqZ2S7O1-yeU7ujuikwZEs2h8OMaYrDnEawCq9-PwxxjDmqINF25NV0bmnZnY3gek13H6__1bTvoRDA4wcQ02xUX5McYKLnoxGNTWVoyEVhms7A1oiFp_6EGpfkMuz0y8n53F_2EJcCiUWMQToCMwnRpXBrV1uCskTl8gCcmWVzRWExCy1DHzuQGFhpgjLSemc8WmeGf6SbFXzCnYJNdJ55LW3JuEivF1aUxoJQhnPmJRZRD6sBK9vOk4N3dbCudSdmnRQk27VpJuIHKNuhjuRD7u9EKxE91ai_2YlEdlfaVb3TlprHtIvzBALFpF3w3JwL6yZmArmy-4eREWpjMirzhCGnQisSctMRERumMjGVjdXqumkpfBOw29USR4ePVhZ0899_UkWB4PF_YPo9v6H6F6TRwy9BslExT7ZWtwu4U0AYgv7tvW5HwYyL8c priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTggmhGAMFhjISLyxaInjJPYDQtu0aSAtQhOT9hY58aWt1KWlaYW6J_4N_j3-Enz5NSrQxGudVm7uzvfZn-87gHdc5X7sh-jGOYlq-4V2MxSBazQvAjREhFFx8nkSnV2Kz1fh1QYkXS0MXavs1sR6oTbTnM7IDwKLlQnOx_zj7JtLXaOIXe1aaOi2tYL5UEuM3YNNTspYA9g8Okm-XPSnLsRrCV-11TNeIA8qm8GoyoyHrk_o3F2tZahayP9f6PPvS5Q9k7oFD5blTK--68nkj2R1-gQetyiTHTZu8RQ2sNyG-03fydU2PGoO61hTg_QMbg7ZaEWlW6xtIjFkndY4s6CWnV98cindGWZwUd_dKtm0YHpyM8LxNc5__fhZsZbqYRZuDrFidKF-yKjSix0nScV0aZjdMuN1NkGWE2YfFzYl78Dl6cnX4zO3bcrg5kKJhYsWYiIvPK1yG_4m0rEMPOPJGCOVqSxSaDdwfsaxiAwqInBiO-zlxujCj0IdPIdBOS1xF5iWpiD9-0x7gbC_LjOda4lC6YJzKUMH3neGSGeN9kZac-aBTBuzpdZsaW22dOXAEdmqf5J0s-sPpvNh2oZhGoXcCyVihEUgjN3-qyzWWWw3oZjLnMcO7HWWTttgrtJb13PgbT9sw5C4FV3idNk8Q-jJlw68aByjn4kg7lqGwgG55jJrU10fKcejWurbt8utkoH96n7nXbfzuutd7Pce-B-v7uXd__oVPOQUHyQnKvZgsJgv8bWFYovsTRtfvwGGnzK3 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2VVAg4IL4KhoIWiRuxsNdre_cYKqoSqTkAlXqz1t5xEil1qjoRSk_8Df4ev4QZ2zFERQiuWa-12pnxvMnbeQvwRpoiTMMY_bRgUe2wtH6OKvKdlWWEjokwbk4-nSQnZ2p8Hp_vwXDbC7PD3zfS3TWlGG4Dk7EfMnz2N7dgX5Nj6gHsj0bjz-P-PxVmrVRout4Ymv7u5uSd_NPI9P8JW948ItnzpPfgzrq6tJuvdrH4LRUdP4D7HYYUo9boD2EPq0dwu71VcvMYrkdituFGLNFdCTEVW-VwQRBVnH766HPycsLhqjmJVYllKezieobzC7z68e17LTriRhB4nGIt-Hj8VHDfljiaTGphKyeoAMaLfIGiYAQ-LynBPoGz4w9fjk787ooFv1BGrXwkwIiyDKwpKJhdYlMdBS7QKSYmN3likMqxMJdYJg4N0zEpDQeFc7YMk9hGBzColhU-A2G1K1nNPrdBpOjtOreF1aiMLaXUOvbg7Xbjs8tWSSNrGPBIZ62ZMjJT1pgp23jwnm3TP8kq2M0P5BxZF1RZEssg1ogJlpFyVMybPLV5SiUlFrqQqQeHW8tmXWjWWURFF9eFqfTgdT9MQcVMia1wuW6fYSwUag-eto7Qr0QxE61j5YHecZGdpe6OVPNZI9wd0sfT6IimDrfe9Gtdf9uLYe9x_7B1z__v7S_gruT4YLFQdQiD1dUaXxLQWuWvuvj6CSNLIpM priority: 102 providerName: Springer Nature |
| Title | A hybrid learning approach for MRI-based detection of alzheimer’s disease stages using dual CNNs and ensemble classifier |
| URI | https://link.springer.com/article/10.1038/s41598-025-11743-y https://www.ncbi.nlm.nih.gov/pubmed/40659854 https://www.proquest.com/docview/3230014972 https://www.proquest.com/docview/3230215118 https://pubmed.ncbi.nlm.nih.gov/PMC12259834 https://www.nature.com/articles/s41598-025-11743-y.pdf https://doaj.org/article/652058ee6ef34d7889b7ab7924ec8c27 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7ttkLAgfcjsFRG4samJE5iO8dutaul0larhYrlFNnxpK3oplUfQu2Jv8Hf45dg51EorBB7ihQ7kTMee77JzHwGeEPj1Od-hC5PLam2n0lXYRi4WtIsQG0DYbY4-azPTgdh7zK63ANW18IUSfsFpWWxTdfZYe8WxtDYYjAaub4F0e66PdPZPjRZZDB4A5qD_nnnsz1JzmAU18AEWlXIeIG45uEdK1SQ9V-HMP9OlNxGS-_C7VU-k-uvcjL5zSCd3IdP9aeUeShf2qulaqebP1geb_6tD-BehVFJp-z5EPYwfwS3ylMr149h0yGjtS30ItWRE0NSM5MTA4HJ2cV71xpHTTQui0yvnEwzIiebEY6vcP7j2_cFqQJDxIDTIS6ITb8fElsXRrr9_oLIXBPjYOOVmiBJLcIfZ8aAP4HByfHH7qlbHeHgpmEcLl00gBRp5sk4NZuFZpKLwNOe4MhiFSsWo3H3fEUxYxpjG-7hptlLtZaZzyIZPIVGPs3xORApdGbZ8pX0gtC8XSiZSoFhLDNKhYgceFtPaTIrmTqSIsIeiKSUaGIkmhQSTdYOHNlZ3_a0LNvFjel8mFQzkbCIepFAZJgFoeZCxIpLxY3LiqlIKXfgoNaZpFr6iyQwTp31Ozl14PW22SxaG4mROU5XZR-LtXzhwLNSxbYjCW2kW0ShA2JH-XaGutuSj0cFMbhvNudYBObRw1pPf43rX7I43Oryf4juxc26v4Q71KqyJSMND6CxnK_wlQFyS9WCfX7JW9DsdHofeuZ6dNw_vzB3u6zbKn6OtKp1_RPRKEtE |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVKgghKD8GQosEpyoVXv9tz5UqC2tEtpEqGql3ty1d5xESp0QJ6rcE6_By_AwPAk7_kmJQBWXXr32ar0zs_vNfjszAO95mNiB7aEZJJRU206lGaPrmEry1EFFRBgFJ3d7fvvU_XLmna3AzyYWhq5VNmtiuVCrcUJn5FuOxsoE5wP-afLNpKpRxK42JTRkXVpBbZcpxurAjkMsLrULl293Pmt5f-D8YP9kr23WVQbMxA3dmYkaMyFPLRkmWp-VLwPhWMoSAfphHMZ-iNojsWOOqa8wJEYi0M1WopRMbd-Tju73Dqy6jh5bC1Z393tfjxenPMSjuXZYR-tYjtjK9Y5JUW3cM23yBsxiaUcsCwf8C-3-fWlzwdzeh7V5NpHFpRyN_tgcDx7BwxrVsp1KDR_DCmbrcLeqc1msw4PqcJBVMU9P4GqHDQoKFWN10Yo-a3KbMw2iWfe4Y9L2qpjCWXlXLGPjlMnR1QCHFzj99f1HzmpqiWl428ec0QX-PqPIMrbX6-VMZoppFx0v4hGyhHyEYaohwFM4vRXxPINWNs7wBTApVEr59mNpOa7uXcQykQLdUKacC-EZ8LERRDSpcn1EJUfviKgSW6TFFpViiwoDdklWizcpT3f5YDztR7XZR77HLU8g-pg6rgqECONAxoF2ejERCQ8M2GgkHdWLRx5dq7oB7xbN2uyJy5EZjufVO4TWbGHA80oxFiNxiSsXnmuAWFKZpaEut2TDQZla3NbLeygc_elmo13X47ppLjYXGvgfU_fy5r9-C2vtk-5RdNTpHb6Ce5xshVKZuhvQmk3n-FrDwFn8prY1Bue3bd6_AQHlb4U |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEDchBONWGGAkeNqiJnYS2w8IjY1pZaxCiEl9C0580lbq0tK0mrIn_gZ_hZ_DL8Ent1GBJl72GieW43OOz3d8boS8YirxhBeAIxIsqu2l2onB547RLOVg0BGGyclH_fDg2P8wCAZr5GeTC4Nhlc2ZWB7UZprgHXmXW6yMcF6wblqHRXza2387--ZgByn0tDbtNCoWOYTi1Jpv-ZvenqX1a8b233_ZPXDqDgNO4it_4YDFS8BSV6vE8rIJtZDcNa4UEKpYxaECa414MYM0NKDQGyHssJsYo1MvDDS3814hVwXnCsMJxUC09zvoQfM9VefpuFx2c6srMZ-NBY6HdoBTrOjCsmXAv3Du3-Garc_2FrmxzGa6ONWTyR9qcf8uuVPjWbpTMeA9sgbZBrlWdbgsNsjt6lqQVtlO98nZDh0VmCRG63YVQ9pUNacWPtOjzz0HFauhBhZllFhGpynVk7MRjE9g_uv7j5zWTiVqge0Qcoqh-0OKOWV0t9_Pqc4MtcY5nMQToAlaB-PUKv8H5PhSiPOQrGfTDB4TqqVJsdJ-rF3u29llrBMtwVc6ZUzKoEO2GkJEs6rKR1R657mMKrJFlmxRSbao6JB3SKv2TazQXT6YzodRLfBRGDA3kAAhpNw3QkoVCx0La-5CIhMmOmSzoXRUHxt5dM7kHfKyHbYCj14cncF0Wb2DOM2THfKoYox2JT56yWXgd4hcYZmVpa6OZONRWVTcswe7ktx-ut1w1_m6LtqL7ZYD_2Prnlz81y_IdSvU0cde__ApuclQVLCGqb9J1hfzJTyz-G8RPy8FjZKvly3ZvwHwIG0f |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHgwPsRWJCRuLEpifNyjmXFakHaCiEqllNkx-O2optWTSvUnvgb_D1-CZ68oLBC7DW2I3s89nyjmfkM8IKnuZ_4EbpJTqTavpGuwjBwteQmQE2BMCpOPh3GJ6Pw3Vl0tgdxWwtTJe1XlJbVNd1mh70qraGhYjAeuT6BaHfTX2hzBfbjyGLwHuyPhu8Hn-klOYtRXAsTeFMh4wXigsE7Vqgi678IYf6dKNlFS2_AtXWxkJuvcjb7zSAd34JP7VLqPJQv_fVK9fPtHyyPl1_rbbjZYFQ2qHvegT0s7sLV-tXKzT3YDthkQ4VerHlyYsxaZnJmITA7_fDWJeOomcZVlelVsLlhcrad4PQclz--fS9ZExhiFpyOsWSUfj9mVBfGjobDkslCM-tg47maIcsJ4U-NNeD3YXT85uPRids84eDmYRquXLSAFLnxZJrby0LHMhGBpz2RYJyqVMUpWnfPVxxNrDGlcE9im71ca2n8OJLBA-gV8wIfAZNCG2LLV9ILQvt3oWQuBYapNJwLETnwst3SbFEzdWRVhD0QWS3RzEo0qySabRx4Tbve9SSW7erDfDnOmp3I4oh7kUCM0QShToRIVSJVYl1WzEXOEwcOWp3JmqNfZoF16sjvTLgDz7tme2gpEiMLnK_rPoS1fOHAw1rFupmEFOkWUeiA2FG-nanuthTTSUUM7tvLORWBHXrY6umvef1LFoedLv-H6B5frvsTuM5JlYmMNDyA3mq5xqcWyK3Us-bU_gRBqUVl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+learning+approach+for+MRI-based+detection+of+alzheimer%E2%80%99s+disease+stages+using+dual+CNNs+and+ensemble+classifier&rft.jtitle=Scientific+reports&rft.au=Zolfaghari%2C+Sepideh&rft.au=Joudaki%2C+Atra&rft.au=Sarbaz%2C+Yashar&rft.date=2025-07-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-11743-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_11743_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |