An integrated predictive model for Alzheimer’s disease progression from cognitively normal subjects using generated MRI and interpretable AI
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer l...
        Saved in:
      
    
          | Published in | Scientific reports Vol. 15; no. 1; pp. 28340 - 23 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        04.08.2025
     Nature Publishing Group Nature Portfolio  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2045-2322 2045-2322  | 
| DOI | 10.1038/s41598-025-13478-2 | 
Cover
| Abstract | Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer’s disease from cognitively normal (CN) subjects. Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer’s disease. | 
    
|---|---|
| AbstractList | Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer’s disease from cognitively normal (CN) subjects. Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer’s disease. Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer’s disease from cognitively normal (CN) subjects. Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer’s disease. Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer's disease from cognitively normal (CN) subjects. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer's disease.Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer's disease from cognitively normal (CN) subjects. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer's disease.  | 
    
| ArticleNumber | 28340 | 
    
| Author | Moghaddam, Mohsen Ebrahimi Aghaei, Atefe  | 
    
| Author_xml | – sequence: 1 givenname: Atefe surname: Aghaei fullname: Aghaei, Atefe organization: Faculty of Computer Science and Engineering, Shahid Beheshti University – sequence: 2 givenname: Mohsen Ebrahimi surname: Moghaddam fullname: Moghaddam, Mohsen Ebrahimi email: m_moghadam@sbu.ac.ir organization: Faculty of Computer Science and Engineering, Shahid Beheshti University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40759727$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUstqFTEYHqRia-0LuJCAGzejuc5MVnIoXg5UBNF1yCT_meaQSY7JTKWufAL3vp5PYs7F2roQAyEh-S5__i8Pq6MQA1TVY4KfE8y6F5kTIbsaU1ETxtuupveqE4q5qCmj9OjW_rg6y3mNyxBUciIfVMcct0K2tD2pvi8CcmGCIekJLNoksM5M7grQGC14tIoJLfzXS3AjpJ_ffmRkXQadoUDjkCBnFwNapTgiE4fgtlR_jUJMo_Yoz_0azJTRnF0Y0AAB9j7vPiyRDnZnnYrppHsPaLF8VN1faZ_h7LCeVp9ev_p4_ra-eP9meb64qA2XfKotbgwxneiwYNKWTljZNo0UYAzWmEotWY9ty7C2TW8kbhnI3hjOiOiAEc5Oq-Ve10a9VpvkRp2uVdRO7Q5iGpROkzMelAHLudYtFaLnHeddsZWkIbLhK92wtmixvdYcNvr6i_b-RpBgtQ1L7cNSJSy1C0vRwnq5Z23mfgRrIExJ-zul3L0J7lIN8UqRbaZYiKLw7KCQ4ucZ8qRGlw14rwPEOStGWdO0krCmQJ_-BV3HOYXS4R2qzFZ0BfXkdkk3tfz-LQVA9wCTYs4JVv_30EN7cgGHAdIf73-wfgEby-RQ | 
    
| Cites_doi | 10.1109/JBHI.2024.3397611 10.1007/s11517-023-02863-6 10.1371/journal.pone.0294253 10.1002/advs.202204717 10.1038/s41467-019-10212-1 10.1016/j.jbi.2023.104320 10.1159/000531819 10.1109/ICCV.2017.74 10.1117/12.2654445 10.3389/fnagi.2018.00406 10.1007/s42979-023-02461-1 10.1007/978-3-030-00689-1_9 10.3390/informatics10010028 10.1016/j.schres.2005.11.020 10.1186/1750-1326-8-20 10.1016/j.jalz.2019.01.010 10.1016/j.media.2020.101694 10.1117/1.JMI.7.4.044501 10.1016/j.cmpb.2022.107291 10.1145/775047.775151 10.1186/s40708-024-00230-1 10.1016/j.media.2021.102266 10.1109/TMI.2023.3325703 10.1016/j.neucom.2023.126282 10.3233/JIFS-223996 10.1109/ACCESS.2023.3306721 10.1002/alz.12948 10.1016/j.jneumeth.2020.108701 10.1109/TMI.2021.3077079 10.1016/j.bspc.2022.104400 10.3233/JAD-2010-091150 10.2174/1876388X01002010046 10.1016/S1474-4422(12)70291-0 10.1016/j.nicl.2019.101837 10.1016/j.nic.2005.09.008 10.1007/s13369-023-07973-9 10.1016/j.jbi.2021.103978 10.1186/s42492-024-00154-x 10.1016/j.bspc.2023.105773 10.1109/ACCESS.2023.3321220 10.1002/ima.22762 10.1016/j.mri.2012.10.027 10.1016/S1474-4422(05)70168-X 10.1371/journal.pone.0067346 10.1145/1102351.1102430 10.1016/j.compbiomed.2023.106700 10.1007/978-3-031-43075-6_10 10.1371/journal.pone.0032441  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025  | 
    
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1038/s41598-025-13478-2 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database Proquest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 2045-2322 | 
    
| EndPage | 23 | 
    
| ExternalDocumentID | oai_doaj_org_article_ced44aa7255b484488589161964fa637 10.1038/s41598-025-13478-2 PMC12322055 40759727 10_1038_s41598_025_13478_2  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AARCD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c494t-d06c1c8580539d415d976695ecc0a029a93b0d730ad6bc9073e9bcc43158e3143 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2045-2322 | 
    
| IngestDate | Tue Oct 14 19:04:42 EDT 2025 Sun Oct 26 04:03:19 EDT 2025 Tue Sep 30 17:02:39 EDT 2025 Fri Sep 05 15:23:55 EDT 2025 Tue Oct 07 08:00:11 EDT 2025 Sun Aug 10 01:32:10 EDT 2025 Wed Oct 01 05:23:32 EDT 2025 Tue Aug 05 01:10:31 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Alzheimer’s progression prediction Probability Ensemble transfer learning Automatic ROI extraction Vit-GAN MRI  | 
    
| Language | English | 
    
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c494t-d06c1c8580539d415d976695ecc0a029a93b0d730ad6bc9073e9bcc43158e3143 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3236323758?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 40759727 | 
    
| PQID | 3236323758 | 
    
| PQPubID | 2041939 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ced44aa7255b484488589161964fa637 unpaywall_primary_10_1038_s41598_025_13478_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12322055 proquest_miscellaneous_3236679136 proquest_journals_3236323758 pubmed_primary_40759727 crossref_primary_10_1038_s41598_025_13478_2 springer_journals_10_1038_s41598_025_13478_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-08-04 | 
    
| PublicationDateYYYYMMDD | 2025-08-04 | 
    
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-04 day: 04  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | Scientific reports | 
    
| PublicationTitleAbbrev | Sci Rep | 
    
| PublicationTitleAlternate | Sci Rep | 
    
| PublicationYear | 2025 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio  | 
    
| References | A Abrol (13478_CR31) 2020; 339 C Gaser (13478_CR3) 2013; 8 L O’Dwyer (13478_CR5) 2012; 7 N-J Gong (13478_CR4) 2013; 31 MSK Inan (13478_CR12) 2024; 89 A Singh (13478_CR13) 2024; 5 M Sarazin (13478_CR8) 2010; 22 D Pan (13478_CR11) 2023; 10 J Wang (13478_CR37) 2023; 546 Y Zhao (13478_CR20) 2022; 125 CR Jack (13478_CR50) 2013; 12 13478_CR51 A Aghaei (13478_CR45) 2024; 11 A Kautzky (13478_CR22) 2018; 10 S Jahan (13478_CR24) 2023; 18 13478_CR19 Z Tang (13478_CR27) 2019; 10 S Candemir (13478_CR9) 2020; 7 J Wen (13478_CR21) 2020; 63 X Zhang (13478_CR15) 2023; 11 M Jia (13478_CR25) 2023; 52 N Makris (13478_CR52) 2006; 83 MS Chong (13478_CR7) 2005; 4 S Parvin (13478_CR26) 2024; 7 SG Mueller (13478_CR49) 2005; 15 SA Martin (13478_CR23) 2023; 19 S Festag (13478_CR42) 2023; 139 I Rye (13478_CR33) 2022; 12 13478_CR34 13478_CR35 Z Hu (13478_CR10) 2023; 229 A Association (13478_CR2) 2019; 15 13478_CR30 S Liu (13478_CR18) 2022; 12 Y Liu (13478_CR44) 2022; 75 BK Chaurasia (13478_CR32) 2023; 61 R SinhaRoy (13478_CR36) 2024; 49 W Zhu (13478_CR17) 2021; 40 A Moscoso (13478_CR6) 2019; 23 N Yousefzadeh (13478_CR28) 2024; 14 A Aghaei (13478_CR14) 2022; 32 13478_CR38 13478_CR39 13478_CR47 13478_CR48 13478_CR46 13478_CR43 C Rosén (13478_CR1) 2013; 8 M Luo (13478_CR29) 2023; 156 13478_CR41 F Liu (13478_CR16) 2023; 80 13478_CR40  | 
    
| References_xml | – volume: 12 start-page: 15566 year: 2022 ident: 13478_CR33 publication-title: Sci. Reports – volume: 14 start-page: 7710 year: 2024 ident: 13478_CR28 publication-title: Sci. Reports – ident: 13478_CR41 doi: 10.1109/JBHI.2024.3397611 – volume: 61 start-page: 2033 year: 2023 ident: 13478_CR32 publication-title: Med. & Biol. Eng. & Comput. doi: 10.1007/s11517-023-02863-6 – volume: 18 year: 2023 ident: 13478_CR24 publication-title: Plos one doi: 10.1371/journal.pone.0294253 – volume: 10 start-page: 2204717 year: 2023 ident: 13478_CR11 publication-title: Adv. Sci. doi: 10.1002/advs.202204717 – volume: 10 start-page: 2173 year: 2019 ident: 13478_CR27 publication-title: Nat. communications doi: 10.1038/s41467-019-10212-1 – volume: 139 year: 2023 ident: 13478_CR42 publication-title: J. Biomed. Informatics doi: 10.1016/j.jbi.2023.104320 – volume: 52 start-page: 249 year: 2023 ident: 13478_CR25 publication-title: Dementia Geriatr. Cogn. Disord. doi: 10.1159/000531819 – ident: 13478_CR51 doi: 10.1109/ICCV.2017.74 – ident: 13478_CR19 doi: 10.1117/12.2654445 – volume: 10 start-page: 406 year: 2018 ident: 13478_CR22 publication-title: Front. aging neuroscience doi: 10.3389/fnagi.2018.00406 – ident: 13478_CR46 – volume: 5 start-page: 160 year: 2024 ident: 13478_CR13 publication-title: SN Comput. Sci. doi: 10.1007/s42979-023-02461-1 – ident: 13478_CR30 doi: 10.1007/978-3-030-00689-1_9 – ident: 13478_CR39 doi: 10.3390/informatics10010028 – volume: 83 start-page: 155 year: 2006 ident: 13478_CR52 publication-title: Schizophr. research doi: 10.1016/j.schres.2005.11.020 – volume: 8 start-page: 1 year: 2013 ident: 13478_CR1 publication-title: Mol. neurodegeneration doi: 10.1186/1750-1326-8-20 – volume: 15 start-page: 321 year: 2019 ident: 13478_CR2 publication-title: Alzheimer’s & dementia doi: 10.1016/j.jalz.2019.01.010 – volume: 63 year: 2020 ident: 13478_CR21 publication-title: Med. image analysis doi: 10.1016/j.media.2020.101694 – volume: 7 start-page: 044501 year: 2020 ident: 13478_CR9 publication-title: J. Med. Imaging doi: 10.1117/1.JMI.7.4.044501 – volume: 229 year: 2023 ident: 13478_CR10 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.107291 – ident: 13478_CR48 doi: 10.1145/775047.775151 – volume: 11 start-page: 16 year: 2024 ident: 13478_CR45 publication-title: Brain Informatics doi: 10.1186/s40708-024-00230-1 – volume: 75 year: 2022 ident: 13478_CR44 publication-title: Med. image analysis doi: 10.1016/j.media.2021.102266 – ident: 13478_CR38 doi: 10.1109/TMI.2023.3325703 – volume: 546 year: 2023 ident: 13478_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126282 – ident: 13478_CR40 doi: 10.3233/JIFS-223996 – ident: 13478_CR43 doi: 10.1109/ACCESS.2023.3306721 – volume: 19 start-page: 2135 year: 2023 ident: 13478_CR23 publication-title: Alzheimer’s & Dementia doi: 10.1002/alz.12948 – volume: 339 year: 2020 ident: 13478_CR31 publication-title: J. neuroscience methods doi: 10.1016/j.jneumeth.2020.108701 – volume: 40 start-page: 2354 year: 2021 ident: 13478_CR17 publication-title: IEEE Transactions on Med. Imaging doi: 10.1109/TMI.2021.3077079 – volume: 80 year: 2023 ident: 13478_CR16 publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2022.104400 – volume: 22 start-page: 285 year: 2010 ident: 13478_CR8 publication-title: J. Alzheimer’s disease doi: 10.3233/JAD-2010-091150 – ident: 13478_CR35 doi: 10.2174/1876388X01002010046 – volume: 12 start-page: 207 year: 2013 ident: 13478_CR50 publication-title: The lancet neurology doi: 10.1016/S1474-4422(12)70291-0 – volume: 23 year: 2019 ident: 13478_CR6 publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2019.101837 – volume: 15 start-page: 869 year: 2005 ident: 13478_CR49 publication-title: Neuroimaging Clin. North Am. doi: 10.1016/j.nic.2005.09.008 – volume: 49 start-page: 3267 year: 2024 ident: 13478_CR36 publication-title: Arab. J. for Sci. Eng. doi: 10.1007/s13369-023-07973-9 – volume: 125 year: 2022 ident: 13478_CR20 publication-title: J. Biomed. Informatics doi: 10.1016/j.jbi.2021.103978 – volume: 7 start-page: 1 year: 2024 ident: 13478_CR26 publication-title: Vis. Comput. for Ind. Biomed. Art doi: 10.1186/s42492-024-00154-x – volume: 89 year: 2024 ident: 13478_CR12 publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2023.105773 – volume: 11 start-page: 108603 year: 2023 ident: 13478_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3321220 – volume: 32 start-page: 1889 year: 2022 ident: 13478_CR14 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22762 – volume: 12 start-page: 17106 year: 2022 ident: 13478_CR18 publication-title: Sci. reports – volume: 31 start-page: 688 year: 2013 ident: 13478_CR4 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.10.027 – volume: 4 start-page: 576 year: 2005 ident: 13478_CR7 publication-title: The Lancet Neurol. doi: 10.1016/S1474-4422(05)70168-X – volume: 8 year: 2013 ident: 13478_CR3 publication-title: PloS one doi: 10.1371/journal.pone.0067346 – ident: 13478_CR47 doi: 10.1145/1102351.1102430 – volume: 156 year: 2023 ident: 13478_CR29 publication-title: Comput. Biol. Medicine doi: 10.1016/j.compbiomed.2023.106700 – ident: 13478_CR34 doi: 10.1007/978-3-031-43075-6_10 – volume: 7 year: 2012 ident: 13478_CR5 publication-title: PloS one doi: 10.1371/journal.pone.0032441  | 
    
| SSID | ssj0000529419 | 
    
| Score | 2.4576445 | 
    
| Snippet | Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early... Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early... Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment....  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 28340 | 
    
| SubjectTerms | 639/705/117 692/308 Aged Aged, 80 and over Alzheimer Disease - diagnosis Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Alzheimer's disease Alzheimer’s progression prediction Automatic ROI extraction Brain Brain - diagnostic imaging Cognition Cognitive ability Cognitive Dysfunction - diagnostic imaging Deep learning Diagnosis Disease Progression Ensemble transfer learning Female Humanities and Social Sciences Humans Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging MRI multidisciplinary Neural networks Neural Networks, Computer Neurodegenerative diseases Neuroimaging Neuroimaging - methods Prediction models Probability Science Science (multidisciplinary) Transfer learning Vit-GAN  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hShVwQOVtKGiRuFGr9u564z2miKpFKgdEpd5W-0pbyXWjOBEKJ34Bd_4ev6Qzu45JBAIOHHKJrXgzj91vPDPfEPIax7zBQRZyNXIuF5Utc1vVZe6ZU650SACD_c4nH-TRqXh_Vp2tjfrCmrBED5wEt--CF8KYEUBfK2oIJmqcgyeRR2piJI995EWt1oKpxOrNlChV3yVT8Hq_g5MKu8lYlWP3JJjHxkkUCft_hzJ_LZYcMqZ3ye1FOzXLz6Zp1g6lwx1yr0eTdJz-xX1yK7QPyHaaL7l8SL6NWzrwQXg6nWFWBvc3GgfgUACsdNx8uQiXV2H24-v3jvb5GhrLthJlB8UOFDqUGTVL2iLObWi3sPgSp6NYO39OzyOBNT7n5OMxNa2Pj04FjbYJdHz8iJwevvv09ijvBzDkTigxz30hQV8gcPBU5UGAHsCLVBWovTAFU0ZxW3jYI4yX1kGYzYOyzgEmqerAAYk9JlvtdRueEjphvDK1nAgP-MUGr4IwFvaTYA2oz04y8malDD1NPBs65sd5rZPqNKhOR9VplpED1NdwJ3Jkxy_AcnRvOfpvlpOR3ZW2de-4neaMS_hAFJWRV8NlcDnMo5g2XC_SPXKkSi4z8iQZx7ASiI8hRGPw4_WG2WwsdfNKe3kRab0R3LKiqjKyt7Kwn-v6kyz2Biv8B9E9-x-ie07uMPQkLJ0Ru2RrPluEFwDO5vZl9MMbu981Dg priority: 102 providerName: Directory of Open Access Journals – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VrRBwQHwVAgUZiRsbkTi21z4GRNWuVA5Apd4iO_a2lUK62uwKLSd-AXf-Hr-EmSQbWBUhOOxl82X5zcRvMjPPAC9omzdcyEJsJmUZC-nS2Emdxp6XpkxLEoChfufjd-rwRExP5ekOjDe9MFv5-1a6u8ElhtrAuIyp7RFxvQa7Gg1Tj2A3z6cfpsM3FcpaidT0vTF4-aurF2-tP61M_5-45dUSySFPegturOq5XX-2VfXbUnRwB273HJLlHeh3YSfU9-B6t6vk-j58y2s2qEB4Nl9QLobeaqzd9oYhTWV59eU8XHwKix9fvzesz9KwtlirE-pg1HfChuKias1qYrcVa1aOPt00jCrmz9hZK1tNzzl-f8Rs7dtHd2WMrgosP3oAJwdvP745jPttF-JSGLGMfaIQJS01-qfxOIEeKYsyEsFObMKNNZlLPAJgvXIlBtdZMK4skYlIHTLkX3swqi_r8AjYjGfSajUTHlmLC94EYR2-RYKzPNFuFsHLDRjFvFPXKNqseKaLDroCoSta6AoewWvCaziTlLHbP9Bgit7RijJ4IaydYKjkhMbgU9O-iYp0x2ZWZZMI9jdoF727NkXGM4U_jJ0ieD4cRkej7Imtw-WqO0dNTJqpCB52xjGMBKNiDMw43lxvmc3WULeP1BfnrZg3UVqeSBnBeGNhv8b1t7kYD1b4D1P3-P_u_gRucvIZKo0R-zBaLlbhKZKvpXvW-9xPNzYoiA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHgwPsRWJCRuLEpqRO7zjEgVrtIu0KIiuUU-ZXuipBWbSPUPfELuPP3-CWMnQcUVog95NK4iT0e299kZr4BeObKvOFBZsN0rHWYMDUKFROj0FCd6pF2BDAu3_nwiO9PkjfH7HgLeJcL44P2PaWl36a76LAXSzxoXDIYZaFLfsTZHc5NcQm2OUMMPoDtydHb7KOrJIcYJUSYQNsMmSgW5_x54xTyZP3nIcy_AyV7b-k1uFJXc7n-IsvytwNp7wZ86IbSxKF8GtYrNdRnf7A8XnysN-F6i1FJ1rS8BVu2ug2Xm6qV6zvwLatIzzJhyHzhfD1u1yS-rA5BGEyy8uzEnn62ix9fvy9J6wUiPhisIQIhLq-F9MFL5ZpUDj2XZFkr92loSVxE_pRMPS22e8_huwMiK-Nf3YRJqtKS7OAuTPZev3-1H7ZlHUKdpMkqNBFHLRBM4PpPDY7VICTiKUNlimREU5nGKjK480jDlUbjPbap0hqRDhM2Rnx3DwbVrLIPgBQ0ZlLwIjGIipQ1qU2kwl3KKkkjoYoAnnfTnM8b9o7ce91jkTdSzlHKuZdyTgN46TShb-mYt_0Ps8U0b2cn19YkiZRjNMVUItC4Fa4uI3e8ZoXk8TiAnU6P8nY7WOYxjTleaJsF8LS_jQvZeWdkZWd104aP01HMA7jfqF3fE7S60fCj-HCxoZAbXd28U52eeLJwB5lpxFgAu53u_urXv2Sx2-v3f4ju4cWaP4Kr1Km3C71JdmCwWtT2MYK7lXrSruSf6thLGg priority: 102 providerName: Unpaywall  | 
    
| Title | An integrated predictive model for Alzheimer’s disease progression from cognitively normal subjects using generated MRI and interpretable AI | 
    
| URI | https://link.springer.com/article/10.1038/s41598-025-13478-2 https://www.ncbi.nlm.nih.gov/pubmed/40759727 https://www.proquest.com/docview/3236323758 https://www.proquest.com/docview/3236679136 https://pubmed.ncbi.nlm.nih.gov/PMC12322055 https://www.nature.com/articles/s41598-025-13478-2.pdf https://doaj.org/article/ced44aa7255b484488589161964fa637  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61iRBwQLwKhhItEjdq1V6_Dwi5Uas2UqOqECmcrF3vJq1knJCHUDjxC7jz9_glzKwfJQJVHHxZW_Z6Z2b3252ZbwDeUJk3XMi0nUR5bvuBdG0ZxK6teJ7kbk4EMJTvfD4MT0f-YByMd2DY5MJQWGUzJ5qJWs1yOiM_9LgX4oXw9v38i01Vo8i72pTQEHVpBfXOUIztQpcTM1YHukfHw4vL9tSF_Fq-m9TZM44XHy5xBaMsMx7YlFWJarO1Qhki_3-hz7-DKFtP6n24uy7nYvNVFMUfi9XJQ3hQo0yWVmrxCHZ0-RjuVHUnN0_gR1qylidCsfmCvDU07zFTGIchkGVp8e1KX3_Wi1_ffy5Z7cdhJpyrovJglJnC2vCjYsNKwr8FW64lHe4sGcXUT9nUEFvTd84vz5golfl0FegoC83Ss6cwOjn-2D-168IMdu4n_spWTohyjIMYLThROIAKQU2YBKgOjnB4IhJPOgrnDqFCmeP229OJzHPEKkGsPURoe9ApZ6V-DmzCvUDE4cRXiGukVon2hcR5RkvBnVhOLHjbCCObV_wbmfGbe3FWiS5D0WVGdBm34Ijk1T5J3NmmYbaYZrUpZrlWvi9EhJsp6ce4PY2psmJIzGQTEXqRBfuNtLPaoJfZjfpZ8Lq9jaZI_hVR6tm6eiaMEtcLLXhWKUfbE9w349aN48vjLbXZ6ur2nfL6ytB9E-jlThBYcNBo2E2_bhuLg1YL_2PoXtz-1y_hHicboWAZfx86q8Vav0I4tpI92I3GUQ-6aTr4MOjVFoet_bDfM0cc2DYaXqSffgP8gjpC | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbGJjQ4IL4JDDASnFi01HHS-DChDja1bK3QtEm7eXbsdpNCWppWUznxC7jzZ_gx_BLe1_kYFWjiskMvTRQ7eb_9fjyEvEaYNzBk1hftNPV5pFu-jpKWb1gq0laKA2Cw37k_iLvH_ONJdLJCfta9MFhWWetEp6jNOMUz8q2QhTH8wL19N_niI2oUZldrCA1VQSuYbTdirGrs2LeLCwjhiu3eB6D3G8b2do_ed_0KZcBPueAz3wQxbCqJEmBHYcCeGbDQsYjg3QIVMKFEqAMDgqBMrFOIJUMrdJqC4Y0SG4K7Ac-9QdZ4yAUEf2s7u4NPh80pD-bReEtU3TpBmGwVsAJ2tbHIxy5OYNMli-iAA_7l7f5dtNlkbm-T9Xk-UYsLlWV_GMe9u-RO5dXSTsmG98iKze-TmyXO5eIB-d7JaTOXwtDJFLNDqGepA-Kh4DjTTvb1zJ5_ttNf334UtMobUVc-Vo4OodgJQ5typ2xBc_S3M1rMNR4mFRRr-Ed05AZp4zr9wx5VuXFLl4WVOrO003tIjq-FRI_Iaj7O7RNChyyMVBIPuQE_SlsjLFca9JrVigWJHnrkbU0MOSnnfUiXpw8TWZJOAumkI51kHtlBejV34qxu98d4OpKV6MvUGs6VakPwpnkC4XCCSI4xTkIbqjhse2SjprasFEghL9ndI6-ayyD6mM9RuR3Py3vitmiFsUcel8zR7ATidAgVGTw8WWKbpa0uX8nPz9x4cXSyWRBFHtmsOexyX1d9i82GC__j0z29-q1fkvXuUf9AHvQG-8_ILYbygoU6fIOszqZz-xxcwZl-UckbJafXLeK_Abdzb-8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIl4HxLuGAosEJ2rF2V0_9oBQoEQNpRVCVMptu-vdpJVcJ8SJqnDiF3Dnr_Bz-CXM-FUiUMWlh1xia732vHe-mSHkOY55A0PmfBmnqS9C0_VNmHR9y1KZdlNsAIP1znv70c6BeD8Mh2vkZ1MLg7DKRieWitpOUjwj73DGI_iBe9sZ1bCIj9v919MvPk6QwkxrM06jYpFdtzyF8K14NdgGWr9grP_u89sdv54w4KdCirlvgwg2lIQJsKK0YMssWOdIhvBegQ6Y1JKbwIIQaBuZFOJI7qRJUzC6YeI4uBqw7iVyOeZcIpwwHsbt-Q5m0ERX1nU6AU86BayP9Wws9LF-Exh0xRaWIwP-5ef-Dddsc7Y3yLVFPtXLU51lf5jF_i1ys_Znaa9iwNtkzeV3yJVqwuXyLvney2nbkcLS6QzzQqhhaTmCh4LLTHvZ1yN3fOJmv779KGidMaIlcKxqGkKxBoa2QKdsSXP0tDNaLAweIxUU0ftjOi5baONz9j4NqM5t-egKUmkyR3uDe-TgQgh0n6znk9xtEDpiPNRJNBIWPCjjrHRCG9BozmgWJGbkkZcNMdS06vShygw9T1RFOgWkUyXpFPPIG6RXeyd26S7_mMzGqhZ6lTorhNYxhG1GJBAIJzjDMcIeaCMd8dgjmw21Va06CnXG6B551l4GocdMjs7dZFHdE8WyyyOPPKiYo90JROgQJDJYPFlhm5Wtrl7Jj4_KxuLoXrMgDD2y1XDY2b7O-xZbLRf-x6d7eP5bPyVXQbDVh8H-7iNynaG4IEJHbJL1-WzhHoMPODdPSmGj5PCipfs3oattiQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHgwPsRWJCRuLEpqRO7zjEgVrtIu0KIiuUU-ZXuipBWbSPUPfELuPP3-CWMnQcUVog95NK4iT0e299kZr4BeObKvOFBZsN0rHWYMDUKFROj0FCd6pF2BDAu3_nwiO9PkjfH7HgLeJcL44P2PaWl36a76LAXSzxoXDIYZaFLfsTZHc5NcQm2OUMMPoDtydHb7KOrJIcYJUSYQNsMmSgW5_x54xTyZP3nIcy_AyV7b-k1uFJXc7n-IsvytwNp7wZ86IbSxKF8GtYrNdRnf7A8XnysN-F6i1FJ1rS8BVu2ug2Xm6qV6zvwLatIzzJhyHzhfD1u1yS-rA5BGEyy8uzEnn62ix9fvy9J6wUiPhisIQIhLq-F9MFL5ZpUDj2XZFkr92loSVxE_pRMPS22e8_huwMiK-Nf3YRJqtKS7OAuTPZev3-1H7ZlHUKdpMkqNBFHLRBM4PpPDY7VICTiKUNlimREU5nGKjK480jDlUbjPbap0hqRDhM2Rnx3DwbVrLIPgBQ0ZlLwIjGIipQ1qU2kwl3KKkkjoYoAnnfTnM8b9o7ce91jkTdSzlHKuZdyTgN46TShb-mYt_0Ps8U0b2cn19YkiZRjNMVUItC4Fa4uI3e8ZoXk8TiAnU6P8nY7WOYxjTleaJsF8LS_jQvZeWdkZWd104aP01HMA7jfqF3fE7S60fCj-HCxoZAbXd28U52eeLJwB5lpxFgAu53u_urXv2Sx2-v3f4ju4cWaP4Kr1Km3C71JdmCwWtT2MYK7lXrSruSf6thLGg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+predictive+model+for+Alzheimer%E2%80%99s+disease+progression+from+cognitively+normal+subjects+using+generated+MRI+and+interpretable+AI&rft.jtitle=Scientific+reports&rft.au=Aghaei%2C+Atefe&rft.au=Moghaddam%2C+Mohsen+Ebrahimi&rft.date=2025-08-04&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=28340&rft_id=info:doi/10.1038%2Fs41598-025-13478-2&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |