An integrated predictive model for Alzheimer’s disease progression from cognitively normal subjects using generated MRI and interpretable AI

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer l...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 28340 - 23
Main Authors Aghaei, Atefe, Moghaddam, Mohsen Ebrahimi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-13478-2

Cover

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer’s disease from cognitively normal (CN) subjects. Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer’s disease.
AbstractList Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer’s disease from cognitively normal (CN) subjects. Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer’s disease.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer’s disease from cognitively normal (CN) subjects. Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer’s disease.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer's disease from cognitively normal (CN) subjects. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer's disease.Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer's disease from cognitively normal (CN) subjects. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer's disease.
ArticleNumber 28340
Author Moghaddam, Mohsen Ebrahimi
Aghaei, Atefe
Author_xml – sequence: 1
  givenname: Atefe
  surname: Aghaei
  fullname: Aghaei, Atefe
  organization: Faculty of Computer Science and Engineering, Shahid Beheshti University
– sequence: 2
  givenname: Mohsen Ebrahimi
  surname: Moghaddam
  fullname: Moghaddam, Mohsen Ebrahimi
  email: m_moghadam@sbu.ac.ir
  organization: Faculty of Computer Science and Engineering, Shahid Beheshti University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40759727$$D View this record in MEDLINE/PubMed
BookMark eNqNUstqFTEYHqRia-0LuJCAGzejuc5MVnIoXg5UBNF1yCT_meaQSY7JTKWufAL3vp5PYs7F2roQAyEh-S5__i8Pq6MQA1TVY4KfE8y6F5kTIbsaU1ETxtuupveqE4q5qCmj9OjW_rg6y3mNyxBUciIfVMcct0K2tD2pvi8CcmGCIekJLNoksM5M7grQGC14tIoJLfzXS3AjpJ_ffmRkXQadoUDjkCBnFwNapTgiE4fgtlR_jUJMo_Yoz_0azJTRnF0Y0AAB9j7vPiyRDnZnnYrppHsPaLF8VN1faZ_h7LCeVp9ev_p4_ra-eP9meb64qA2XfKotbgwxneiwYNKWTljZNo0UYAzWmEotWY9ty7C2TW8kbhnI3hjOiOiAEc5Oq-Ve10a9VpvkRp2uVdRO7Q5iGpROkzMelAHLudYtFaLnHeddsZWkIbLhK92wtmixvdYcNvr6i_b-RpBgtQ1L7cNSJSy1C0vRwnq5Z23mfgRrIExJ-zul3L0J7lIN8UqRbaZYiKLw7KCQ4ucZ8qRGlw14rwPEOStGWdO0krCmQJ_-BV3HOYXS4R2qzFZ0BfXkdkk3tfz-LQVA9wCTYs4JVv_30EN7cgGHAdIf73-wfgEby-RQ
Cites_doi 10.1109/JBHI.2024.3397611
10.1007/s11517-023-02863-6
10.1371/journal.pone.0294253
10.1002/advs.202204717
10.1038/s41467-019-10212-1
10.1016/j.jbi.2023.104320
10.1159/000531819
10.1109/ICCV.2017.74
10.1117/12.2654445
10.3389/fnagi.2018.00406
10.1007/s42979-023-02461-1
10.1007/978-3-030-00689-1_9
10.3390/informatics10010028
10.1016/j.schres.2005.11.020
10.1186/1750-1326-8-20
10.1016/j.jalz.2019.01.010
10.1016/j.media.2020.101694
10.1117/1.JMI.7.4.044501
10.1016/j.cmpb.2022.107291
10.1145/775047.775151
10.1186/s40708-024-00230-1
10.1016/j.media.2021.102266
10.1109/TMI.2023.3325703
10.1016/j.neucom.2023.126282
10.3233/JIFS-223996
10.1109/ACCESS.2023.3306721
10.1002/alz.12948
10.1016/j.jneumeth.2020.108701
10.1109/TMI.2021.3077079
10.1016/j.bspc.2022.104400
10.3233/JAD-2010-091150
10.2174/1876388X01002010046
10.1016/S1474-4422(12)70291-0
10.1016/j.nicl.2019.101837
10.1016/j.nic.2005.09.008
10.1007/s13369-023-07973-9
10.1016/j.jbi.2021.103978
10.1186/s42492-024-00154-x
10.1016/j.bspc.2023.105773
10.1109/ACCESS.2023.3321220
10.1002/ima.22762
10.1016/j.mri.2012.10.027
10.1016/S1474-4422(05)70168-X
10.1371/journal.pone.0067346
10.1145/1102351.1102430
10.1016/j.compbiomed.2023.106700
10.1007/978-3-031-43075-6_10
10.1371/journal.pone.0032441
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-13478-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_ced44aa7255b484488589161964fa637
10.1038/s41598-025-13478-2
PMC12322055
40759727
10_1038_s41598_025_13478_2
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AARCD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c494t-d06c1c8580539d415d976695ecc0a029a93b0d730ad6bc9073e9bcc43158e3143
IEDL.DBID BENPR
ISSN 2045-2322
IngestDate Tue Oct 14 19:04:42 EDT 2025
Sun Oct 26 04:03:19 EDT 2025
Tue Sep 30 17:02:39 EDT 2025
Fri Sep 05 15:23:55 EDT 2025
Tue Oct 07 08:00:11 EDT 2025
Sun Aug 10 01:32:10 EDT 2025
Wed Oct 01 05:23:32 EDT 2025
Tue Aug 05 01:10:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Alzheimer’s progression prediction
Probability
Ensemble transfer learning
Automatic ROI extraction
Vit-GAN
MRI
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-d06c1c8580539d415d976695ecc0a029a93b0d730ad6bc9073e9bcc43158e3143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3236323758?pq-origsite=%requestingapplication%&accountid=15518
PMID 40759727
PQID 3236323758
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_ced44aa7255b484488589161964fa637
unpaywall_primary_10_1038_s41598_025_13478_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12322055
proquest_miscellaneous_3236679136
proquest_journals_3236323758
pubmed_primary_40759727
crossref_primary_10_1038_s41598_025_13478_2
springer_journals_10_1038_s41598_025_13478_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-04
PublicationDateYYYYMMDD 2025-08-04
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References A Abrol (13478_CR31) 2020; 339
C Gaser (13478_CR3) 2013; 8
L O’Dwyer (13478_CR5) 2012; 7
N-J Gong (13478_CR4) 2013; 31
MSK Inan (13478_CR12) 2024; 89
A Singh (13478_CR13) 2024; 5
M Sarazin (13478_CR8) 2010; 22
D Pan (13478_CR11) 2023; 10
J Wang (13478_CR37) 2023; 546
Y Zhao (13478_CR20) 2022; 125
CR Jack (13478_CR50) 2013; 12
13478_CR51
A Aghaei (13478_CR45) 2024; 11
A Kautzky (13478_CR22) 2018; 10
S Jahan (13478_CR24) 2023; 18
13478_CR19
Z Tang (13478_CR27) 2019; 10
S Candemir (13478_CR9) 2020; 7
J Wen (13478_CR21) 2020; 63
X Zhang (13478_CR15) 2023; 11
M Jia (13478_CR25) 2023; 52
N Makris (13478_CR52) 2006; 83
MS Chong (13478_CR7) 2005; 4
S Parvin (13478_CR26) 2024; 7
SG Mueller (13478_CR49) 2005; 15
SA Martin (13478_CR23) 2023; 19
S Festag (13478_CR42) 2023; 139
I Rye (13478_CR33) 2022; 12
13478_CR34
13478_CR35
Z Hu (13478_CR10) 2023; 229
A Association (13478_CR2) 2019; 15
13478_CR30
S Liu (13478_CR18) 2022; 12
Y Liu (13478_CR44) 2022; 75
BK Chaurasia (13478_CR32) 2023; 61
R SinhaRoy (13478_CR36) 2024; 49
W Zhu (13478_CR17) 2021; 40
A Moscoso (13478_CR6) 2019; 23
N Yousefzadeh (13478_CR28) 2024; 14
A Aghaei (13478_CR14) 2022; 32
13478_CR38
13478_CR39
13478_CR47
13478_CR48
13478_CR46
13478_CR43
C Rosén (13478_CR1) 2013; 8
M Luo (13478_CR29) 2023; 156
13478_CR41
F Liu (13478_CR16) 2023; 80
13478_CR40
References_xml – volume: 12
  start-page: 15566
  year: 2022
  ident: 13478_CR33
  publication-title: Sci. Reports
– volume: 14
  start-page: 7710
  year: 2024
  ident: 13478_CR28
  publication-title: Sci. Reports
– ident: 13478_CR41
  doi: 10.1109/JBHI.2024.3397611
– volume: 61
  start-page: 2033
  year: 2023
  ident: 13478_CR32
  publication-title: Med. & Biol. Eng. & Comput.
  doi: 10.1007/s11517-023-02863-6
– volume: 18
  year: 2023
  ident: 13478_CR24
  publication-title: Plos one
  doi: 10.1371/journal.pone.0294253
– volume: 10
  start-page: 2204717
  year: 2023
  ident: 13478_CR11
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202204717
– volume: 10
  start-page: 2173
  year: 2019
  ident: 13478_CR27
  publication-title: Nat. communications
  doi: 10.1038/s41467-019-10212-1
– volume: 139
  year: 2023
  ident: 13478_CR42
  publication-title: J. Biomed. Informatics
  doi: 10.1016/j.jbi.2023.104320
– volume: 52
  start-page: 249
  year: 2023
  ident: 13478_CR25
  publication-title: Dementia Geriatr. Cogn. Disord.
  doi: 10.1159/000531819
– ident: 13478_CR51
  doi: 10.1109/ICCV.2017.74
– ident: 13478_CR19
  doi: 10.1117/12.2654445
– volume: 10
  start-page: 406
  year: 2018
  ident: 13478_CR22
  publication-title: Front. aging neuroscience
  doi: 10.3389/fnagi.2018.00406
– ident: 13478_CR46
– volume: 5
  start-page: 160
  year: 2024
  ident: 13478_CR13
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-023-02461-1
– ident: 13478_CR30
  doi: 10.1007/978-3-030-00689-1_9
– ident: 13478_CR39
  doi: 10.3390/informatics10010028
– volume: 83
  start-page: 155
  year: 2006
  ident: 13478_CR52
  publication-title: Schizophr. research
  doi: 10.1016/j.schres.2005.11.020
– volume: 8
  start-page: 1
  year: 2013
  ident: 13478_CR1
  publication-title: Mol. neurodegeneration
  doi: 10.1186/1750-1326-8-20
– volume: 15
  start-page: 321
  year: 2019
  ident: 13478_CR2
  publication-title: Alzheimer’s & dementia
  doi: 10.1016/j.jalz.2019.01.010
– volume: 63
  year: 2020
  ident: 13478_CR21
  publication-title: Med. image analysis
  doi: 10.1016/j.media.2020.101694
– volume: 7
  start-page: 044501
  year: 2020
  ident: 13478_CR9
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.7.4.044501
– volume: 229
  year: 2023
  ident: 13478_CR10
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.107291
– ident: 13478_CR48
  doi: 10.1145/775047.775151
– volume: 11
  start-page: 16
  year: 2024
  ident: 13478_CR45
  publication-title: Brain Informatics
  doi: 10.1186/s40708-024-00230-1
– volume: 75
  year: 2022
  ident: 13478_CR44
  publication-title: Med. image analysis
  doi: 10.1016/j.media.2021.102266
– ident: 13478_CR38
  doi: 10.1109/TMI.2023.3325703
– volume: 546
  year: 2023
  ident: 13478_CR37
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126282
– ident: 13478_CR40
  doi: 10.3233/JIFS-223996
– ident: 13478_CR43
  doi: 10.1109/ACCESS.2023.3306721
– volume: 19
  start-page: 2135
  year: 2023
  ident: 13478_CR23
  publication-title: Alzheimer’s & Dementia
  doi: 10.1002/alz.12948
– volume: 339
  year: 2020
  ident: 13478_CR31
  publication-title: J. neuroscience methods
  doi: 10.1016/j.jneumeth.2020.108701
– volume: 40
  start-page: 2354
  year: 2021
  ident: 13478_CR17
  publication-title: IEEE Transactions on Med. Imaging
  doi: 10.1109/TMI.2021.3077079
– volume: 80
  year: 2023
  ident: 13478_CR16
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2022.104400
– volume: 22
  start-page: 285
  year: 2010
  ident: 13478_CR8
  publication-title: J. Alzheimer’s disease
  doi: 10.3233/JAD-2010-091150
– ident: 13478_CR35
  doi: 10.2174/1876388X01002010046
– volume: 12
  start-page: 207
  year: 2013
  ident: 13478_CR50
  publication-title: The lancet neurology
  doi: 10.1016/S1474-4422(12)70291-0
– volume: 23
  year: 2019
  ident: 13478_CR6
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2019.101837
– volume: 15
  start-page: 869
  year: 2005
  ident: 13478_CR49
  publication-title: Neuroimaging Clin. North Am.
  doi: 10.1016/j.nic.2005.09.008
– volume: 49
  start-page: 3267
  year: 2024
  ident: 13478_CR36
  publication-title: Arab. J. for Sci. Eng.
  doi: 10.1007/s13369-023-07973-9
– volume: 125
  year: 2022
  ident: 13478_CR20
  publication-title: J. Biomed. Informatics
  doi: 10.1016/j.jbi.2021.103978
– volume: 7
  start-page: 1
  year: 2024
  ident: 13478_CR26
  publication-title: Vis. Comput. for Ind. Biomed. Art
  doi: 10.1186/s42492-024-00154-x
– volume: 89
  year: 2024
  ident: 13478_CR12
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.105773
– volume: 11
  start-page: 108603
  year: 2023
  ident: 13478_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3321220
– volume: 32
  start-page: 1889
  year: 2022
  ident: 13478_CR14
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22762
– volume: 12
  start-page: 17106
  year: 2022
  ident: 13478_CR18
  publication-title: Sci. reports
– volume: 31
  start-page: 688
  year: 2013
  ident: 13478_CR4
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.10.027
– volume: 4
  start-page: 576
  year: 2005
  ident: 13478_CR7
  publication-title: The Lancet Neurol.
  doi: 10.1016/S1474-4422(05)70168-X
– volume: 8
  year: 2013
  ident: 13478_CR3
  publication-title: PloS one
  doi: 10.1371/journal.pone.0067346
– ident: 13478_CR47
  doi: 10.1145/1102351.1102430
– volume: 156
  year: 2023
  ident: 13478_CR29
  publication-title: Comput. Biol. Medicine
  doi: 10.1016/j.compbiomed.2023.106700
– ident: 13478_CR34
  doi: 10.1007/978-3-031-43075-6_10
– volume: 7
  year: 2012
  ident: 13478_CR5
  publication-title: PloS one
  doi: 10.1371/journal.pone.0032441
SSID ssj0000529419
Score 2.4576445
Snippet Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early...
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early...
Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment....
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 28340
SubjectTerms 639/705/117
692/308
Aged
Aged, 80 and over
Alzheimer Disease - diagnosis
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
Alzheimer’s progression prediction
Automatic ROI extraction
Brain
Brain - diagnostic imaging
Cognition
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Deep learning
Diagnosis
Disease Progression
Ensemble transfer learning
Female
Humanities and Social Sciences
Humans
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
MRI
multidisciplinary
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
Prediction models
Probability
Science
Science (multidisciplinary)
Transfer learning
Vit-GAN
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hShVwQOVtKGiRuFGr9u564z2miKpFKgdEpd5W-0pbyXWjOBEKJ34Bd_4ev6Qzu45JBAIOHHKJrXgzj91vPDPfEPIax7zBQRZyNXIuF5Utc1vVZe6ZU650SACD_c4nH-TRqXh_Vp2tjfrCmrBED5wEt--CF8KYEUBfK2oIJmqcgyeRR2piJI995EWt1oKpxOrNlChV3yVT8Hq_g5MKu8lYlWP3JJjHxkkUCft_hzJ_LZYcMqZ3ye1FOzXLz6Zp1g6lwx1yr0eTdJz-xX1yK7QPyHaaL7l8SL6NWzrwQXg6nWFWBvc3GgfgUACsdNx8uQiXV2H24-v3jvb5GhrLthJlB8UOFDqUGTVL2iLObWi3sPgSp6NYO39OzyOBNT7n5OMxNa2Pj04FjbYJdHz8iJwevvv09ijvBzDkTigxz30hQV8gcPBU5UGAHsCLVBWovTAFU0ZxW3jYI4yX1kGYzYOyzgEmqerAAYk9JlvtdRueEjphvDK1nAgP-MUGr4IwFvaTYA2oz04y8malDD1NPBs65sd5rZPqNKhOR9VplpED1NdwJ3Jkxy_AcnRvOfpvlpOR3ZW2de-4neaMS_hAFJWRV8NlcDnMo5g2XC_SPXKkSi4z8iQZx7ASiI8hRGPw4_WG2WwsdfNKe3kRab0R3LKiqjKyt7Kwn-v6kyz2Biv8B9E9-x-ie07uMPQkLJ0Ru2RrPluEFwDO5vZl9MMbu981Dg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VrRBwQHwVAgUZiRsbkTi21z4GRNWuVA5Apd4iO_a2lUK62uwKLSd-AXf-Hr-EmSQbWBUhOOxl82X5zcRvMjPPAC9omzdcyEJsJmUZC-nS2Emdxp6XpkxLEoChfufjd-rwRExP5ekOjDe9MFv5-1a6u8ElhtrAuIyp7RFxvQa7Gg1Tj2A3z6cfpsM3FcpaidT0vTF4-aurF2-tP61M_5-45dUSySFPegturOq5XX-2VfXbUnRwB273HJLlHeh3YSfU9-B6t6vk-j58y2s2qEB4Nl9QLobeaqzd9oYhTWV59eU8XHwKix9fvzesz9KwtlirE-pg1HfChuKias1qYrcVa1aOPt00jCrmz9hZK1tNzzl-f8Rs7dtHd2WMrgosP3oAJwdvP745jPttF-JSGLGMfaIQJS01-qfxOIEeKYsyEsFObMKNNZlLPAJgvXIlBtdZMK4skYlIHTLkX3swqi_r8AjYjGfSajUTHlmLC94EYR2-RYKzPNFuFsHLDRjFvFPXKNqseKaLDroCoSta6AoewWvCaziTlLHbP9Bgit7RijJ4IaydYKjkhMbgU9O-iYp0x2ZWZZMI9jdoF727NkXGM4U_jJ0ieD4cRkej7Imtw-WqO0dNTJqpCB52xjGMBKNiDMw43lxvmc3WULeP1BfnrZg3UVqeSBnBeGNhv8b1t7kYD1b4D1P3-P_u_gRucvIZKo0R-zBaLlbhKZKvpXvW-9xPNzYoiA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHgwPsRWJCRuLEpqRO7zjEgVrtIu0KIiuUU-ZXuipBWbSPUPfELuPP3-CWMnQcUVog95NK4iT0e299kZr4BeObKvOFBZsN0rHWYMDUKFROj0FCd6pF2BDAu3_nwiO9PkjfH7HgLeJcL44P2PaWl36a76LAXSzxoXDIYZaFLfsTZHc5NcQm2OUMMPoDtydHb7KOrJIcYJUSYQNsMmSgW5_x54xTyZP3nIcy_AyV7b-k1uFJXc7n-IsvytwNp7wZ86IbSxKF8GtYrNdRnf7A8XnysN-F6i1FJ1rS8BVu2ug2Xm6qV6zvwLatIzzJhyHzhfD1u1yS-rA5BGEyy8uzEnn62ix9fvy9J6wUiPhisIQIhLq-F9MFL5ZpUDj2XZFkr92loSVxE_pRMPS22e8_huwMiK-Nf3YRJqtKS7OAuTPZev3-1H7ZlHUKdpMkqNBFHLRBM4PpPDY7VICTiKUNlimREU5nGKjK480jDlUbjPbap0hqRDhM2Rnx3DwbVrLIPgBQ0ZlLwIjGIipQ1qU2kwl3KKkkjoYoAnnfTnM8b9o7ce91jkTdSzlHKuZdyTgN46TShb-mYt_0Ps8U0b2cn19YkiZRjNMVUItC4Fa4uI3e8ZoXk8TiAnU6P8nY7WOYxjTleaJsF8LS_jQvZeWdkZWd104aP01HMA7jfqF3fE7S60fCj-HCxoZAbXd28U52eeLJwB5lpxFgAu53u_urXv2Sx2-v3f4ju4cWaP4Kr1Km3C71JdmCwWtT2MYK7lXrSruSf6thLGg
  priority: 102
  providerName: Unpaywall
Title An integrated predictive model for Alzheimer’s disease progression from cognitively normal subjects using generated MRI and interpretable AI
URI https://link.springer.com/article/10.1038/s41598-025-13478-2
https://www.ncbi.nlm.nih.gov/pubmed/40759727
https://www.proquest.com/docview/3236323758
https://www.proquest.com/docview/3236679136
https://pubmed.ncbi.nlm.nih.gov/PMC12322055
https://www.nature.com/articles/s41598-025-13478-2.pdf
https://doaj.org/article/ced44aa7255b484488589161964fa637
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61iRBwQLwKhhItEjdq1V6_Dwi5Uas2UqOqECmcrF3vJq1knJCHUDjxC7jz9_glzKwfJQJVHHxZW_Z6Z2b3252ZbwDeUJk3XMi0nUR5bvuBdG0ZxK6teJ7kbk4EMJTvfD4MT0f-YByMd2DY5MJQWGUzJ5qJWs1yOiM_9LgX4oXw9v38i01Vo8i72pTQEHVpBfXOUIztQpcTM1YHukfHw4vL9tSF_Fq-m9TZM44XHy5xBaMsMx7YlFWJarO1Qhki_3-hz7-DKFtP6n24uy7nYvNVFMUfi9XJQ3hQo0yWVmrxCHZ0-RjuVHUnN0_gR1qylidCsfmCvDU07zFTGIchkGVp8e1KX3_Wi1_ffy5Z7cdhJpyrovJglJnC2vCjYsNKwr8FW64lHe4sGcXUT9nUEFvTd84vz5golfl0FegoC83Ss6cwOjn-2D-168IMdu4n_spWTohyjIMYLThROIAKQU2YBKgOjnB4IhJPOgrnDqFCmeP229OJzHPEKkGsPURoe9ApZ6V-DmzCvUDE4cRXiGukVon2hcR5RkvBnVhOLHjbCCObV_wbmfGbe3FWiS5D0WVGdBm34Ijk1T5J3NmmYbaYZrUpZrlWvi9EhJsp6ce4PY2psmJIzGQTEXqRBfuNtLPaoJfZjfpZ8Lq9jaZI_hVR6tm6eiaMEtcLLXhWKUfbE9w349aN48vjLbXZ6ur2nfL6ytB9E-jlThBYcNBo2E2_bhuLg1YL_2PoXtz-1y_hHicboWAZfx86q8Vav0I4tpI92I3GUQ-6aTr4MOjVFoet_bDfM0cc2DYaXqSffgP8gjpC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbGJjQ4IL4JDDASnFi01HHS-DChDja1bK3QtEm7eXbsdpNCWppWUznxC7jzZ_gx_BLe1_kYFWjiskMvTRQ7eb_9fjyEvEaYNzBk1hftNPV5pFu-jpKWb1gq0laKA2Cw37k_iLvH_ONJdLJCfta9MFhWWetEp6jNOMUz8q2QhTH8wL19N_niI2oUZldrCA1VQSuYbTdirGrs2LeLCwjhiu3eB6D3G8b2do_ed_0KZcBPueAz3wQxbCqJEmBHYcCeGbDQsYjg3QIVMKFEqAMDgqBMrFOIJUMrdJqC4Y0SG4K7Ac-9QdZ4yAUEf2s7u4NPh80pD-bReEtU3TpBmGwVsAJ2tbHIxy5OYNMli-iAA_7l7f5dtNlkbm-T9Xk-UYsLlWV_GMe9u-RO5dXSTsmG98iKze-TmyXO5eIB-d7JaTOXwtDJFLNDqGepA-Kh4DjTTvb1zJ5_ttNf334UtMobUVc-Vo4OodgJQ5typ2xBc_S3M1rMNR4mFRRr-Ed05AZp4zr9wx5VuXFLl4WVOrO003tIjq-FRI_Iaj7O7RNChyyMVBIPuQE_SlsjLFca9JrVigWJHnrkbU0MOSnnfUiXpw8TWZJOAumkI51kHtlBejV34qxu98d4OpKV6MvUGs6VakPwpnkC4XCCSI4xTkIbqjhse2SjprasFEghL9ndI6-ayyD6mM9RuR3Py3vitmiFsUcel8zR7ATidAgVGTw8WWKbpa0uX8nPz9x4cXSyWRBFHtmsOexyX1d9i82GC__j0z29-q1fkvXuUf9AHvQG-8_ILYbygoU6fIOszqZz-xxcwZl-UckbJafXLeK_Abdzb-8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIl4HxLuGAosEJ2rF2V0_9oBQoEQNpRVCVMptu-vdpJVcJ8SJqnDiF3Dnr_Bz-CXM-FUiUMWlh1xia732vHe-mSHkOY55A0PmfBmnqS9C0_VNmHR9y1KZdlNsAIP1znv70c6BeD8Mh2vkZ1MLg7DKRieWitpOUjwj73DGI_iBe9sZ1bCIj9v919MvPk6QwkxrM06jYpFdtzyF8K14NdgGWr9grP_u89sdv54w4KdCirlvgwg2lIQJsKK0YMssWOdIhvBegQ6Y1JKbwIIQaBuZFOJI7qRJUzC6YeI4uBqw7iVyOeZcIpwwHsbt-Q5m0ERX1nU6AU86BayP9Wws9LF-Exh0xRaWIwP-5ef-Dddsc7Y3yLVFPtXLU51lf5jF_i1ys_Znaa9iwNtkzeV3yJVqwuXyLvney2nbkcLS6QzzQqhhaTmCh4LLTHvZ1yN3fOJmv779KGidMaIlcKxqGkKxBoa2QKdsSXP0tDNaLAweIxUU0ftjOi5baONz9j4NqM5t-egKUmkyR3uDe-TgQgh0n6znk9xtEDpiPNRJNBIWPCjjrHRCG9BozmgWJGbkkZcNMdS06vShygw9T1RFOgWkUyXpFPPIG6RXeyd26S7_mMzGqhZ6lTorhNYxhG1GJBAIJzjDMcIeaCMd8dgjmw21Va06CnXG6B551l4GocdMjs7dZFHdE8WyyyOPPKiYo90JROgQJDJYPFlhm5Wtrl7Jj4_KxuLoXrMgDD2y1XDY2b7O-xZbLRf-x6d7eP5bPyVXQbDVh8H-7iNynaG4IEJHbJL1-WzhHoMPODdPSmGj5PCipfs3oattiQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHgwPsRWJCRuLEpqRO7zjEgVrtIu0KIiuUU-ZXuipBWbSPUPfELuPP3-CWMnQcUVog95NK4iT0e299kZr4BeObKvOFBZsN0rHWYMDUKFROj0FCd6pF2BDAu3_nwiO9PkjfH7HgLeJcL44P2PaWl36a76LAXSzxoXDIYZaFLfsTZHc5NcQm2OUMMPoDtydHb7KOrJIcYJUSYQNsMmSgW5_x54xTyZP3nIcy_AyV7b-k1uFJXc7n-IsvytwNp7wZ86IbSxKF8GtYrNdRnf7A8XnysN-F6i1FJ1rS8BVu2ug2Xm6qV6zvwLatIzzJhyHzhfD1u1yS-rA5BGEyy8uzEnn62ix9fvy9J6wUiPhisIQIhLq-F9MFL5ZpUDj2XZFkr92loSVxE_pRMPS22e8_huwMiK-Nf3YRJqtKS7OAuTPZev3-1H7ZlHUKdpMkqNBFHLRBM4PpPDY7VICTiKUNlimREU5nGKjK480jDlUbjPbap0hqRDhM2Rnx3DwbVrLIPgBQ0ZlLwIjGIipQ1qU2kwl3KKkkjoYoAnnfTnM8b9o7ce91jkTdSzlHKuZdyTgN46TShb-mYt_0Ps8U0b2cn19YkiZRjNMVUItC4Fa4uI3e8ZoXk8TiAnU6P8nY7WOYxjTleaJsF8LS_jQvZeWdkZWd104aP01HMA7jfqF3fE7S60fCj-HCxoZAbXd28U52eeLJwB5lpxFgAu53u_urXv2Sx2-v3f4ju4cWaP4Kr1Km3C71JdmCwWtT2MYK7lXrSruSf6thLGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+predictive+model+for+Alzheimer%E2%80%99s+disease+progression+from+cognitively+normal+subjects+using+generated+MRI+and+interpretable+AI&rft.jtitle=Scientific+reports&rft.au=Aghaei%2C+Atefe&rft.au=Moghaddam%2C+Mohsen+Ebrahimi&rft.date=2025-08-04&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=28340&rft_id=info:doi/10.1038%2Fs41598-025-13478-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon