An intelligent optimized object detection system for disabled people using advanced deep learning models with optimization algorithm
Visually impaired persons face several problems in their day-to-day lives, and technological intermediaries might help them encounter their challenges. Among other beneficial technologies, object detection (OD) is a computer technology related to image processing and computer vision (CV), which iden...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 16514 - 19 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
13.05.2025
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-00608-z |
Cover
| Abstract | Visually impaired persons face several problems in their day-to-day lives, and technological intermediaries might help them encounter their challenges. Among other beneficial technologies, object detection (OD) is a computer technology related to image processing and computer vision (CV), which identifies and describes objects like vehicles, animals, and persons from digital videos and images. Visually impaired persons (VIPs) can utilize the OD approach for detecting problems and recognizing services to offer secure and informative navigation. Recently, machine learning (ML) and deep learning (DL) have been trained with numerous images of objects, which are highly related to people with disabilities. In this article, a novel Object Detection System for Disabled People Using Advanced Deep Learning Models and Sparrow Search Optimization (ODSDP-ADLMSSO) approach is proposed. The main aim of the ODSDP-ADLMSSO model is to enhance the OD method for visually challenged people. At first, the Gaussian filter (GF) is employed in the image pre-processing stage to remove noise and make the image input data more transparent. In addition, the YOLOv7 method is used for the process of OD to identify, locate, and classify objects within an image. Furthermore, the MobileNetV3 model is utilized for the feature extraction process. The temporal convolutional network (TCN) model is implemented for classification. Finally, the hyperparameter selection of the TCN model is implemented by the sparrow search optimization algorithm (SSOA) model. The efficiency of the ODSDP-ADLMSSO method is examined under the Indoor OD dataset. The comparison study of the ODSDP-ADLMSSO method demonstrated a superior accuracy value of 99.57% over existing techniques. |
|---|---|
| AbstractList | Abstract Visually impaired persons face several problems in their day-to-day lives, and technological intermediaries might help them encounter their challenges. Among other beneficial technologies, object detection (OD) is a computer technology related to image processing and computer vision (CV), which identifies and describes objects like vehicles, animals, and persons from digital videos and images. Visually impaired persons (VIPs) can utilize the OD approach for detecting problems and recognizing services to offer secure and informative navigation. Recently, machine learning (ML) and deep learning (DL) have been trained with numerous images of objects, which are highly related to people with disabilities. In this article, a novel Object Detection System for Disabled People Using Advanced Deep Learning Models and Sparrow Search Optimization (ODSDP-ADLMSSO) approach is proposed. The main aim of the ODSDP-ADLMSSO model is to enhance the OD method for visually challenged people. At first, the Gaussian filter (GF) is employed in the image pre-processing stage to remove noise and make the image input data more transparent. In addition, the YOLOv7 method is used for the process of OD to identify, locate, and classify objects within an image. Furthermore, the MobileNetV3 model is utilized for the feature extraction process. The temporal convolutional network (TCN) model is implemented for classification. Finally, the hyperparameter selection of the TCN model is implemented by the sparrow search optimization algorithm (SSOA) model. The efficiency of the ODSDP-ADLMSSO method is examined under the Indoor OD dataset. The comparison study of the ODSDP-ADLMSSO method demonstrated a superior accuracy value of 99.57% over existing techniques. Visually impaired persons face several problems in their day-to-day lives, and technological intermediaries might help them encounter their challenges. Among other beneficial technologies, object detection (OD) is a computer technology related to image processing and computer vision (CV), which identifies and describes objects like vehicles, animals, and persons from digital videos and images. Visually impaired persons (VIPs) can utilize the OD approach for detecting problems and recognizing services to offer secure and informative navigation. Recently, machine learning (ML) and deep learning (DL) have been trained with numerous images of objects, which are highly related to people with disabilities. In this article, a novel Object Detection System for Disabled People Using Advanced Deep Learning Models and Sparrow Search Optimization (ODSDP-ADLMSSO) approach is proposed. The main aim of the ODSDP-ADLMSSO model is to enhance the OD method for visually challenged people. At first, the Gaussian filter (GF) is employed in the image pre-processing stage to remove noise and make the image input data more transparent. In addition, the YOLOv7 method is used for the process of OD to identify, locate, and classify objects within an image. Furthermore, the MobileNetV3 model is utilized for the feature extraction process. The temporal convolutional network (TCN) model is implemented for classification. Finally, the hyperparameter selection of the TCN model is implemented by the sparrow search optimization algorithm (SSOA) model. The efficiency of the ODSDP-ADLMSSO method is examined under the Indoor OD dataset. The comparison study of the ODSDP-ADLMSSO method demonstrated a superior accuracy value of 99.57% over existing techniques. Visually impaired persons face several problems in their day-to-day lives, and technological intermediaries might help them encounter their challenges. Among other beneficial technologies, object detection (OD) is a computer technology related to image processing and computer vision (CV), which identifies and describes objects like vehicles, animals, and persons from digital videos and images. Visually impaired persons (VIPs) can utilize the OD approach for detecting problems and recognizing services to offer secure and informative navigation. Recently, machine learning (ML) and deep learning (DL) have been trained with numerous images of objects, which are highly related to people with disabilities. In this article, a novel Object Detection System for Disabled People Using Advanced Deep Learning Models and Sparrow Search Optimization (ODSDP-ADLMSSO) approach is proposed. The main aim of the ODSDP-ADLMSSO model is to enhance the OD method for visually challenged people. At first, the Gaussian filter (GF) is employed in the image pre-processing stage to remove noise and make the image input data more transparent. In addition, the YOLOv7 method is used for the process of OD to identify, locate, and classify objects within an image. Furthermore, the MobileNetV3 model is utilized for the feature extraction process. The temporal convolutional network (TCN) model is implemented for classification. Finally, the hyperparameter selection of the TCN model is implemented by the sparrow search optimization algorithm (SSOA) model. The efficiency of the ODSDP-ADLMSSO method is examined under the Indoor OD dataset. The comparison study of the ODSDP-ADLMSSO method demonstrated a superior accuracy value of 99.57% over existing techniques.Visually impaired persons face several problems in their day-to-day lives, and technological intermediaries might help them encounter their challenges. Among other beneficial technologies, object detection (OD) is a computer technology related to image processing and computer vision (CV), which identifies and describes objects like vehicles, animals, and persons from digital videos and images. Visually impaired persons (VIPs) can utilize the OD approach for detecting problems and recognizing services to offer secure and informative navigation. Recently, machine learning (ML) and deep learning (DL) have been trained with numerous images of objects, which are highly related to people with disabilities. In this article, a novel Object Detection System for Disabled People Using Advanced Deep Learning Models and Sparrow Search Optimization (ODSDP-ADLMSSO) approach is proposed. The main aim of the ODSDP-ADLMSSO model is to enhance the OD method for visually challenged people. At first, the Gaussian filter (GF) is employed in the image pre-processing stage to remove noise and make the image input data more transparent. In addition, the YOLOv7 method is used for the process of OD to identify, locate, and classify objects within an image. Furthermore, the MobileNetV3 model is utilized for the feature extraction process. The temporal convolutional network (TCN) model is implemented for classification. Finally, the hyperparameter selection of the TCN model is implemented by the sparrow search optimization algorithm (SSOA) model. The efficiency of the ODSDP-ADLMSSO method is examined under the Indoor OD dataset. The comparison study of the ODSDP-ADLMSSO method demonstrated a superior accuracy value of 99.57% over existing techniques. |
| ArticleNumber | 16514 |
| Author | Obayya, Marwa Iskandar, Huda G. Al-Wesabi, Fahd N. Alshammeri, Menwa |
| Author_xml | – sequence: 1 givenname: Marwa surname: Obayya fullname: Obayya, Marwa email: miobaya@pnu.edu.sa organization: Department of Biomedical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University – sequence: 2 givenname: Fahd N. surname: Al-Wesabi fullname: Al-Wesabi, Fahd N. organization: Department of Computer Science, Applied College at Mahayil, King Khalid University, Department of Information Systems, Faculty of Computer and Information Technology, Sana’a University – sequence: 3 givenname: Menwa surname: Alshammeri fullname: Alshammeri, Menwa organization: Department of Computer Science, College of Computer and Information Sciences, Jouf University – sequence: 4 givenname: Huda G. surname: Iskandar fullname: Iskandar, Huda G. organization: Department of Information Systems, Faculty of Computer and Information Technology, Sana’a University, King Salman Center for Disability Research |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40360540$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1TAQhiNUREvpC7BAltiwCTi-5MQrVFVcKlViA2vLscepjxw72Emr0zUPjs-lpWWB8Gas8T-fx_P7ZXUUYoCqet3g9w2m3YfMGi66GhNeY9zirr57Vp0QzHhNKCFHj_bH1VnOa1wWJ4I14kV1zDBtMWf4pPp1HpALM3jvBggzitPsRncHBsV-DXpGBuYSXAwob_IMI7IxIeOy6n0RTRAnD2jJLgxImRsVdMkagAl5UCls02M04DO6dfP1PV7tgMoPMZXs-Kp6bpXPcHaIp9WPz5--X3ytr759ubw4v6o1E2yu9cpi3XJlekyJ0bTvbE-Ethw4UAABhhChVlRwK6xqqLEtpsyy3rZUGEboaXW555qo1nJKblRpI6NycpeIaZAqzU57kBgE1pxwIXjHgGrBWoGtIP2qbYnpWWHRPWsJk9rcKu8fgA2WW4vk3iJZLJI7i-Rdqfq4r5qWfgSjy8iT8k9aeXoS3LUc4o1sCF7xjvNCeHcgpPhzgTzL0WVd_FMB4pIlJZiKRnSYFunbv6TruKRQJrxVMdwVYlNUbx639NDL_R8pArIX6BRzTmD_76GH8eQiDgOkP3f_o-o3sIzizA |
| Cites_doi | 10.25165/j.ijabe.20241706.9095 10.1109/JIOT.2025.3530253 10.1016/j.ssci.2024.106690 10.34133/cbsystems.0098 10.1145/3613904.3642227 10.1016/j.jer.2023.100132 10.1007/978-981-16-9576-6_13 10.1109/IDCIOT64235.2025.10914756 10.1007/s11760-024-03560-z 10.1109/TNNLS.2024.3487833 10.1109/ACCESS.2025.3534321 10.1007/s11036-022-01939-1 10.3390/s20030636 10.2991/978-94-6463-196-8_17 10.1145/3290605.3300246 10.7307/ptt.v36i6.667 10.3389/fninf.2024.1454583 10.7717/peerj-cs.1995 10.1038/s41598-025-87240-z 10.1002/ett.70103 10.1007/s11042-022-13644-y 10.1016/j.procs.2023.10.233 10.1007/s41315-025-00439-1 10.3390/mi11121055 10.1186/s40537-023-00689-5 10.1049/gtd2.12798 10.1016/j.heliyon.2024.e39537 10.1201/9781003514336-10 10.1109/ACCESS.2021.3135024 10.54216/JISIoT.140110 10.1155/jom/5071695 10.1016/j.asoc.2025.112979 10.3390/f15071096 10.70003/160792642025032602011 10.1109/ACCESS.2023.3291395 10.1016/j.neucom.2023.126963 10.3390/app13095802 10.3390/s24030870 10.34133/cbsystems.0104 10.1007/s11036-024-02419-4 10.1109/ICICT60155.2024.10545004 10.34133/cbsystems.0141 10.1016/j.rse.2021.112307 10.22201/icat.24486736e.2024.22.6.2485 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-00608-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central (New) (NC LIVE) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_0e90c52599584e3c94690f92b7662db4 10.1038/s41598-025-00608-z PMC12075855 40360540 10_1038_s41598_025_00608_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: King Salman Center for Disability Research grantid: KSRG-2024- 396 funderid: https://doi.org/10.13039/501100019345 – fundername: King Salman Center for Disability Research grantid: KSRG-2024- 396 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c494t-c7f0c65adb032dc3b8fb29cf5e5e3ee9ed229a7395f9fa13df6034f4bf639d423 |
| IEDL.DBID | DOA |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:02:18 EDT 2025 Sun Oct 26 03:15:29 EDT 2025 Tue Sep 30 17:03:12 EDT 2025 Fri Sep 05 16:47:40 EDT 2025 Tue Oct 07 07:58:00 EDT 2025 Sat May 17 01:30:23 EDT 2025 Wed Oct 01 06:26:01 EDT 2025 Thu May 15 22:56:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Pedestrian Disabled people Sparrow search optimization MobileNetV3 Pathway |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-c7f0c65adb032dc3b8fb29cf5e5e3ee9ed229a7395f9fa13df6034f4bf639d423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/0e90c52599584e3c94690f92b7662db4 |
| PMID | 40360540 |
| PQID | 3204087581 |
| PQPubID | 2041939 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0e90c52599584e3c94690f92b7662db4 unpaywall_primary_10_1038_s41598_025_00608_z pubmedcentral_primary_oai_pubmedcentral_nih_gov_12075855 proquest_miscellaneous_3203919803 proquest_journals_3204087581 pubmed_primary_40360540 crossref_primary_10_1038_s41598_025_00608_z springer_journals_10_1038_s41598_025_00608_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-13 |
| PublicationDateYYYYMMDD | 2025-05-13 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 608_CR48 608_CR44 ZA Ali (608_CR3) 2023; 11 MAB Fayyaz (608_CR2) 2020; 11 Q Wang (608_CR32) 2024; 36 AZ Abualkishik (608_CR5) 2021; 4 608_CR9 608_CR40 D Plikynas (608_CR1) 2020; 20 608_CR41 J Contreras-Castillo (608_CR37) 2025; 36 608_CR42 608_CR43 608_CR4 J Selwyn (608_CR22) 2023; 2 608_CR16 608_CR17 608_CR11 608_CR12 608_CR13 608_CR14 R Salama (608_CR10) 2025; 2 608_CR19 M Li (608_CR46) 2024; 18 M Song (608_CR45) 2024; 17 C Bulla (608_CR7) 2022 J Baldonado (608_CR15) 2024; 30 608_CR51 608_CR26 608_CR27 608_CR23 608_CR24 608_CR25 S Pokuciński (608_CR49) 2023; 225 608_CR20 608_CR21 SM Saqib (608_CR28) 2024; 18 608_CR38 608_CR39 608_CR33 608_CR34 608_CR35 608_CR36 Z Zhang (608_CR50) 2023; 122 G Yan (608_CR18) 2022; 27 T Diwan (608_CR6) 2023; 82 608_CR30 SU Rao (608_CR8) 2021; 9 608_CR31 CL Luo (608_CR29) 2025; 26 GF Edakulathur (608_CR47) 2024; 22 |
| References_xml | – volume: 2 start-page: 70 issue: 1 year: 2023 ident: 608_CR22 publication-title: Int. J. Data Inf. Intell. Comput. – volume: 17 start-page: 238 issue: 6 year: 2024 ident: 608_CR45 publication-title: Int. J. Agricultural Biol. Eng. doi: 10.25165/j.ijabe.20241706.9095 – ident: 608_CR39 doi: 10.1109/JIOT.2025.3530253 – ident: 608_CR19 doi: 10.1016/j.ssci.2024.106690 – ident: 608_CR36 doi: 10.34133/cbsystems.0098 – ident: 608_CR13 doi: 10.1145/3613904.3642227 – volume: 11 start-page: 100 year: 2023 ident: 608_CR3 publication-title: J. Eng. Res. doi: 10.1016/j.jer.2023.100132 – volume: 30 start-page: 8087 issue: 5 year: 2024 ident: 608_CR15 publication-title: Educational Administration: Theory Pract. – ident: 608_CR4 doi: 10.1007/978-981-16-9576-6_13 – volume: 2 start-page: 147 year: 2025 ident: 608_CR10 publication-title: Fusion: Pract. Appl. – ident: 608_CR27 doi: 10.1109/IDCIOT64235.2025.10914756 – volume: 18 start-page: 9465 issue: 12 year: 2024 ident: 608_CR28 publication-title: Signal. Image Video Process. doi: 10.1007/s11760-024-03560-z – ident: 608_CR30 doi: 10.1109/TNNLS.2024.3487833 – ident: 608_CR41 doi: 10.1109/ACCESS.2025.3534321 – volume: 27 start-page: 1252 issue: 3 year: 2022 ident: 608_CR18 publication-title: Mob. Networks Appl. doi: 10.1007/s11036-022-01939-1 – volume: 122 start-page: 103454 year: 2023 ident: 608_CR50 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 20 start-page: 636 year: 2020 ident: 608_CR1 publication-title: Sensors doi: 10.3390/s20030636 – ident: 608_CR12 doi: 10.2991/978-94-6463-196-8_17 – ident: 608_CR9 doi: 10.1145/3290605.3300246 – volume: 36 start-page: 1068 issue: 6 year: 2024 ident: 608_CR32 publication-title: Promet-Traffic&Transportation doi: 10.7307/ptt.v36i6.667 – ident: 608_CR42 doi: 10.3389/fninf.2024.1454583 – ident: 608_CR24 doi: 10.7717/peerj-cs.1995 – ident: 608_CR23 doi: 10.1038/s41598-025-87240-z – volume: 36 start-page: e70103 issue: 3 year: 2025 ident: 608_CR37 publication-title: Trans. Emerg. Telecommunications Technol. doi: 10.1002/ett.70103 – volume: 82 start-page: 9243 year: 2023 ident: 608_CR6 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-022-13644-y – volume: 225 start-page: 2420 year: 2023 ident: 608_CR49 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2023.10.233 – ident: 608_CR35 doi: 10.1007/s41315-025-00439-1 – volume: 11 start-page: 1055 year: 2020 ident: 608_CR2 publication-title: Micromachines doi: 10.3390/mi11121055 – ident: 608_CR14 doi: 10.1186/s40537-023-00689-5 – volume: 18 start-page: 885 issue: 5 year: 2024 ident: 608_CR46 publication-title: IET Generation Transmission Distribution doi: 10.1049/gtd2.12798 – ident: 608_CR26 doi: 10.1016/j.heliyon.2024.e39537 – ident: 608_CR31 doi: 10.1201/9781003514336-10 – volume: 9 start-page: 166351 year: 2021 ident: 608_CR8 publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3135024 – ident: 608_CR33 doi: 10.54216/JISIoT.140110 – ident: 608_CR25 doi: 10.1155/jom/5071695 – ident: 608_CR21 doi: 10.1016/j.asoc.2025.112979 – ident: 608_CR44 doi: 10.3390/f15071096 – volume: 4 start-page: 39 issue: 2 year: 2021 ident: 608_CR5 publication-title: Am. J. Bus. Oper. Res. – volume: 26 start-page: 265 issue: 2 year: 2025 ident: 608_CR29 publication-title: J. Internet Technol. doi: 10.70003/160792642025032602011 – ident: 608_CR51 doi: 10.1109/ACCESS.2023.3291395 – ident: 608_CR40 doi: 10.1016/j.neucom.2023.126963 – ident: 608_CR16 doi: 10.3390/app13095802 – ident: 608_CR17 doi: 10.3390/s24030870 – ident: 608_CR38 doi: 10.34133/cbsystems.0104 – ident: 608_CR48 – volume-title: Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing year: 2022 ident: 608_CR7 – ident: 608_CR20 doi: 10.1007/s11036-024-02419-4 – ident: 608_CR11 doi: 10.1109/ICICT60155.2024.10545004 – ident: 608_CR34 doi: 10.34133/cbsystems.0141 – ident: 608_CR43 doi: 10.1016/j.rse.2021.112307 – volume: 22 start-page: 846 issue: 6 year: 2024 ident: 608_CR47 publication-title: J. Appl. Res. Technol. doi: 10.22201/icat.24486736e.2024.22.6.2485 |
| SSID | ssj0000529419 |
| Score | 2.450828 |
| Snippet | Visually impaired persons face several problems in their day-to-day lives, and technological intermediaries might help them encounter their challenges. Among... Abstract Visually impaired persons face several problems in their day-to-day lives, and technological intermediaries might help them encounter their... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 16514 |
| SubjectTerms | 631/114 639/705 Algorithms Computer vision Deep Learning Disabled people Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Machine learning MobileNetV3 multidisciplinary Neural Networks, Computer Optimization algorithms Pathway Pedestrian People with disabilities Persons with Disabilities Persons with Visual Disabilities Science Science (multidisciplinary) Sparrow search optimization Visual impairment |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFdE-iF_VaJUVfLOhm91NLvsg0kpLETxELPQtbPbjenBNzl6O0nv2D3dn81EPpfgWspuw2ZnZ_WVm9jcA7-lY5twmCi2Nx8IoHpdcsVhYSl3KdJkkeFD46yQ7PRNfztPzLZj0Z2EwrbJfE8NCbWqNPvIDzry6eXCdJ58WP2OsGoXR1b6EhupKK5iPgWLsHmwzZMYawfbR8eTb98HrgnEtkcju9Azl-cHS72B4yoylMXKT5PF6Y4cKRP7_Qp9_J1EOkdQdeLCqFurmWs3nf2xWJ4_hUYcyyWGrFk9gy1ZP4X5bd_LmGfw6rMhs4OJsSO3XjcvZ2hpSl-iXIcY2IUWrIi3TM_HQlhik4537Tm3WOcGU-Snpkwj8M3ZBuiIUUxIq7CwJunn71wcdIGo-9dPaXFw-h7OT4x-fT-OuHEOshRRNrMeO6ixVpqScGc3L3JVMapfa1HJrpTWMSYWBPyedSrhxGeXCidJ5FGQ8bNuFUVVX9iUQvwhIqzKZjo0Q1PhLp6hzdKxzapVkEXzoRVAsWtaNIkTLeV60Aiu8wIogsGIdwRFKaeiJjNnhRn01LToDLKiVVKcM-dVyYbmW6BdwkpXjLGOmFBHs9TIuOjNeFrdKF8G7odkbIEZVVGXrVejDZSJzyiN40arEMBLh8QFi4gjyDWXZGOpmSzW7CCTfCaP4K5dGsN_r1e247pqL_UH3_mPqXt391a_hIQuWkcYJ34NRc7WybzwIa8q3nWX9BpSuMp4 priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFVEfxK_qapUIvnmL2SS7mzyeYikH-qKFvoVkk5wH192jd4f0nvuHN8l-6FIRfVuySQiZmcwkM_MbgHe4FJzaTAVJoykziqaaKpIyi7HLSaWzLCQKf_lanJ6x-Xl-fgDTPhdm5L-P0N0br2JCGhjJ0wAewtP9HTjknjH5BA5ns_m3-fCmErxWLBNdbowf_uH24JH-iTD9f7Itb4dIDn7SB3BvV6_V1U-1Wv2mik4ewcPOhkSzluiP4cDWT-BuW1Xy6ilcz2q0HJA2t6jxp8LFcm8NanR4dUHGbmMAVo1aHGfkDVdkAtjuyndqY8pRCIhfoD5EwI-xa9SVmFigWD9ng8Ijbj99pDBSq0Vz6VsvnsHZyefvn07TrthCWjHBtmlVOlwVuTIaU2IqqrnTRFQut7ml1gprCBEquPWccCqjxhWYMse08zaO8UbZEUzqprYvAHkRF1YVIi8NY9j4T6ewc7isOLZKkATe9ySQ6xZTQ0ZfOOWyJZj0BJORYHKfwMdApaFnwMOODZ5NZCdeEluBq5wE9DTOLK1EuPU7QXRZFMRolsBxT2PZCelGUuJPMH9f41kCb4ffXryCz0TVttnFPlRkgmOawPOWJYaVMK_9g8WbAB8xy2ip4z_18keE8M4IDhe1PIFpz1e_1vW3vZgOvPcPW_fy_2Z_BfdJlJQ8zegxTLaXO_vam1xb_aaTtBuRBCdf priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHgwPsRWJCRuLEpjh9JfCyI1QqJFQcqllNkx3a3optUbSq0PfPDsZ0HFFaIvUXOOLLHY_uLPfMNwCuciZyaRPqZRmOmJY0VlSRmBmPLSamSxAcKfzxJj6fswyk_3YO0j4UJTvuB0jIs07132Ju122h8MBjhsacQyePteKntNdhPucPgI9ifnnyafPWZ5BxGiR1MIF2EDKb5JZV3dqFA1n8ZwvzbUXK4Lb0FNzbVUl58l4vFbxvS0R340nel9UP5Nt40alxu_2B5vHpf78LtDqOiSSt5D_ZMdR-ut1krLx7Aj0mF5gOTZ4Nqt-qcz7dGo1r5Ux2kTRMcvCrU8kQjB4yR9mS-CyfU-qwj73A_Q70LgqtjlqhLYTFDIT_PGvlD4v7zwYKQXMzqlSs9fwjTo_ef3x3HXTKHuGSCNXGZWVymXGqFKdElVblVRJSWG26oMcJoQoT014ZWWJlQbVNMmWXKOgylHeh7BKOqrswTQG4JEUamgmeaMazdo5XYWpyVOTZSkAhe94NbLFvOjiLctdO8aHVbON0WQbfFNoK3fvwHSc-3HQrq1azoxqTARuCSE8_OljNDS-FPFawgKktTohWL4KC3nqJbBNYFdbboEwbkSQQvh9du-vo7GVmZehNkqEhEjmkEj1tjG1rCHLrwiDqCfMcMd5q6-6aanwWK8IRg_yPIIzjsLfZXu_6li8PBqv9DdU-vJv4MbpJg1DxO6AGMmtXGPHeQrlEvuvn7E9t1SjA priority: 102 providerName: Unpaywall |
| Title | An intelligent optimized object detection system for disabled people using advanced deep learning models with optimization algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-025-00608-z https://www.ncbi.nlm.nih.gov/pubmed/40360540 https://www.proquest.com/docview/3204087581 https://www.proquest.com/docview/3203919803 https://pubmed.ncbi.nlm.nih.gov/PMC12075855 https://www.nature.com/articles/s41598-025-00608-z.pdf https://doaj.org/article/0e90c52599584e3c94690f92b7662db4 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PMC (PubMed Central) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (New) (NC LIVE) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEAIeEN8LjMpIvLFoju0k9mNWbZoqUU1ApfIUObFdKnVJtbaa1mf-cGzng1Yg4IGnRGcncnx38Z3v_DuA9zgVnOpIOk2jIVOShgWVJGQaYxOTsogid1D44zi5mLDRNJ7ulPpyOWENPHAzcSdYC1zGxOFicaZpKZw_ZwQp0iQhqvBIoJiLHWeqQfUmgkWiPSWDKT9Z2ZXKnSYjcegwSHi43VuJPGD_76zMX5Ml-4jpI3iwqZby9kYuFjuL0vkTeNxakyhrvuIp3NHVM7jf1Je8fQ7fswrNe8zNNart_-FqvtUK1YXbf0FKr30qVoUaRGdkTVikHOzuwnZqssuRS42foS5ZwD6jl6gtNjFDvpLOCrnt3O71ntdILmb1taVevYDJ-dmX4UXYll0ISybYOixTg8sklqrAlKiSFtwURJQm1rGmWgutCBHSBfiMMDKiyiSYMsMKY60dZc2zl3BQ1ZU-BGSVXWiZiDhVjGFlb43ExuC05FhLQQL40LEgXzboGrmPilOeNwzLLcNyz7B8G8Cp41Lf0yFje4KVl7yVl_xv8hLAUcfjvFXXVU6J_ZdZz41HAbzrm62iueiJrHS98X2oiATHNIBXjUj0I2HWDnC2bwB8T1j2hrrfUs2_eTDviGDnssUBHHdy9XNcf5qL4172_mHqXv-PqXsDD4nXnziM6BEcrK83-q01ydbFAO6m03QA97Js9Hlkr6dn48tPljpMhgOvmZY2GV9mX38AgW06BQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTWjwgLgTGGAkeGLRHNtJ44cJbbCpY1uF0CbtzTix3VXqkrKmmtpnfhe_DR_nMirQxMveqsSpnJyrz-U7CL0jPZEyEymQNBZyrViYMUVDbgixMc2zKIJG4eNB0j_lX87isxX0q-2FgbLKVid6Ra3LHGLkW4w6dnPOdRp9nPwIYWoUZFfbERqqGa2gtz3EWNPYcWjmV-4IN90--Ozo_Z7S_b2TT_2wmTIQ5lzwKsx7luRJrHRGGNU5y1KbUZHb2MSGGSOMplQoyGdZYVXEtE0I45Zn1hl3zQH4wJmANc64cIe_td29wddvXZQH8mg8Ek23DmHp1tRZTOhqo3EIWChpuFiyiH5wwL-83b-LNrvM7T20Pisman6lxuM_jOP-A3S_8WrxTs2GD9GKKR6hO_Wcy_lj9HOnwKMO-7PCpdNTF6OF0bjMIA6Etal8SViBa2Rp7FxprAH-d-wW1VXuGEr0h7gtWnDPmAluhl4MsZ_oM8UQVm7_3vMcVuOhI2N1fvEEnd4KYZ6i1aIszHOEndIRRiUi7mnOiXY_rSLWkl6eEqMEDdCHlgRyUqN8SJ-dZ6msCSYdwaQnmFwEaBeo1K0EhG5_obwcykbgJTGC5DEFPLeUG5YLiENYQbNeklCd8QBttDSWjdqYymsmD9Db7rYTeMjiqMKUM7-GiUikhAXoWc0S3U6480fABw9QusQsS1tdvlOMzj2oeEQJHB3jAG22fHW9r5u-xWbHe__x6V7c_NZv0Hr_5PhIHh0MDl-iu9RLSRxGbAOtVpcz88o5gFX2upEyjL7ftmD_Bk7ucWA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxJtAASPBiUbr2M7DB4QKZdVSqDhQaW-uE9vblbbJ0s2q2j3zq_h1eJxHWYEqLr1FiRM5-WbGk5nxNwi9JqnImIkUaBoLuVYszJmiITeE2JgWeRTBRuGvh8neEf88ikcb6Fe3FwbKKjub6A21rgqIkQ8YdeLmnOssGti2LOLb7vD97EcIHaQg09q102hE5MAsz93v2_zd_q7D-g2lw0_fP-6FbYeBsOCC12GRWlIksdI5YVQXLM9sTkVhYxMbZowwmlKhIJdlhVUR0zYhjFueW7ewaw6kB878X0uZG-F0KR2lfXwHMmg8Eu0-HcKywdytlbCfjcYhsKBk4WptLfQtA_7l5_5drtnnbG-jm4typpbnajr9Y1kc3kV3Wn8W7zQCeA9tmPI-ut50uFw-QD93SjzpWT9rXDkLdTpZGY2rHCJAWJvaF4OVuOGUxs6JxhqIf6duUFPfjqE4f4y7cgV3j5nhtt3FGPtePnMMAeXu8V7asJqOHWj1yelDdHQlsDxCm2VVmicIO3MjjEpEnGrOiXaHVhFrSVpkxChBA_S2g0DOGn4P6fPyLJMNYNIBJj1gchWgD4BSPxK4uf2J6mwsW1WXxAhSxBSY3DJuWCEgAmEFzdMkoTrnAdrqMJatwZjLC_EO0Kv-slN1yN-o0lQLP4aJSGSEBehxIxL9TLjzRMD7DlC2JixrU12_Uk5OPJ14RAn8NMYB2u7k6mJel32L7V72_uPTPb38rV-iG06d5Zf9w4Nn6Bb1ShKHEdtCm_XZwjx3nl-dv_AqhtHxVev0b0Mqbvo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHgwPsRWJCRuLEpjh9JfCyI1QqJFQcqllNkx3a3optUbSq0PfPDsZ0HFFaIvUXOOLLHY_uLPfMNwCuciZyaRPqZRmOmJY0VlSRmBmPLSamSxAcKfzxJj6fswyk_3YO0j4UJTvuB0jIs07132Ju122h8MBjhsacQyePteKntNdhPucPgI9ifnnyafPWZ5BxGiR1MIF2EDKb5JZV3dqFA1n8ZwvzbUXK4Lb0FNzbVUl58l4vFbxvS0R340nel9UP5Nt40alxu_2B5vHpf78LtDqOiSSt5D_ZMdR-ut1krLx7Aj0mF5gOTZ4Nqt-qcz7dGo1r5Ux2kTRMcvCrU8kQjB4yR9mS-CyfU-qwj73A_Q70LgqtjlqhLYTFDIT_PGvlD4v7zwYKQXMzqlSs9fwjTo_ef3x3HXTKHuGSCNXGZWVymXGqFKdElVblVRJSWG26oMcJoQoT014ZWWJlQbVNMmWXKOgylHeh7BKOqrswTQG4JEUamgmeaMazdo5XYWpyVOTZSkAhe94NbLFvOjiLctdO8aHVbON0WQbfFNoK3fvwHSc-3HQrq1azoxqTARuCSE8_OljNDS-FPFawgKktTohWL4KC3nqJbBNYFdbboEwbkSQQvh9du-vo7GVmZehNkqEhEjmkEj1tjG1rCHLrwiDqCfMcMd5q6-6aanwWK8IRg_yPIIzjsLfZXu_6li8PBqv9DdU-vJv4MbpJg1DxO6AGMmtXGPHeQrlEvuvn7E9t1SjA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+optimized+object+detection+system+for+disabled+people+using+advanced+deep+learning+models+with+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Marwa+Obayya&rft.au=Fahd+N.+Al-Wesabi&rft.au=Menwa+Alshammeri&rft.au=Huda+G.+Iskandar&rft.date=2025-05-13&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1038%2Fs41598-025-00608-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0e90c52599584e3c94690f92b7662db4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |