Seamless incorporation of artificial water channels in defect-free polyamide membrane for desalination of brackish water
Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herei...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 4439 - 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.05.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-025-59726-x |
Cover
Abstract | Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m
−2
·h
−1
·bar
−1
and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.
Artificial water channels can potentially overcome the permeability-selectivity trade-off of polyamide membranes, though fabrication methods often cause defects limiting possible membranes. Here, the authors report imidazolylethyl-ureidoethyl-phenyl based artificial water channel in a defect-free polyamide membrane. |
---|---|
AbstractList | Abstract Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m−2·h−1·bar−1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes. Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m −2 ·h −1 ·bar −1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes. Artificial water channels can potentially overcome the permeability-selectivity trade-off of polyamide membranes, though fabrication methods often cause defects limiting possible membranes. Here, the authors report imidazolylethyl-ureidoethyl-phenyl based artificial water channel in a defect-free polyamide membrane. Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m ·h ·bar and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes. Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m−2·h−1·bar−1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.Artificial water channels can potentially overcome the permeability-selectivity trade-off of polyamide membranes, though fabrication methods often cause defects limiting possible membranes. Here, the authors report imidazolylethyl-ureidoethyl-phenyl based artificial water channel in a defect-free polyamide membrane. Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m-2·h-1·bar-1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m-2·h-1·bar-1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes. |
ArticleNumber | 4439 |
Author | Wang, Weiyi Wang, Jianbing Zhao, Changwei Gong, Yanxi Liu, Yingsong Xu, Xieyang Wang, Chenshuo Yu, Huijun |
Author_xml | – sequence: 1 givenname: Yingsong orcidid: 0009-0007-4871-7720 surname: Liu fullname: Liu, Yingsong organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing – sequence: 2 givenname: Xieyang surname: Xu fullname: Xu, Xieyang organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing – sequence: 3 givenname: Chenshuo surname: Wang fullname: Wang, Chenshuo organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing – sequence: 4 givenname: Huijun surname: Yu fullname: Yu, Huijun organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing – sequence: 5 givenname: Weiyi surname: Wang fullname: Wang, Weiyi organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing – sequence: 6 givenname: Yanxi surname: Gong fullname: Gong, Yanxi organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing – sequence: 7 givenname: Changwei orcidid: 0000-0001-6530-0643 surname: Zhao fullname: Zhao, Changwei organization: College of Resources and Environmental Sciences, China Agricultural University – sequence: 8 givenname: Jianbing orcidid: 0000-0003-3718-8396 surname: Wang fullname: Wang, Jianbing email: wangjb@cumtb.edu.cn organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, National Key Laboratory of Coal Fine Exploration and Intelligent Development, China University of Mining and Technology-Beijing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40360519$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9vFCEUgCemxtbaf8CDmcSLl9HHAAOcjGn80aSJB_VMGOaxyzoDK8zq9r-X7dS19SAXCHzv48F7T6uTEANW1XMCrwlQ-SYzwjrRQMsbrkTbNftH1VkLjDREtPTk3vq0ush5A2VQRSRjT6pTBrQDTtRZtf-CZhox59oHG9M2JjP7GOroapNm77z1Zqx_mRlTbdcmBBwPaD2gQzs3LiHW2zjemMkPWE849ckErF1MBclm9OHoKyf2u8_rxfaseuzMmPHibj6vvn14__XyU3P9-ePV5bvrxjLF5sYM2BLHjQELQnSMAlNq6JxE0wuLboAenYKu75zoHWmJlBxxUJzSXnadpefV1eIdotnobfKTSTc6Gq9vN2Ja6cND7Yga2g4pGOKYlUxQ3iOC6qVxVqAE2RfX28W13fUTDhbDnMz4QPrwJPi1XsWfmrQgOAdeDK_uDCn-2GGe9eSzxXEsnxZ3WdP2UCQlgRX05T_oJu5SKH91oBhwVQpaqBf3Uzrm8qfCBWgXwKaYc0J3RAjoQyfppZPK67m-7SS9L0F0CcoFDitMf-_-T9Rv6_LOQQ |
Cites_doi | 10.1021/jacs.1c07425 10.1126/science.abo2953 10.1016/j.seppur.2020.117586 10.1038/s41467-020-15771-2 10.1126/science.aab0530 10.1021/acs.est.1c08857 10.1038/s41565-020-00796-x 10.1126/sciadv.aax9976 10.1126/science.aar2122 10.1002/jcc.20035 10.1021/cr990125q 10.1126/sciadv.adf6122 10.1126/sciadv.abm4149 10.1073/pnas.2022200118 10.1016/j.memsci.2022.120987 10.1016/j.memsci.2017.04.001 10.1002/smll.201101823 10.1021/acssuschemeng.1c03313 10.1016/j.jmgm.2005.12.005 10.1021/jacs.6b01811 10.1039/C8FD00046H 10.1021/bi00148a002 10.1021/acs.nanolett.2c01137 10.1021/ja5077537 10.1016/J.MEMSCI.2010.04.032 10.1126/science.abe9741 10.1016/j.memsci.2022.121066 10.1016/j.memsci.2021.119158 10.1016/j.seppur.2020.117980 10.1021/acs.est.2c08076 10.1016/j.desal.2020.114408 10.1038/s41565-019-0586-8 10.1016/j.jcis.2009.03.012 10.1021/acsnano.1c04994 10.1006/jmbi.1999.3032 10.1016/j.jclepro.2019.118423 10.1021/jp711616v 10.1021/ja076066c 10.1016/j.memsci.2022.121213 10.1002/admi.201902108 10.1002/jcc.10128 10.1038/s41467-018-04604-y |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-59726-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (UHCL Subscription) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_026e30a1f4c84735bee09b8afc7e808b PMC12075505 40360519 10_1038_s41467_025_59726_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: This work was supported by National Nature Science Foundation of China (52270084) and Central Universities outstanding youth team project of CUMTB (2023YQTD03). |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c494t-ade21f5aa0c0776430499d6f8eab7cefd0bef906b6f7bf121885eed9533b866c3 |
IEDL.DBID | 8FG |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:29:11 EDT 2025 Thu Aug 21 18:30:28 EDT 2025 Fri Sep 05 16:43:29 EDT 2025 Sat Aug 23 14:55:42 EDT 2025 Sat May 17 01:30:23 EDT 2025 Tue Jul 01 04:53:51 EDT 2025 Thu May 15 22:57:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-ade21f5aa0c0776430499d6f8eab7cefd0bef906b6f7bf121885eed9533b866c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6530-0643 0009-0007-4871-7720 0000-0003-3718-8396 |
OpenAccessLink | https://www.proquest.com/docview/3204059003?pq-origsite=%requestingapplication% |
PMID | 40360519 |
PQID | 3204059003 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_026e30a1f4c84735bee09b8afc7e808b pubmedcentral_primary_oai_pubmedcentral_nih_gov_12075505 proquest_miscellaneous_3203919804 proquest_journals_3204059003 pubmed_primary_40360519 crossref_primary_10_1038_s41467_025_59726_x springer_journals_10_1038_s41467_025_59726_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-13 |
PublicationDateYYYYMMDD | 2025-05-13 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 59726_CR4 J Shen (59726_CR13) 2022; 22 J Wang (59726_CR43) 2006; 25 Y-xiao Shen (59726_CR11) 2018; 9 M Di Vincenzo (59726_CR25) 2021; 118 LB Huang (59726_CR17) 2021; 143 Q Shen (59726_CR40) 2023; 9 GM Geise (59726_CR1) 2021; 371 L Brunsveld (59726_CR20) 2001; 101 Y Wen (59726_CR8) 2022; 8 S Murail (59726_CR21) 2018; 209 Y Tang (59726_CR38) 2020; 482 M Di Vincenzo (59726_CR18) 2020; 16 Y Zhao (59726_CR28) 2022; 10 A Zhang (59726_CR36) 2022; 662 P-F Sun (59726_CR6) 2021; 55 D Wang (59726_CR39) 2011; 7 ML Zeidel (59726_CR42) 1992; 31 Y Shen (59726_CR12) 2022; 376 M Ge (59726_CR30) 2021; 258 W Song (59726_CR16) 2020; 15 D Zhang (59726_CR32) 2023; 668 D Chen (59726_CR26) 2017; 534 MR Chowdhury (59726_CR2) 2018; 361 E Licsandru (59726_CR10) 2016; 138 M Mehrabi (59726_CR27) 2022; 664 Q Zhao (59726_CR29) 2021; 625 C Zhao (59726_CR5) 2023; 14 F Pacheco (59726_CR24) 2010 F Shao (59726_CR31) 2021; 254 A Jakalian (59726_CR45) 2002; 23 L Kvítek (59726_CR35) 2008; 112 T Helgason (59726_CR34) 2009; 334 MJ Borgnia (59726_CR41) 1999; 291 Y Liang (59726_CR23) 2020; 11 MS Kaucher (59726_CR9) 2007; 129 59726_CR14 X Wang (59726_CR7) 2022; 13 Q Gan (59726_CR22) 2023; 57 J Wang (59726_CR44) 2004; 25 HY Chang (59726_CR15) 2021; 15 A Zhao (59726_CR37) 2021; 9 J-H Deng (59726_CR19) 2020; 6 HB Park (59726_CR3) 2017; 356 59726_CR33 |
References_xml | – volume: 143 start-page: 14386 year: 2021 ident: 59726_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07425 – volume: 376 start-page: 698 year: 2022 ident: 59726_CR12 publication-title: Science doi: 10.1126/science.abo2953 – volume: 254 year: 2021 ident: 59726_CR31 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117586 – volume: 11 start-page: 1 year: 2020 ident: 59726_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15771-2 – volume: 356 year: 2017 ident: 59726_CR3 publication-title: Science doi: 10.1126/science.aab0530 – volume: 10 start-page: 5179 year: 2022 ident: 59726_CR28 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08857 – volume: 16 start-page: 190 year: 2020 ident: 59726_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00796-x – volume: 6 start-page: eaax9976 year: 2020 ident: 59726_CR19 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9976 – volume: 361 start-page: 682 year: 2018 ident: 59726_CR2 publication-title: Science doi: 10.1126/science.aar2122 – volume: 13 start-page: 1 year: 2022 ident: 59726_CR7 publication-title: Nat. Commun. – volume: 25 start-page: 1157 year: 2004 ident: 59726_CR44 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume: 101 start-page: 4071 year: 2001 ident: 59726_CR20 publication-title: Chem. Rev. doi: 10.1021/cr990125q – volume: 55 start-page: 13219 year: 2021 ident: 59726_CR6 publication-title: Environ. Sci. Technol. – volume: 9 start-page: eadf6122 year: 2023 ident: 59726_CR40 publication-title: Sci. Adv. doi: 10.1126/sciadv.adf6122 – volume: 8 start-page: eabm4149 year: 2022 ident: 59726_CR8 publication-title: Sci. Adv. doi: 10.1126/sciadv.abm4149 – volume: 118 start-page: 1 year: 2021 ident: 59726_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2022200118 – volume: 662 start-page: 120987 year: 2022 ident: 59726_CR36 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.120987 – volume: 534 start-page: 100 year: 2017 ident: 59726_CR26 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.04.001 – volume: 7 start-page: 3502 year: 2011 ident: 59726_CR39 publication-title: Small doi: 10.1002/smll.201101823 – volume: 9 start-page: 11388 year: 2021 ident: 59726_CR37 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c03313 – volume: 14 start-page: 1 year: 2023 ident: 59726_CR5 publication-title: Nat. Commun. – volume: 25 start-page: 247 year: 2006 ident: 59726_CR43 publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2005.12.005 – volume: 138 start-page: 5403 year: 2016 ident: 59726_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01811 – volume: 209 start-page: 125 year: 2018 ident: 59726_CR21 publication-title: Faraday Discuss doi: 10.1039/C8FD00046H – volume: 31 start-page: 7436 year: 1992 ident: 59726_CR42 publication-title: Biochemistry doi: 10.1021/bi00148a002 – volume: 22 start-page: 4831 year: 2022 ident: 59726_CR13 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01137 – ident: 59726_CR14 doi: 10.1021/ja5077537 – year: 2010 ident: 59726_CR24 publication-title: J. Membr. Sci. doi: 10.1016/J.MEMSCI.2010.04.032 – volume: 371 start-page: 31 year: 2021 ident: 59726_CR1 publication-title: Science doi: 10.1126/science.abe9741 – volume: 664 year: 2022 ident: 59726_CR27 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.121066 – volume: 625 start-page: 119158 year: 2021 ident: 59726_CR29 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119158 – volume: 258 year: 2021 ident: 59726_CR30 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117980 – volume: 57 start-page: 1819 year: 2023 ident: 59726_CR22 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c08076 – volume: 482 start-page: 114408 year: 2020 ident: 59726_CR38 publication-title: Desalination doi: 10.1016/j.desal.2020.114408 – volume: 15 start-page: 73 year: 2020 ident: 59726_CR16 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0586-8 – volume: 334 start-page: 75 year: 2009 ident: 59726_CR34 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.03.012 – volume: 15 start-page: 14885 year: 2021 ident: 59726_CR15 publication-title: ACS Nano doi: 10.1021/acsnano.1c04994 – volume: 291 start-page: 1169 year: 1999 ident: 59726_CR41 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3032 – ident: 59726_CR4 doi: 10.1016/j.jclepro.2019.118423 – volume: 112 start-page: 5825 year: 2008 ident: 59726_CR35 publication-title: J. Phys. Chem. C doi: 10.1021/jp711616v – volume: 129 start-page: 11698 year: 2007 ident: 59726_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076066c – volume: 668 year: 2023 ident: 59726_CR32 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.121213 – ident: 59726_CR33 doi: 10.1002/admi.201902108 – volume: 23 start-page: 1623 year: 2002 ident: 59726_CR45 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10128 – volume: 9 year: 2018 ident: 59726_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04604-y |
SSID | ssj0000391844 |
Score | 2.480494 |
Snippet | Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability... Abstract Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4439 |
SubjectTerms | 140/131 140/146 147/135 147/143 147/3 639/301/357/551 639/301/923/3931 639/638/455/960 Aquaporins Biomimetic materials Biomimetics Brackish water Brackish water desalination Channels Defects Desalination Fabrication Humanities and Social Sciences Membrane permeability Membranes multidisciplinary Permeability Polyamide resins Polyamides Reverse osmosis Science Science (multidisciplinary) Selectivity Self-assembly Sodium chloride Sodium dodecyl sulfate Sodium lauryl sulfate |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2naVGht9ZEtmRbOialIfTQSxvITegxIoGsN-xu6Obfd0bybrN90EuvlhDyzGjmGzT6hrF36PmSj62uu4iHXDVe1MabrlYACuF8J0UpkP3Sn56pz-fd-Z1WX1QTVuiBi-AOMUcAKVyTVNDUJtcDCOO1S2EALbQn7yuMuJNMZR8sDaYuanolI6Q-XKrsE6h7K2Lotq_XO5EoE_b_CWX-Xiz5y41pDkQnj9jDCUHyo7Lzx-wejE_Y_dJT8vYpW38FN7tC_8WJd6HQFKPs-Txx-tlCGMG_I8RccHr1O2JwxKk8AhV21GkBwK_nV7dudhmBz2CG6fQIHLEtTlk6er-7WQ9HAuLPi7LaM3Z28unbx9N6aq9QB2XUqnYR2iZ1zolAnD6KLtxM7JMG54cAKQoPyYje92nwqUEsoDuMqFSP6nXfB_mc7Y3zEV4y3g1R-x6zD-ejgsHoDnFeAAdhiNEpUbH3G1Hb68KiYfPtt9S2KMaiYmxWjF1X7Ji0sZ1JDNj5A9qFnezC_ssuKnaw0aWdjuXSyhZ9FvVJlRV7ux3GA0W3JCjM-U2eg8ZjtFAVe1FUv92JwnhPmLdiescodra6OzJeXmTS7qZFcIZws2IfNvbzc19_l8X-_5DFK_agJcMn0ll5wPZWixt4jVhq5d_kY_MDjf4d6w priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUhcEG9CCzISN4hwEsdxjrCiqjhwgUq9RX6MaSU2qXa3avvvO-MkixbKgWs8sRzPjOdzPP4G4B2tfNGF0uR1ICdXhZN569o6V4iK4HxdyTFB9ps-PlFfT-vTPSjnuzApaT9RWqZles4O-7hWyaW5-CpB4FLnhBvvmaaq2aoXerH9r8KM50ap6X6MrMwdr-7EoETVfxe-_DtN8o-z0hSCjh7Bwwk7ik_jaB_DHvZP4P5YTfLmKVx_R7ukr1gLZlwYCYpp1sUQBX_gSBUhrghcrgTf9-0pLJKoCMgpHXlcIYqL4deNXZ4HFEtc0ka6R0GolkTWlm_uzv1RiyfkeTb29gxOjr78WBznU2GF3KtWbXIbsCxiba30zOaj-KitDToatK7xGIN0GFupnY6NiwWhAFNTLOVMVGe09tVz2O-HHl-CqJtgnKZ9h3VBYdOamhCeR4u-CcEqmcH7eaq7i5E_o0vn3pXpRsV0pJguKaa7zuAza2MrydzX6cGw-tlNtkDyGitpi6i84cLJDlG2ztjoGzTSuAwOZ112k0Ouu6qk1YorpFYZvN02kyvx-QhN5nCZZMh4WiNVBi9G1W9HoijSM9rNwOwYxc5Qd1v687NE112UBMsIaGbwYbaf3-P691y8-j_xA3hQsokzsWx1CPub1SW-Jry0cW-Sg9wCVIwTXQ priority: 102 providerName: Springer Nature |
Title | Seamless incorporation of artificial water channels in defect-free polyamide membrane for desalination of brackish water |
URI | https://link.springer.com/article/10.1038/s41467-025-59726-x https://www.ncbi.nlm.nih.gov/pubmed/40360519 https://www.proquest.com/docview/3204059003 https://www.proquest.com/docview/3203919804 https://pubmed.ncbi.nlm.nih.gov/PMC12075505 https://doaj.org/article/026e30a1f4c84735bee09b8afc7e808b |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2AvY9_11gUN9raZyrYsy08jDc1KHspYV8ibkazTWmjsLElZ-t_vTnZSsq-ngHUYRff1s076HWPvMfJ561Id5w6dXCZWxKUt81gCSITzeSa6A7Ln6uxSTqb5tN9wW_bHKjcxMQRq19a0R36cpWhu1OIy-zT_EVPXKKqu9i009thBkmKupZvi48_bPRZiP9dS9ndlRKaPlzJEBurhikg6VfF6Jx8F2v6_Yc0_j0z-VjcN6Wj8hD3ucSQfdop_yh5A84w97DpL3j1n6wswsxuMYpzYFzqyYtQAbz0nW-loI_hPBJoLTnd_G0yRKMod0PGO2C8A-Ly9uTOzawd8BjP8qG6AI8JFkaWhW7yb9-FIjSj0qnvbC3Y5Pv02Oov7JgtxLUu5io2DNPG5MaImZh9JZbfSKa_B2KIG74QFXwpllS-sTxAR6BzzKp1KtVqpOnvJ9pu2gUPG88Jpq_AbxFgnoSh1jmivBgN14ZyRImIfNktdzTsujSrUwDNddYqpUDFVUEy1jtgJaWMrSTzY4UG7-F71boXyCjJhEi9rTU2ULYAorTa-LkALbSN2tNFl1Tvnsro3pYi92w6jW1GtBBezvQ0yaDylFjJirzrVb2ciMesT8o2Y3jGKnanujjTXV4G6O0kRoiHojNjHjf3cz-vfa_H6_3_jDXuUkkkTqWx2xPZXi1t4i1hpZQdsr5gWg-AWA3YwHE4uJvh7cnr-5Ss-HanRIOxC_AKQShqz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaI6iZM4B4R4VVtaeqGV9hbseEwrdZNld6vu_il-IzPJZqvldes1nliO5_U5M54BeEGWz1sX6zB1pOQqsjIsbJGGClERnE8T2SXIHmSDI_V5mA434Gd_F4bTKnub2Bpq11T8j3w7iUncuMVl8nb8I-SuURxd7VtodGKxh4tzOrJN3-x-JP6-jOOdT4cfBuGyq0BYqULNQuMwjnxqjKy4lI3iOFPhMq_R2LxC76RFX8jMZj63PiIXqFNyJJyGaXWWVQnNewWu8nucQpgP89U_Ha62rpVa3s2Rid6eqtYScc9YQu5xFs7X_F_bJuBv2PbPFM3f4rSt-9u5BTeXuFW86wTtNmxgfQeudZ0sF3dh_hXN6JSspuBqD11xZOK4aLxg2ezKVIhzArYTwXeNa3LJRCoccjpJ6CeIYtycLszoxKEY4YgO8TUKQtREMjV8a7ifj0YqQr3H3Wz34OhStv8-bNZNjQ9BpLnTNqMzj7FOYV7olNBlhQar3DmjZACv-q0ux13tjrKNuSe67BhTEmPKljHlPID3zI0VJdfdbh80k-_lUo2JPsNEmsirSnPTZosoC6uNr3LUUtsAtnpelktjMC0vRDeA56thUmOOzdBmNmctDQlPoaUK4EHH-tVKFKEMRtoB6DWhWFvq-kh9ctyWCo9igoQEcgN43cvPxbr-vReP_v8Zz-D64PDLfrm_e7D3GG7ELN5c0DbZgs3Z5AyfEE6b2aetcgj4dtna-AvjSFMi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am0C8IO5kDDASPEE0N3ES52FCjK3aGKomYNLeMjs-ZpPWpGs7rf2L_CqOnaRTub3tNbYsx-f22ecG8IY0n9UmkmFiSMhFT_Mw13kSCkRBcD6JeRMgO0j3jsTn4-R4BX52uTAurLLTiV5Rm7p0b-SbcUTslvh3N9uGRRzu9D-MLkLXQcp5Wrt2Gqpts2C2fLmxNsnjAOdXdJ2bbO3vEO3fRlF_9_unvbDtOBCWIhfTUBmMejZRipeuzI1wPqjcpFai0lmJ1nCNNuepTm2mbY_Mo0zIyLgQTS3TtIxp3VuwlpHVp4vg2vbu4PDr4sXH1WKXQrSZOzyWmxPh9ZTrKEu4PkrD2ZJ19E0E_oZ8_wzg_M2L641j_z7ca1Et-9iw4QNYweoh3G76XM4fwewbquE56VTmakE0pZOJH1htmePcpogFuyLYO2YuE7kig01TmUEXbBLaMSIb1edzNTwzyIY4pCt-hYzwNk2ZKJdT3K1HIyVh4tNmtcdwdCMEeAKrVV3hM2BJZqRO6UaktBGY5TIh7FmiwjIzRgkewLvuqItRU9mj8B75WBYNYQoiTOEJU8wC2HbUWMx0Vbn9h3r8o2iFnOanGHPVs6KUrqWzRuS5lsqWGUoudQAbHS2LVlVMimvGDuD1YpiE3Hlu6DDrSz-HmCeXXATwtCH9YieCMIjD4QHIJaZY2urySHV26guJ9yICjASBA3jf8c_1vv59Fuv__41XcIcks_iyPzh4Dncjx92u2m28AavT8SW-IBA31S9b6WBwctMC-QvdpF39 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seamless+incorporation+of+artificial+water+channels+in+defect-free+polyamide+membrane+for+desalination+of+brackish+water&rft.jtitle=Nature+communications&rft.au=Liu%2C+Yingsong&rft.au=Xu%2C+Xieyang&rft.au=Wang%2C+Chenshuo&rft.au=Yu%2C+Huijun&rft.date=2025-05-13&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=4439&rft_id=info:doi/10.1038%2Fs41467-025-59726-x&rft_id=info%3Apmid%2F40360519&rft.externalDocID=40360519 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |