Seamless incorporation of artificial water channels in defect-free polyamide membrane for desalination of brackish water

Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herei...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 4439 - 11
Main Authors Liu, Yingsong, Xu, Xieyang, Wang, Chenshuo, Yu, Huijun, Wang, Weiyi, Gong, Yanxi, Zhao, Changwei, Wang, Jianbing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.05.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-59726-x

Cover

Abstract Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m −2 ·h −1 ·bar −1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes. Artificial water channels can potentially overcome the permeability-selectivity trade-off of polyamide membranes, though fabrication methods often cause defects limiting possible membranes. Here, the authors report imidazolylethyl-ureidoethyl-phenyl based artificial water channel in a defect-free polyamide membrane.
AbstractList Abstract Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m−2·h−1·bar−1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.
Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m −2 ·h −1 ·bar −1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes. Artificial water channels can potentially overcome the permeability-selectivity trade-off of polyamide membranes, though fabrication methods often cause defects limiting possible membranes. Here, the authors report imidazolylethyl-ureidoethyl-phenyl based artificial water channel in a defect-free polyamide membrane.
Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m ·h ·bar and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.
Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m−2·h−1·bar−1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.Artificial water channels can potentially overcome the permeability-selectivity trade-off of polyamide membranes, though fabrication methods often cause defects limiting possible membranes. Here, the authors report imidazolylethyl-ureidoethyl-phenyl based artificial water channel in a defect-free polyamide membrane.
Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m-2·h-1·bar-1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m-2·h-1·bar-1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.
ArticleNumber 4439
Author Wang, Weiyi
Wang, Jianbing
Zhao, Changwei
Gong, Yanxi
Liu, Yingsong
Xu, Xieyang
Wang, Chenshuo
Yu, Huijun
Author_xml – sequence: 1
  givenname: Yingsong
  orcidid: 0009-0007-4871-7720
  surname: Liu
  fullname: Liu, Yingsong
  organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing
– sequence: 2
  givenname: Xieyang
  surname: Xu
  fullname: Xu, Xieyang
  organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing
– sequence: 3
  givenname: Chenshuo
  surname: Wang
  fullname: Wang, Chenshuo
  organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing
– sequence: 4
  givenname: Huijun
  surname: Yu
  fullname: Yu, Huijun
  organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing
– sequence: 5
  givenname: Weiyi
  surname: Wang
  fullname: Wang, Weiyi
  organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing
– sequence: 6
  givenname: Yanxi
  surname: Gong
  fullname: Gong, Yanxi
  organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing
– sequence: 7
  givenname: Changwei
  orcidid: 0000-0001-6530-0643
  surname: Zhao
  fullname: Zhao, Changwei
  organization: College of Resources and Environmental Sciences, China Agricultural University
– sequence: 8
  givenname: Jianbing
  orcidid: 0000-0003-3718-8396
  surname: Wang
  fullname: Wang, Jianbing
  email: wangjb@cumtb.edu.cn
  organization: School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, National Key Laboratory of Coal Fine Exploration and Intelligent Development, China University of Mining and Technology-Beijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40360519$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9vFCEUgCemxtbaf8CDmcSLl9HHAAOcjGn80aSJB_VMGOaxyzoDK8zq9r-X7dS19SAXCHzv48F7T6uTEANW1XMCrwlQ-SYzwjrRQMsbrkTbNftH1VkLjDREtPTk3vq0ush5A2VQRSRjT6pTBrQDTtRZtf-CZhox59oHG9M2JjP7GOroapNm77z1Zqx_mRlTbdcmBBwPaD2gQzs3LiHW2zjemMkPWE849ckErF1MBclm9OHoKyf2u8_rxfaseuzMmPHibj6vvn14__XyU3P9-ePV5bvrxjLF5sYM2BLHjQELQnSMAlNq6JxE0wuLboAenYKu75zoHWmJlBxxUJzSXnadpefV1eIdotnobfKTSTc6Gq9vN2Ja6cND7Yga2g4pGOKYlUxQ3iOC6qVxVqAE2RfX28W13fUTDhbDnMz4QPrwJPi1XsWfmrQgOAdeDK_uDCn-2GGe9eSzxXEsnxZ3WdP2UCQlgRX05T_oJu5SKH91oBhwVQpaqBf3Uzrm8qfCBWgXwKaYc0J3RAjoQyfppZPK67m-7SS9L0F0CcoFDitMf-_-T9Rv6_LOQQ
Cites_doi 10.1021/jacs.1c07425
10.1126/science.abo2953
10.1016/j.seppur.2020.117586
10.1038/s41467-020-15771-2
10.1126/science.aab0530
10.1021/acs.est.1c08857
10.1038/s41565-020-00796-x
10.1126/sciadv.aax9976
10.1126/science.aar2122
10.1002/jcc.20035
10.1021/cr990125q
10.1126/sciadv.adf6122
10.1126/sciadv.abm4149
10.1073/pnas.2022200118
10.1016/j.memsci.2022.120987
10.1016/j.memsci.2017.04.001
10.1002/smll.201101823
10.1021/acssuschemeng.1c03313
10.1016/j.jmgm.2005.12.005
10.1021/jacs.6b01811
10.1039/C8FD00046H
10.1021/bi00148a002
10.1021/acs.nanolett.2c01137
10.1021/ja5077537
10.1016/J.MEMSCI.2010.04.032
10.1126/science.abe9741
10.1016/j.memsci.2022.121066
10.1016/j.memsci.2021.119158
10.1016/j.seppur.2020.117980
10.1021/acs.est.2c08076
10.1016/j.desal.2020.114408
10.1038/s41565-019-0586-8
10.1016/j.jcis.2009.03.012
10.1021/acsnano.1c04994
10.1006/jmbi.1999.3032
10.1016/j.jclepro.2019.118423
10.1021/jp711616v
10.1021/ja076066c
10.1016/j.memsci.2022.121213
10.1002/admi.201902108
10.1002/jcc.10128
10.1038/s41467-018-04604-y
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-59726-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (UHCL Subscription)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_026e30a1f4c84735bee09b8afc7e808b
PMC12075505
40360519
10_1038_s41467_025_59726_x
Genre Journal Article
GrantInformation_xml – fundername: This work was supported by National Nature Science Foundation of China (52270084) and Central Universities outstanding youth team project of CUMTB (2023YQTD03).
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-ade21f5aa0c0776430499d6f8eab7cefd0bef906b6f7bf121885eed9533b866c3
IEDL.DBID 8FG
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:11 EDT 2025
Thu Aug 21 18:30:28 EDT 2025
Fri Sep 05 16:43:29 EDT 2025
Sat Aug 23 14:55:42 EDT 2025
Sat May 17 01:30:23 EDT 2025
Tue Jul 01 04:53:51 EDT 2025
Thu May 15 22:57:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-ade21f5aa0c0776430499d6f8eab7cefd0bef906b6f7bf121885eed9533b866c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6530-0643
0009-0007-4871-7720
0000-0003-3718-8396
OpenAccessLink https://www.proquest.com/docview/3204059003?pq-origsite=%requestingapplication%
PMID 40360519
PQID 3204059003
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_026e30a1f4c84735bee09b8afc7e808b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12075505
proquest_miscellaneous_3203919804
proquest_journals_3204059003
pubmed_primary_40360519
crossref_primary_10_1038_s41467_025_59726_x
springer_journals_10_1038_s41467_025_59726_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-13
PublicationDateYYYYMMDD 2025-05-13
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 59726_CR4
J Shen (59726_CR13) 2022; 22
J Wang (59726_CR43) 2006; 25
Y-xiao Shen (59726_CR11) 2018; 9
M Di Vincenzo (59726_CR25) 2021; 118
LB Huang (59726_CR17) 2021; 143
Q Shen (59726_CR40) 2023; 9
GM Geise (59726_CR1) 2021; 371
L Brunsveld (59726_CR20) 2001; 101
Y Wen (59726_CR8) 2022; 8
S Murail (59726_CR21) 2018; 209
Y Tang (59726_CR38) 2020; 482
M Di Vincenzo (59726_CR18) 2020; 16
Y Zhao (59726_CR28) 2022; 10
A Zhang (59726_CR36) 2022; 662
P-F Sun (59726_CR6) 2021; 55
D Wang (59726_CR39) 2011; 7
ML Zeidel (59726_CR42) 1992; 31
Y Shen (59726_CR12) 2022; 376
M Ge (59726_CR30) 2021; 258
W Song (59726_CR16) 2020; 15
D Zhang (59726_CR32) 2023; 668
D Chen (59726_CR26) 2017; 534
MR Chowdhury (59726_CR2) 2018; 361
E Licsandru (59726_CR10) 2016; 138
M Mehrabi (59726_CR27) 2022; 664
Q Zhao (59726_CR29) 2021; 625
C Zhao (59726_CR5) 2023; 14
F Pacheco (59726_CR24) 2010
F Shao (59726_CR31) 2021; 254
A Jakalian (59726_CR45) 2002; 23
L Kvítek (59726_CR35) 2008; 112
T Helgason (59726_CR34) 2009; 334
MJ Borgnia (59726_CR41) 1999; 291
Y Liang (59726_CR23) 2020; 11
MS Kaucher (59726_CR9) 2007; 129
59726_CR14
X Wang (59726_CR7) 2022; 13
Q Gan (59726_CR22) 2023; 57
J Wang (59726_CR44) 2004; 25
HY Chang (59726_CR15) 2021; 15
A Zhao (59726_CR37) 2021; 9
J-H Deng (59726_CR19) 2020; 6
HB Park (59726_CR3) 2017; 356
59726_CR33
References_xml – volume: 143
  start-page: 14386
  year: 2021
  ident: 59726_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07425
– volume: 376
  start-page: 698
  year: 2022
  ident: 59726_CR12
  publication-title: Science
  doi: 10.1126/science.abo2953
– volume: 254
  year: 2021
  ident: 59726_CR31
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117586
– volume: 11
  start-page: 1
  year: 2020
  ident: 59726_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15771-2
– volume: 356
  year: 2017
  ident: 59726_CR3
  publication-title: Science
  doi: 10.1126/science.aab0530
– volume: 10
  start-page: 5179
  year: 2022
  ident: 59726_CR28
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08857
– volume: 16
  start-page: 190
  year: 2020
  ident: 59726_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00796-x
– volume: 6
  start-page: eaax9976
  year: 2020
  ident: 59726_CR19
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax9976
– volume: 361
  start-page: 682
  year: 2018
  ident: 59726_CR2
  publication-title: Science
  doi: 10.1126/science.aar2122
– volume: 13
  start-page: 1
  year: 2022
  ident: 59726_CR7
  publication-title: Nat. Commun.
– volume: 25
  start-page: 1157
  year: 2004
  ident: 59726_CR44
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 101
  start-page: 4071
  year: 2001
  ident: 59726_CR20
  publication-title: Chem. Rev.
  doi: 10.1021/cr990125q
– volume: 55
  start-page: 13219
  year: 2021
  ident: 59726_CR6
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: eadf6122
  year: 2023
  ident: 59726_CR40
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adf6122
– volume: 8
  start-page: eabm4149
  year: 2022
  ident: 59726_CR8
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm4149
– volume: 118
  start-page: 1
  year: 2021
  ident: 59726_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2022200118
– volume: 662
  start-page: 120987
  year: 2022
  ident: 59726_CR36
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2022.120987
– volume: 534
  start-page: 100
  year: 2017
  ident: 59726_CR26
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.04.001
– volume: 7
  start-page: 3502
  year: 2011
  ident: 59726_CR39
  publication-title: Small
  doi: 10.1002/smll.201101823
– volume: 9
  start-page: 11388
  year: 2021
  ident: 59726_CR37
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c03313
– volume: 14
  start-page: 1
  year: 2023
  ident: 59726_CR5
  publication-title: Nat. Commun.
– volume: 25
  start-page: 247
  year: 2006
  ident: 59726_CR43
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2005.12.005
– volume: 138
  start-page: 5403
  year: 2016
  ident: 59726_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01811
– volume: 209
  start-page: 125
  year: 2018
  ident: 59726_CR21
  publication-title: Faraday Discuss
  doi: 10.1039/C8FD00046H
– volume: 31
  start-page: 7436
  year: 1992
  ident: 59726_CR42
  publication-title: Biochemistry
  doi: 10.1021/bi00148a002
– volume: 22
  start-page: 4831
  year: 2022
  ident: 59726_CR13
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01137
– ident: 59726_CR14
  doi: 10.1021/ja5077537
– year: 2010
  ident: 59726_CR24
  publication-title: J. Membr. Sci.
  doi: 10.1016/J.MEMSCI.2010.04.032
– volume: 371
  start-page: 31
  year: 2021
  ident: 59726_CR1
  publication-title: Science
  doi: 10.1126/science.abe9741
– volume: 664
  year: 2022
  ident: 59726_CR27
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2022.121066
– volume: 625
  start-page: 119158
  year: 2021
  ident: 59726_CR29
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119158
– volume: 258
  year: 2021
  ident: 59726_CR30
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117980
– volume: 57
  start-page: 1819
  year: 2023
  ident: 59726_CR22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c08076
– volume: 482
  start-page: 114408
  year: 2020
  ident: 59726_CR38
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114408
– volume: 15
  start-page: 73
  year: 2020
  ident: 59726_CR16
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0586-8
– volume: 334
  start-page: 75
  year: 2009
  ident: 59726_CR34
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.03.012
– volume: 15
  start-page: 14885
  year: 2021
  ident: 59726_CR15
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04994
– volume: 291
  start-page: 1169
  year: 1999
  ident: 59726_CR41
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3032
– ident: 59726_CR4
  doi: 10.1016/j.jclepro.2019.118423
– volume: 112
  start-page: 5825
  year: 2008
  ident: 59726_CR35
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711616v
– volume: 129
  start-page: 11698
  year: 2007
  ident: 59726_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076066c
– volume: 668
  year: 2023
  ident: 59726_CR32
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2022.121213
– ident: 59726_CR33
  doi: 10.1002/admi.201902108
– volume: 23
  start-page: 1623
  year: 2002
  ident: 59726_CR45
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10128
– volume: 9
  year: 2018
  ident: 59726_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04604-y
SSID ssj0000391844
Score 2.480494
Snippet Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability...
Abstract Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4439
SubjectTerms 140/131
140/146
147/135
147/143
147/3
639/301/357/551
639/301/923/3931
639/638/455/960
Aquaporins
Biomimetic materials
Biomimetics
Brackish water
Brackish water desalination
Channels
Defects
Desalination
Fabrication
Humanities and Social Sciences
Membrane permeability
Membranes
multidisciplinary
Permeability
Polyamide resins
Polyamides
Reverse osmosis
Science
Science (multidisciplinary)
Selectivity
Self-assembly
Sodium chloride
Sodium dodecyl sulfate
Sodium lauryl sulfate
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2naVGht9ZEtmRbOialIfTQSxvITegxIoGsN-xu6Obfd0bybrN90EuvlhDyzGjmGzT6hrF36PmSj62uu4iHXDVe1MabrlYACuF8J0UpkP3Sn56pz-fd-Z1WX1QTVuiBi-AOMUcAKVyTVNDUJtcDCOO1S2EALbQn7yuMuJNMZR8sDaYuanolI6Q-XKrsE6h7K2Lotq_XO5EoE_b_CWX-Xiz5y41pDkQnj9jDCUHyo7Lzx-wejE_Y_dJT8vYpW38FN7tC_8WJd6HQFKPs-Txx-tlCGMG_I8RccHr1O2JwxKk8AhV21GkBwK_nV7dudhmBz2CG6fQIHLEtTlk6er-7WQ9HAuLPi7LaM3Z28unbx9N6aq9QB2XUqnYR2iZ1zolAnD6KLtxM7JMG54cAKQoPyYje92nwqUEsoDuMqFSP6nXfB_mc7Y3zEV4y3g1R-x6zD-ejgsHoDnFeAAdhiNEpUbH3G1Hb68KiYfPtt9S2KMaiYmxWjF1X7Ji0sZ1JDNj5A9qFnezC_ssuKnaw0aWdjuXSyhZ9FvVJlRV7ux3GA0W3JCjM-U2eg8ZjtFAVe1FUv92JwnhPmLdiescodra6OzJeXmTS7qZFcIZws2IfNvbzc19_l8X-_5DFK_agJcMn0ll5wPZWixt4jVhq5d_kY_MDjf4d6w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUhcEG9CCzISN4hwEsdxjrCiqjhwgUq9RX6MaSU2qXa3avvvO-MkixbKgWs8sRzPjOdzPP4G4B2tfNGF0uR1ICdXhZN569o6V4iK4HxdyTFB9ps-PlFfT-vTPSjnuzApaT9RWqZles4O-7hWyaW5-CpB4FLnhBvvmaaq2aoXerH9r8KM50ap6X6MrMwdr-7EoETVfxe-_DtN8o-z0hSCjh7Bwwk7ik_jaB_DHvZP4P5YTfLmKVx_R7ukr1gLZlwYCYpp1sUQBX_gSBUhrghcrgTf9-0pLJKoCMgpHXlcIYqL4deNXZ4HFEtc0ka6R0GolkTWlm_uzv1RiyfkeTb29gxOjr78WBznU2GF3KtWbXIbsCxiba30zOaj-KitDToatK7xGIN0GFupnY6NiwWhAFNTLOVMVGe09tVz2O-HHl-CqJtgnKZ9h3VBYdOamhCeR4u-CcEqmcH7eaq7i5E_o0vn3pXpRsV0pJguKaa7zuAza2MrydzX6cGw-tlNtkDyGitpi6i84cLJDlG2ztjoGzTSuAwOZ112k0Ouu6qk1YorpFYZvN02kyvx-QhN5nCZZMh4WiNVBi9G1W9HoijSM9rNwOwYxc5Qd1v687NE112UBMsIaGbwYbaf3-P691y8-j_xA3hQsokzsWx1CPub1SW-Jry0cW-Sg9wCVIwTXQ
  priority: 102
  providerName: Springer Nature
Title Seamless incorporation of artificial water channels in defect-free polyamide membrane for desalination of brackish water
URI https://link.springer.com/article/10.1038/s41467-025-59726-x
https://www.ncbi.nlm.nih.gov/pubmed/40360519
https://www.proquest.com/docview/3204059003
https://www.proquest.com/docview/3203919804
https://pubmed.ncbi.nlm.nih.gov/PMC12075505
https://doaj.org/article/026e30a1f4c84735bee09b8afc7e808b
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2AvY9_11gUN9raZyrYsy08jDc1KHspYV8ibkazTWmjsLElZ-t_vTnZSsq-ngHUYRff1s076HWPvMfJ561Id5w6dXCZWxKUt81gCSITzeSa6A7Ln6uxSTqb5tN9wW_bHKjcxMQRq19a0R36cpWhu1OIy-zT_EVPXKKqu9i009thBkmKupZvi48_bPRZiP9dS9ndlRKaPlzJEBurhikg6VfF6Jx8F2v6_Yc0_j0z-VjcN6Wj8hD3ucSQfdop_yh5A84w97DpL3j1n6wswsxuMYpzYFzqyYtQAbz0nW-loI_hPBJoLTnd_G0yRKMod0PGO2C8A-Ly9uTOzawd8BjP8qG6AI8JFkaWhW7yb9-FIjSj0qnvbC3Y5Pv02Oov7JgtxLUu5io2DNPG5MaImZh9JZbfSKa_B2KIG74QFXwpllS-sTxAR6BzzKp1KtVqpOnvJ9pu2gUPG88Jpq_AbxFgnoSh1jmivBgN14ZyRImIfNktdzTsujSrUwDNddYqpUDFVUEy1jtgJaWMrSTzY4UG7-F71boXyCjJhEi9rTU2ULYAorTa-LkALbSN2tNFl1Tvnsro3pYi92w6jW1GtBBezvQ0yaDylFjJirzrVb2ciMesT8o2Y3jGKnanujjTXV4G6O0kRoiHojNjHjf3cz-vfa_H6_3_jDXuUkkkTqWx2xPZXi1t4i1hpZQdsr5gWg-AWA3YwHE4uJvh7cnr-5Ss-HanRIOxC_AKQShqz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaI6iZM4B4R4VVtaeqGV9hbseEwrdZNld6vu_il-IzPJZqvldes1nliO5_U5M54BeEGWz1sX6zB1pOQqsjIsbJGGClERnE8T2SXIHmSDI_V5mA434Gd_F4bTKnub2Bpq11T8j3w7iUncuMVl8nb8I-SuURxd7VtodGKxh4tzOrJN3-x-JP6-jOOdT4cfBuGyq0BYqULNQuMwjnxqjKy4lI3iOFPhMq_R2LxC76RFX8jMZj63PiIXqFNyJJyGaXWWVQnNewWu8nucQpgP89U_Ha62rpVa3s2Rid6eqtYScc9YQu5xFs7X_F_bJuBv2PbPFM3f4rSt-9u5BTeXuFW86wTtNmxgfQeudZ0sF3dh_hXN6JSspuBqD11xZOK4aLxg2ezKVIhzArYTwXeNa3LJRCoccjpJ6CeIYtycLszoxKEY4YgO8TUKQtREMjV8a7ifj0YqQr3H3Wz34OhStv8-bNZNjQ9BpLnTNqMzj7FOYV7olNBlhQar3DmjZACv-q0ux13tjrKNuSe67BhTEmPKljHlPID3zI0VJdfdbh80k-_lUo2JPsNEmsirSnPTZosoC6uNr3LUUtsAtnpelktjMC0vRDeA56thUmOOzdBmNmctDQlPoaUK4EHH-tVKFKEMRtoB6DWhWFvq-kh9ctyWCo9igoQEcgN43cvPxbr-vReP_v8Zz-D64PDLfrm_e7D3GG7ELN5c0DbZgs3Z5AyfEE6b2aetcgj4dtna-AvjSFMi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am0C8IO5kDDASPEE0N3ES52FCjK3aGKomYNLeMjs-ZpPWpGs7rf2L_CqOnaRTub3tNbYsx-f22ecG8IY0n9UmkmFiSMhFT_Mw13kSCkRBcD6JeRMgO0j3jsTn4-R4BX52uTAurLLTiV5Rm7p0b-SbcUTslvh3N9uGRRzu9D-MLkLXQcp5Wrt2Gqpts2C2fLmxNsnjAOdXdJ2bbO3vEO3fRlF_9_unvbDtOBCWIhfTUBmMejZRipeuzI1wPqjcpFai0lmJ1nCNNuepTm2mbY_Mo0zIyLgQTS3TtIxp3VuwlpHVp4vg2vbu4PDr4sXH1WKXQrSZOzyWmxPh9ZTrKEu4PkrD2ZJ19E0E_oZ8_wzg_M2L641j_z7ca1Et-9iw4QNYweoh3G76XM4fwewbquE56VTmakE0pZOJH1htmePcpogFuyLYO2YuE7kig01TmUEXbBLaMSIb1edzNTwzyIY4pCt-hYzwNk2ZKJdT3K1HIyVh4tNmtcdwdCMEeAKrVV3hM2BJZqRO6UaktBGY5TIh7FmiwjIzRgkewLvuqItRU9mj8B75WBYNYQoiTOEJU8wC2HbUWMx0Vbn9h3r8o2iFnOanGHPVs6KUrqWzRuS5lsqWGUoudQAbHS2LVlVMimvGDuD1YpiE3Hlu6DDrSz-HmCeXXATwtCH9YieCMIjD4QHIJaZY2urySHV26guJ9yICjASBA3jf8c_1vv59Fuv__41XcIcks_iyPzh4Dncjx92u2m28AavT8SW-IBA31S9b6WBwctMC-QvdpF39
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seamless+incorporation+of+artificial+water+channels+in+defect-free+polyamide+membrane+for+desalination+of+brackish+water&rft.jtitle=Nature+communications&rft.au=Liu%2C+Yingsong&rft.au=Xu%2C+Xieyang&rft.au=Wang%2C+Chenshuo&rft.au=Yu%2C+Huijun&rft.date=2025-05-13&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=4439&rft_id=info:doi/10.1038%2Fs41467-025-59726-x&rft_id=info%3Apmid%2F40360519&rft.externalDocID=40360519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon