AI analysis for ejection fraction estimation from 12-lead ECG

Heart failure (HF) remains a leading global cause of cardiovascular deaths, with its prevalence expected to rise in the upcoming decade. Measuring the heart ejection fraction (EF) is crucial for diagnosing and monitoring HF. Although echocardiography is the gold standard for EF measurement, it is of...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 13502 - 11
Main Authors Devkota, Alina, Prajapati, Rukesh, El-Wakeel, Amr, Adjeroh, Donald, Patel, Brijesh, Gyawali, Prashnna
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-97113-0

Cover

Abstract Heart failure (HF) remains a leading global cause of cardiovascular deaths, with its prevalence expected to rise in the upcoming decade. Measuring the heart ejection fraction (EF) is crucial for diagnosing and monitoring HF. Although echocardiography is the gold standard for EF measurement, it is often inaccessible in remote areas due to its cost and complexity. In contrast, electrocardiography (ECG) is more readily available and affordable, and emerging research suggests a possible link between ECG signals and EF. In this work, we explore the potential of 12-lead ECG signals to estimate EF using various machine learning (ML) and deep learning (DL) models. While recent studies have considered the use of ML or DL for estimating EF, these algorithms are often trained and tested on urban-based populations. However, demographics like those in rural Appalachia, where disease prevalence is extremely high, have been overlooked, potentially due to the unavailability of large volumes of data. Moreover, there have been concerning reports regarding the fairness of AI predictions across different populations, making it crucial to understand the performance of AI models across diverse demographics before their widespread application. To address this, our study focuses on analyzing AI models for EF estimation in the rural Appalachian population. We utilized a 12-lead ECG dataset of 55,500 patients from WVU Medicine hospitals in West Virginia and employed a wide array of AI algorithms, ranging from Random Forest to modern deep learning-based methods like Transformers, to estimate EF. We also considered different thresholds for analyzing these AI algorithms and examined the impact of single and multi-lead ECG signals, and conducted model interpretability analysis. Overall, our comprehensive analysis demonstrated that deep learning-based algorithms achieved the highest performance, with an AUROC of around 0.86 for EF estimation from 12-lead ECG signals. Additionally, we found that while individual ECG leads were insufficient for accurate EF estimation, specific lead combinations significantly improved classification performance.
AbstractList Heart failure (HF) remains a leading global cause of cardiovascular deaths, with its prevalence expected to rise in the upcoming decade. Measuring the heart ejection fraction (EF) is crucial for diagnosing and monitoring HF. Although echocardiography is the gold standard for EF measurement, it is often inaccessible in remote areas due to its cost and complexity. In contrast, electrocardiography (ECG) is more readily available and affordable, and emerging research suggests a possible link between ECG signals and EF. In this work, we explore the potential of 12-lead ECG signals to estimate EF using various machine learning (ML) and deep learning (DL) models. While recent studies have considered the use of ML or DL for estimating EF, these algorithms are often trained and tested on urban-based populations. However, demographics like those in rural Appalachia, where disease prevalence is extremely high, have been overlooked, potentially due to the unavailability of large volumes of data. Moreover, there have been concerning reports regarding the fairness of AI predictions across different populations, making it crucial to understand the performance of AI models across diverse demographics before their widespread application. To address this, our study focuses on analyzing AI models for EF estimation in the rural Appalachian population. We utilized a 12-lead ECG dataset of 55,500 patients from WVU Medicine hospitals in West Virginia and employed a wide array of AI algorithms, ranging from Random Forest to modern deep learning-based methods like Transformers, to estimate EF. We also considered different thresholds for analyzing these AI algorithms and examined the impact of single and multi-lead ECG signals, and conducted model interpretability analysis. Overall, our comprehensive analysis demonstrated that deep learning-based algorithms achieved the highest performance, with an AUROC of around 0.86 for EF estimation from 12-lead ECG signals. Additionally, we found that while individual ECG leads were insufficient for accurate EF estimation, specific lead combinations significantly improved classification performance.
Heart failure (HF) remains a leading global cause of cardiovascular deaths, with its prevalence expected to rise in the upcoming decade. Measuring the heart ejection fraction (EF) is crucial for diagnosing and monitoring HF. Although echocardiography is the gold standard for EF measurement, it is often inaccessible in remote areas due to its cost and complexity. In contrast, electrocardiography (ECG) is more readily available and affordable, and emerging research suggests a possible link between ECG signals and EF. In this work, we explore the potential of 12-lead ECG signals to estimate EF using various machine learning (ML) and deep learning (DL) models. While recent studies have considered the use of ML or DL for estimating EF, these algorithms are often trained and tested on urban-based populations. However, demographics like those in rural Appalachia, where disease prevalence is extremely high, have been overlooked, potentially due to the unavailability of large volumes of data. Moreover, there have been concerning reports regarding the fairness of AI predictions across different populations, making it crucial to understand the performance of AI models across diverse demographics before their widespread application. To address this, our study focuses on analyzing AI models for EF estimation in the rural Appalachian population. We utilized a 12-lead ECG dataset of 55,500 patients from WVU Medicine hospitals in West Virginia and employed a wide array of AI algorithms, ranging from Random Forest to modern deep learning-based methods like Transformers, to estimate EF. We also considered different thresholds for analyzing these AI algorithms and examined the impact of single and multi-lead ECG signals, and conducted model interpretability analysis. Overall, our comprehensive analysis demonstrated that deep learning-based algorithms achieved the highest performance, with an AUROC of around 0.86 for EF estimation from 12-lead ECG signals. Additionally, we found that while individual ECG leads were insufficient for accurate EF estimation, specific lead combinations significantly improved classification performance.Heart failure (HF) remains a leading global cause of cardiovascular deaths, with its prevalence expected to rise in the upcoming decade. Measuring the heart ejection fraction (EF) is crucial for diagnosing and monitoring HF. Although echocardiography is the gold standard for EF measurement, it is often inaccessible in remote areas due to its cost and complexity. In contrast, electrocardiography (ECG) is more readily available and affordable, and emerging research suggests a possible link between ECG signals and EF. In this work, we explore the potential of 12-lead ECG signals to estimate EF using various machine learning (ML) and deep learning (DL) models. While recent studies have considered the use of ML or DL for estimating EF, these algorithms are often trained and tested on urban-based populations. However, demographics like those in rural Appalachia, where disease prevalence is extremely high, have been overlooked, potentially due to the unavailability of large volumes of data. Moreover, there have been concerning reports regarding the fairness of AI predictions across different populations, making it crucial to understand the performance of AI models across diverse demographics before their widespread application. To address this, our study focuses on analyzing AI models for EF estimation in the rural Appalachian population. We utilized a 12-lead ECG dataset of 55,500 patients from WVU Medicine hospitals in West Virginia and employed a wide array of AI algorithms, ranging from Random Forest to modern deep learning-based methods like Transformers, to estimate EF. We also considered different thresholds for analyzing these AI algorithms and examined the impact of single and multi-lead ECG signals, and conducted model interpretability analysis. Overall, our comprehensive analysis demonstrated that deep learning-based algorithms achieved the highest performance, with an AUROC of around 0.86 for EF estimation from 12-lead ECG signals. Additionally, we found that while individual ECG leads were insufficient for accurate EF estimation, specific lead combinations significantly improved classification performance.
Abstract Heart failure (HF) remains a leading global cause of cardiovascular deaths, with its prevalence expected to rise in the upcoming decade. Measuring the heart ejection fraction (EF) is crucial for diagnosing and monitoring HF. Although echocardiography is the gold standard for EF measurement, it is often inaccessible in remote areas due to its cost and complexity. In contrast, electrocardiography (ECG) is more readily available and affordable, and emerging research suggests a possible link between ECG signals and EF. In this work, we explore the potential of 12-lead ECG signals to estimate EF using various machine learning (ML) and deep learning (DL) models. While recent studies have considered the use of ML or DL for estimating EF, these algorithms are often trained and tested on urban-based populations. However, demographics like those in rural Appalachia, where disease prevalence is extremely high, have been overlooked, potentially due to the unavailability of large volumes of data. Moreover, there have been concerning reports regarding the fairness of AI predictions across different populations, making it crucial to understand the performance of AI models across diverse demographics before their widespread application. To address this, our study focuses on analyzing AI models for EF estimation in the rural Appalachian population. We utilized a 12-lead ECG dataset of 55,500 patients from WVU Medicine hospitals in West Virginia and employed a wide array of AI algorithms, ranging from Random Forest to modern deep learning-based methods like Transformers, to estimate EF. We also considered different thresholds for analyzing these AI algorithms and examined the impact of single and multi-lead ECG signals, and conducted model interpretability analysis. Overall, our comprehensive analysis demonstrated that deep learning-based algorithms achieved the highest performance, with an AUROC of around 0.86 for EF estimation from 12-lead ECG signals. Additionally, we found that while individual ECG leads were insufficient for accurate EF estimation, specific lead combinations significantly improved classification performance.
ArticleNumber 13502
Author Devkota, Alina
El-Wakeel, Amr
Gyawali, Prashnna
Patel, Brijesh
Prajapati, Rukesh
Adjeroh, Donald
Author_xml – sequence: 1
  givenname: Alina
  surname: Devkota
  fullname: Devkota, Alina
  email: ad00139@mix.wvu.edu
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University
– sequence: 2
  givenname: Rukesh
  surname: Prajapati
  fullname: Prajapati, Rukesh
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University
– sequence: 3
  givenname: Amr
  surname: El-Wakeel
  fullname: El-Wakeel, Amr
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University
– sequence: 4
  givenname: Donald
  surname: Adjeroh
  fullname: Adjeroh, Donald
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University
– sequence: 5
  givenname: Brijesh
  surname: Patel
  fullname: Patel, Brijesh
  organization: School of Medicine, West Virginia University
– sequence: 6
  givenname: Prashnna
  surname: Gyawali
  fullname: Gyawali, Prashnna
  email: prashnna.gyawali@mail.wvu.edu
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40251349$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAUtFAR_aB_gAOKxIVLqL9jHxCqVm1ZqRKX9mw5zsuSldde7AS0_x5vs5SWQ4UvfnqemTeed4qOQgyA0DuCPxHM1EXmRGhVYypq3RDCavwKnVDMRU0ZpUdP6mN0nvMalyOo5kS_Qce80Ajj-gR9vlxWNli_y0Ou-pgqWIMbhxiqPtm5gDwOG3voxU1FaO3BdtXV4uYtet1bn-H8cJ-h--uru8XX-vbbzXJxeVs7rvlYK20JBtHQrhcY66Z1kraN4gLrznIF2uK-pa4jQoFrrdRKlo7gwHrZ0VazM7Scdbto12abip-0M9EO5qER08rYNA7OgwHFFWVSStySElGZ0DOlqZasgYY3uGixWWsKW7v7Zb1_FCTY7LM1c7amhGQesjV71peZtZ3aDXQOwpisf2bl-UsYvptV_GkIxVhxKovCx4NCij-mEqrZDNmB9zZAnLJhRBNJFOb7YR_-ga7jlMqWZhRXhEteUO-fWnr08me5BUBngEsx5wT9_330EE8u4LCC9Hf2C6zfcFTDbQ
Cites_doi 10.1177/2752535X241252208
10.1161/CIR.0000000000001209
10.1016/j.compbiomed.2022.105550
10.1016/j.jacc.2021.12.012
10.1109/ISBI.2017.7950596
10.1371/journal.pone.0295653
10.22489/CinC.2017.354-425
10.1016/j.bspc.2023.105499
10.1161/CIRCULATIONAHA.117.026622
10.3389/fphys.2023.1246746
10.1002/ejhf.3150
10.1023/A:1010933404324
10.1109/TBME.2021.3108164
10.1259/bjr.20230023
10.3390/nu14194051
10.2196/15931
10.1093/ehjdh/ztae034
10.1371/journal.pdig.0000022
10.1093/ehjdh/ztac030
10.1016/j.cardfail.2023.07.006
10.1109/5254.708428
10.1093/eurheartj/ehab649
10.15420/cfr.2023.05
10.1161/circ.148.suppl_1.15117
10.1109/CVPR.2016.90
10.1109/BSN58485.2023.10331174
10.3390/jpm12030455
10.1109/CSCI62032.2023.00231
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-97113-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_e848236660b141509df38929637e7470
10.1038/s41598-025-97113-0
PMC12008426
40251349
10_1038_s41598_025_97113_0
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c494t-89a10e572df50097bc62b784509da48e9a0fb2cd158ecba6986a0f54e3f6d2b93
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:33 EDT 2025
Sun Oct 26 04:14:45 EDT 2025
Tue Sep 30 17:04:04 EDT 2025
Fri Sep 05 17:33:05 EDT 2025
Tue Oct 07 08:22:55 EDT 2025
Tue Apr 22 01:20:47 EDT 2025
Wed Oct 01 06:32:40 EDT 2025
Sat Apr 19 01:10:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ejection Fraction
Electrocardiogram
Heart Failure
Transformers
Machine Learning
Deep Learning
ResNet
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-89a10e572df50097bc62b784509da48e9a0fb2cd158ecba6986a0f54e3f6d2b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1038%2Fs41598-025-97113-0
PMID 40251349
PQID 3191481464
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_e848236660b141509df38929637e7470
unpaywall_primary_10_1038_s41598_025_97113_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12008426
proquest_miscellaneous_3191618040
proquest_journals_3191481464
pubmed_primary_40251349
crossref_primary_10_1038_s41598_025_97113_0
springer_journals_10_1038_s41598_025_97113_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-18
PublicationDateYYYYMMDD 2025-04-18
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Y LeCun (97113_CR34) 2015; 521
97113_CR35
97113_CR10
LA Celi (97113_CR23) 2022; 1
97113_CR32
PA Heidenreich (97113_CR27) 2022; 79
97113_CR33
MA Chamsi-Pasha (97113_CR6) 2017; 136
97113_CR16
A Vaid (97113_CR19) 2022; 15
97113_CR39
97113_CR37
PA Noseworthy (97113_CR22) 2020; 13
97113_CR31
H-Y Chen (97113_CR17) 2022; 12
V Jahmunah (97113_CR13) 2022; 146
Y Ansari (97113_CR8) 2023; 14
C-S Lin (97113_CR12) 2020; 8
97113_CR4
SM Al Younis (97113_CR14) 2023; 18
97113_CR3
WC MEMBERS (97113_CR2) 2023; 29
MA Hearst (97113_CR29) 1998; 13
97113_CR1
F Razavipour (97113_CR5) 2015; 6
97113_CR21
97113_CR28
ZI Attia (97113_CR20) 2022; 3
97113_CR25
97113_CR9
97113_CR26
SS Martin (97113_CR36) 2024; 149
ZI Attia (97113_CR7) 2021; 42
97113_CR40
L Breiman (97113_CR30) 2001; 45
C Ji (97113_CR11) 2024; 87
JW Gichoya (97113_CR24) 2023; 96
S-H Liu (97113_CR15) 2022; 14
97113_CR18
PK Gyawali (97113_CR38) 2021; 69
References_xml – ident: 97113_CR37
  doi: 10.1177/2752535X241252208
– ident: 97113_CR3
– volume: 149
  start-page: e347
  year: 2024
  ident: 97113_CR36
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000001209
– volume: 146
  year: 2022
  ident: 97113_CR13
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105550
– volume: 13
  start-page: e007988
  year: 2020
  ident: 97113_CR22
  publication-title: Circulation: Arrhythmia and Electrophysiology
– volume: 79
  start-page: e263
  year: 2022
  ident: 97113_CR27
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2021.12.012
– ident: 97113_CR39
  doi: 10.1109/ISBI.2017.7950596
– ident: 97113_CR40
– volume: 18
  year: 2023
  ident: 97113_CR14
  publication-title: Plos one
  doi: 10.1371/journal.pone.0295653
– ident: 97113_CR9
  doi: 10.22489/CinC.2017.354-425
– volume: 87
  year: 2024
  ident: 97113_CR11
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.105499
– volume: 136
  start-page: 2178
  year: 2017
  ident: 97113_CR6
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.026622
– volume: 14
  start-page: 1246746
  year: 2023
  ident: 97113_CR8
  publication-title: Frontiers in Physiology
  doi: 10.3389/fphys.2023.1246746
– ident: 97113_CR28
  doi: 10.1002/ejhf.3150
– volume: 45
  start-page: 5
  year: 2001
  ident: 97113_CR30
  publication-title: Random forests. Machine learning
  doi: 10.1023/A:1010933404324
– ident: 97113_CR26
– volume: 69
  start-page: 860
  year: 2021
  ident: 97113_CR38
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2021.3108164
– volume: 15
  start-page: 395
  year: 2022
  ident: 97113_CR19
  publication-title: Cardiovascular Imaging
– volume: 96
  start-page: 20230023
  year: 2023
  ident: 97113_CR24
  publication-title: The British Journal of Radiology
  doi: 10.1259/bjr.20230023
– volume: 6
  start-page: 1
  year: 2015
  ident: 97113_CR5
  publication-title: Journal of Bioengineering & Biomedical Science
– volume: 14
  start-page: 4051
  year: 2022
  ident: 97113_CR15
  publication-title: Nutrients
  doi: 10.3390/nu14194051
– volume: 8
  year: 2020
  ident: 97113_CR12
  publication-title: JMIR medical informatics
  doi: 10.2196/15931
– ident: 97113_CR4
– ident: 97113_CR35
– ident: 97113_CR33
– ident: 97113_CR21
  doi: 10.1093/ehjdh/ztae034
– volume: 1
  year: 2022
  ident: 97113_CR23
  publication-title: PLOS Digital Health
  doi: 10.1371/journal.pdig.0000022
– volume: 3
  start-page: 373
  year: 2022
  ident: 97113_CR20
  publication-title: European Heart Journal-Digital Health
  doi: 10.1093/ehjdh/ztac030
– volume: 29
  start-page: 1412
  year: 2023
  ident: 97113_CR2
  publication-title: Journal of cardiac failure
  doi: 10.1016/j.cardfail.2023.07.006
– volume: 521
  start-page: 436
  year: 2015
  ident: 97113_CR34
  publication-title: Deep learning. nature
– volume: 13
  start-page: 18
  year: 1998
  ident: 97113_CR29
  publication-title: IEEE Intelligent Systems and their applications
  doi: 10.1109/5254.708428
– volume: 42
  start-page: 4717
  year: 2021
  ident: 97113_CR7
  publication-title: European heart journal
  doi: 10.1093/eurheartj/ehab649
– ident: 97113_CR1
  doi: 10.15420/cfr.2023.05
– ident: 97113_CR25
– ident: 97113_CR16
  doi: 10.1161/circ.148.suppl_1.15117
– ident: 97113_CR32
  doi: 10.1109/CVPR.2016.90
– ident: 97113_CR18
  doi: 10.1109/BSN58485.2023.10331174
– ident: 97113_CR31
– volume: 12
  start-page: 455
  year: 2022
  ident: 97113_CR17
  publication-title: Journal of Personalized Medicine
  doi: 10.3390/jpm12030455
– ident: 97113_CR10
  doi: 10.1109/CSCI62032.2023.00231
SSID ssj0000529419
Score 2.455013
Snippet Heart failure (HF) remains a leading global cause of cardiovascular deaths, with its prevalence expected to rise in the upcoming decade. Measuring the heart...
Abstract Heart failure (HF) remains a leading global cause of cardiovascular deaths, with its prevalence expected to rise in the upcoming decade. Measuring the...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 13502
SubjectTerms 639/166
692/700/139/1449
Algorithms
Congestive heart failure
Deep Learning
Demography
Echocardiography
Ejection Fraction
EKG
Electrocardiogram
Electrocardiography
Electrocardiography - methods
Female
Heart Failure
Heart Failure - diagnosis
Heart Failure - physiopathology
Humanities and Social Sciences
Humans
Machine Learning
Male
Middle Aged
multidisciplinary
ResNet
Science
Science (multidisciplinary)
Stroke Volume - physiology
Urban populations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4IMozfclI3KjV2LGT8YFDqfoACU5U6s1yYkdQrdKq3RXqv2dsZ8OuQMCBa-xE9jeezIzt-QbgDXaGrIbuedmqhqugNUfReO7Rlcb7Rvi0D_npc312rj5e6IuVUl_xTlimB87AHQRUsSZ3XZetIGNDH-jJxkpaN00gVzhF6yWalWAqs3pLo4QZs2TKCg9u6eWYTSY1N42IJQ3WLFEi7P-dl_nrZcnpxPQRPFgM1-7uu5vNVozSyRN4PHqT7DDPYhPuheEp3M_1Je-ewbvDD8yNrCOMvFMWLtPNq4H1NzmhgUWSjZy9yGKmCROSz0js7Pjo9Dmcnxx_OTrjY70E3imj5hyNE2XQjfS9jvkZbVfLtkEVQXMKg3Fl38rOC42ha11tsKYnWoWqr71sTfUCNoarIbwCpmTXo3S6J4VXviMniiIrjwbRx9JkpoC3S-zsdabFsOk4u0KbkbaEtE1I27KA9xHeqWektE4PSNB2FLT9m6AL2FkKx456dmurSE8XdzFVAa-nZtKQeOzhhnC1yH1qgfS3KuBlluU0EhVDrErRfHBNymtDXW8Zvn1NLNwi3hwh_6aA_eWC-DmuP2GxPy2af4Bu639Atw0PZVz4kaISd2BjfrMIu-RLzdu9pDY_AF52EeY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFVEfxM96WiWCbzZ0k012k4cibblaBQ8RC30L2U1WLcfeeb1D-t87s1_1UIqvSQiTyWRmksn8BuCNKS1aDV3xpFA5V1FrbkQeeDA-sSHkIjTvkJ-m2emZ-niuz7dg2ufC0LfKXic2ijrMS3oj308JiIzeq9S7xU9OVaMoutqX0PBdaYVw0ECM3YJtSchYI9g-mkw_fxleXSiupYTtsmeS1OxfogWjLDOpuc0FlTrYsFANkP-_vM-_P1EOkdR7cGddL_zVLz-b_WGsTh7A_c7LZIetWDyErVg_gttt3cmrx3Bw-IH5Do2EodfK4kXzI6tm1bJNdGAEvtFmNTLKQGFC8hmKA5scv38CZyeTr8envKujwEtl1Yob60USdS5DpSlvoygzWeRGoa8QvDLR-qQqZBmENrEsfGZNhi1axbTKgixs-hRG9byOz4ApWVZGel2hIlChROcKb1zBWGMClSyzY3jb884tWrgM14S5U-NaTjvktGs47ZIxHBF7h5EEdd00zJffXHdyXDSKirJnWVIInAFprtDJkqg48oh3IZxkt98c152_S3ctLWN4PXTjyaFwiK_jfN2OyYRBLTaGnXYvB0oUXb1ShesxG7u8QepmT_3je4POLehHCfo9Y9jrBeKarpt4sTcIzX-w7vnNq34BdyWJNIFSml0YrZbr-BK9p1XxqjsSvwGp8BJF
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P0IFGQkbtTbxLEd-8BhqVoKEhUHVpST5cQOr1V2td0VKr-esfOAhQrRa-xY9ng8_mzPfAPwTFUadw1R07TkBeVeCKqywlGnbKqdKzIX7yHfHsujKX9zIk62QPaxMNFpP1JaRjPde4ftneJGE4LBmKC6yEJGgvHC1ZdgWwrE4CPYnh6_m3wMmeQQo1CECayLkElzdc7PG7tQJOs_D2H-7Sg5vJZegyvrZmHPvtvZ7LcN6fAGfOiH0vqhfBuvV-W4-vEHy-PFx3oTrncYlUzamrdgyze34XKbtfLsDryYvCa24zIhiHmJ_xr9uRpSL9swCRKoO9qYSBLiV0jG6AyViRzsv7oL08OD9_tHtMvCQCuu-YoqbbPUi4K5WoSoj7KSrCwUR6ThLFde27QuWeUyoXxVWqmVxC-C-7yWjpU6vwejZt74B0A4q2rFrKjRjHBXITTD85pTWikXEp7pBJ73s2IWLdmGiY_kuTKtUAwKxUShmDSBl2HihpqBKDt-mC8_mU6YxiseUrpLmZYZtoB9rhGiMTQ7hceTFDay00-76VbvqckD6V24G-UJPB2Kcd2FxxTb-Pm6rSMzhTYwgfutlgw94eHglnMcj9rQn42ubpY0Xz5Hbu8s-KMgakpgt1e1X_36lyx2B3X8D9E9vFj1R3CVBW0MFJdqB0ar5do_Riy2Kp90C-8n22QpCA
  priority: 102
  providerName: Unpaywall
Title AI analysis for ejection fraction estimation from 12-lead ECG
URI https://link.springer.com/article/10.1038/s41598-025-97113-0
https://www.ncbi.nlm.nih.gov/pubmed/40251349
https://www.proquest.com/docview/3191481464
https://www.proquest.com/docview/3191618040
https://pubmed.ncbi.nlm.nih.gov/PMC12008426
https://www.nature.com/articles/s41598-025-97113-0.pdf
https://doaj.org/article/e848236660b141509df38929637e7470
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tnRDwgPgaBEZlJN5oROzYif3AQ1Z1jEpUE1CpPFlO7AhQlU1bK7T_nrOTBqIhBE-Rzh9y7nz22ef7HcArWSncNUQdJyXPY-6EiCXNbWylSZS1ObXhHvLDIjtd8vlKrPZgsouFGfjvA3T3FW4xPgyMiVjl1Oci2IcDiRNTjuCgKOaf5v2divdacaq62Bhs_uZm48H-E2D6_2Rb3nwi2ftJ78LtbXNhrn-Y9fq3rejkPtzrbEhStEJ_AHuueQi32qyS14_gbfGemA5rhKBNStz38N6qIfVlG8ZAPLRGG7NIfHwJoSxeo7DJbPruMSxPZp-np3GXJSGuuOKbWCpDEydyZmvhozLKKmNlLjlaAtZw6ZRJ6pJVlgrpqtJkSmZIEdyldWZZqdJDGDXnjXsKhLOqlsyIGtWc2wpNJzxPWamktD4hmYrg9Y53-qIFw9DBiZ1K3XJaI6d14LROIjj27O1reiDrQED56k4vtJPcp1zPsqSk2AOOuUYTiuGykDs86WAnRzvh6E67rnTqQen83SWP4GVfjHrhnR2mcefbtk5GJa5RETxpZdmPhPuDVcrxf-RAyoOhDkuab18D9jb170XQqolgspsQv8b1N15M-knzD6x79n-9P4c7zE9xD0Epj2C0udy6F2grbcox7OerfNwpCn6PZ4uzj0idZtNxuH9A2nJxVnz5CU6GDH0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrVDhgHgTKGAkONGoiddJ7MMKtWXLLm1XCLVSb64TO7RolV32oWr_HL-NmbzKClRx6TW2LGc8T49nPoB3MlNoNaLcD1KR-MJFkS_DxPpWmkBZm4S2vIc8Hsb9U_HlLDpbg19NLQw9q2x0Yqmo7TijO_KdDjUio_sq8XHy0yfUKMquNhAapoZWsN2yxVhd2HHollcYws26g0943u85P-id7Pf9GmXAz4QSc18qEwYuSrjNI6pqSLOYp4kUaEmtEdIpE-Qpz2wYSZelJlYyxi-RcJ08tjylZkxoAjZERygM_jb2esOv39pbHsqjiVDV1TpBR-7M0GJSVRuPfJWEBK2wYhFL4IB_ebt_P9psM7f3YHNRTMzyyoxGfxjHgwdwv_Zq2W7Fhg9hzRWP4E6Fc7l8DN3dATN19xOGXjJzP8oXYAXLp1VhBaNmH1UVJaOKFxZyf4Tsx3r7n5_A6a1Q9CmsF-PCPQcmeJZLbqIcFY-wGTpzGOFZqaS0BJGmPPjQ0E5PqvYcukyrd6SuKK2R0rqktA482CPytjOptXb5YTz9rmtJ1U4KAoGP4yANcQXcc45OHUdFlTiMvXCRreZwdC3vM33NnR68bYdRUin9Ygo3XlRz4lCi1vTgWXWW7U4EhXrIQR7IlVNe2erqSHF5UXYDD-kFC_pZHmw3DHG9r5tosd0yzX-Q7sXNf_0GNvsnx0f6aDA8fAl3ObE3NcSUW7A-ny7cK_Tc5unrWjwYnN-2RP4GBWJPhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1KqK2A6InUABI8GJWhl77Bn7UKHSNjQUKg5Uys14xp4WFE1CFlX5Nb6O92YrEaji0qttWfbb7bcR8lrnBrSGKliUyZTJoBTTPPXMaxcZ71Puq3_Iz8fJ4Yn8OFKjDfKrzYXBsMpWJlaC2k9y_CPvx1iIDP-rZL9owiK-7A_eTX8y7CCFnta2nUZNIkdhdQ7Pt_nOcB9w_UaIwcHXvUPWdBhguTRywbRxPAoqFb5QmNGQ5YnIUi1Bi3ondTAuKjKRe650yDOXGJ3AiJIhLhIvMizEBOL_WhrHBsMJ01Ha_e-gB01y0-TpRLHuz0FXYj6bUMykHJsqrOnCqmXAv-zcv8M1O5_tbXJzWU7d6tyNx3-oxcFdcqexZ-luTYD3yEYo75PrdYfL1QOyszukrql7QsE-puFHFftV0mJWp1RQLPNR509SzHWhXLAxEB492PvwkJxcCTwfkc1yUoYnhEqRF1o4VYDIkT4HMw7edl4brT02RzM98raFnZ3WhTls5VCPta0hbQHStoK0jXrkPYK3W4lFtauByezUNjxqg5bY_j1JoozDDnDmAsw5ASIqDfDqgk22WuTYhtPn9oIue-RVNw08io4XV4bJsl6TcA3yskce17jsTiLxkRdLuI9ew_LaUddnyu9nVR1wjrErYGH1yHZLEBfnugwW2x3R_Afonl5-65fkBvCh_TQ8PnpGbgmkbqyEqbfI5mK2DM_BZFtkLyreoOTbVTPjb74RTR8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P0IFGQkbtTbxLEd-8BhqVoKEhUHVpST5cQOr1V2td0VKr-esfOAhQrRa-xY9ng8_mzPfAPwTFUadw1R07TkBeVeCKqywlGnbKqdKzIX7yHfHsujKX9zIk62QPaxMNFpP1JaRjPde4ftneJGE4LBmKC6yEJGgvHC1ZdgWwrE4CPYnh6_m3wMmeQQo1CECayLkElzdc7PG7tQJOs_D2H-7Sg5vJZegyvrZmHPvtvZ7LcN6fAGfOiH0vqhfBuvV-W4-vEHy-PFx3oTrncYlUzamrdgyze34XKbtfLsDryYvCa24zIhiHmJ_xr9uRpSL9swCRKoO9qYSBLiV0jG6AyViRzsv7oL08OD9_tHtMvCQCuu-YoqbbPUi4K5WoSoj7KSrCwUR6ThLFde27QuWeUyoXxVWqmVxC-C-7yWjpU6vwejZt74B0A4q2rFrKjRjHBXITTD85pTWikXEp7pBJ73s2IWLdmGiY_kuTKtUAwKxUShmDSBl2HihpqBKDt-mC8_mU6YxiseUrpLmZYZtoB9rhGiMTQ7hceTFDay00-76VbvqckD6V24G-UJPB2Kcd2FxxTb-Pm6rSMzhTYwgfutlgw94eHglnMcj9rQn42ubpY0Xz5Hbu8s-KMgakpgt1e1X_36lyx2B3X8D9E9vFj1R3CVBW0MFJdqB0ar5do_Riy2Kp90C-8n22QpCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+analysis+for+ejection+fraction+estimation+from+12-lead+ECG&rft.jtitle=Scientific+reports&rft.au=Devkota%2C+Alina&rft.au=Prajapati%2C+Rukesh&rft.au=El-Wakeel%2C+Amr&rft.au=Adjeroh%2C+Donald&rft.date=2025-04-18&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=13502&rft_id=info:doi/10.1038%2Fs41598-025-97113-0&rft_id=info%3Apmid%2F40251349&rft.externalDocID=40251349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon