AI simulation models for diagnosing disabilities in smart electrical prosthetics using bipolar fuzzy decision making based on choquet integral

The integration of AI simulation models within smart electrical prosthetic systems represents a significant advancement in disability disease diagnosis. However, the selection and evaluation of these AI models interpret some multi-criteria decision-making dilemmas because of the presence of uncertai...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 29244 - 19
Main Authors Rehman, Ubaid ur, Khan, Meraj Ali, Aldayel, Osamah AbdulAziz, Mahmood, Tahir
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-12267-1

Cover

More Information
Summary:The integration of AI simulation models within smart electrical prosthetic systems represents a significant advancement in disability disease diagnosis. However, the selection and evaluation of these AI models interpret some multi-criteria decision-making dilemmas because of the presence of uncertainty and bipolarity (positive and negative aspects) of the selection criteria. Current literature lacks the selection and evaluation of AI simulation models that consider both bipolarity and uncertainty of the criteria, while prevailing Choquet integral aggregation operators despite their strong capabilities for handling information relationships, fail to efficiently process bipolar fuzzy information. The existence of this limitation makes it challenging to identify element interactions and non-linear relationships in uncertain environments containing both positive and negative aspects. To overcome these gaps, first, we develop two operators that are the bipolar fuzzy Choquet integral averaging and bipolar fuzzy Choquet integral geometric operators that uniquely integrate dual aspects (bipolarity) with criterion interaction modeling capabilities, fundamentally differing from traditional fuzzy approaches that cannot simultaneously process dual aspects of criterion. Secondly, we design a new multi-criteria decision-making approach using these operators to assess AI simulation models for prosthetic systems, since the criteria involved such as diagnostic accuracy, computational efficiency, and system reliability, have both positive and negative aspects that need to be considered together. Our method was applied in detail to select AI simulation models for smart electrical prosthetic systems and compared with some prevailing methods and standard Choquet integral approaches. This showed that our method is more precise and produces better evaluation results. It introduces a new theoretical basis for bipolar fuzzy Choquet integral aggregation and offers medical professionals a reliable way to pick the best AI simulation models for important prosthetic applications that influence patient outcomes and the functioning of prosthetics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-12267-1