Low pressure amide hydrogenation enabled by magnetocatalysis

The catalytic hydrogenation of amides with molecular hydrogen (H 2 ) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H 2 pressures is challenging although desirable to preclude the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 3464 - 13
Main Authors Lin, Sheng-Hsiang, Ahmedi, Sihana, Kretschmer, Aaron, Campalani, Carlotta, Kayser, Yves, Kang, Liqun, DeBeer, Serena, Leitner, Walter, Bordet, Alexis
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-58713-6

Cover

Abstract The catalytic hydrogenation of amides with molecular hydrogen (H 2 ) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H 2 pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al 2 O 3 ) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al 2 O 3 catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H 2 . ICNPs@Pt/Al 2 O 3 reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry. Due to their stability, reduction of amides typically requires harsh conditions or strong reductants. Here the authors report a method for amide reduction with molecular hydrogen under mild conditions by use of magnetocatalysis.
AbstractList The catalytic hydrogenation of amides with molecular hydrogen (H2) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H2 pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al2O3) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al2O3 catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H2. ICNPs@Pt/Al2O3 reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry.The catalytic hydrogenation of amides with molecular hydrogen (H2) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H2 pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al2O3) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al2O3 catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H2. ICNPs@Pt/Al2O3 reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry.
The catalytic hydrogenation of amides with molecular hydrogen (H ) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al O ) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al O catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H . ICNPs@Pt/Al O reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry.
The catalytic hydrogenation of amides with molecular hydrogen (H 2 ) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H 2 pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al 2 O 3 ) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al 2 O 3 catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H 2 . ICNPs@Pt/Al 2 O 3 reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry. Due to their stability, reduction of amides typically requires harsh conditions or strong reductants. Here the authors report a method for amide reduction with molecular hydrogen under mild conditions by use of magnetocatalysis.
The catalytic hydrogenation of amides with molecular hydrogen (H2) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H2 pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al2O3) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al2O3 catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H2. ICNPs@Pt/Al2O3 reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry.Due to their stability, reduction of amides typically requires harsh conditions or strong reductants. Here the authors report a method for amide reduction with molecular hydrogen under mild conditions by use of magnetocatalysis.
Abstract The catalytic hydrogenation of amides with molecular hydrogen (H2) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H2 pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al2O3) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al2O3 catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H2. ICNPs@Pt/Al2O3 reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry.
The catalytic hydrogenation of amides with molecular hydrogen (H 2 ) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H 2 pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al 2 O 3 ) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al 2 O 3 catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H 2 . ICNPs@Pt/Al 2 O 3 reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry.
ArticleNumber 3464
Author Campalani, Carlotta
Kang, Liqun
Bordet, Alexis
Leitner, Walter
Lin, Sheng-Hsiang
Ahmedi, Sihana
DeBeer, Serena
Kayser, Yves
Kretschmer, Aaron
Author_xml – sequence: 1
  givenname: Sheng-Hsiang
  orcidid: 0000-0002-5014-5334
  surname: Lin
  fullname: Lin, Sheng-Hsiang
  organization: Max Planck Institute for Chemical Energy Conversion, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University
– sequence: 2
  givenname: Sihana
  surname: Ahmedi
  fullname: Ahmedi, Sihana
  organization: Max Planck Institute for Chemical Energy Conversion, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University
– sequence: 3
  givenname: Aaron
  surname: Kretschmer
  fullname: Kretschmer, Aaron
  organization: Max Planck Institute for Chemical Energy Conversion
– sequence: 4
  givenname: Carlotta
  surname: Campalani
  fullname: Campalani, Carlotta
  organization: Max Planck Institute for Chemical Energy Conversion
– sequence: 5
  givenname: Yves
  surname: Kayser
  fullname: Kayser, Yves
  organization: Max Planck Institute for Chemical Energy Conversion
– sequence: 6
  givenname: Liqun
  orcidid: 0000-0003-2100-4310
  surname: Kang
  fullname: Kang, Liqun
  organization: Max Planck Institute for Chemical Energy Conversion
– sequence: 7
  givenname: Serena
  orcidid: 0000-0002-5196-3400
  surname: DeBeer
  fullname: DeBeer, Serena
  organization: Max Planck Institute for Chemical Energy Conversion
– sequence: 8
  givenname: Walter
  orcidid: 0000-0001-6100-9656
  surname: Leitner
  fullname: Leitner, Walter
  organization: Max Planck Institute for Chemical Energy Conversion, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University
– sequence: 9
  givenname: Alexis
  orcidid: 0000-0003-0133-3416
  surname: Bordet
  fullname: Bordet, Alexis
  email: alexis.bordet@cec.mpg.de
  organization: Max Planck Institute for Chemical Energy Conversion
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40216784$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rFTEUhoNUbK39Ay5kwI2b0Zx8BwSR0mrhghtdh0ySO53LTHJNZir335t2am1dmCxOSJ7znkPO-xIdxRQDQq8BvwdM1YfCgAnZYsJbriTQVjxDJwQzaEESevTofIzOStnhuqgGxdgLdMwwASEVO0EfN-lXs8-hlCWHxk6DD831wefUh2jnIcWmxm4MvukOzWT7GObk7GzHQxnKK_R8a8cSzu7jKfpxefH9_Gu7-fbl6vzzpnVMs7mlnlsvwHriiFNSeC6Cx9wKUDIE4aXugDsnGd8S5hxo6jwGy5Ty2HZa0lN0ter6ZHdmn4fJ5oNJdjB3Fyn3xuZ5cGMwfOsFplg6jT0D7rsucFtrakxs3b5qfVq19ks3Be9CnLMdn4g-fYnDtenTjQHQmhACVeHdvUJOP5dQZjMNxYVxtDGkpRgKSgNXQGhF3_6D7tKSY_2rW0ppwes8KvXmcUsPvfyZUgXICricSslh-4AANrduMKsbTHWDuXODETWJrkmlwrEP-W_t_2T9BmxYtnc
Cites_doi 10.1021/acscatal.9b02471
10.1021/ja902829p
10.1021/ja00959a026
10.1016/j.jcat.2010.12.009
10.1021/acs.nanolett.5b00446
10.1039/D3GC04175A
10.1002/adma.202302793
10.1021/ja01316a508
10.1002/aenm.202201783
10.1039/j39690002425
10.1021/cr400609m
10.1021/ja01326a061
10.1021/op700073g
10.1080/14756360400004631
10.1002/anie.200500939
10.1039/C6CS00244G
10.1016/S0040-4039(96)01458-X
10.1021/acs.chemrev.6b00486
10.1039/C5SC04671H
10.1002/chem.201204270
10.1039/D0GC03495A
10.1038/s41598-018-36603-w
10.1021/op2003826
10.1016/j.jpowsour.2021.229487
10.1002/anie.201704199
10.1038/s41467-020-17588-5
10.1002/anie.201207803
10.1021/ja01137a014
10.1126/science.aay3060
10.1007/s10562-017-2090-9
10.1021/acscatal.8b02902
10.1021/ja105853q
10.1002/slct.201600088
10.1002/anie.202301956
10.1039/C8GC01276H
10.1002/anie.202107916
10.3390/ijms11010329
10.1021/ja01071a037
10.1039/D0QO00843E
10.1021/ja506023f
10.1021/acs.accounts.0c00842
10.1002/anie.201609477
10.1002/anie.201904366
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-58713-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_5fd60307c90d415dbbe5a876902a2a2d
PMC11992221
40216784
10_1038_s41467_025_58713_6
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  funderid: https://doi.org/10.13039/501100001659
– fundername: Max-Planck-Gesellschaft (Max Planck Society)
  grantid: Exzellenzcluster 2186 “The Fuel Science Center” ID: 390919832
  funderid: https://doi.org/10.13039/501100004189
– fundername: Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation)
  funderid: https://doi.org/10.13039/100005156
– fundername: Max-Planck-Gesellschaft (Max Planck Society)
  grantid: Exzellenzcluster 2186 "The Fuel Science Center" ID: 390919832
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AARCD
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-3d5ad61ad2c2c876d56ed05a6187ee6d79b15cc745f24cc193cd01a488d0ab973
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:21:53 EDT 2025
Thu Aug 21 18:32:03 EDT 2025
Fri Sep 05 17:39:12 EDT 2025
Sat Aug 23 13:30:33 EDT 2025
Tue Apr 15 01:23:19 EDT 2025
Tue Aug 05 12:13:46 EDT 2025
Sat Apr 12 01:21:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-3d5ad61ad2c2c876d56ed05a6187ee6d79b15cc745f24cc193cd01a488d0ab973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0133-3416
0000-0002-5196-3400
0000-0003-2100-4310
0000-0002-5014-5334
0000-0001-6100-9656
OpenAccessLink https://doaj.org/article/5fd60307c90d415dbbe5a876902a2a2d
PMID 40216784
PQID 3188965844
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5fd60307c90d415dbbe5a876902a2a2d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11992221
proquest_miscellaneous_3189158123
proquest_journals_3188965844
pubmed_primary_40216784
crossref_primary_10_1038_s41467_025_58713_6
springer_journals_10_1038_s41467_025_58713_6
PublicationCentury 2000
PublicationDate 2025-04-11
PublicationDateYYYYMMDD 2025-04-11
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References MC Bryan (58713_CR10) 2018; 20
M-P Lézé (58713_CR40) 2004; 19
JR Cabrero-Antonino (58713_CR9) 2020; 11
A Meffre (58713_CR28) 2015; 15
JM Asensio (58713_CR31) 2019; 58
K-i Shimizu (58713_CR23) 2016; 1
JB Zimmerman (58713_CR25) 2020; 367
NA Rakow (58713_CR3) 2005; 44
A Volkov (58713_CR8) 2016; 45
H Kreissl (58713_CR30) 2021; 60
W Wang (58713_CR27) 2019; 9
I Mustieles Marin (58713_CR33) 2021; 23
HJ Schneider (58713_CR19) 1952; 74
A Bordet (58713_CR26) 2023; 62
E de Smit (58713_CR35) 2010; 132
58713_CR11
G Jacobs (58713_CR37) 2017; 147
X Chen (58713_CR1) 2021; 54
H Adkins (58713_CR17) 1934; 56
W-C Shieh (58713_CR38) 2007; 11
R-P Zhang (58713_CR34) 2023; 35
Y-Q Zou (58713_CR16) 2018; 8
T Koreeda (58713_CR41) 2009; 131
S-H Lin (58713_CR32) 2022; 12
T-Y Wu (58713_CR42) 2010; 11
C Hirosawa (58713_CR20) 1996; 37
G Beamson (58713_CR21) 2011; 278
M Ganesan (58713_CR43) 2020; 7
M Stein (58713_CR22) 2013; 52
T Mitsudome (58713_CR24) 2017; 56
AM Smith (58713_CR7) 2014; 114
H Yang (58713_CR12) 2024; 26
HC Brown (58713_CR5) 1966; 88
V Froidevaux (58713_CR2) 2016; 116
T vom Stein (58713_CR15) 2014; 136
A Bordet (58713_CR29) 2016; 55
J Magano (58713_CR4) 2012; 16
HC Brown (58713_CR6) 1964; 86
Á García (58713_CR36) 2021; 490
B Wojcik (58713_CR18) 1934; 56
PR Jones (58713_CR39) 2019; 9
JR Cabrero-Antonino (58713_CR13) 2016; 7
J Coetzee (58713_CR14) 2013; 19
References_xml – volume: 9
  start-page: 7921
  year: 2019
  ident: 58713_CR27
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02471
– volume: 131
  start-page: 7238
  year: 2009
  ident: 58713_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902829p
– volume: 88
  start-page: 1458
  year: 1966
  ident: 58713_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00959a026
– volume: 278
  start-page: 228
  year: 2011
  ident: 58713_CR21
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.12.009
– volume: 15
  start-page: 3241
  year: 2015
  ident: 58713_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00446
– volume: 26
  start-page: 2341
  year: 2024
  ident: 58713_CR12
  publication-title: Green. Chem.
  doi: 10.1039/D3GC04175A
– volume: 35
  start-page: 2302793
  year: 2023
  ident: 58713_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202302793
– volume: 56
  start-page: 247
  year: 1934
  ident: 58713_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01316a508
– volume: 12
  start-page: 2201783
  year: 2022
  ident: 58713_CR32
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201783
– ident: 58713_CR11
  doi: 10.1039/j39690002425
– volume: 114
  start-page: 5477
  year: 2014
  ident: 58713_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/cr400609m
– volume: 56
  start-page: 2419
  year: 1934
  ident: 58713_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01326a061
– volume: 11
  start-page: 711
  year: 2007
  ident: 58713_CR38
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op700073g
– volume: 19
  start-page: 549
  year: 2004
  ident: 58713_CR40
  publication-title: J. Enzym. Inhib. Med. Chem.
  doi: 10.1080/14756360400004631
– volume: 44
  start-page: 4528
  year: 2005
  ident: 58713_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200500939
– volume: 45
  start-page: 6685
  year: 2016
  ident: 58713_CR8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00244G
– volume: 37
  start-page: 6749
  year: 1996
  ident: 58713_CR20
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(96)01458-X
– volume: 116
  start-page: 14181
  year: 2016
  ident: 58713_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00486
– volume: 7
  start-page: 3432
  year: 2016
  ident: 58713_CR13
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04671H
– volume: 19
  start-page: 11039
  year: 2013
  ident: 58713_CR14
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201204270
– volume: 23
  start-page: 2025
  year: 2021
  ident: 58713_CR33
  publication-title: Green. Chem.
  doi: 10.1039/D0GC03495A
– volume: 9
  year: 2019
  ident: 58713_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36603-w
– volume: 16
  start-page: 1156
  year: 2012
  ident: 58713_CR4
  publication-title: Org. Proc. Res. Dev.
  doi: 10.1021/op2003826
– volume: 490
  year: 2021
  ident: 58713_CR36
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229487
– volume: 56
  start-page: 9381
  year: 2017
  ident: 58713_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201704199
– volume: 11
  start-page: 3893
  year: 2020
  ident: 58713_CR9
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-020-17588-5
– volume: 52
  start-page: 2231
  year: 2013
  ident: 58713_CR22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201207803
– volume: 74
  start-page: 4287
  year: 1952
  ident: 58713_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01137a014
– volume: 367
  start-page: 397
  year: 2020
  ident: 58713_CR25
  publication-title: Science
  doi: 10.1126/science.aay3060
– volume: 147
  start-page: 1861
  year: 2017
  ident: 58713_CR37
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-017-2090-9
– volume: 8
  start-page: 8014
  year: 2018
  ident: 58713_CR16
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02902
– volume: 132
  start-page: 14928
  year: 2010
  ident: 58713_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105853q
– volume: 1
  start-page: 736
  year: 2016
  ident: 58713_CR23
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201600088
– volume: 62
  year: 2023
  ident: 58713_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202301956
– volume: 20
  start-page: 5082
  year: 2018
  ident: 58713_CR10
  publication-title: Green. Chem.
  doi: 10.1039/C8GC01276H
– volume: 60
  start-page: 26639
  year: 2021
  ident: 58713_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202107916
– volume: 11
  start-page: 329
  year: 2010
  ident: 58713_CR42
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms11010329
– volume: 86
  start-page: 3566
  year: 1964
  ident: 58713_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01071a037
– volume: 7
  start-page: 3792
  year: 2020
  ident: 58713_CR43
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO00843E
– volume: 136
  start-page: 13217
  year: 2014
  ident: 58713_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506023f
– volume: 54
  start-page: 1711
  year: 2021
  ident: 58713_CR1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00842
– volume: 55
  start-page: 15894
  year: 2016
  ident: 58713_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201609477
– volume: 58
  start-page: 11306
  year: 2019
  ident: 58713_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904366
SSID ssj0000391844
Score 2.4834728
Snippet The catalytic hydrogenation of amides with molecular hydrogen (H 2 ) is an appealing route for the synthesis of valuable amines entering in the preparation of...
The catalytic hydrogenation of amides with molecular hydrogen (H 2 ) is an appealing route for the synthesis of valuable amines entering in the preparation of...
The catalytic hydrogenation of amides with molecular hydrogen (H ) is an appealing route for the synthesis of valuable amines entering in the preparation of...
The catalytic hydrogenation of amides with molecular hydrogen (H2) is an appealing route for the synthesis of valuable amines entering in the preparation of...
Abstract The catalytic hydrogenation of amides with molecular hydrogen (H2) is an appealing route for the synthesis of valuable amines entering in the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3464
SubjectTerms 639/638/298/920
639/638/77/887
Aluminum oxide
Amides
Amines
Catalysts
Energy transfer
Humanities and Social Sciences
Hydrogenation
Induction heating
Iron carbides
Low pressure
Magnetic fields
Magnetic induction
multidisciplinary
Nanoparticles
Organic compounds
Platinum
Reducing agents
Renewable energy sources
Science
Science (multidisciplinary)
Thermal energy
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEB50RfBFvG91lQq-adimubQFQVRcFlGfXDhvIclkLw_brueCnH_vTNpzluONvjUJJDOTmclM8g3Aq8APGn1UIpjQCo2tFWRGkrAqkIMvGfGbHwp__WaPT_TnmZlNAbfFdK1yoxOzosYhcoz8kGSvZaASrd9d_RBcNYqzq1MJjZtwS5InwqUbmlmzjbEw-jkNmN7KVKo9XOisGbiGq6GjghJ2xx5l2P6_-Zp_Xpn8LW-azdHRPbg7-ZHl-5Hx9-FG6h_A7bGy5PohvP0y_CzzHdfVPJX-8gJTeb7G-UDyknlRpvxoCsuwLi_9WZ-WQ47kMEDJIzg5-vT947GYCiWIqDu9FAqNRys91rGOpN7Q2ISV8Va2TUoWmy5IE2OjzWmtYyRKRaykp72LlQ9dox7DXj_0aR_KJjQ-2k6RHuS0bwjkstgY-GTlPRnzAl5vyOWuRjwMl_PYqnUjcR0R12XiOur9gSm67clY1vnHMD9z09Zw5hQtq5rYVUjuBIaQjKdVdFXt6cMCDjb8cNMGW7hrcSjg5baZtgbnO3yfhlXu00lDoqcKeDKybzsTOjZLstM0ut1h7M5Ud1v6i_MMvy35xm5dywLebGTgel7_psXT_y_jGdypWSwZRlIewN5yvkrPyd9ZhhdZqH8BfZH8bQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SlEIvJenTeRQXemtNLethGXJJl4ZQ2p4ayE3otbs5xA6bDWH_fWZke8O220PxzZJgNJqXpJlPAB8dFTRazwsnnS5E0KpANxILxR0G-IwQv6lQ-OcvdX4hvl_Kyx2oxlqYlLSfIC2TmR6zw77ciqTS9PiqxBifF-oJPNU1lyTVEzVZn6sQ4rkWYqiPKbneMnTDByWo_m3x5d9pkn_clSYXdLYHL4bYMT_tqd2Hndi-hGf9a5KrV3Dyo7vPU14rziu311ch5vNVWHQoI4n_eUyFUiF3q_zaztq47NLpDYGSvIaLs2-_J-fF8DhC4UUjlgUP0gbFbKh85dGkBaliKKVVTNcxqlA3jknvayGnlfAe4zQfSmZRX0NpXVPzN7Dbdm18B3ntautVw9H20VWvcximKO9oN2UtOvAMPo3sMjc9BoZJd9dcm565BplrEnMN9v5KHF33JPzq9KNbzMywnkZOgyLz4psyYAgRnIvS4iyasrL4hQyOxvUwg1LdGjQ_mrBqhMjgw7oZ1YHuOGwbu7vUp2ESxY1n8LZfvjUluFVm6JtxtN5Y2A1SN1vaq3mC3GaUpVtVLIPPoww80vVvXhz8X_dDeF6RmBKUJDuC3eXiLh5jzLN075OQPwAeZvox
  priority: 102
  providerName: Springer Nature
Title Low pressure amide hydrogenation enabled by magnetocatalysis
URI https://link.springer.com/article/10.1038/s41467-025-58713-6
https://www.ncbi.nlm.nih.gov/pubmed/40216784
https://www.proquest.com/docview/3188965844
https://www.proquest.com/docview/3189158123
https://pubmed.ncbi.nlm.nih.gov/PMC11992221
https://doaj.org/article/5fd60307c90d415dbbe5a876902a2a2d
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD5oRfBFvButSwTfNDSTuSQDvmyXrmXRImph34a51fahiWx3kf33njPJrl0v-CKBBCYTGL5zz8x8A_DK0YZG63nhpGsKERpVYBiJheIOE3xGjN-0UfjDiTo-FbO5nF876ovWhPX0wD1wB_IsKFJEr8uAwSY4F6VFE9ZlZfEK5H1LXV4rppIP5hpLFzHskil5c3Alkk-g01slFgm8UDuRKBH2_ynL_H2x5C8zpikQTe_B3SGDzMf9yO_Djdg-gNv9mZLrh_D2ffc9T6tbV4uY28uLEPPzdVh0qClJCnlM26VC7tb5pf3axmWX_uEQNckjOJ0efZkcF8MRCYUXWiwLHqQNitlQ-cojKkGqGEppFWvqGFWotWPS-1rIs0p4j9maDyWzaLWhtE7X_DHstV0bn0Jeu9p6pTl6QJrwdQ6TFeUd1VTWYhjP4PUGLvOtZ8IwaQabN6YH1yC4JoFrsPchIbrtSSzWqQFlawbZmn_JNoP9jTzMYFpXBp1QQ4w1QmTwcvsajYJmOmwbu1Xqo5lEpeMZPOnFtx0JFswMIzR-3ewIdmeou2_ai_NEvM1orW5VsQzebHTg57j-jsWz_4HFc7hTkfISzSTbh73lYhVfYD60dCO4Wc9rvDfTdyO4NR7PPs_weXh08vETtk7UZJSM4wf8SQq2
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SCgQJThA1TmwnkagQhVZbul0h1Eq9Gb_6ODRp96Fq_xy_jRlvstXyulV723hXzvjz-LPH8w3AG0MJjdrmiRGmTLgrZYLLiE9kbpDgM1L8pkTh_aHsH_KvR-JoBX52uTB0rbLzicFRu8bSGfkGYq8koRLOP15cJlQ1iqKrXQkN3ZZWcJtBYqxN7Njzsyvcwo03d7_geL_Nsp3tg8_9pK0ykFhe8UmSO6GdZNplNrPoG5yQ3qVCS1YW3ktXVIYJawsujjNuLRIe61KmEfgu1aYqcvzfW7DK6QClB6tb28Nv3xenPKS_jl1us3XSvNwY8-CbqIqswM1KnsilFTEUDvgb2_3z0uZvkduwIO7ch3stk40_zaH3AFZ8_RBuz2tbzh7Bh0FzFYdbttORj_X5mfPx6cyNGkRsQEPsQ9qWi80sPtcntZ804SyJJFIew-GNGPEJ9Oqm9s8gLkyhraxy9MQUeDYGSZO0hvZ2WiOdiOBdZy51MVfkUCGSnpdqblyFxlXBuApbb5FFFy1JTTt80YxOVDs5lTh2kpydrVKHhMYZ44XGt6jSTOPHRbDejYdqp_hYXQMygteLxzg5KeKia99MQ5uKCQR_HsHT-fAteoIbd4ZMAX9dLg3sUleXn9Rnp0EAnNGd4SxjEbzvMHDdr3_bYu3_r_EK7vQP9gdqsDvcew53M4IoiVqydehNRlP_AtnXxLxsIR7Dj5ueVb8AuqtAiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMNtBAkOEG0cRw7iQSqgLK0tFQcqNSb69e2PTQp-1C1f41fx4yTbLW8btXeNt6VM_5m_NnzAnhpKKFRW54YYcokd6VMcBvxieQGCT6jit-UKPz1QO4c5l-OxNEK_OxzYSissreJwVC7xtId-QCxV1KhkjwfjLqwiG_bw62LHwl1kCJPa99Oo4XInp9f4vFt8m53G9f6VZYNP33_uJN0HQYSm1f5NOFOaCeZdpnNLNoFJ6R3qdCSlYX30hWVYcLaIhejLLcWyY51KdMIepdqUxUc__cG3Cw46gllqQ8_L-53qPI6TrbL00l5OZjkwSpR_1iBxxSeyKW9MLQM-BvP_TNc8zefbdgKh_fgbsdh4_ct6O7Diq8fwK22q-X8Ibzdby7jEF87G_tYn585H5_O3bhBrAYcxD4kbLnYzONzfVL7aRNukag4yiM4vBYRPobVuqn9OsSFKbSVFUcbTC5nY5AuSWvoVKc1EokIXvfiUhdtLQ4VfOi8VK1wFQpXBeEqHP2BJLoYSXW0wxfN-ER1aqnEyEkyc7ZKHVIZZ4wXGt-iSjONHxfBRr8eqlPuibqCYgQvFo9RLcnXomvfzMKYigmEPY9grV2-xUzwyM6QI-Cvy6WFXZrq8pP67DSU_mYULZxlLII3PQau5vVvWTz5_2s8h9uoS2p_92DvKdzJCKFUzZJtwOp0PPObSLum5lnAdwzH161QvwD7QD4k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+pressure+amide+hydrogenation+enabled+by+magnetocatalysis&rft.jtitle=Nature+communications&rft.au=Lin%2C+Sheng-Hsiang&rft.au=Ahmedi%2C+Sihana&rft.au=Kretschmer%2C+Aaron&rft.au=Campalani%2C+Carlotta&rft.date=2025-04-11&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-58713-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_025_58713_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon