Colonial bacterial memetic algorithm and its application on a darts playing robot

In this paper, we present the Colonial Bacterial Memetic Algorithm (CBMA), an advanced evolutionary optimization approach for robotic applications. CBMA extends the Bacterial Memetic Algorithm by integrating Cultural Algorithms and co-evolutionary dynamics inspired by bacterial group behavior. This...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 10757 - 29
Main Authors Kovács, Szilárd, Budai, Csaba, Botzheim, János
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-94245-1

Cover

More Information
Summary:In this paper, we present the Colonial Bacterial Memetic Algorithm (CBMA), an advanced evolutionary optimization approach for robotic applications. CBMA extends the Bacterial Memetic Algorithm by integrating Cultural Algorithms and co-evolutionary dynamics inspired by bacterial group behavior. This combination of natural and artificial evolutionary elements results in a robust algorithm capable of handling complex challenges in robotics, such as constraints, multiple objectives, large search spaces, and complex models, while delivering fast and accurate solutions. CBMA incorporates features like multi-level clustering, dynamic gene selection, hierarchical population clustering, and adaptive co-evolutionary mechanisms, enabling efficient management of task-specific parameters and optimizing solution quality while minimizing resource consumption. The algorithm’s effectiveness is demonstrated through a real-world robotic application, achieving a 100% success rate in a robot arm’s ball-throwing task usually with significantly fewer iterations and evaluations compared to other methods. CBMA was also evaluated using the CEC-2017 benchmark suite, where it consistently outperformed state-of-the-art optimization algorithms, achieving superior outcomes in 71% of high-dimensional cases and demonstrating up to an 80% reduction in required evaluations. These results highlight CBMA’s efficiency, adaptability, and suitability for specialized tasks. Overall, CBMA exhibits exceptional performance in both real-world and benchmark evaluations, effectively balancing exploration and exploitation, and representing a significant advancement in adaptive evolutionary optimization for robotics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-94245-1