Raw QPP-RNG randomness via system jitter across platforms: a NIST SP 800-90B evaluation

High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG , a true random number generator (TRNG) that harvests entropy from diverse system-level jitters–including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven me...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 27718 - 19
Main Authors Vrana, Georgia, Lou, Dafu, Kuang, Randy
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-13135-8

Cover

Abstract High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG , a true random number generator (TRNG) that harvests entropy from diverse system-level jitters–including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven memory access latencies, and other subtle hardware and operating system-induced fluctuations. QPP-RNG’s core mechanism measures the elapsed time of randomized array sorting operations–where each Fisher-Yates shuffle is infinitesimally perturbed by these microscopic jitters–and amplifies these timing variations into cryptographically strong randomness through a quantum permutation pad (QPP) architecture, all achievable on commodity hardware. The raw output of QPP-RNG underwent rigorous evaluation for independent and identically distributed (IID) behavior using the NIST SP 800-90B IID test suite, alongside the comprehensive NIST SP 800-22 and ENT statistical test batteries. Across a range of platforms, including Windows, macOS, and Raspberry Pi, QPP-RNG consistently achieved high IID min-entropy between and  bits/byte. It passed all NIST SP 800-90B IID tests with -values significantly above the threshold, confirming that its generated randomness is statistically indistinguishable from ideal IID sources derived directly from system jitter. Cross-platform analyses spanning x86_64 and ARM64 architectures further demonstrate that the extracted jitter fingerprint–and consequently the generated randomness–exhibits remarkable statistical consistency, irrespective of the underlying hardware or operating system. QPP-RNG’s entropy density compares favorably with leading commercial entropy sources. It matches or slightly exceeds the NIST IID-certified min-entropy of ID Quantique’s Quantis QRNG (7.8744 bits/byte), and significantly outperforms both Red Hat’s CPU Time Jitter RNG (7.4528 bits/byte) and Quside’s PCIe One quantum entropy source (6.5136 bits/byte). Even against specialized hardware RNGs like Microchip’s ECC608 (4.0568 bits/byte), QPP-RNG demonstrates superior performance using only general-purpose processors. By effectively transforming otherwise discarded system noise into a reliable and high-quality entropy stream, QPP-RNG establishes a novel paradigm for embedded security, providing a robust entropy source on general-purpose devices without specialized hardware. This makes it especially well-suited for resource-constrained Internet of Things (IoT) and edge computing applications where strong entropy sources are paramount.
AbstractList High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG, a true random number generator (TRNG) that harvests entropy from diverse system-level jitters-including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven memory access latencies, and other subtle hardware and operating system-induced fluctuations. QPP-RNG's core mechanism measures the elapsed time of randomized array sorting operations-where each Fisher-Yates shuffle is infinitesimally perturbed by these microscopic jitters-and amplifies these timing variations into cryptographically strong randomness through a quantum permutation pad (QPP) architecture, all achievable on commodity hardware. The raw output of QPP-RNG underwent rigorous evaluation for independent and identically distributed (IID) behavior using the NIST SP 800-90B IID test suite, alongside the comprehensive NIST SP 800-22 and ENT statistical test batteries. Across a range of platforms, including Windows, macOS, and Raspberry Pi, QPP-RNG consistently achieved high IID min-entropy between [Formula: see text] and [Formula: see text] bits/byte. It passed all NIST SP 800-90B IID tests with [Formula: see text]-values significantly above the [Formula: see text] threshold, confirming that its generated randomness is statistically indistinguishable from ideal IID sources derived directly from system jitter. Cross-platform analyses spanning x86_64 and ARM64 architectures further demonstrate that the extracted jitter fingerprint-and consequently the generated randomness-exhibits remarkable statistical consistency, irrespective of the underlying hardware or operating system. QPP-RNG's entropy density compares favorably with leading commercial entropy sources. It matches or slightly exceeds the NIST IID-certified min-entropy of ID Quantique's Quantis QRNG (7.8744 bits/byte), and significantly outperforms both Red Hat's CPU Time Jitter RNG (7.4528 bits/byte) and Quside's PCIe One quantum entropy source (6.5136 bits/byte). Even against specialized hardware RNGs like Microchip's ECC608 (4.0568 bits/byte), QPP-RNG demonstrates superior performance using only general-purpose processors. By effectively transforming otherwise discarded system noise into a reliable and high-quality entropy stream, QPP-RNG establishes a novel paradigm for embedded security, providing a robust entropy source on general-purpose devices without specialized hardware. This makes it especially well-suited for resource-constrained Internet of Things (IoT) and edge computing applications where strong entropy sources are paramount.
High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG , a true random number generator (TRNG) that harvests entropy from diverse system-level jitters–including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven memory access latencies, and other subtle hardware and operating system-induced fluctuations. QPP-RNG’s core mechanism measures the elapsed time of randomized array sorting operations–where each Fisher-Yates shuffle is infinitesimally perturbed by these microscopic jitters–and amplifies these timing variations into cryptographically strong randomness through a quantum permutation pad (QPP) architecture, all achievable on commodity hardware. The raw output of QPP-RNG underwent rigorous evaluation for independent and identically distributed (IID) behavior using the NIST SP 800-90B IID test suite, alongside the comprehensive NIST SP 800-22 and ENT statistical test batteries. Across a range of platforms, including Windows, macOS, and Raspberry Pi, QPP-RNG consistently achieved high IID min-entropy between and  bits/byte. It passed all NIST SP 800-90B IID tests with -values significantly above the threshold, confirming that its generated randomness is statistically indistinguishable from ideal IID sources derived directly from system jitter. Cross-platform analyses spanning x86_64 and ARM64 architectures further demonstrate that the extracted jitter fingerprint–and consequently the generated randomness–exhibits remarkable statistical consistency, irrespective of the underlying hardware or operating system. QPP-RNG’s entropy density compares favorably with leading commercial entropy sources. It matches or slightly exceeds the NIST IID-certified min-entropy of ID Quantique’s Quantis QRNG (7.8744 bits/byte), and significantly outperforms both Red Hat’s CPU Time Jitter RNG (7.4528 bits/byte) and Quside’s PCIe One quantum entropy source (6.5136 bits/byte). Even against specialized hardware RNGs like Microchip’s ECC608 (4.0568 bits/byte), QPP-RNG demonstrates superior performance using only general-purpose processors. By effectively transforming otherwise discarded system noise into a reliable and high-quality entropy stream, QPP-RNG establishes a novel paradigm for embedded security, providing a robust entropy source on general-purpose devices without specialized hardware. This makes it especially well-suited for resource-constrained Internet of Things (IoT) and edge computing applications where strong entropy sources are paramount.
High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG, a true random number generator (TRNG) that harvests entropy from diverse system-level jitters–including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven memory access latencies, and other subtle hardware and operating system-induced fluctuations. QPP-RNG’s core mechanism measures the elapsed time of randomized array sorting operations–where each Fisher-Yates shuffle is infinitesimally perturbed by these microscopic jitters–and amplifies these timing variations into cryptographically strong randomness through a quantum permutation pad (QPP) architecture, all achievable on commodity hardware. The raw output of QPP-RNG underwent rigorous evaluation for independent and identically distributed (IID) behavior using the NIST SP 800-90B IID test suite, alongside the comprehensive NIST SP 800-22 and ENT statistical test batteries. Across a range of platforms, including Windows, macOS, and Raspberry Pi, QPP-RNG consistently achieved high IID min-entropy between $$7.85$$ and $$7.95$$  bits/byte. It passed all NIST SP 800-90B IID tests with $$p$$ -values significantly above the $$\alpha =0.01$$ threshold, confirming that its generated randomness is statistically indistinguishable from ideal IID sources derived directly from system jitter. Cross-platform analyses spanning x86_64 and ARM64 architectures further demonstrate that the extracted jitter fingerprint–and consequently the generated randomness–exhibits remarkable statistical consistency, irrespective of the underlying hardware or operating system. QPP-RNG’s entropy density compares favorably with leading commercial entropy sources. It matches or slightly exceeds the NIST IID-certified min-entropy of ID Quantique’s Quantis QRNG (7.8744 bits/byte), and significantly outperforms both Red Hat’s CPU Time Jitter RNG (7.4528 bits/byte) and Quside’s PCIe One quantum entropy source (6.5136 bits/byte). Even against specialized hardware RNGs like Microchip’s ECC608 (4.0568 bits/byte), QPP-RNG demonstrates superior performance using only general-purpose processors. By effectively transforming otherwise discarded system noise into a reliable and high-quality entropy stream, QPP-RNG establishes a novel paradigm for embedded security, providing a robust entropy source on general-purpose devices without specialized hardware. This makes it especially well-suited for resource-constrained Internet of Things (IoT) and edge computing applications where strong entropy sources are paramount.
Abstract High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG, a true random number generator (TRNG) that harvests entropy from diverse system-level jitters–including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven memory access latencies, and other subtle hardware and operating system-induced fluctuations. QPP-RNG’s core mechanism measures the elapsed time of randomized array sorting operations–where each Fisher-Yates shuffle is infinitesimally perturbed by these microscopic jitters–and amplifies these timing variations into cryptographically strong randomness through a quantum permutation pad (QPP) architecture, all achievable on commodity hardware. The raw output of QPP-RNG underwent rigorous evaluation for independent and identically distributed (IID) behavior using the NIST SP 800-90B IID test suite, alongside the comprehensive NIST SP 800-22 and ENT statistical test batteries. Across a range of platforms, including Windows, macOS, and Raspberry Pi, QPP-RNG consistently achieved high IID min-entropy between $$7.85$$ and $$7.95$$  bits/byte. It passed all NIST SP 800-90B IID tests with $$p$$ -values significantly above the $$\alpha =0.01$$ threshold, confirming that its generated randomness is statistically indistinguishable from ideal IID sources derived directly from system jitter. Cross-platform analyses spanning x86_64 and ARM64 architectures further demonstrate that the extracted jitter fingerprint–and consequently the generated randomness–exhibits remarkable statistical consistency, irrespective of the underlying hardware or operating system. QPP-RNG’s entropy density compares favorably with leading commercial entropy sources. It matches or slightly exceeds the NIST IID-certified min-entropy of ID Quantique’s Quantis QRNG (7.8744 bits/byte), and significantly outperforms both Red Hat’s CPU Time Jitter RNG (7.4528 bits/byte) and Quside’s PCIe One quantum entropy source (6.5136 bits/byte). Even against specialized hardware RNGs like Microchip’s ECC608 (4.0568 bits/byte), QPP-RNG demonstrates superior performance using only general-purpose processors. By effectively transforming otherwise discarded system noise into a reliable and high-quality entropy stream, QPP-RNG establishes a novel paradigm for embedded security, providing a robust entropy source on general-purpose devices without specialized hardware. This makes it especially well-suited for resource-constrained Internet of Things (IoT) and edge computing applications where strong entropy sources are paramount.
High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG, a true random number generator (TRNG) that harvests entropy from diverse system-level jitters–including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven memory access latencies, and other subtle hardware and operating system-induced fluctuations. QPP-RNG’s core mechanism measures the elapsed time of randomized array sorting operations–where each Fisher-Yates shuffle is infinitesimally perturbed by these microscopic jitters–and amplifies these timing variations into cryptographically strong randomness through a quantum permutation pad (QPP) architecture, all achievable on commodity hardware. The raw output of QPP-RNG underwent rigorous evaluation for independent and identically distributed (IID) behavior using the NIST SP 800-90B IID test suite, alongside the comprehensive NIST SP 800-22 and ENT statistical test batteries. Across a range of platforms, including Windows, macOS, and Raspberry Pi, QPP-RNG consistently achieved high IID min-entropy between and bits/byte. It passed all NIST SP 800-90B IID tests with -values significantly above the threshold, confirming that its generated randomness is statistically indistinguishable from ideal IID sources derived directly from system jitter. Cross-platform analyses spanning x86_64 and ARM64 architectures further demonstrate that the extracted jitter fingerprint–and consequently the generated randomness–exhibits remarkable statistical consistency, irrespective of the underlying hardware or operating system. QPP-RNG’s entropy density compares favorably with leading commercial entropy sources. It matches or slightly exceeds the NIST IID-certified min-entropy of ID Quantique’s Quantis QRNG (7.8744 bits/byte), and significantly outperforms both Red Hat’s CPU Time Jitter RNG (7.4528 bits/byte) and Quside’s PCIe One quantum entropy source (6.5136 bits/byte). Even against specialized hardware RNGs like Microchip’s ECC608 (4.0568 bits/byte), QPP-RNG demonstrates superior performance using only general-purpose processors. By effectively transforming otherwise discarded system noise into a reliable and high-quality entropy stream, QPP-RNG establishes a novel paradigm for embedded security, providing a robust entropy source on general-purpose devices without specialized hardware. This makes it especially well-suited for resource-constrained Internet of Things (IoT) and edge computing applications where strong entropy sources are paramount.
High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG, a true random number generator (TRNG) that harvests entropy from diverse system-level jitters-including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven memory access latencies, and other subtle hardware and operating system-induced fluctuations. QPP-RNG's core mechanism measures the elapsed time of randomized array sorting operations-where each Fisher-Yates shuffle is infinitesimally perturbed by these microscopic jitters-and amplifies these timing variations into cryptographically strong randomness through a quantum permutation pad (QPP) architecture, all achievable on commodity hardware. The raw output of QPP-RNG underwent rigorous evaluation for independent and identically distributed (IID) behavior using the NIST SP 800-90B IID test suite, alongside the comprehensive NIST SP 800-22 and ENT statistical test batteries. Across a range of platforms, including Windows, macOS, and Raspberry Pi, QPP-RNG consistently achieved high IID min-entropy between [Formula: see text] and [Formula: see text] bits/byte. It passed all NIST SP 800-90B IID tests with [Formula: see text]-values significantly above the [Formula: see text] threshold, confirming that its generated randomness is statistically indistinguishable from ideal IID sources derived directly from system jitter. Cross-platform analyses spanning x86_64 and ARM64 architectures further demonstrate that the extracted jitter fingerprint-and consequently the generated randomness-exhibits remarkable statistical consistency, irrespective of the underlying hardware or operating system. QPP-RNG's entropy density compares favorably with leading commercial entropy sources. It matches or slightly exceeds the NIST IID-certified min-entropy of ID Quantique's Quantis QRNG (7.8744 bits/byte), and significantly outperforms both Red Hat's CPU Time Jitter RNG (7.4528 bits/byte) and Quside's PCIe One quantum entropy source (6.5136 bits/byte). Even against specialized hardware RNGs like Microchip's ECC608 (4.0568 bits/byte), QPP-RNG demonstrates superior performance using only general-purpose processors. By effectively transforming otherwise discarded system noise into a reliable and high-quality entropy stream, QPP-RNG establishes a novel paradigm for embedded security, providing a robust entropy source on general-purpose devices without specialized hardware. This makes it especially well-suited for resource-constrained Internet of Things (IoT) and edge computing applications where strong entropy sources are paramount.High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG, a true random number generator (TRNG) that harvests entropy from diverse system-level jitters-including CPU pipeline timing divergences, DRAM refresh cycle perturbations, cache miss-driven memory access latencies, and other subtle hardware and operating system-induced fluctuations. QPP-RNG's core mechanism measures the elapsed time of randomized array sorting operations-where each Fisher-Yates shuffle is infinitesimally perturbed by these microscopic jitters-and amplifies these timing variations into cryptographically strong randomness through a quantum permutation pad (QPP) architecture, all achievable on commodity hardware. The raw output of QPP-RNG underwent rigorous evaluation for independent and identically distributed (IID) behavior using the NIST SP 800-90B IID test suite, alongside the comprehensive NIST SP 800-22 and ENT statistical test batteries. Across a range of platforms, including Windows, macOS, and Raspberry Pi, QPP-RNG consistently achieved high IID min-entropy between [Formula: see text] and [Formula: see text] bits/byte. It passed all NIST SP 800-90B IID tests with [Formula: see text]-values significantly above the [Formula: see text] threshold, confirming that its generated randomness is statistically indistinguishable from ideal IID sources derived directly from system jitter. Cross-platform analyses spanning x86_64 and ARM64 architectures further demonstrate that the extracted jitter fingerprint-and consequently the generated randomness-exhibits remarkable statistical consistency, irrespective of the underlying hardware or operating system. QPP-RNG's entropy density compares favorably with leading commercial entropy sources. It matches or slightly exceeds the NIST IID-certified min-entropy of ID Quantique's Quantis QRNG (7.8744 bits/byte), and significantly outperforms both Red Hat's CPU Time Jitter RNG (7.4528 bits/byte) and Quside's PCIe One quantum entropy source (6.5136 bits/byte). Even against specialized hardware RNGs like Microchip's ECC608 (4.0568 bits/byte), QPP-RNG demonstrates superior performance using only general-purpose processors. By effectively transforming otherwise discarded system noise into a reliable and high-quality entropy stream, QPP-RNG establishes a novel paradigm for embedded security, providing a robust entropy source on general-purpose devices without specialized hardware. This makes it especially well-suited for resource-constrained Internet of Things (IoT) and edge computing applications where strong entropy sources are paramount.
ArticleNumber 27718
Author Kuang, Randy
Vrana, Georgia
Lou, Dafu
Author_xml – sequence: 1
  givenname: Georgia
  surname: Vrana
  fullname: Vrana, Georgia
  organization: Quantropi (Canada)
– sequence: 2
  givenname: Dafu
  surname: Lou
  fullname: Lou, Dafu
  organization: Quantropi (Canada)
– sequence: 3
  givenname: Randy
  surname: Kuang
  fullname: Kuang, Randy
  email: randy.kuang@quantropi.com
  organization: Quantropi (Canada)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40730632$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vFCEYxompsbX2C3gwJF68oPwdGC9GG62bNHVtazwSYNh1NjOwwsw2--2lO2ttPRi5QHh_78P7PDwFByEGD8Bzgl8TzNSbzImoFcJUIMIIE0g9AkcUc4Eoo_Tg3vkQnOS8wmUJWnNSPwGHHEuGK0aPwPdLcwO_zufo8uIMJhOa2AefM9y0BuZtHnwPV-0w-ASNS7EU1p0ZFjH1-S008GJ2dQ2v5lBhjGr8AfqN6UYztDE8A48Xpsv-ZL8fg2-fPl6ffkbnX85mp-_PkeM1HxC1VHivBLOccKUsUQ1RzCtbFXsLYrmUjWh4XSw7zmVNC15JX9UWu2KHsmMwm3SbaFZ6ndrepK2OptW7i5iW2qShdZ3XytrK8WK7spI7IRXmUgmOuXMKU4yLFpu0xrA22xvTdXeCBOvb1PWUui6p613qWpWud1PXerS9b5wPQzLdg1EeVkL7Qy_jRhPKsFTq1sOrvUKKP0efB9232fmuM8HHMWtGGZeYUUEK-vIvdBXHFErCO0pwJitWqBf3R7qb5fe3F4BOwO5Pk1_8n9F9PLnAYenTn7f_0fULNIvKag
Cites_doi 10.1038/s41586-019-1666-5
10.1038/s41586-018-0019-0
10.20935/AcadQuant7457
10.1109/QCE49297.2020.00039
10.1145/3582434
10.1145/2659651.2659695
10.1145/3230636
10.1109/SP46215.2023.00012
10.18637/jss.v008.i14
10.1109/TDSC.2023.3266789
10.1145/237814.237866
10.1109/TrustCom/BigDataSE.2018.00168
10.1007/978-3-642-33704-8_24
10.1109/ACCESS.2023.3327325
10.1038/nphoton.2010.197
10.1038/s41598-022-11613-x
10.1007/s11128-022-03557-y
10.3390/e26121053
10.6028/NIST.SP.800-90Ar1
10.1088/2058-9565/acba40
10.1109/ACCESS.2020.2984414
10.1038/npjqi.2016.21
10.1007/978-3-030-90022-9_23
10.1103/PhysRevApplied.20.044047
10.1145/2845077
10.1109/JLT.2015.2432803
10.1109/SFCS.1994.365700
10.1145/3460772
10.1109/TQE.2024.3365678
10.1145/272991.272995
10.1109/TC.2018.2815605
10.1145/1368310.1368322
10.1140/epjqt/s40507-023-00164-3
10.1145/2535925
10.1137/1012065
10.3390/s20071869
10.1109/RED.2016.7779354
10.1145/3576915.3623159
10.3390/electronics12030723
10.1007/978-3-540-88702-7
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-13135-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed



Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_8bb6c40636b74c57804785404cc80200
10.1038/s41598-025-13135-8
PMC12307882
40730632
10_1038_s41598_025_13135_8
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PUEGO
AARCD
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c494t-2b25ee853b41488b18d183e8b6415f1b477d5d49103c4479225e67e69b0c05223
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Tue Oct 14 18:46:12 EDT 2025
Sun Oct 26 04:07:38 EDT 2025
Tue Sep 30 17:01:59 EDT 2025
Fri Sep 05 15:31:44 EDT 2025
Tue Oct 07 07:36:31 EDT 2025
Sat Aug 02 01:41:25 EDT 2025
Wed Oct 01 05:40:08 EDT 2025
Wed Jul 30 01:23:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Quantum permutation pad
System jitter
Statistical testing
Pseudo-random number generator
PQC
Random number generator
IID randomness
RNG
Platform-independent randomness
Cryptographic primitives
QPP
TRNG
Post-quantum cryptography
Uniform distribution
Entropy source
CPU time jitter
Permutation test
True random number generator
Permutation entropy
NIST SP800-90B
PRNG
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-2b25ee853b41488b18d183e8b6415f1b477d5d49103c4479225e67e69b0c05223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/8bb6c40636b74c57804785404cc80200
PMID 40730632
PQID 3234543763
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_8bb6c40636b74c57804785404cc80200
unpaywall_primary_10_1038_s41598_025_13135_8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12307882
proquest_miscellaneous_3234703251
proquest_journals_3234543763
pubmed_primary_40730632
crossref_primary_10_1038_s41598_025_13135_8
springer_journals_10_1038_s41598_025_13135_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-29
PublicationDateYYYYMMDD 2025-07-29
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References G Alagic (13135_CR12) 2023; 8
13135_CR60
13135_CR62
13135_CR24
13135_CR22
13135_CR21
D Hurley-Smith (13135_CR2) 2021
13135_CR17
13135_CR16
13135_CR15
13135_CR59
13135_CR58
13135_CR18
C Gabriel (13135_CR46) 2010; 4
G Guerrer (13135_CR42) 2023; 11
F Vaño-García (13135_CR53) 2020; 8
S Mueller (13135_CR19) 2023; 22
13135_CR52
13135_CR51
13135_CR50
13135_CR13
X Ma (13135_CR44) 2016; 2
13135_CR57
L Huang (13135_CR20) 2024; 5
13135_CR56
13135_CR11
C Ryan (13135_CR34) 2022; 12
13135_CR55
13135_CR10
13135_CR54
13135_CR49
13135_CR48
B Koziel (13135_CR61) 2018; 67
R Kuang (13135_CR14) 2022; 21
13135_CR41
13135_CR40
F Arute (13135_CR7) 2019; 574
13135_CR43
13135_CR39
Y Chen (13135_CR4) 2023; 20
13135_CR38
13135_CR37
13135_CR36
Y Zhang (13135_CR47) 2023; 20
D Blackman (13135_CR32) 2021; 47
13135_CR31
13135_CR30
13135_CR35
13135_CR33
P Bierhorst (13135_CR45) 2018; 556
13135_CR1
13135_CR27
13135_CR3
MS Miller (13135_CR23) 2024; 53
13135_CR26
13135_CR25
DH Lehmer (13135_CR28) 1949; 26
13135_CR29
13135_CR9
13135_CR5
13135_CR6
13135_CR8
References_xml – volume: 574
  start-page: 505
  year: 2019
  ident: 13135_CR7
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 556
  start-page: 223
  year: 2018
  ident: 13135_CR45
  publication-title: Nature
  doi: 10.1038/s41586-018-0019-0
– ident: 13135_CR57
– ident: 13135_CR18
  doi: 10.20935/AcadQuant7457
– ident: 13135_CR13
  doi: 10.1109/QCE49297.2020.00039
– volume: 22
  start-page: 1
  year: 2023
  ident: 13135_CR19
  publication-title: ACM Trans. Embed. Comput. Syst.
  doi: 10.1145/3582434
– ident: 13135_CR40
– ident: 13135_CR50
  doi: 10.1145/2659651.2659695
– ident: 13135_CR17
  doi: 10.1145/3230636
– ident: 13135_CR51
  doi: 10.1109/SP46215.2023.00012
– ident: 13135_CR31
  doi: 10.18637/jss.v008.i14
– ident: 13135_CR48
– volume: 20
  start-page: 3125
  year: 2023
  ident: 13135_CR4
  publication-title: IEEE Trans. Depend. Secure Comput.
  doi: 10.1109/TDSC.2023.3266789
– ident: 13135_CR6
  doi: 10.1145/237814.237866
– ident: 13135_CR35
  doi: 10.1109/TrustCom/BigDataSE.2018.00168
– ident: 13135_CR25
  doi: 10.1007/978-3-642-33704-8_24
– ident: 13135_CR15
– volume: 11
  start-page: 119568
  year: 2023
  ident: 13135_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3327325
– ident: 13135_CR60
– volume: 4
  start-page: 711
  year: 2010
  ident: 13135_CR46
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2010.197
– ident: 13135_CR58
– volume: 12
  start-page: 8602
  year: 2022
  ident: 13135_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11613-x
– volume: 21
  start-page: 211
  year: 2022
  ident: 13135_CR14
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-022-03557-y
– ident: 13135_CR27
– ident: 13135_CR56
  doi: 10.3390/e26121053
– ident: 13135_CR1
  doi: 10.6028/NIST.SP.800-90Ar1
– ident: 13135_CR22
– volume: 8
  start-page: 025012
  year: 2023
  ident: 13135_CR12
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/acba40
– volume: 8
  start-page: 61872
  year: 2020
  ident: 13135_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984414
– volume: 2
  start-page: 16021
  year: 2016
  ident: 13135_CR44
  publication-title: npj Quantum Inf.
  doi: 10.1038/npjqi.2016.21
– ident: 13135_CR54
– ident: 13135_CR33
– ident: 13135_CR59
– volume: 53
  start-page: 745
  year: 2024
  ident: 13135_CR23
  publication-title: Softw. Pract. Exp.
– ident: 13135_CR62
  doi: 10.1007/978-3-030-90022-9_23
– volume: 20
  start-page: 044047
  year: 2023
  ident: 13135_CR47
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.20.044047
– volume: 26
  start-page: 141
  year: 1949
  ident: 13135_CR28
  publication-title: Ann. Comput. Lab. Harvard Univ.
– ident: 13135_CR21
  doi: 10.1145/2845077
– ident: 13135_CR43
  doi: 10.1109/JLT.2015.2432803
– ident: 13135_CR5
  doi: 10.1109/SFCS.1994.365700
– volume: 47
  start-page: 1
  year: 2021
  ident: 13135_CR32
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3460772
– volume: 5
  start-page: 1
  year: 2024
  ident: 13135_CR20
  publication-title: IEEE Trans. Quantum Eng.
  doi: 10.1109/TQE.2024.3365678
– ident: 13135_CR30
  doi: 10.1145/272991.272995
– volume: 67
  start-page: 1594
  year: 2018
  ident: 13135_CR61
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2018.2815605
– ident: 13135_CR37
  doi: 10.1145/1368310.1368322
– ident: 13135_CR55
– ident: 13135_CR9
– ident: 13135_CR26
  doi: 10.1140/epjqt/s40507-023-00164-3
– ident: 13135_CR11
  doi: 10.1145/2535925
– ident: 13135_CR16
  doi: 10.1145/3460772
– ident: 13135_CR29
  doi: 10.1137/1012065
– ident: 13135_CR41
– ident: 13135_CR36
  doi: 10.3390/s20071869
– ident: 13135_CR38
  doi: 10.1109/RED.2016.7779354
– ident: 13135_CR24
  doi: 10.1145/3576915.3623159
– volume-title: Challenges in Certifying Small-Scale (IoT) Hardware Random Number Generators, 165–181
  year: 2021
  ident: 13135_CR2
– ident: 13135_CR3
  doi: 10.3390/electronics12030723
– ident: 13135_CR49
– ident: 13135_CR39
– ident: 13135_CR52
– ident: 13135_CR8
– ident: 13135_CR10
  doi: 10.1007/978-3-540-88702-7
SSID ssj0000529419
Score 2.462742
Snippet High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG , a true random number generator (TRNG) that...
High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG , a true random number generator (TRNG) that...
High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG, a true random number generator (TRNG) that harvests...
Abstract High-quality randomness is fundamental to the security of modern cryptographic systems. We present QPP-RNG, a true random number generator (TRNG) that...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 27718
SubjectTerms 639/301
639/705
Algorithms
Cryptography
Entropy
Humanities and Social Sciences
Integrated circuits
Internet of Things
Linux
multidisciplinary
PRNG
Pseudo-random number generator
QPP
Quantum computing
Quantum permutation pad
Random number generator
RNG
Science
Science (multidisciplinary)
Software
Statistics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4anRDjAcFgLDCQkXhj1hLbSRwkhCjaGEhEpdvE3iLbcaCoS8raMu3fc5xbqUATUh6ixA_OuX7Osb8D8BIXFUwVzFDOVUyFSmKKSVjQxOeFCZXhec3E9DmNjs_Ep_PwfAPS7iyM21bZxcQ6UOeVcf_IDzjjIhTOHd7OflLXNcpVV7sWGqptrZC_qSnGbsEmc8xYA9gcHqajcf_XxdW1RJC0p2d8Lg_mmMHcKTMW0oAHPKRyLUPVRP7_Qp9_b6LsK6l34c6ynKnrKzWd_pGsju7DvRZlkneNWTyADVtuw-2m7-T1Nmw5iNkwND-Er2N1Rb6MRnScfiCYufLqwoU_8muiSMPzTH5M3JkfouoJk9lULRzUnb8miqQfT07JyYggIkTJD8mKPfwRnB0dnr4_pm27BWpEIhaUaRZai-lbC1wjSR3IHP3dSh2hiIpAizjOw1wgvuBGiDjBSGCj2EaJ9g3KlfEdGJRVaXeBFIHJRYGXllbIXGplYyFYoG1i8F568KoTcTZrWDWyuhrOZdYoJEOFZLVCMhw9dFroRzpG7PpBdfktax0sk1pHBtEJj3QsTOh4lWKJcFQYIxES-x7sdTrMWjedZyuj8uBF_xodzFVNVGmrZTMGwyLiQA8eNyrvZyJcgIw480CuGcPaVNfflJPvNYl34Hbg4_LGg_3OblbzukkW-71t_Yfontz81U9hiznL92PKkj0YLC6X9hmCrIV-3nrOb5ztH1k
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anRDsAXEbBAYyEm_UorGd2OGtQ4xRiaqsm9ibZTuOKCpptbZM-_ccJ2lGNIRAykMUO5F1rp9z7M8Ar3FSwUzBHOXcSCpMJikmYUGzAS9cYhzPKyamz-P0-EyMzpPzHehv98J06vcVdfcKU0zYBsYSGvOYJ1Tdgl2Fhql6sDscjqaj9p9KqFqJOGv2xuDrb2--3Mk_FU3_n7DlzSWSbZ10D-5syqW5ujTz-W-p6Og-3GswJBnWSn8AO758CLfrUyWvHsHXE3NJvkwm9GT8kWAqyhc_QjwjP2eG1MTN5PssbOIhphojWc7NOmDX1TtiyPjT9JRMJwQhHorykFzTgT-Gs6MPp--PaXN-AnUiE2vKLEu8x3xsBU56lI1Vjg7slU1RKkVshZR5kgsEDNwJITN0bZ9Kn2Z24FCUjO9Dr1yU_imQIna5KPCyyguVK2u8FILF1mcO71UEb7ZS1cuaJkNX5W2udK0DjTrQlQ409j4Mgm97Borr6gFqXjceo5W1qUO4wVMrhUsCUZJUiC-Fcwox7iCCg63adON3K80ZF4kIQTOCV20zekwog5jSLzZ1H4xzCOwieFJruR2JCBEv5SwC1dF_Z6jdlnL2rWLljsOSepyvRNDfmsr1uP4mi35rTv8gumf_9_XncJcF4x9IyrID6K0vNv4Foqi1fdk4zy-26w9I
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN-qS2E7icGsRpSCxWtquaE-W7TjqliW7YrNU5dczTrIpgQoVKYcodiR7PI_PGvsbgJe4qWC6YJZyrlMqdJZSDMKCZiEvbKwtz2smpk_DZHcsPh7Ghy1Njr8L08vfc_l6gQHGXwJjMY14xGMqr8JaEiPuHsDaeDjaOvLV4xCXUIQGrL0Vc_GPvchTE_RfhCr_PhzZZUhvwvVlOddnp3o6_S0I7dxuqhktau5Cf_bk6-ayMpv25x_Mjpeb3x241WJRstUoz1244sp7cK2pTnl2H77s6VPyeTSie8P3BENaPvvm_SL5MdGkIYAmJxN_GYjoesZkPtWVx8CLN0ST4Yf9A7I_IggVcUm2yTmt-AMY77w7eLtL2zoM1IpMVJQZFjuHcd0I3DxJE8kcHYGTJsHBF5ERaZrHuUDgwa0QaYYuwiWpSzIT2hDxHX8Ig3JWusdAisjmosDHSCdkLo12qRAsMi6z-C4DeLVaIzVv6DZUnSbnUjWiUigqVYtKYe9tv4xdT0-VXX9ACavW8pQ0JrEIW3hiUmFjT7iUSsSpwlqJWDkMYH2lBKq134XijItYeOcbwIuuGS3Pp1N06WbLpg_6SwSIATxqdKYbifCeM-EsANnTpt5Q-y3l5Lhm94780Xzc9wSwsVK883H9SxYbnXJeQnRP_q_7U7jBvI6GKWXZOgyq70v3DNFYZZ63ZvgLDZAlPA
  priority: 102
  providerName: Unpaywall
Title Raw QPP-RNG randomness via system jitter across platforms: a NIST SP 800-90B evaluation
URI https://link.springer.com/article/10.1038/s41598-025-13135-8
https://www.ncbi.nlm.nih.gov/pubmed/40730632
https://www.proquest.com/docview/3234543763
https://www.proquest.com/docview/3234703251
https://pubmed.ncbi.nlm.nih.gov/PMC12307882
https://doi.org/10.1038/s41598-025-13135-8
https://doaj.org/article/8bb6c40636b74c57804785404cc80200
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCAEPiF-DwKiMxBuzlthO7PDWVhujElFpV1GeIttxRFFJK9oy7b_nHKdZKxDwgFSplWOpznd3vu9k-zNCr6GooKqkhjCmBOEqFQSSMCdpyEoTK8OKWonpQ5acT_hgGk93rvpye8K8PLAH7kRqnRjIOizRgpvY6eUICTSDGyOB6tTVeijTnWLKq3rDH0Zpc0omZPJkBZnKnSajMYlYxGIi9zJRLdj_O5b562bJdsX0HrqzqZbq6lLN5ztJ6ewBut-wSdz1b_EQ3bDVI3Tb3y959Rh9GqlL_HE4JKPsHYakVCy-uZkN_5gp7CWc8deZO86DVT1GvJyrtWOxq7dY4ez9-AKPhxjIHoDaw9fC4E_Q5Oz0on9OmpsUiOEpXxOqaWwtZGbNofyROpIFhLKVOgFUykhzIYq44EAdmOFcpBDkNhE2SXVoAErKDtFBtajsM4TLyBS8hI-WlstCamUF5zTSNjXwWwbozRbVfOkFM_J6oZvJ3NsgBxvktQ1y6N1zwLc9ndh13QAukDcukP_NBQJ0tDVb3kTgKmeU8Zi76TNAr9rHEDtuQURVdrHxfWDGA4oXoKfeyu1IuJv7EkYDJPfsvzfU_SfV7Eutzx25zfVQuQToeOsq1-P6ExbHrTv9A3TP_wd0L9Bd6kIiFISmR-hg_X1jXwLLWusOuimmooNudbuD8QC-e6fZcASt_aTfqYMN2ibZsPv5J3ILIdo
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJrTxgGB8BQYYCZ6YtcR2EgdpQhQ2WrZVpevE3oztuFBU0rK2VP3n-Ns456tUoImXSXmIEityfF-_8_nuEHoOTgVVfWoIYyomXCUxASPMSeKzvgmVYWleiemkHTXP-Ifz8HwN_apyYdyxykon5oo6HRm3R77HKOMhd-LwevyDuK5RLrpatdBQZWuFdD8vMVYmdhzZxRxcuMl-6x3Q-wWlhwe9t01Sdhkghid8SqimobVgtTQH10DoQKTA5lboCGxbP9A8jtMw5WBWmeE8TkAAbBTbKNG-8QG9MPjuNbTBGU_A-dtoHLQ73XqXx8XReJCU2To-E3sT-KrLaqMhCVjAQiJWLGLeOOBfaPfvQ5t15PYG2pxlY7WYq-HwD-N4eAvdLFEtflOw4W20ZrNtdL3oc7nYRlsO0hYVoe-gT101xx87HdJtv8dgKdPRd6du8c-BwkVdafxt4HKMsMonjMdDNXXQevIKK9xunfbwaQcDAgVKN_CyWvlddHYlC38PrWejzD5AuB-YlPfh0sJykQqtbMw5DbRNDNwLD72slliOiyoeMo--MyELgkggiMwJImF0w1GhHukqcOcPRhdfZCnQUmgdGUBDLNIxN6Gr4xQLgL_cGAEQ3PfQTkVDWaqFiVwysYee1a9BoF2URmV2NCvGgBoG3Omh-wXJ65lwp5AjRj0kVphhZaqrb7LB17xoeOBO_IM75aHdim-W87psLXZr3vqPpXt4-V8_RZvN3smxPG61jx6hLeqkwI8JTXbQ-vRiZh8DwJvqJ6UUYfT5qgX3N523WY0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEGw8IBgwAgOMBE_MamI7sYOEEGOUlUFVdhF9C7bjQFFJy9pS9a_x6zjOrVSgiZdJeYhiy3J8bp99js9B6AlsKqjKqCGMKUG4igUBI8xJ7LPMhMqwtMjE9KEbHZzyd_2wv4Z-1XdhXFhlrRMLRZ2OjDsjbzHKeMidOLSyKiyit99-Of5BXAUp52mty2mULHJoF3PYvk1edPaB1k8pbb85eX1AqgoDxPCYTwnVNLQWLJbmsC2QOpApsLiVOgK7lgWaC5GGKQeTygznIgbmt5GwUax94wNyYTDuJXRZMBa7cELRF835jvOg8SCu7un4TLYmMKa7z0ZDErCAhUSu2MKiZMC_cO7f4ZqNz_Ya2pjlY7WYq-HwD7PYvoGuV3gWvyoZ8CZas_kWulJWuFxsoU0HZstc0LfQpyM1xx97PXLUfYvBRqaj707R4p8DhcuM0vjbwN0uwqqYMB4P1dSB6slzrHC3c3yCj3sYsCfQeA8v85TfRqcXsux30Ho-yu1dhLPApDyDR0vLZSq1soJzGmgbG3iXHnpWL3EyLvN3JIXfncmkJEgCBEkKgiTQe89Roenpcm8XH0ZnX5JKlBOpdWQAB7FIC25Cl8FJSAC-3BgJ4Nv30E5Nw6RSCJNkyb4eetw0gyg7_4zK7WhW9gEFDIjTQ9slyZuZcKeKI0Y9JFeYYWWqqy354GuRLjxwsf6wkfLQbs03y3mdtxa7DW_9x9LdO_-vH6GrIK7J-0738D7apE4IfEFovIPWp2cz-wCQ3VQ_LEQIo88XLbO_AQLLVyc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN-qS2E7icGsRpSCxWtquaE-W7TjqliW7YrNU5dczTrIpgQoVKYcodiR7PI_PGvsbgJe4qWC6YJZyrlMqdJZSDMKCZiEvbKwtz2smpk_DZHcsPh7Ghy1Njr8L08vfc_l6gQHGXwJjMY14xGMqr8JaEiPuHsDaeDjaOvLV4xCXUIQGrL0Vc_GPvchTE_RfhCr_PhzZZUhvwvVlOddnp3o6_S0I7dxuqhktau5Cf_bk6-ayMpv25x_Mjpeb3x241WJRstUoz1244sp7cK2pTnl2H77s6VPyeTSie8P3BENaPvvm_SL5MdGkIYAmJxN_GYjoesZkPtWVx8CLN0ST4Yf9A7I_IggVcUm2yTmt-AMY77w7eLtL2zoM1IpMVJQZFjuHcd0I3DxJE8kcHYGTJsHBF5ERaZrHuUDgwa0QaYYuwiWpSzIT2hDxHX8Ig3JWusdAisjmosDHSCdkLo12qRAsMi6z-C4DeLVaIzVv6DZUnSbnUjWiUigqVYtKYe9tv4xdT0-VXX9ACavW8pQ0JrEIW3hiUmFjT7iUSsSpwlqJWDkMYH2lBKq134XijItYeOcbwIuuGS3Pp1N06WbLpg_6SwSIATxqdKYbifCeM-EsANnTpt5Q-y3l5Lhm94780Xzc9wSwsVK883H9SxYbnXJeQnRP_q_7U7jBvI6GKWXZOgyq70v3DNFYZZ63ZvgLDZAlPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raw+QPP-RNG+randomness+via+system+jitter+across+platforms%3A+a+NIST+SP+800-90B+evaluation&rft.jtitle=Scientific+reports&rft.au=Vrana%2C+Georgia&rft.au=Lou%2C+Dafu&rft.au=Kuang%2C+Randy&rft.date=2025-07-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=27718&rft_id=info:doi/10.1038%2Fs41598-025-13135-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon