Coding schemes in neural networks learning classification tasks

Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still u...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 3354 - 12
Main Authors van Meegen, Alexander, Sompolinsky, Haim
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-58276-6

Cover

Abstract Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations. Neural networks discover meaningful representations of the data through the process of learning. Here, the authors explore how these representations are affected by scaling the network output or modifying the activation functions.
AbstractList Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as 'non-lazy' regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.
Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as 'non-lazy' regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as 'non-lazy' regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.
Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations. Neural networks discover meaningful representations of the data through the process of learning. Here, the authors explore how these representations are affected by scaling the network output or modifying the activation functions.
Abstract Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.
Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.Neural networks discover meaningful representations of the data through the process of learning. Here, the authors explore how these representations are affected by scaling the network output or modifying the activation functions.
ArticleNumber 3354
Author van Meegen, Alexander
Sompolinsky, Haim
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0003-2766-3982
  surname: van Meegen
  fullname: van Meegen, Alexander
  email: alexander.vanmeegen@epfl.ch
  organization: Center for Brain Science, Harvard University
– sequence: 2
  givenname: Haim
  orcidid: 0000-0002-0322-0629
  surname: Sompolinsky
  fullname: Sompolinsky, Haim
  email: hsompolinsky@mcb.harvard.edu
  organization: Center for Brain Science, Harvard University, Edmond and Lily Safra Center for Brain Sciences, Hebrew University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40204730$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhi3UipbSF-CAInHhErDHduKcKrSipVKlXsrZcuzJ1tusXewExNvj3ZTScqgvM5r55veMPW_IQYgBCXnH6CdGufqcBRNNW1OQtVTQNnXzihwDFaxmLfCDJ_4ROc15Q8vhHVNCvCZHgpZsy-kxOVtF58O6yvYWt5grH6qAczJjMdOvmO5yNaJJYcfY0eTsB2_N5GOoJpPv8ltyOJgx4-mDPSHfz7_erL7VV9cXl6svV7UVnZhqkD0MqnSjAFvVuN5I01Nsd2HRc2mpcI11gzBSdFDQvrPKdeA4MMFayU_I5aLrotno--S3Jv3W0Xi9D8S01iZN3o6omXNKouAAygrnmg4s75yTiMWlyhWts0Xrfu636CyGqQz8TPR5JvhbvY4_NWOdAg5tUfj4oJDijxnzpLc-WxxHEzDOWXOmlIAyyK7xD_-hmzinUN5qTzHVSKkK9f5pS4-9_P2oAsAC2BRzTjg8Iozq3ULoZSF0WQi9XwjdlCK-FOUChzWmf3e_UPUH1bm29Q
Cites_doi 10.1103/PhysRevA.45.4146
10.1145/3446776
10.1038/nature14539
10.1016/S0042-6989(97)00169-7
10.1103/PhysRevA.45.7590
10.1073/pnas.2301345120
10.1016/j.spa.2019.06.003
10.1073/pnas.1903070116
10.1088/1742-5468/ac8e57
10.1007/978-1-4612-0745-0
10.1103/RevModPhys.65.499
10.1146/annurev-conmatphys-031119-050745
10.1088/1742-5468/abc4de
10.1073/pnas.1806579115
10.1051/jphys:0198900500200305700
10.1109/TPAMI.2006.79
10.1103/PhysRevA.45.6056
10.1088/1751-8121/ab3f3f
10.1038/s42256-023-00767-6
10.1017/9781009023405
10.1103/PhysRevE.104.064301
10.1103/PhysRevE.105.064118
10.1109/TPAMI.2013.50
10.1073/pnas.2200800119
10.1038/s41467-023-36361-y
10.1073/pnas.2015509117
10.1017/S0962492921000039
10.1088/1742-5468/ad01b0
10.1016/j.conb.2004.07.007
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-58276-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_1dd85e43228c4dd692c39dd5ee69208d
PMC11982327
40204730
10_1038_s41467_025_58276_6
Genre Journal Article
GrantInformation_xml – fundername: Swartz Foundation
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
PUEGO
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c494t-25b2f817282e786dba5ab0e75b2f4b35c04d6cdf4a54922f8b9c8d92d32141753
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:20:12 EDT 2025
Thu Aug 21 18:28:07 EDT 2025
Fri Sep 05 17:40:45 EDT 2025
Sat Aug 23 14:55:22 EDT 2025
Tue Apr 15 01:23:10 EDT 2025
Thu Sep 18 02:31:12 EDT 2025
Mon Jul 21 06:07:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-25b2f817282e786dba5ab0e75b2f4b35c04d6cdf4a54922f8b9c8d92d32141753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2766-3982
0000-0002-0322-0629
OpenAccessLink https://www.proquest.com/docview/3188186558?pq-origsite=%requestingapplication%
PMID 40204730
PQID 3188186558
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1dd85e43228c4dd692c39dd5ee69208d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11982327
proquest_miscellaneous_3188429225
proquest_journals_3188186558
pubmed_primary_40204730
crossref_primary_10_1038_s41467_025_58276_6
springer_journals_10_1038_s41467_025_58276_6
PublicationCentury 2000
PublicationDate 2025-04-09
PublicationDateYYYYMMDD 2025-04-09
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 58276_CR31
58276_CR32
HS Seung (58276_CR52) 1992; 45
G Naveh (58276_CR17) 2021; 104
58276_CR30
58276_CR71
58276_CR70
Y Bahri (58276_CR11) 2020; 11
M Geiger (58276_CR29) 2020; 2020
M Belkin (58276_CR8) 2021; 30
58276_CR4
58276_CR7
K Segadlo (58276_CR18) 2022; 2022
M Belkin (58276_CR6) 2019; 116
Y Bengio (58276_CR1) 2013; 35
58276_CR3
58276_CR28
58276_CR26
58276_CR27
L Fei-Fei (58276_CR65) 2006; 28
58276_CR9
58276_CR69
58276_CR66
58276_CR23
58276_CR67
58276_CR43
BA Olshausen (58276_CR46) 1997; 37
58276_CR40
58276_CR41
B Sorscher (58276_CR68) 2022; 119
E Barkai (58276_CR54) 1992; 45
A Engel (58276_CR55) 1992; 45
T Hou (58276_CR56) 2019; 52
S Mei (58276_CR34) 2018; 115
58276_CR39
58276_CR38
W Krauth (58276_CR51) 1989; 50
58276_CR35
58276_CR36
TLH Watkin (58276_CR53) 1993; 65
58276_CR33
58276_CR10
C Cortes (58276_CR42) 2012; 13
58276_CR50
BA Olshausen (58276_CR47) 2004; 14
C Zhang (58276_CR5) 2021; 64
Q Li (58276_CR20) 2021; 11
B Hanin (58276_CR24) 2023; 120
58276_CR48
58276_CR49
58276_CR44
58276_CR45
J Sirignano (58276_CR37) 2020; 130
58276_CR64
58276_CR21
58276_CR63
JA Zavatone-Veth (58276_CR22) 2022; 105
58276_CR60
58276_CR61
V Papyan (58276_CR62) 2020; 117
R Pacelli (58276_CR25) 2023; 5
Y LeCun (58276_CR2) 2015; 521
58276_CR19
58276_CR15
58276_CR59
58276_CR16
58276_CR13
58276_CR57
58276_CR14
58276_CR58
58276_CR12
References_xml – volume: 45
  start-page: 4146
  year: 1992
  ident: 58276_CR54
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.4146
– volume: 64
  start-page: 107
  year: 2021
  ident: 58276_CR5
  publication-title: Commun. ACM
  doi: 10.1145/3446776
– ident: 58276_CR69
– ident: 58276_CR36
– volume: 521
  start-page: 436
  year: 2015
  ident: 58276_CR2
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 58276_CR71
– ident: 58276_CR32
– ident: 58276_CR13
– volume: 37
  start-page: 3311
  year: 1997
  ident: 58276_CR46
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(97)00169-7
– volume: 45
  start-page: 7590
  year: 1992
  ident: 58276_CR55
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.7590
– volume: 120
  start-page: e2301345120
  year: 2023
  ident: 58276_CR24
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2301345120
– ident: 58276_CR61
– volume: 130
  start-page: 1820
  year: 2020
  ident: 58276_CR37
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/j.spa.2019.06.003
– ident: 58276_CR3
– ident: 58276_CR27
– ident: 58276_CR9
– ident: 58276_CR23
– ident: 58276_CR43
– ident: 58276_CR70
– ident: 58276_CR64
– volume: 116
  start-page: 15849
  year: 2019
  ident: 58276_CR6
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1903070116
– volume: 13
  start-page: 795
  year: 2012
  ident: 58276_CR42
  publication-title: J. Mach. Learn. Res.
– ident: 58276_CR16
– volume: 2022
  start-page: 103401
  year: 2022
  ident: 58276_CR18
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/ac8e57
– ident: 58276_CR12
  doi: 10.1007/978-1-4612-0745-0
– volume: 65
  start-page: 499
  year: 1993
  ident: 58276_CR53
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.499
– volume: 11
  start-page: 501
  year: 2020
  ident: 58276_CR11
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031119-050745
– ident: 58276_CR57
– volume: 2020
  start-page: 113301
  year: 2020
  ident: 58276_CR29
  publication-title: J. Stat. Mech.: Theory Exp.
  doi: 10.1088/1742-5468/abc4de
– volume: 115
  start-page: E7665
  year: 2018
  ident: 58276_CR34
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1806579115
– ident: 58276_CR60
– ident: 58276_CR26
– ident: 58276_CR4
– volume: 50
  start-page: 3057
  year: 1989
  ident: 58276_CR51
  publication-title: J. de. Phys.
  doi: 10.1051/jphys:0198900500200305700
– ident: 58276_CR67
– ident: 58276_CR19
– ident: 58276_CR44
– volume: 28
  start-page: 594
  year: 2006
  ident: 58276_CR65
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.79
– ident: 58276_CR50
– ident: 58276_CR38
– ident: 58276_CR15
– ident: 58276_CR31
– ident: 58276_CR58
– volume: 45
  start-page: 6056
  year: 1992
  ident: 58276_CR52
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.6056
– ident: 58276_CR48
– volume: 52
  start-page: 414001
  year: 2019
  ident: 58276_CR56
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8121/ab3f3f
– volume: 5
  start-page: 1497
  year: 2023
  ident: 58276_CR25
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00767-6
– ident: 58276_CR33
  doi: 10.1017/9781009023405
– ident: 58276_CR63
– volume: 104
  start-page: 064301
  year: 2021
  ident: 58276_CR17
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.064301
– volume: 105
  start-page: 064118
  year: 2022
  ident: 58276_CR22
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.105.064118
– ident: 58276_CR40
– ident: 58276_CR7
– ident: 58276_CR21
– ident: 58276_CR66
– ident: 58276_CR45
– volume: 35
  start-page: 1798
  year: 2013
  ident: 58276_CR1
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 119
  start-page: e2200800119
  year: 2022
  ident: 58276_CR68
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2200800119
– ident: 58276_CR35
– ident: 58276_CR41
  doi: 10.1038/s41467-023-36361-y
– ident: 58276_CR10
– volume: 117
  start-page: 24652
  year: 2020
  ident: 58276_CR62
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2015509117
– ident: 58276_CR14
– ident: 58276_CR30
– ident: 58276_CR28
– ident: 58276_CR59
– ident: 58276_CR49
– volume: 11
  start-page: 031059
  year: 2021
  ident: 58276_CR20
  publication-title: Phys. Rev. X
– volume: 30
  start-page: 203
  year: 2021
  ident: 58276_CR8
  publication-title: Acta Numerica
  doi: 10.1017/S0962492921000039
– ident: 58276_CR39
  doi: 10.1088/1742-5468/ad01b0
– volume: 14
  start-page: 481
  year: 2004
  ident: 58276_CR47
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.07.007
SSID ssj0000391844
Score 2.4882967
Snippet Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised...
Abstract Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3354
SubjectTerms 631/378/116/1925
631/378/116/2395
639/766/530/2804
Bayesian analysis
Broken symmetry
Classification
Coding
Humanities and Social Sciences
Learning
Machine learning
multidisciplinary
Neural coding
Neural networks
Nonlinear systems
Nonlinearity
Representations
Scaling
Science
Science (multidisciplinary)
Supervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kIHgpVmvdtsoKvenSvGyym5xES0sR9GSht5Bk8rSI-0r39eB_70yy79nnB714W7LZJfxmMh9k8huAI08-MqLwTbQyNgpD4MvKqrGeolcxMxEzA9_HT935hfpwqS_vtPrimrBCD1yAO54hGp0U6Z2JCrGjX7YWUadEj8IgW19hxZ1kKtvg1lLqoqZbMqI1x6PKNoG7t2oj-67pNjxRJuz_W5T5Z7Hkbyem2RGdPYbtKYKs35WV78CDNDyBh6Wn5I-n8PZkwe6opqw1fU9jfTXUzFlJXwyl4nusp04RX-rIoTPXCmXx1Es_fht34eLs9PPJeTN1SWiismrZSB3k3HCbKZl602Hw2geReh5WodVRKOwizpVnMjaaGmw0aCVyiyLm6XwGW8NiSM-hTn4e29YHRNUrAtmkPgqdbB8oCglGVvB6hZi7LmQYLh9it8YVfB3h6zK-rqvgPYO6nslE1nmAxOsm8br7xFvB4UokbtpdoyM7xER8WpsKXq1f077gww4_pMVtmcOtuKSuYK9IcL0SzpkVmbYKzIZsN5a6-Wa4-pq5t2czaygI7St4s1KDX-v6Nxb7_wOLA3gkWX-5bsgewtby5ja9oJBoGV5m7f8Jf5YHbA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRZV6QUBfgQWlUm9t1KxjJ_YJwYrVCqk9FWlvll9LUUVSkd0D_54ZJ9lqKT1wi-yxbM2MZ8bx-BuAzwZ9pPO5yZxiLuPeWnqszDNlMHrNJ9L5iMD3_Uc5v-ZXC7HYATa8hYlJ-xHSMprpITvsW8vjlqbiq0KyqszKV7Arq0KQVk_L6ea_CiGeS8779zF5IZ8ZuuWDIlT_c_Hlv2mST-5Kowua7cNeHzum591qD2An1Ifwuqsm-fAWzqYNOaIUz6vhLrTpbZ0SWiWOqLtc7zbta0TcpI6CZsoSioJJV6b93b6D69nlz-k86-sjZI4rvsqYsGwpqcAUC5UsvTXC2DxU1MxtIVzOfen8khuCYUNSq5z0inkqTkQIne9hVDd1-AhpMEtXFMZ6zyuuvJehcrkIqrIYf1jJEvgycEz_6WAwdLy-LqTu-KuRvzryV5cJXBBTN5QEYR0bmvsb3YtUT3AWETgaFOm49yXqSoEzixDwM5c-gfEgEt3vq1ajBSIIPiFkAp823bgj6JrD1KFZdzRUhIuJBD50EtyshE7LHI1aAnJLtltL3e6pb39F1O3JREkMP6sEvg5q8Hdd_-fF0cvIj-ENI02l3CA1htHqfh1OMOxZ2dOo548e8fyJ
  priority: 102
  providerName: Springer Nature
Title Coding schemes in neural networks learning classification tasks
URI https://link.springer.com/article/10.1038/s41467-025-58276-6
https://www.ncbi.nlm.nih.gov/pubmed/40204730
https://www.proquest.com/docview/3188186558
https://www.proquest.com/docview/3188429225
https://pubmed.ncbi.nlm.nih.gov/PMC11982327
https://doaj.org/article/1dd85e43228c4dd692c39dd5ee69208d
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahEIvpe86TRcXemtNvLJkyaewWbINCw2lbWBvQq9NQqmdxJtD_31nZO2G7etiG1lG8sxoNJbG3wfwzuAc6XxpCtcwV3BvLf2szIvGYPRajpXzEYHv02l9csbnC7FIC259Sqtc-8ToqH3naI38AG2PwNeEUIdX1wWxRtHuaqLQuA-7Y4xEiLpBLuRmjYXQzxXn6V-ZslIHPY-egThchWKyLuqt-SjC9v8t1vwzZfK3fdM4Hc0ew6MUR-aTQfFP4F5on8KDgVny5zM4nHY0KeX47Rp-hD6_bHNCrsQn2iHvu88TX8R57iiApoyhqKR8Zfrv_XM4mx1_m54UiSuhcLzhq4IJy5aKyKZYkKr21ghjyyCpmNtKuJL72vklNwTJhlVt45RvmCeiIkLrfAE7bdeGV5AHs3RVZaz3XPLGexWkK0VopMVYxCqWwfu1xPTVAImh41Z2pfQgX43y1VG-us7giIS6qUlw1rGguznXaXToMbYiAkfnohz3vka7qbBlEQJelspnsL9WiU5jrNd3FpHB281tHB205WHa0N0OdYiQi4kMXg4a3PSEvpw5OrgM1JZut7q6fae9vIgI3GhsCkNRmcGHtRnc9evfstj7_2u8hoeMLJPygpp92Fnd3IY3GPKs7CjaNR7V7OMIdieT-dc5no-OTz9_wdJpPR3FxYRflWkEpA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRVV7qfpuKG1TqT21EVnHTpwDQoWClgKrqgKJm_FrKaqaAFmE-HP8ts44yaLt68Ytsp3YGY_HY3v8fQDvNM6R1qU6sSWzCXfG0GVlnpQavdd0KK0LCHx743x0wL8cisMFuO7vwlBYZW8Tg6F2taU98hXUPQJfE0KunZ4lxBpFp6s9hYbuqBXcaoAY6y527PirS1zCNavbn7G_3zO2tbm_MUo6loHE8pJPEyYMm0iiaWK-kLkzWmiT-oKSucmETbnLrZtwTWBmWNSUVrqSOaL4IZxL_O4dWOS0gTKAxfXN8ddvs10ewl-XnHe3ddJMrjQ82CZikRWSFXmSz82IgTjgb97un0Gbv53chglx6yE86DzZ-FOreo9gwVeP4W7LbXn1BNY2apoWY1w9-5--iU-qmLAz8Y2qjTxv4o6x4ji25MJTzFJQk3iqmx_NUzi4FTk-g0FVV_4FxF5PbJZp4xwveOmc9IVNhS8Lg96QkSyCD73E1GkLyqHCYXomVStfhfJVQb4qj2CdhDorSYDaIaE-P1bd-FRDrEV4juZNWu5cjpqbYc3Ce3xMpYtgue8S1Y3yRt3oZARvZ9k4PunQRVe-vmjLECUYExE8b3tw1hJau3M0sRHIub6da-p8TnXyPWCAD4elRGe4iOBjrwY37fq3LJb-_xtv4N5of29X7W6Pd17CfUZaSlFK5TIMpucX_hU6YFPzutPyGI5ue2D9AlA0QbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJuUAkGCE0SbdezEPlQVtCwthYoDlXpz_dpSIZK22Qr1r_HrOuMkWy2vW29R4iTO-Bt7HI-_D-ClwTHS-dxkTjGXcW8tbVbmmTIYveZj6Xxk4Pu8W27t8Y_7Yn8Jfg17YSitcugTY0ftG0f_yEeIPSJfE0KOpn1axJfNyfrxSUYKUrTSOshpdBDZCec_cfrWrm1vYlu_Ymzy_uvGVtYrDGSOKz7LmLBsKkmiiYVKlt4aYWweKjrNbSFczn3p_JQbIjLDolY56RXzJO9DHJf43GtwvSrQT2iX-uTD_P8OMa9Lzvt9OnkhRy2PvRLpxwrJqjIrF8bCKBnwtzj3z3TN39Zs41A4uQO3-xg2fduB7i4shfoe3OhULc_vw_pGQwNiivPm8CO06VGdEmsm3lF3Oedt2mtVHKaOgnfKVooASWem_d4-gL0rseJDWK6bOjyGNJipKwpjvecVV97LULlcBFVZjIOsZAm8Hiymjzs6Dh2X0QupO_tqtK-O9tVlAu_IqPOSRKUdTzSnh7r3TD3Gt4jAsWOTjntfImYLfLMIAQ9z6RNYHZpE9_7d6ks0JvBifhk9k5ZbTB2as64MiYExkcCjrgXnNaFZO0fQJCAX2nahqotX6qNvkf17PFYSw-AqgTcDDC7r9W9brPz_M57DTXQn_Wl7d-cJ3GIEUkpPUquwPDs9C08x8prZZxHiKRxctU9dAIWLP1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coding+schemes+in+neural+networks+learning+classification+tasks&rft.jtitle=Nature+communications&rft.au=van+Meegen%2C+Alexander&rft.au=Sompolinsky%2C+Haim&rft.date=2025-04-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=3354&rft_id=info:doi/10.1038%2Fs41467-025-58276-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon