Feature Extraction and Recognition of Medical CT Images Based on Mumford-Shah Model

In this paper, we propose an improved algorithm based on the active contour model Mumford-Shah model for CT images, which is the subject of this study. After analyzing the classical Mumford-Shah model and related improvement algorithms, we found that most of the improvement algorithms start from the...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Mathematical Physics Vol. 2021; pp. 1 - 13
Main Authors Fan, Lumin, Shen, Lingli, Zuo, Xinghua
Format Journal Article
LanguageEnglish
Published New York Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1687-9120
1687-9139
1687-9139
DOI10.1155/2021/1545098

Cover

Abstract In this paper, we propose an improved algorithm based on the active contour model Mumford-Shah model for CT images, which is the subject of this study. After analyzing the classical Mumford-Shah model and related improvement algorithms, we found that most of the improvement algorithms start from the initialization strategy of the model and the minimum value solution of the energy generalization function, so we will also improve the classical Mumford-Shah model from these two perspectives. For the initialization strategy of the Mumford-Shah model, we propose to first reduce the dimensionality of the image data by the PCA principal component analysis method, and for the reduced image feature vector, we use K-means, a general clustering method, as the initial position algorithm of the segmentation curve. For the image data that have completed the above two preprocessing processes, we then use the Mumford-Shah model for image segmentation. The Mumford-Shah curve evolution model solves the image segmentation by finding the minimum of the energy generalization of its model to obtain the optimal result of image segmentation, so for solving the minimum of the Mumford-Shah model, we first optimize the discrete problem of the energy generalization of the model by the convex relaxation technique and then use the Chambolle-Pock pairwise algorithm We then use the Chambolle-Pock dual algorithm to solve the optimization problem of the model after convex relaxation and finally obtain the image segmentation results. Finally, a comparison with the existing model through many numerical experiments shows that the model proposed in this paper calculates the texture image segmentation with high accuracy and good edge retention. Although the work in this paper is aimed at two-phase image segmentation, it can be easily extended to multiphase segmentation problems.
AbstractList In this paper, we propose an improved algorithm based on the active contour model Mumford-Shah model for CT images, which is the subject of this study. After analyzing the classical Mumford-Shah model and related improvement algorithms, we found that most of the improvement algorithms start from the initialization strategy of the model and the minimum value solution of the energy generalization function, so we will also improve the classical Mumford-Shah model from these two perspectives. For the initialization strategy of the Mumford-Shah model, we propose to first reduce the dimensionality of the image data by the PCA principal component analysis method, and for the reduced image feature vector, we use K -means, a general clustering method, as the initial position algorithm of the segmentation curve. For the image data that have completed the above two preprocessing processes, we then use the Mumford-Shah model for image segmentation. The Mumford-Shah curve evolution model solves the image segmentation by finding the minimum of the energy generalization of its model to obtain the optimal result of image segmentation, so for solving the minimum of the Mumford-Shah model, we first optimize the discrete problem of the energy generalization of the model by the convex relaxation technique and then use the Chambolle-Pock pairwise algorithm We then use the Chambolle-Pock dual algorithm to solve the optimization problem of the model after convex relaxation and finally obtain the image segmentation results. Finally, a comparison with the existing model through many numerical experiments shows that the model proposed in this paper calculates the texture image segmentation with high accuracy and good edge retention. Although the work in this paper is aimed at two-phase image segmentation, it can be easily extended to multiphase segmentation problems.
In this paper, we propose an improved algorithm based on the active contour model Mumford-Shah model for CT images, which is the subject of this study. After analyzing the classical Mumford-Shah model and related improvement algorithms, we found that most of the improvement algorithms start from the initialization strategy of the model and the minimum value solution of the energy generalization function, so we will also improve the classical Mumford-Shah model from these two perspectives. For the initialization strategy of the Mumford-Shah model, we propose to first reduce the dimensionality of the image data by the PCA principal component analysis method, and for the reduced image feature vector, we use K-means, a general clustering method, as the initial position algorithm of the segmentation curve. For the image data that have completed the above two preprocessing processes, we then use the Mumford-Shah model for image segmentation. The Mumford-Shah curve evolution model solves the image segmentation by finding the minimum of the energy generalization of its model to obtain the optimal result of image segmentation, so for solving the minimum of the Mumford-Shah model, we first optimize the discrete problem of the energy generalization of the model by the convex relaxation technique and then use the Chambolle-Pock pairwise algorithm We then use the Chambolle-Pock dual algorithm to solve the optimization problem of the model after convex relaxation and finally obtain the image segmentation results. Finally, a comparison with the existing model through many numerical experiments shows that the model proposed in this paper calculates the texture image segmentation with high accuracy and good edge retention. Although the work in this paper is aimed at two-phase image segmentation, it can be easily extended to multiphase segmentation problems.
Audience Academic
Author Zuo, Xinghua
Shen, Lingli
Fan, Lumin
Author_xml – sequence: 1
  givenname: Lumin
  orcidid: 0000-0001-7408-644X
  surname: Fan
  fullname: Fan, Lumin
  organization: Medical Equipment DepartmentShanghai East HospitalShanghai 200120Chinashanghaieasthospital.com
– sequence: 2
  givenname: Lingli
  surname: Shen
  fullname: Shen, Lingli
  organization: Materials Procurement DepartmentShanghai East HospitalShanghai 200120Chinashanghaieasthospital.com
– sequence: 3
  givenname: Xinghua
  surname: Zuo
  fullname: Zuo, Xinghua
  organization: Medical Equipment DepartmentShanghai East HospitalShanghai 200120Chinashanghaieasthospital.com
BookMark eNqNksFu1DAQhiNUJErpjQeIxBHSxrHHiY9l1cJKXSHRcrZm7fGuV0m8OIlK3x5vUxWQUME-eDz-5rfnl19nR33oKcvesvKMMYDzqqzYOQMBpWpeZMdMNnWhGFdHT3FVvspOh2FXpsEVSAXH2c0V4ThFyi9_jBHN6EOfY2_zr2TCpvcP--DyFVlvsM0Xt_myww0N-UccyObpdDV1LkRb3Gxxm6-CpfZN9tJhO9Dp43qSfbu6vF18Lq6_fFouLq4LI5QYC6bWqJQBYwFExZGX1dpgY601tePSoiQnKiFACucaAgXoSBLjbG04qoafZMtZ1wbc6X30HcZ7HdDrh0SIG41x9KYlbZhlVS2MAigFZ4Q1EVeNQ6GcSJJJq5i1pn6P93fYtk-CrNQHg_XBYP1ocOLfzfw-hu8TDaPehSn2qV1dQd3I1BBUv6gNpkf43oWDyZ0fjL6QSjYJAXieajhIzmqWqLO_UGla6rxJf8H5lP9D9v8Kfrvhw1xgYhiGSO5fFryf8a3vLd755-mfWrDLLg
Cites_doi 10.1134/S1054661817030294
10.1016/j.asoc.2020.106895
10.1007/s00521-020-04922-7
10.1007/s11042-020-09640-9
10.1007/s00371-020-01845-1
10.3233/JIFS-189476
10.26599/TST.2020.9010042
10.1007/s11831-020-09463-9
10.1016/j.camwa.2019.09.021
10.1177/0165551515613226
10.11591/ijeecs.v22.i2.pp1078-1086
10.1504/IJIM.2018.093008
10.1134/S105466181902010X
10.1007/s11042-020-09900-8
10.1504/IJRIS.2020.106806
10.1177/0165551516677911
10.1007/s11042-018-5697-y
10.1038/s41598-021-81957-3
10.1007/s11042-019-7328-7
10.1016/j.eswa.2016.06.005
10.11591/ijeei.v6i3.592
10.1109/TIP.2017.2666042
10.1504/IJPD.2019.099210
ContentType Journal Article
Copyright Copyright © 2021 Lumin Fan et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Lumin Fan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Lumin Fan et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Lumin Fan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7U5
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1155/2021/1545098
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1687-9139
Editor Chen, Miaochao
Editor_xml – sequence: 1
  givenname: Miaochao
  surname: Chen
  fullname: Chen, Miaochao
EndPage 13
ExternalDocumentID oai_doaj_org_article_c1d1274c9550431ea7ee398fa49f4e13
10.1155/2021/1545098
A696852355
A683563171
10_1155_2021_1545098
GrantInformation_xml – fundername: Shanghai Association of Chinese Integrative Medicine, Scientific Research Fund Project: the Research of Biobank Establishment Standard and Quality Control
  grantid: YG017
GroupedDBID .4S
.DC
188
23M
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABJCF
ABUWG
ACIPV
ACIWK
ADBBV
AENEX
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CWDGH
E3Z
EBS
EDO
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEA
IGS
ISE
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RHW
RHX
TR2
TUS
0R~
24P
6J9
AAMMB
AAYXX
ACCMX
ACGFO
AEFGJ
AEGXH
AGXDD
AIAGR
AIDQK
AIDYY
AMVHM
CITATION
FRJ
H13
PHGZM
PHGZT
PQGLB
PUEGO
RNS
7U5
8FD
AZQEC
DWQXO
GNUQQ
JQ2
L7M
PKEHL
PQEST
PQUKI
PRINS
-~9
2UF
ADTOC
C1A
EJD
IL9
LO0
UNPAY
UZ4
ID FETCH-LOGICAL-c494t-19ba99c5cd55423a302bca8dddc7f36da6ef4244564ff8e595afe6e131bc3a983
IEDL.DBID RHX
ISSN 1687-9120
1687-9139
IngestDate Fri Oct 03 12:53:13 EDT 2025
Tue Aug 19 16:25:27 EDT 2025
Fri Jul 25 18:59:01 EDT 2025
Wed Oct 16 18:01:57 EDT 2024
Tue Oct 15 04:47:17 EDT 2024
Tue Oct 15 04:46:42 EDT 2024
Wed Oct 01 05:11:24 EDT 2025
Sun Jun 02 19:14:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-19ba99c5cd55423a302bca8dddc7f36da6ef4244564ff8e595afe6e131bc3a983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7408-644X
OpenAccessLink https://dx.doi.org/10.1155/2021/1545098
PQID 2578642352
PQPubID 237350
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c1d1274c9550431ea7ee398fa49f4e13
unpaywall_primary_10_1155_2021_1545098
proquest_journals_2578642352
gale_infotracmisc_A696852355
gale_infotracmisc_A683563171
gale_infotracacademiconefile_A696852355
gale_infotracacademiconefile_A683563171
crossref_primary_10_1155_2021_1545098
hindawi_primary_10_1155_2021_1545098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in Mathematical Physics
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
23
24
25
P. Pachunde (13) 2021; 12
10
M. Alaei (26) 2021; 99
H. Chen (7) 2020; 23
11
12
14
15
16
17
18
19
1
2
3
4
5
6
8
9
M. T. Dehkordi (20) 2018; 30
21
References_xml – ident: 11
  doi: 10.1134/S1054661817030294
– volume: 99
  start-page: 106895
  year: 2021
  ident: 26
  article-title: An adaptive fault detector strategy for scientific workflow scheduling based on improved differential evolution algorithm in cloud
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106895
– ident: 2
  doi: 10.1007/s00521-020-04922-7
– ident: 12
  doi: 10.1007/s11042-020-09640-9
– ident: 17
  doi: 10.1007/s00371-020-01845-1
– ident: 6
  doi: 10.3233/JIFS-189476
– ident: 19
  doi: 10.26599/TST.2020.9010042
– ident: 18
  doi: 10.1007/s11831-020-09463-9
– ident: 5
  doi: 10.1016/j.camwa.2019.09.021
– ident: 1
  doi: 10.1177/0165551515613226
– volume: 30
  start-page: 59
  issue: 1
  year: 2018
  ident: 20
  article-title: An automated method for brain tumor segmentation based on level set
  publication-title: International Journal of Computer (IJC)
– ident: 22
  doi: 10.11591/ijeecs.v22.i2.pp1078-1086
– ident: 8
  doi: 10.1504/IJIM.2018.093008
– ident: 16
  doi: 10.1134/S105466181902010X
– volume: 23
  start-page: 739
  issue: 4
  year: 2020
  ident: 7
  article-title: A deep feature fusion method based on dark channel for medical image segmentation
  publication-title: Journal of Applied Science and Engineering
– ident: 15
  doi: 10.1007/s11042-020-09900-8
– ident: 14
  doi: 10.1504/IJRIS.2020.106806
– ident: 25
  doi: 10.1177/0165551516677911
– ident: 23
  doi: 10.1007/s11042-018-5697-y
– ident: 4
  doi: 10.1038/s41598-021-81957-3
– ident: 9
  doi: 10.1007/s11042-019-7328-7
– ident: 3
  doi: 10.1016/j.eswa.2016.06.005
– ident: 21
  doi: 10.11591/ijeei.v6i3.592
– ident: 10
  doi: 10.1109/TIP.2017.2666042
– volume: 12
  start-page: 954
  issue: 12
  year: 2021
  ident: 13
  article-title: Efficient automatic segmentation of multi-domain imagery using ensemble feature-segmenter pairs with machine learning
  publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
– ident: 24
  doi: 10.1504/IJPD.2019.099210
SSID ssj0000395695
ssib044728253
Score 2.17274
Snippet In this paper, we propose an improved algorithm based on the active contour model Mumford-Shah model for CT images, which is the subject of this study. After...
SourceID doaj
unpaywall
proquest
gale
crossref
hindawi
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Clustering
Computed tomography
CT imaging
Energy
Feature extraction
Feature recognition
Image processing
Image segmentation
Mathematical models
Medical imaging
Medical research
Object recognition
Optimization
Partial differential equations
Principal components analysis
R&D
Relaxation
Research & development
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQX3oiFBflQ4BQ1jh-xj23VqiCVA22l3qyJY2uRtmm1DxX-PTOJd9mVEHvhmMSx4vE8vnHmwdh-kEJBU7cFyEYXKpWxgAB10Vg09taUwQpKTj7_Zs6u1Ndrfb3R6otiwobywAPhDoJoBXpOwWmqtSUi1DFKZxMol1Ts-9VWpXUbzhRyklI15WTK9WlLKdEP6FuwCINS5URVrqLgtaYDAHFAWKJ0dss-9WX818r64YTc5PsfW2D00bK7g1_3MJ1u2KXTZ-xJBpT8cFjIc_Ygdi_Y0wwueRbd-Ut2QWBvOYv85OdiNmQzcOha_n0VQYTXt4nnHzf8-JJ_uUFdM-dHaOdajk_PlzcUCV9cTGDCqYfa9BW7Oj25PD4rckeFIiinFoVwDTgXdGgRRVQSZFk1AWzbtqFO0rRgYqLMN21USjZqpyFFg1QWTZDgrHzN9rrbLr5h3JauBpMiGGdVI3Gnq5A0tRBFkZZVOWIfV3T0d0PhDN87HFp7orfP9B6xIyLyegyVu-5vIBP4zAR-FxOM2GfaIk9CSTSEnFuAn0rlrfyhQaBpECqJ3SOdQTZFFDZi462RKHZha6K_Pv7z9n7mlh2rH69YyWflMfekRdEtRGg8Yp_W7PXPed7-Dyq-Y49pzuGAacz2FrNlfI-Qa9F86KXrN3ZGHeQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Zb9QwELbKVgheuBGBBfmhwFPUOD4SPyDUrbYqSF2hHlLfIsdHF2mbXfZQ4d8zk3W2rITaxySO5Uzm-GbsmSFkz3ImTF241PBapiJkPjXWFGldgrEvVWZLhsnJJyN1fCG-X8rLHTLqcmHwWGWnE1tF7aYWY-T7yFqAlQEvfJ39SrFrFO6udi00TGyt4L60JcYekN0cK2P1yO5gOPpx2nGYEAXmavJNFCbj4B-0rVmYAmnTLM-60_FSYmCA7SPGyHS5Zbfa8v4bJf5wjO7zzc8tkPpo1czMnxszmfxjr46ekScRaNKDNWc8Jzu-eUGeRtBJo0gvXpIzBIGruafD38v5OsuBmsbR0-5kEVxPA40bOvTwnH67Bh20oAOwf47C05PVNZ6QT8_GZkyxt9rkFbk4Gp4fHqex00JqhRbLlOnaaG2ldYAucm54ltfWlM45WwSunFE-YEacVCKE0kstTfDKM85qy40u-WvSa6aNf0NomenCqOCN0qWoOXBAboPE1qIg6jzPEvKxo2M1WxfUqFpHRMoK6V1FeidkgETejMEy2O2N6fyqilJVWeYYuNVWSyzExrwpvOe6DEboIGB5CfmMv6hCYUUamphzAEvFslfVgQIAqgBCsftHagXsC-gsIf2tkSCOdmui_z6-fXsvcss9X9_vWKmKSmVR3YpAQj5t2OvOed7ePc878hhHr0NKfdJbzlf-PYCsZf0hSs5fWOEcKQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJ8ReGJ9aoSA_DHhKl9SxE4unbto0kDYhtkpDQoou_qCINq36oQF_PXeNUyhCDPEWx45lX-7jd8ndmbF9I5IUysxGIEoZpT52ERjIojJHY5-r2OQJJSefnavTQfr2Sl5tsddNLoylEvETsPPukHzS688rbR3oOj-A8ZTc9eSALH-s8-7U-ltsW0kE4i22PTh_1_9ALpZC0dF1UcZwLXQT9i7lxhQbBmlVt3-tnW-HNWygzzvLagrfrmE0-sUQneyyj80W6viTL93louya779Vd_zPPd5jdwNA5f2ao-6zLVc9YLsBrPKgCuYP2QWBx-XM8eOvi1mdHcGhsvx9E5GE7Ynn4UcQP7rkb8aou-b8EO2m5dh7thxTZH10MYQhpzPZRo_Y4OT48ug0Cic0RCbV6SJKdAlaG2ksopKeABH3SgO5tdZkXigLynnKpJMq9T53UkvwTrlEJKURoHPxmLWqSeX2GM9jnYHyDpTO01Ig5_SMl3QkKaoI0Yvb7EXzmoppXYijWDkwUhZErSJQq80O6R2ux1D57NWNyexTEaSxMIlN0B03WlIBt8RB5pzQuYdU-xSX12aviAMKEnKiIYRcBVwqlcsq-gqBq0Loldw8Uitke0R1bdbZGIlibDYm-mP3z6f3A7PcsPtOw6lFw1AFaWV0MxFqt9nLNff-dZ4n_zrwKduhZv1RqsNai9nSPUOYtiifB3H8AYpkMzY
  priority: 102
  providerName: Unpaywall
Title Feature Extraction and Recognition of Medical CT Images Based on Mumford-Shah Model
URI https://dx.doi.org/10.1155/2021/1545098
https://www.proquest.com/docview/2578642352
https://downloads.hindawi.com/journals/amp/2021/1545098.pdf
https://doaj.org/article/c1d1274c9550431ea7ee398fa49f4e13
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: KQ8
  dateStart: 20081106
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: AMVHM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044728253
  issn: 1687-9120
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: CWDGH
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1687-9139
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395695
  issn: 1687-9139
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYEIIXvhGBUvlhwFNEXDuO_dhO7QpSq6lbpfIUOY6tInXZ1A9te-Fv5y51CgXEeLHk2HGc853vd7bvTMiR5UyYIitjw4s0Fj5xsbEmiwsFyl7JxCqGzsmjsRxOxZdZOgtBklZ_buGDtkPznH1CTZ9odUAOlMSTW5PhrGEbITJ0wOS7pZWEA-iv71thEkRIs07SHHn_rbk9ZVTH7N_NzA_maBNff9tDng831ZW5vTaLxS9KaPCUPA7okXa3w_2M3HPVc_IkIEka5HT1gpwhstssHe3frJdb1wVqqpJOmuNCkL_0NOzS0ONz-vkCJpYV7YFSKymUjjYXeOw9PpubOcUL0xYvyXTQPz8exuH6hNgKLdYx04XR2qa2BMjQ4YYnncIaVZalzTyXpZHOo5tbKoX3yqU6Nd5JxzgrLDda8VfksLqs3GtCVaIzI70zUitRcBjWjvUp3hcK8ss7SUTeN3TMr7ZRMvLaukjTHOmdB3pHpIdE3tXB2Nb1AxjvPIhKblnJwFa2OsXoasyZzDmulTdCewHdi8hHHKIcJRBpaIIjAXQVY1nlXQmoUgIuYnfX1BJ4EiBXRFp7NUHG7F5Dfy3--fZR4JY7_r7VsFIeZopVjlMm2ICAgyPyYcde_2znzf997i15hNntelGLHK6XG_cOENS6aIMUDU7a5H6vPz6dtOt1CEhPZgzS0fd-u5YvKJ-OT7tffwDdLBKm
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFNWUdJiyoTyHQAAt2rJya1kPWwsWbdqS0KYLmg7dGVmWCUOahDwmlI_iV_gl7k3klDBMu-qCpW1ZY8vnHh3J90HIhuVMmCzOA8MzGYgidIGxJg6yBCb7RIU2YRic3DpRjTPx_lyer5CfZSwMulWWnDgj6rxvcY98B6EFWhn0gvegPHKXU1ifjd429-FjbkbR4UG73gh8CYHACi3GAdOZ0dpKm8O0GXHDwyizJsnz3MYFV7lRrsBQL6lEUSROamkKpxzjLLPc6IRDv1uDbwFWqcK_ub5kxx2yCjhnUYWs1j_uv2uUCBYixlhQvtjlCTmsP2alX5gCa9YsCkvveylx44HtoIYJdbI0L87KBywmibsdXJ5PvyyJ4LVJb2Aup6bb_WM-PFwnv8qRnLvBfN2ejLNt--OvJJP_z1A_IPe9NKe7c1t6SFZc7xFZ9zKdehIcPSanKJsnQ0cPvo-H87gQano5_VD6YsFxv6D-Fxitt2nzAlh7RPdAMeQUrrYmFxhTEJx2TIdiNbruE3J2K2_7lFR6_Z57RmgS6tiowhmlE5FxsJnIFhKLsQI58iisks0SGelgnoIknS3dpEwRQalHUJXsIWwWbTBx-OxEf_g59TyUWpazKBZWS0xdx5yJneM6KYzQhYDHq5I3CLoU6Q3H0PgoDXhUTBSW7iqQ7ApEJ7u5pVZg8KBnq6S21BIIzC519M_LV3dvePzf8Pa1Esypp-FReoXkKtlaGMy1_Ty_vp_XZK3Rbh2nx82ToxfkHt4535Crkcp4OHEvQaKOs1eeFyj5dNsm8xv1SJje
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFNWUdnhsKM8hEECLFlZuLOtha8EwbdKQUNphaDt0Z2RZIgxpEvKYUD6NX-FnuDexU8Iw7aoLlrZljS2fe3Qk3wchG5YzYbI4DwzPZCB86AJjTRxkCUz2iQptwjA4ef9AtY7F2xN5skJ-lrEw6FZZcuKMqPO-xT3yGkILtDLohZov3CLeN5qvB98CrCCFf1rLchpziOy5syks30av2g341ptR1Nw9qreCosJAYIUW44DpzGhtpc1hVo244WGUWZPkeW5jz1VulPMYCSaV8D5xUkvjnXKMs8xyoxMO_V4ja4mKFZDCWv1j402rRLMQMcaF8sWOT8hhLTIrA8MUWLZmUVh64kuJmxCshnom1MnSHDkrJbCYMK53cKk-_bIkiG9OegNzNjXd7h9zY3Od_CpHde4S83VrMs627I-_Ek7-n8N-h9wuJDvdntvYXbLievfIeiHfaUGOo_vkEOX0ZOjo7vfxcB4vQk0vpx9KHy047nta_Bqj9SPaPgU2H9EdUBI5hav7k1OMNQgOO6ZDsUpd9wE5vpJXe0hWe_2ee0RoEurYKO-M0onIONhSZL3EIq1AmjwKK2SzREk6mKcmSWdLOilTRFNaoKlCdhBCizaYUHx2oj_8nBb8lFqWsygWVktMaceciZ3jOvFGaC_g8SrkJQIwRdrDMTRF9AY8KiYQS7cVSHkFYpRd3lIrIALQuRVSXWoJxGaXOvrn5fO7NwpbuOTtqyWw04KeR-k5qivkxcJ4Luzn8cX9PCc3wC7Sd-2DvSfkFt4436erktXxcOKegnIdZ88KiqDk01Wbx2-X5aGm
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJ8ReGJ9aoSA_DHhKl9SxE4unbto0kDYhtkpDQoou_qCINq36oQF_PXeNUyhCDPEWx45lX-7jd8ndmbF9I5IUysxGIEoZpT52ERjIojJHY5-r2OQJJSefnavTQfr2Sl5tsddNLoylEvETsPPukHzS688rbR3oOj-A8ZTc9eSALH-s8-7U-ltsW0kE4i22PTh_1_9ALpZC0dF1UcZwLXQT9i7lxhQbBmlVt3-tnW-HNWygzzvLagrfrmE0-sUQneyyj80W6viTL93louya779Vd_zPPd5jdwNA5f2ao-6zLVc9YLsBrPKgCuYP2QWBx-XM8eOvi1mdHcGhsvx9E5GE7Ynn4UcQP7rkb8aou-b8EO2m5dh7thxTZH10MYQhpzPZRo_Y4OT48ug0Cic0RCbV6SJKdAlaG2ksopKeABH3SgO5tdZkXigLynnKpJMq9T53UkvwTrlEJKURoHPxmLWqSeX2GM9jnYHyDpTO01Ig5_SMl3QkKaoI0Yvb7EXzmoppXYijWDkwUhZErSJQq80O6R2ux1D57NWNyexTEaSxMIlN0B03WlIBt8RB5pzQuYdU-xSX12aviAMKEnKiIYRcBVwqlcsq-gqBq0Loldw8Uitke0R1bdbZGIlibDYm-mP3z6f3A7PcsPtOw6lFw1AFaWV0MxFqt9nLNff-dZ4n_zrwKduhZv1RqsNai9nSPUOYtiifB3H8AYpkMzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Extraction+and+Recognition+of+Medical+CT+Images+Based+on+Mumford-Shah+Model&rft.jtitle=Advances+in+Mathematical+Physics&rft.au=Fan%2C+Lumin&rft.au=Shen%2C+Lingli&rft.au=Zuo%2C+Xinghua&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-9120&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F1545098&rft.externalDocID=A696852355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-9120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-9120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-9120&client=summon