Whole body MRI (WB-MRI) assessment of metastatic spread in prostate cancer: Therapeutic perspectives on targeted management of oligometastatic disease

OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion‐weighted imaging (WB‐MRI/DWI). To determine the proportion of patients with nodal disease confined within currentl...

Full description

Saved in:
Bibliographic Details
Published inThe Prostate Vol. 76; no. 11; pp. 1024 - 1033
Main Authors Larbi, Ahmed, Dallaudière, Benjamin, Pasoglou, Vasiliki, Padhani, Anwar, Michoux, Nicolas, Vande Berg, Bruno C., Tombal, Bertrand, Lecouvet, Frédéric E.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0270-4137
1097-0045
1097-0045
DOI10.1002/pros.23196

Cover

Abstract OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion‐weighted imaging (WB‐MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). SUBJECTS AND METHODS Two radiologists reviewed WB‐MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non‐metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. RESULTS Twenty‐eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para‐aortic, inter‐aortico‐cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively. CONCLUSIONS Non‐invasive mapping of metastatic landing sites in PCa using WB‐MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high‐risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024–1033, 2016. © 2016 Wiley Periodicals, Inc.
AbstractList OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease ( less than or equal to 3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). SUBJECTS AND METHODS Two radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. RESULTS Twenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with less than or equal to 3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only less than or equal to 25% and less than or equal to 30% of patients, respectively. CONCLUSIONS Non-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016.
OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). SUBJECTS AND METHODS Two radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. RESULTS Twenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively. CONCLUSIONS Non-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. © 2016 Wiley Periodicals, Inc.
OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion‐weighted imaging (WB‐MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). SUBJECTS AND METHODS Two radiologists reviewed WB‐MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non‐metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. RESULTS Twenty‐eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para‐aortic, inter‐aortico‐cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively. CONCLUSIONS Non‐invasive mapping of metastatic landing sites in PCa using WB‐MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high‐risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024–1033, 2016. © 2016 Wiley Periodicals, Inc.
To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). Two radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. Twenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively. Non-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. © 2016 Wiley Periodicals, Inc.
To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT).OBJECTIVESTo determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT).Two radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined.SUBJECTS AND METHODSTwo radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined.Twenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively.RESULTSTwenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively.Non-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. © 2016 Wiley Periodicals, Inc.CONCLUSIONSNon-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. © 2016 Wiley Periodicals, Inc.
Author Lecouvet, Frédéric E.
Larbi, Ahmed
Vande Berg, Bruno C.
Dallaudière, Benjamin
Michoux, Nicolas
Pasoglou, Vasiliki
Tombal, Bertrand
Padhani, Anwar
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Larbi
  fullname: Larbi, Ahmed
  organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
– sequence: 2
  givenname: Benjamin
  surname: Dallaudière
  fullname: Dallaudière, Benjamin
  organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
– sequence: 3
  givenname: Vasiliki
  surname: Pasoglou
  fullname: Pasoglou, Vasiliki
  organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
– sequence: 4
  givenname: Anwar
  surname: Padhani
  fullname: Padhani, Anwar
  organization: Paul Strickland Scanner Centre, Mount Vernon Hospital, Middlesex, Northwood, United Kingdom
– sequence: 5
  givenname: Nicolas
  surname: Michoux
  fullname: Michoux, Nicolas
  organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
– sequence: 6
  givenname: Bruno C.
  surname: Vande Berg
  fullname: Vande Berg, Bruno C.
  organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
– sequence: 7
  givenname: Bertrand
  surname: Tombal
  fullname: Tombal, Bertrand
  organization: Urology Unit, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
– sequence: 8
  givenname: Frédéric E.
  surname: Lecouvet
  fullname: Lecouvet, Frédéric E.
  email: Correspondence to: Prof. Frederic Lecouvet, Service de Radiologie, Cliniques universitaires Saint Luc, Avenue Hippocrate, 10/2942; B-1200 Brussels, Belgium. , frederic.lecouvet@uclouvain.be
  organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27197649$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1u1DAQRi1URH_ghgdAlrgpSCljJ7Fj7qDQUtRSVIr20vI6461LEgc7C-yL8LwkbLdCFYKrkaxzPmvm2yVbXeiQkMcMDhgAf9HHkA54zpS4R3YYKJkBFOUW2QEuIStYLrfJbkrXACMO_AHZ5pIpKQq1Q37OrkKDdB7qFT27OKH7s9fZOJ9RkxKm1GI30OBoi4NJgxm8pamPaGrqOzr9O74htaazGF_SyyuMpsflhPUYU4928N8w0dDRwcQFDljT1nRmgZvg0PhF-CO99glNwofkvjNNwkc3c498Pnp7efguOz0_Pjl8dZrZQhUic8IJLhUqnEtegsESGJbWiUryOXOuAM5shYzVCnNQQgBzc465cxKFzV2-R_bXueMuX5eYBt36ZLFpTIdhmTSroBIc8pL9H5Wq4qJgckKf3kGvwzJ24yITJYUqKpmP1JMbajlvsdZ99K2JK70pZwSerwE7HjpFdLcIAz01r6cG9O_mRxjuwNZPJw3dEI1v_q6wtfLdN7j6R7j-eHH-aeNka8enAX_cOiZ-0ULmstSzD8e6PIMjEOq9fpP_AlYk0H4
CODEN PRSTDS
CitedBy_id crossref_primary_10_1016_j_euo_2018_09_010
crossref_primary_10_1002_pros_23430
crossref_primary_10_1007_s11547_016_0675_9
crossref_primary_10_1007_s12094_019_02257_x
crossref_primary_10_1016_j_clon_2021_10_004
crossref_primary_10_1016_j_crad_2021_09_005
crossref_primary_10_1097_RLI_0000000000000741
crossref_primary_10_1016_j_cpet_2018_05_006
crossref_primary_10_1016_j_euf_2016_06_018
crossref_primary_10_2967_jnumed_120_258541
crossref_primary_10_3389_fonc_2022_932637
crossref_primary_10_1016_S1470_2045_18_30898_2
crossref_primary_10_1259_bjr_20170664
crossref_primary_10_1007_s11547_018_0952_x
crossref_primary_10_1053_j_semnuclmed_2021_11_013
crossref_primary_10_1200_EDBK_239041
crossref_primary_10_1016_S1470_2045_18_30571_0
crossref_primary_10_5334_jbr_btr_1209
crossref_primary_10_1007_s00259_018_4058_4
crossref_primary_10_1007_s11604_021_01205_6
crossref_primary_10_1002_cncr_35466
crossref_primary_10_3390_cancers14082017
crossref_primary_10_1097_SP9_0000000000000009
crossref_primary_10_1097_SPC_0000000000000275
crossref_primary_10_2967_jnumed_118_213470
crossref_primary_10_1002_wnan_1471
crossref_primary_10_1007_s00117_017_0269_0
crossref_primary_10_1016_j_cmpb_2023_107811
crossref_primary_10_1016_j_monrhu_2017_01_001
crossref_primary_10_7759_cureus_59470
crossref_primary_10_1007_s00330_020_07363_x
crossref_primary_10_1016_j_ejrad_2021_109990
crossref_primary_10_1007_s12032_017_1050_y
crossref_primary_10_1016_j_ejca_2017_12_012
crossref_primary_10_1016_j_currproblcancer_2023_100968
crossref_primary_10_1200_JCO_19_02757
crossref_primary_10_1007_s00345_019_02700_2
crossref_primary_10_1002_jmri_27485
crossref_primary_10_1002_pros_23757
crossref_primary_10_1148_radiol_2019181931
crossref_primary_10_1016_S2468_1253_19_30092_5
Cites_doi 10.1007/s00345-014-1347-9
10.1200/JCO.2006.09.2940
10.1634/theoncologist.2013-0027
10.1016/j.eururo.2013.07.024
10.1016/j.ijrobp.2008.08.002
10.3109/0284186X.2015.1027411
10.1016/j.eururo.2009.03.012
10.1007/s00259-014-2949-6
10.1097/SPC.0000000000000078
10.1016/j.ejca.2012.09.034
10.1016/j.eururo.2012.09.039
10.1097/MOU.0b013e328361d451
10.1200/JCO.2012.44.6716
10.1056/NEJM193409132111101
10.1200/jco.2012.30.5_suppl.8
10.1038/nrurol.2013.111
10.1007/s00066-014-0763-5
10.2214/AJR.11.7533
10.1016/j.canep.2014.04.002
10.1016/j.eururo.2012.02.020
10.1016/j.eururo.2014.09.032
10.3892/ijo.2014.2656
10.3390/ijms140713842
10.1016/j.eururo.2012.06.057
10.1016/j.eururo.2014.09.004
10.1016/j.juro.2014.09.089
10.1148/radiol.14132921
10.1200/jco.2015.33.15_suppl.5000
10.1002/pros.20280
10.1016/j.eururo.2006.10.045
10.1016/j.radonc.2012.10.021
10.1016/j.eururo.2011.01.015
10.1007/s00330-010-1879-3
10.1155/2012/612707
10.1093/annonc/mdv257
10.1155/2012/893193
10.1148/radiol.2522090263
10.1016/j.eururo.2011.11.043
10.1002/pros.22764
10.1016/j.crad.2007.05.022
10.1007/s00330-011-2221-4
10.1002/pros.22559
10.1016/j.radonc.2014.03.008
10.1038/nrclinonc.2011.44
10.1148/radiol.11110474
10.1016/j.juro.2012.02.763
10.1007/s00256-014-1903-9
10.1007/s00256-009-0789-4
10.1016/j.ijrobp.2011.04.054
10.1148/radiol.14141242
10.1002/cncr.23864
10.1016/S0140-6736(08)61815-2
10.1073/pnas.1106383108
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1002/pros.23196
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
Genetics Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0045
EndPage 1033
ExternalDocumentID 4093020151
27197649
10_1002_pros_23196
PROS23196
ark_67375_WNG_5M0F069J_D
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: bourse de recherche 2013 de la Société Française de Radiologie (SFR) (BD)
– fundername: Fond National de la Recherche Scientifique (FNRS)−Télévie, Fondation contre le cancer, Fondation Saint Luc (VP, FL)
– fundername: Fonds de Recherche Clinique, IREC (AL)
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWO
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4946-f6f6279e9eb7250ae501e5cf6872b1ff4021c8e11d9e3096601fb2e3ff7e6c3f3
IEDL.DBID DR2
ISSN 0270-4137
1097-0045
IngestDate Fri Jul 11 16:12:32 EDT 2025
Fri Jul 11 07:17:13 EDT 2025
Fri Jul 25 06:50:39 EDT 2025
Wed Feb 19 02:40:34 EST 2025
Tue Jul 01 00:24:46 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Wed Jan 22 16:55:44 EST 2025
Sun Sep 21 06:21:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords metastases
lymph nodes
MRI
prostate-cancer
radiotherapy
bone
oligometastasis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4946-f6f6279e9eb7250ae501e5cf6872b1ff4021c8e11d9e3096601fb2e3ff7e6c3f3
Notes Fonds de Recherche Clinique, IREC (AL)
bourse de recherche 2013 de la Société Française de Radiologie (SFR) (BD)
ark:/67375/WNG-5M0F069J-D
Fond National de la Recherche Scientifique (FNRS)−Télévie, Fondation contre le cancer, Fondation Saint Luc (VP, FL)
ArticleID:PROS23196
istex:70DFF8A67856C967A4E058A412AFE571F147248B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27197649
PQID 1797694873
PQPubID 1016443
PageCount 10
ParticipantIDs proquest_miscellaneous_1808620351
proquest_miscellaneous_1798264171
proquest_journals_1797694873
pubmed_primary_27197649
crossref_primary_10_1002_pros_23196
crossref_citationtrail_10_1002_pros_23196
wiley_primary_10_1002_pros_23196_PROS23196
istex_primary_ark_67375_WNG_5M0F069J_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 1, 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 1, 2016
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle The Prostate
PublicationTitleAlternate Prostate
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Ghadjar P, Briganti A, De Visschere PJ, Futterer JJ, Giannarini G, Isbarn H, Ost P, Sooriakumaran P, Surcel CI, van den Bergh RC, van Oort IM, Yossepowitch O, Ploussard G. The oncologic role of local treatment in primary metastatic prostate cancer. World J Urol 2015; 33(6):755-761.
Ost P, Bossi A, Decaestecker K, De Meerleer G, Giannarini G, Karnes RJ, Roach M 3rd, Briganti A. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: A systematic review of the literature. Eur Urol 2015; 67(5):852-863.
Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, Weichert W, Kopka K, Debus J, Haberkorn U. The diagnostic value of PET/CT imaging with the Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42(2):197-209.
Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O'Meara E, Rosenthal SA, Ritter M, Seider M. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2009; 74(2):383-387.
Lecouvet FE, Vande Berg BC, Malghem J, Omoumi P, Simoni P. Diffusion-weighted MR imaging: Adjunct or alternative to T1-weighted MR imaging for prostate carcinoma bone metastases? Radiology 2009; 252(2):624.
Lecouvet FE, Lhommel R, Pasoglou V, Larbi A, Jamar F, Tombal B. Novel imaging techniques reshape the landscape in high-risk prostate cancers. Curr Opin Urol 2013; 23(4):323-330.
Parker C, Heinrich D, O'Sullivan J, Fossa S, Chodacki A, Demkow T, Logue J, Seke M, Widmark A, Johannessen D, Nilsson S, Hoskin P, Solberg A, James N, Syndikus I, Cross A, O'Bryan-Tear C, Garcia-Vargas JE, Sartor O. Overall survival benefit and safety profile of radium-223 chloride, a first-in-class alpha-pharmaceutical: Results from a phase III randomized trial (ALSYMPCA) in patients with castration-resistant prostate cancer (CRPC) with bone metastases. J Clin Oncol 2012; 30(Suppl 5):Abstr 8.
Piper C, Porres D, Pfister D, Heidenreich A. The role of palliative surgery in castration-resistant prostate cancer. Curr Opin Support Palliat Care 2014; 8(3):250-257.
Tombal B, Lecouvet F. Modern detection of prostate cancer's bone metastasis: Is the bone scan era over? Adv Urol 2012; 2012:893193.
Gosfield E 3rd, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 1993; 34(12):2191-2198.
Heidenreich A, Bastian P, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Mottet N, van der Kwast T, Wiegel T, Zattoni F. In: Urology EAo, editor vol 2013. Guidelines on prostate cancer. European Association of Urology; 2013.
Lepinoy A, Cochet A, Cueff A, Cormier L, Martin E, Maingon P, Bosset JF, Brunotte F, Crehange G. Pattern of occult nodal relapse diagnosed with (18)F-fluoro-choline PET/CT in prostate cancer patients with biochemical failure after prostate-only radiotherapy. Radiother Oncol 2014; 111(1):120-125.
Fortuin A, Rooij M, Zamecnik P, Haberkorn U, Barentsz J. Molecular and functional imaging for detection of lymph node metastases in prostate cancer. Int J Mol Sci 2013; 14(7):13842-13875.
Scher H, Morris M, Stadler W, Higano C, Halabi SMRS, Basch E, Fizazi K, Ryan C, Antonarakis E, Corn P, Liu G, De Bono J, Schwartz LH, Beer T, Kelly W, Hussain M, Sartor A, Kantoff P, AJ A. The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration-resistant prostate cancer (CRPC). J Clin Oncol 2015; 33:a5000.
Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d'Othee BJ, Therasse P, Berg BV, Tombal B. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: Diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 2007; 25(22):3281-3287.
Nelson JB, Love W, Chin JL, Saad F, Schulman CC, Sleep DJ, Qian J, Steinberg J, Carducci M. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer 2008; 113(9):2478-2487.
Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, Machiels JP, Vande Berg B, Omoumi P, Tombal B. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 2012; 62(1):68-75.
Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, Halabi S, Nelson PS, Sartor O, Smith MR, Soule HR, Akaza H, Beer TM, Beltran H, Chinnaiyan AM, Daugaard G, Davis ID, De Santis M, Drake CG, Eeles RA, Fanti S, Gleave ME, Heidenreich A, Hussain M, James ND, Lecouvet FE, Logothetis CJ, Mastris K, Nilsson S, Oh WK, Olmos D, Padhani AR, Parker C, Rubin MA, Schalken JA, Scher HI, Sella A, Shore ND, Small EJ, Sternberg CN, Suzuki H, Sweeney CJ, Tannock IF, Tombal B. Management of patients with advanced prostate cancer: Recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 2015; 26(8):1589-1604.
Faiena I, Singer EA, Pumill C, Kim IY. Cytoreductive prostatectomy: Evidence in support of a new surgical paradigm (Review). Int J Oncol 2014; 45(6):2193-2198.
Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: A meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21(12):2604-2617.
Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, Severens JL, Barentsz JO. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta-analysis. Clin Radiol 2008; 63(4):387-395.
Smith MR, Saad F, Oudard S, Shore N, Fizazi K, Sieber P, Tombal B, Damiao R, Marx G, Miller K, Van Veldhuizen P, Morote J, Ye Z, Dansey R, Goessl C. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: Exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol 2013; 31(30):3800-3806.
Lamothe F, Kovi J, Heshmat MY, Green EJ. Dissemination of prostatic carcinoma: An autopsy study. J Natl Med Assoc 1986; 78(11):1083-1086.
Lecouvet FE, Simon M, Tombal B, Jamart J, Vande Berg BC, Simoni P. Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa). Eur Radiol 2010; 20(12):2973-2982.
Smith M, Saad F, Shore N, Oudard S, Miller K, Tombal B, Sieber P, Fizazi K, Van Veldhuizen P, Damião R, Marx G, Morote J, Feng A, Dansey R, Goessl C. Denosumab delays development of multiple bone metastases in men with castrate-resistant prostate cancer. J Urol 2012; 187(4):e278.
Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A meta-analysis. Skeletal Radiol 2014; 43(11):1503-1513.
Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. Springer-Verlag New York: Springer-Verlag New York; 2010. XV, p. 648.
Studer UE, Whelan P, Wimpissinger F, Casselman J, de Reijke TM, Knonagel H, Loidl W, Isorna S, Sundaram SK, Collette L. Differences in time to disease progression do not predict for cancer-specific survival in patients receiving immediate or deferred androgen-deprivation therapy for prostate cancer: Final Results of EORTC randomized trial 30891 with 12 years of follow-up. Eur Urol 2014; 60(5):829-838.
Sartor O, Eisenberger M, Kattan MW, Tombal B, Lecouvet F. Unmet needs in the prediction and detection of metastases in prostate cancer. Oncologist 2013; 18(5):549-557.
Weichselbaum RR, Hellman S. Oligometastases revisited. Nature Rev Clin Oncol 2011; 8(6):378-382.
Vinjamoori AH, Jagannathan JP, Shinagare AB, Taplin ME, Oh WK, Van den Abbeele AD, Ramaiya NH. Atypical metastases from prostate cancer: 10-year experience at a single institution. AJR Am J Roentgenol 2012; 199(2):367-372.
Mintz E, Smith G. Autopsy findings in 100 cases of prostatic cancer. N Engl J Med 1934; 211:479-487.
Yossepowitch O, Bianco FJ Jr., Eggener SE, Eastham JA, Scher HI, Scardino PT. The natural history of noncastrate metastatic prostate cancer after radical prostatectomy. Eur Urol 2007; 51(4):940-947; discussion 947-948.
Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, Fleischmann A, Studer UE. Metastases in normal-sized pelvic lymph nodes: Detection with diffusion-weighted MR imaging. Radiology 2014; 273(1):125-135.
Triantafyllou M, Studer UE, Birkhauser FD, Fleischmann A, Bains LJ, Petralia G, Christe A, Froehlich JM, Thoeny HC. Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur J Cancer 2013; 49(3):616-624.
Widmark A, Klepp O, Solberg A, Damber JE, Angelsen A, Fransson P, Lund JA, Tasdemir I, Hoyer M, Wiklund F, Fossa SD. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): An open randomised phase III trial. Lancet 2009; 373(9660):301-308.
Meijer HJ, Fortuin AS, van Lin EN, Debats OA, Alfred Witjes J, Kaanders JH, Barentsz JO. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother Oncol 2013; 106(1):59-63.
Briganti A, Joniau S, Gontero P, Abdollah F, Passoni NM, Tombal B, Marchioro G, Kneitz B, Walz J, Frohneberg D, Bangma CH, Graefen M, Tizzani A, Frea B, Karnes RJ, Montorsi F, Van Poppel H, Spahn M. Identifying the best candidate for radical prostatectomy among patients with high-risk prostate cancer. Eur Urol 2012; 61(3):584-592.
Meijer HJ, van Lin EN, Debats OA, Witjes JA, Span PN, Kaanders JH, Barentsz JO. High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy. Int J Radiation Onco
2012; 61
2012; 2012
2013; 23
1986; 78
2011; 60
2015; 33
2013; 63
2005; 65
2014; 60
1934; 211
2013; 18
2009; 55
2010; 20
1993; 34
2013; 14
2013; 2013
2013; 10
2015; 42
2011; 21
2008; 63
2008; 113
2014; 8
2007; 25
2012; 62
2012; 82
2012; 187
2013; 49
2010
2010; 39
2013; 106
2007; 51
2009; 373
2009; 252
2014; 111
2014; 273
2014; 45
2011; 8
2012; 30
2014; 43
2016; 55
2015; 67
2015; 193
2015; 26
2009; 74
2015; 191
2012; 199
2011; 108
2013; 73
2015; 275
2013; 31
2014; 38
2014; 74
2011; 261
e_1_2_6_51_1
Parker C (e_1_2_6_28_1) 2012; 30
e_1_2_6_53_1
e_1_2_6_30_1
Lamothe F (e_1_2_6_39_1) 1986; 78
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Edge S (e_1_2_6_32_1) 2010
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
Heidenreich A (e_1_2_6_8_1) 2013
Scher H (e_1_2_6_27_1) 2015; 33
e_1_2_6_50_1
Gosfield E (e_1_2_6_54_1) 1993; 34
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – reference: Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S, Kemppainen J, Kauppila E, Auren J, Merisaari H, Saunavaara J, Noponen T, Minn H, Aronen HJ, Seppanen M. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol 2016; 55(1):59-67.
– reference: Meijer HJ, van Lin EN, Debats OA, Witjes JA, Span PN, Kaanders JH, Barentsz JO. High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy. Int J Radiation Oncol Biol Phys 2012; 82(4):1405-1410.
– reference: Vinjamoori AH, Jagannathan JP, Shinagare AB, Taplin ME, Oh WK, Van den Abbeele AD, Ramaiya NH. Atypical metastases from prostate cancer: 10-year experience at a single institution. AJR Am J Roentgenol 2012; 199(2):367-372.
– reference: Lecouvet FE, Lhommel R, Pasoglou V, Larbi A, Jamar F, Tombal B. Novel imaging techniques reshape the landscape in high-risk prostate cancers. Curr Opin Urol 2013; 23(4):323-330.
– reference: Heidenreich A, Pfister D, Porres D. Cytoreductive radical prostatectomy in patients with prostate cancer and low volume skeletal metastases-Results of a feasibility and case-control study. J Urol 2015; 193(3):832-838.
– reference: Scher H, Morris M, Stadler W, Higano C, Halabi SMRS, Basch E, Fizazi K, Ryan C, Antonarakis E, Corn P, Liu G, De Bono J, Schwartz LH, Beer T, Kelly W, Hussain M, Sartor A, Kantoff P, AJ A. The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration-resistant prostate cancer (CRPC). J Clin Oncol 2015; 33:a5000.
– reference: Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: A meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21(12):2604-2617.
– reference: Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, Weichert W, Kopka K, Debus J, Haberkorn U. The diagnostic value of PET/CT imaging with the Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42(2):197-209.
– reference: Ost P, Bossi A, Decaestecker K, De Meerleer G, Giannarini G, Karnes RJ, Roach M 3rd, Briganti A. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: A systematic review of the literature. Eur Urol 2015; 67(5):852-863.
– reference: Schubert M, Joniau S, Gontero P, Kneitz S, Scholz CJ, Kneitz B, Briganti A, Karnes RJ, Tombal B, Walz J, Hsu CY, Marchioro G, Bader P, Bangma C, Frohneberg D, Graefen M, Schroder F, van Cangh P, van Poppel H, Spahn M. The role of adjuvant hormonal treatment after surgery for localized high-risk prostate cancer: Results of a matched multiinstitutional analysis. Adv Urol 2012; 2012:612707.
– reference: Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O'Meara E, Rosenthal SA, Ritter M, Seider M. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2009; 74(2):383-387.
– reference: Lecouvet FE, Simon M, Tombal B, Jamart J, Vande Berg BC, Simoni P. Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa). Eur Radiol 2010; 20(12):2973-2982.
– reference: Piper C, Porres D, Pfister D, Heidenreich A. The role of palliative surgery in castration-resistant prostate cancer. Curr Opin Support Palliat Care 2014; 8(3):250-257.
– reference: Antwi S, Everson TM. Prognostic impact of definitive local therapy of the primary tumor in men with metastatic prostate cancer at diagnosis: A population-based, propensity score analysis. Cancer Epidemiol 2014; 38(4):435-441.
– reference: Smith MR, Saad F, Oudard S, Shore N, Fizazi K, Sieber P, Tombal B, Damiao R, Marx G, Miller K, Van Veldhuizen P, Morote J, Ye Z, Dansey R, Goessl C. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: Exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol 2013; 31(30):3800-3806.
– reference: Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, Halabi S, Nelson PS, Sartor O, Smith MR, Soule HR, Akaza H, Beer TM, Beltran H, Chinnaiyan AM, Daugaard G, Davis ID, De Santis M, Drake CG, Eeles RA, Fanti S, Gleave ME, Heidenreich A, Hussain M, James ND, Lecouvet FE, Logothetis CJ, Mastris K, Nilsson S, Oh WK, Olmos D, Padhani AR, Parker C, Rubin MA, Schalken JA, Scher HI, Sella A, Shore ND, Small EJ, Sternberg CN, Suzuki H, Sweeney CJ, Tannock IF, Tombal B. Management of patients with advanced prostate cancer: Recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 2015; 26(8):1589-1604.
– reference: Studer UE, Whelan P, Wimpissinger F, Casselman J, de Reijke TM, Knonagel H, Loidl W, Isorna S, Sundaram SK, Collette L. Differences in time to disease progression do not predict for cancer-specific survival in patients receiving immediate or deferred androgen-deprivation therapy for prostate cancer: Final Results of EORTC randomized trial 30891 with 12 years of follow-up. Eur Urol 2014; 60(5):829-838.
– reference: Smith M, Saad F, Shore N, Oudard S, Miller K, Tombal B, Sieber P, Fizazi K, Van Veldhuizen P, Damião R, Marx G, Morote J, Feng A, Dansey R, Goessl C. Denosumab delays development of multiple bone metastases in men with castrate-resistant prostate cancer. J Urol 2012; 187(4):e278.
– reference: Gosfield E 3rd, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 1993; 34(12):2191-2198.
– reference: Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d'Othee BJ, Therasse P, Berg BV, Tombal B. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: Diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 2007; 25(22):3281-3287.
– reference: Heidenreich A, Bastian P, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Mottet N, van der Kwast T, Wiegel T, Zattoni F. In: Urology EAo, editor vol 2013. Guidelines on prostate cancer. European Association of Urology; 2013.
– reference: Yossepowitch O, Bianco FJ Jr., Eggener SE, Eastham JA, Scher HI, Scardino PT. The natural history of noncastrate metastatic prostate cancer after radical prostatectomy. Eur Urol 2007; 51(4):940-947; discussion 947-948.
– reference: Briganti A, Joniau S, Gontero P, Abdollah F, Passoni NM, Tombal B, Marchioro G, Kneitz B, Walz J, Frohneberg D, Bangma CH, Graefen M, Tizzani A, Frea B, Karnes RJ, Montorsi F, Van Poppel H, Spahn M. Identifying the best candidate for radical prostatectomy among patients with high-risk prostate cancer. Eur Urol 2012; 61(3):584-592.
– reference: Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P, Schmid DT, Graf N, von Weymarn CA, Willemse EM, Binkert CA. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 2010; 39(4):333-343.
– reference: Fortuin A, Rooij M, Zamecnik P, Haberkorn U, Barentsz J. Molecular and functional imaging for detection of lymph node metastases in prostate cancer. Int J Mol Sci 2013; 14(7):13842-13875.
– reference: Lamothe F, Kovi J, Heshmat MY, Green EJ. Dissemination of prostatic carcinoma: An autopsy study. J Natl Med Assoc 1986; 78(11):1083-1086.
– reference: Nelson JB, Love W, Chin JL, Saad F, Schulman CC, Sleep DJ, Qian J, Steinberg J, Carducci M. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer 2008; 113(9):2478-2487.
– reference: Rischke HC, Schultze-Seemann W, Wieser G, Kronig M, Drendel V, Stegmaier P, Krauss T, Henne K, Volegova-Neher N, Schlager D, Kirste S, Grosu AL, Jilg CA. Adjuvant radiotherapy after salvage lymph node dissection because of nodal relapse of prostate cancer versus salvage lymph node dissection only. Strahlenther Onkol 2015; 191(4):310-320.
– reference: Tombal B, Rezazadeh A, Therasse P, Van Cangh PJ, Vande Berg B, Lecouvet FE. Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate 2005; 65(2):178-187.
– reference: Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, Machiels JP, Vande Berg B, Omoumi P, Tombal B. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 2012; 62(1):68-75.
– reference: Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T, Omoumi P, Vande Berg BC, Lecouvet FE. Whole-Body 3D T1-weighted MR imaging in patients with prostate cancer: Feasibility and evaluation in screening for metastatic disease. Radiology 2015; 275(1):155-166.
– reference: Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, Larson SM, Sawyers CL. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci USA 2011; 108(23):9578-9582.
– reference: Hansen J, Rink M, Bianchi M, Kluth LA, Tian Z, Ahyai SA, Shariat SF, Briganti A, Steuber T, Fisch M, Graefen M, Karakiewicz PI, Chun FK. External validation of the updated briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection. Prostate 2013; 73(2):211-218.
– reference: Meijer HJ, Fortuin AS, van Lin EN, Debats OA, Alfred Witjes J, Kaanders JH, Barentsz JO. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother Oncol 2013; 106(1):59-63.
– reference: Tombal B, Lecouvet F. Modern detection of prostate cancer's bone metastasis: Is the bone scan era over? Adv Urol 2012; 2012:893193.
– reference: Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R, Budiharto T, Ameye F, Bogaerts K, Van Poppel H. Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol 2013; 63(3):450-458.
– reference: Parker C, Heinrich D, O'Sullivan J, Fossa S, Chodacki A, Demkow T, Logue J, Seke M, Widmark A, Johannessen D, Nilsson S, Hoskin P, Solberg A, James N, Syndikus I, Cross A, O'Bryan-Tear C, Garcia-Vargas JE, Sartor O. Overall survival benefit and safety profile of radium-223 chloride, a first-in-class alpha-pharmaceutical: Results from a phase III randomized trial (ALSYMPCA) in patients with castration-resistant prostate cancer (CRPC) with bone metastases. J Clin Oncol 2012; 30(Suppl 5):Abstr 8.
– reference: Pasoglou V, Larbi A, Collette L, Annet L, Jamar F, Machiels JP, Michoux N, Vande Berg BC, Tombal B, Lecouvet FE. One-step TNM staging of high-risk prostate cancer using magnetic resonance imaging (MRI): toward an upfront simplified "all-in-one" imaging approach? Prostate 2014; 74(5):469-477.
– reference: Sartor O, Eisenberger M, Kattan MW, Tombal B, Lecouvet F. Unmet needs in the prediction and detection of metastases in prostate cancer. Oncologist 2013; 18(5):549-557.
– reference: Meijer HJ, Debats OA, Th van Lin EN, van Vulpen M, Witjes JA, Oyen WJ, Barentsz JO, Kaanders JH. Individualized image-based lymph node irradiation for prostate cancer. Nat Rev Urol 2013; 10(7):376-385.
– reference: Widmark A, Klepp O, Solberg A, Damber JE, Angelsen A, Fransson P, Lund JA, Tasdemir I, Hoyer M, Wiklund F, Fossa SD. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): An open randomised phase III trial. Lancet 2009; 373(9660):301-308.
– reference: Lecouvet FE, Vande Berg BC, Malghem J, Omoumi P, Simoni P. Diffusion-weighted MR imaging: Adjunct or alternative to T1-weighted MR imaging for prostate carcinoma bone metastases? Radiology 2009; 252(2):624.
– reference: Mintz E, Smith G. Autopsy findings in 100 cases of prostatic cancer. N Engl J Med 1934; 211:479-487.
– reference: Ghadjar P, Briganti A, De Visschere PJ, Futterer JJ, Giannarini G, Isbarn H, Ost P, Sooriakumaran P, Surcel CI, van den Bergh RC, van Oort IM, Yossepowitch O, Ploussard G. The oncologic role of local treatment in primary metastatic prostate cancer. World J Urol 2015; 33(6):755-761.
– reference: Lepinoy A, Cochet A, Cueff A, Cormier L, Martin E, Maingon P, Bosset JF, Brunotte F, Crehange G. Pattern of occult nodal relapse diagnosed with (18)F-fluoro-choline PET/CT in prostate cancer patients with biochemical failure after prostate-only radiotherapy. Radiother Oncol 2014; 111(1):120-125.
– reference: Evangelista L, Guttilla A, Zattoni F, Muzzio PC. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: A systematic literature review and meta-analysis. Eur Urol 2013; 63(6):1040-1048.
– reference: Briganti A, Blute ML, Eastham JH, Graefen M, Heidenreich A, Karnes JR, Montorsi F, Studer UE. Pelvic lymph node dissection in prostate cancer. Eur Urol 2009; 55(6):1251-1265.
– reference: Faiena I, Singer EA, Pumill C, Kim IY. Cytoreductive prostatectomy: Evidence in support of a new surgical paradigm (Review). Int J Oncol 2014; 45(6):2193-2198.
– reference: Budiharto T, Joniau S, Lerut E, Van den Bergh L, Mottaghy F, Deroose CM, Oyen R, Ameye F, Bogaerts K, Haustermans K, Van Poppel H. Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol 2011; 60(1):125-130.
– reference: Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. Springer-Verlag New York: Springer-Verlag New York; 2010. XV, p. 648.
– reference: Triantafyllou M, Studer UE, Birkhauser FD, Fleischmann A, Bains LJ, Petralia G, Christe A, Froehlich JM, Thoeny HC. Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur J Cancer 2013; 49(3):616-624.
– reference: Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, Fleischmann A, Studer UE. Metastases in normal-sized pelvic lymph nodes: Detection with diffusion-weighted MR imaging. Radiology 2014; 273(1):125-135.
– reference: Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A meta-analysis. Skeletal Radiol 2014; 43(11):1503-1513.
– reference: Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: Current status and research directions. Radiology 2011; 261(3):700-718.
– reference: James ND, Spears MR, Clarke NW, Dearnaley DP, De Bono JS, Gale J, Hetherington J, Hoskin PJ, Jones RJ, Laing R, Lester JF, McLaren D, Parker CC, Parmar MK, Ritchie AW, Russell JM, Strebel RT, Thalmann GN, Mason MD, Sydes MR. Survival with newly diagnosed metastatic prostate cancer in the "Docetaxel Era": Data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019). Eur Urol 2015; 67(6):1028-1038.
– reference: Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, Severens JL, Barentsz JO. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta-analysis. Clin Radiol 2008; 63(4):387-395.
– reference: Weichselbaum RR, Hellman S. Oligometastases revisited. Nature Rev Clin Oncol 2011; 8(6):378-382.
– volume: 82
  start-page: 1405
  issue: 4
  year: 2012
  end-page: 1410
  article-title: High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy
  publication-title: Int J Radiation Oncol Biol Phys
– volume: 38
  start-page: 435
  issue: 4
  year: 2014
  end-page: 441
  article-title: Prognostic impact of definitive local therapy of the primary tumor in men with metastatic prostate cancer at diagnosis: A population‐based, propensity score analysis
  publication-title: Cancer Epidemiol
– volume: 63
  start-page: 1040
  issue: 6
  year: 2013
  end-page: 1048
  article-title: Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate‐ to high‐risk prostate cancer: A systematic literature review and meta‐analysis
  publication-title: Eur Urol
– volume: 55
  start-page: 1251
  issue: 6
  year: 2009
  end-page: 1265
  article-title: Pelvic lymph node dissection in prostate cancer
  publication-title: Eur Urol
– volume: 60
  start-page: 829
  issue: 5
  year: 2014
  end-page: 838
  article-title: Differences in time to disease progression do not predict for cancer‐specific survival in patients receiving immediate or deferred androgen‐deprivation therapy for prostate cancer: Final Results of EORTC randomized trial 30891 with 12 years of follow‐up
  publication-title: Eur Urol
– start-page: 648
  year: 2010
– volume: 2012
  start-page: 893193
  year: 2012
  article-title: Modern detection of prostate cancer's bone metastasis: Is the bone scan era over
  publication-title: Adv Urol
– volume: 51
  start-page: 940
  issue: 4
  year: 2007
  end-page: 947
  article-title: The natural history of noncastrate metastatic prostate cancer after radical prostatectomy
  publication-title: Eur Urol
– volume: 39
  start-page: 333
  issue: 4
  year: 2010
  end-page: 343
  article-title: Comparison of diffusion‐weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma
  publication-title: Skeletal Radiol
– volume: 74
  start-page: 383
  issue: 2
  year: 2009
  end-page: 387
  article-title: RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high‐risk prostate cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 108
  start-page: 9578
  issue: 23
  year: 2011
  end-page: 9582
  article-title: Noninvasive measurement of androgen receptor signaling with a positron‐emitting radiopharmaceutical that targets prostate‐specific membrane antigen
  publication-title: Proc Natl Acad Sci USA
– volume: 63
  start-page: 387
  issue: 4
  year: 2008
  end-page: 395
  article-title: The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta‐analysis
  publication-title: Clin Radiol
– volume: 23
  start-page: 323
  issue: 4
  year: 2013
  end-page: 330
  article-title: Novel imaging techniques reshape the landscape in high‐risk prostate cancers
  publication-title: Curr Opin Urol
– volume: 111
  start-page: 120
  issue: 1
  year: 2014
  end-page: 125
  article-title: Pattern of occult nodal relapse diagnosed with (18)F‐fluoro‐choline PET/CT in prostate cancer patients with biochemical failure after prostate‐only radiotherapy
  publication-title: Radiother Oncol
– volume: 26
  start-page: 1589
  issue: 8
  year: 2015
  end-page: 1604
  article-title: Management of patients with advanced prostate cancer: Recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015
  publication-title: Ann Oncol
– volume: 55
  start-page: 59
  issue: 1
  year: 2016
  end-page: 67
  article-title: Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, F‐NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial
  publication-title: Acta Oncol
– volume: 25
  start-page: 3281
  issue: 22
  year: 2007
  end-page: 3287
  article-title: Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high‐risk prostate cancer: Diagnostic and cost‐effectiveness and comparison with current detection strategies
  publication-title: J Clin Oncol
– volume: 67
  start-page: 1028
  issue: 6
  year: 2015
  end-page: 1038
  article-title: Survival with newly diagnosed metastatic prostate cancer in the “Docetaxel Era”: Data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019)
  publication-title: Eur Urol
– volume: 45
  start-page: 2193
  issue: 6
  year: 2014
  end-page: 2198
  article-title: Cytoreductive prostatectomy: Evidence in support of a new surgical paradigm (Review)
  publication-title: Int J Oncol
– volume: 43
  start-page: 1503
  issue: 11
  year: 2014
  end-page: 1513
  article-title: Comparison of choline‐PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A meta‐analysis
  publication-title: Skeletal Radiol
– volume: 252
  start-page: 624
  issue: 2
  year: 2009
  article-title: Diffusion‐weighted MR imaging: Adjunct or alternative to T1‐weighted MR imaging for prostate carcinoma bone metastases
  publication-title: Radiology
– volume: 74
  start-page: 469
  issue: 5
  year: 2014
  end-page: 477
  article-title: One‐step TNM staging of high‐risk prostate cancer using magnetic resonance imaging (MRI): toward an upfront simplified “all‐in‐one” imaging approach
  publication-title: Prostate
– volume: 8
  start-page: 378
  issue: 6
  year: 2011
  end-page: 382
  article-title: Oligometastases revisited
  publication-title: Nature Rev Clin Oncol
– volume: 275
  start-page: 155
  issue: 1
  year: 2015
  end-page: 166
  article-title: Whole‐Body 3D T1‐weighted MR imaging in patients with prostate cancer: Feasibility and evaluation in screening for metastatic disease
  publication-title: Radiology
– volume: 34
  start-page: 2191
  issue: 12
  year: 1993
  end-page: 2198
  article-title: Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases
  publication-title: J Nucl Med
– volume: 31
  start-page: 3800
  issue: 30
  year: 2013
  end-page: 3806
  article-title: Denosumab and bone metastasis‐free survival in men with nonmetastatic castration‐resistant prostate cancer: Exploratory analyses by baseline prostate‐specific antigen doubling time
  publication-title: J Clin Oncol
– volume: 61
  start-page: 584
  issue: 3
  year: 2012
  end-page: 592
  article-title: Identifying the best candidate for radical prostatectomy among patients with high‐risk prostate cancer
  publication-title: Eur Urol
– volume: 63
  start-page: 450
  issue: 3
  year: 2013
  end-page: 458
  article-title: Mapping of pelvic lymph node metastases in prostate cancer
  publication-title: Eur Urol
– volume: 20
  start-page: 2973
  issue: 12
  year: 2010
  end-page: 2982
  article-title: Whole‐body MRI (WB‐MRI) versus axial skeleton MRI (AS‐MRI) to detect and measure bone metastases in prostate cancer (PCa)
  publication-title: Eur Radiol
– volume: 67
  start-page: 852
  issue: 5
  year: 2015
  end-page: 863
  article-title: Metastasis‐directed therapy of regional and distant recurrences after curative treatment of prostate cancer: A systematic review of the literature
  publication-title: Eur Urol
– volume: 78
  start-page: 1083
  issue: 11
  year: 1986
  end-page: 1086
  article-title: Dissemination of prostatic carcinoma: An autopsy study
  publication-title: J Natl Med Assoc
– volume: 8
  start-page: 250
  issue: 3
  year: 2014
  end-page: 257
  article-title: The role of palliative surgery in castration‐resistant prostate cancer
  publication-title: Curr Opin Support Palliat Care
– volume: 2013
  year: 2013
– volume: 187
  start-page: e278
  issue: 4
  year: 2012
  article-title: Denosumab delays development of multiple bone metastases in men with castrate‐resistant prostate cancer
  publication-title: J Urol
– volume: 21
  start-page: 2604
  issue: 12
  year: 2011
  end-page: 2617
  article-title: Diagnosis of bone metastases: A meta‐analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy
  publication-title: Eur Radiol
– volume: 14
  start-page: 13842
  issue: 7
  year: 2013
  end-page: 13875
  article-title: Molecular and functional imaging for detection of lymph node metastases in prostate cancer
  publication-title: Int J Mol Sci
– volume: 199
  start-page: 367
  issue: 2
  year: 2012
  end-page: 372
  article-title: Atypical metastases from prostate cancer: 10‐year experience at a single institution
  publication-title: AJR Am J Roentgenol
– volume: 2012
  start-page: 612707
  year: 2012
  article-title: The role of adjuvant hormonal treatment after surgery for localized high‐risk prostate cancer: Results of a matched multiinstitutional analysis
  publication-title: Adv Urol
– volume: 106
  start-page: 59
  issue: 1
  year: 2013
  end-page: 63
  article-title: Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients
  publication-title: Radiother Oncol
– volume: 49
  start-page: 616
  issue: 3
  year: 2013
  end-page: 624
  article-title: Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer
  publication-title: Eur J Cancer
– volume: 33
  start-page: a5000
  year: 2015
  article-title: The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration‐resistant prostate cancer (CRPC)
  publication-title: J Clin Oncol
– volume: 62
  start-page: 68
  issue: 1
  year: 2012
  end-page: 75
  article-title: Can whole‐body magnetic resonance imaging with diffusion‐weighted imaging replace Tc 99m bone scanning and computed tomography for single‐step detection of metastases in patients with high‐risk prostate cancer
  publication-title: Eur Urol
– volume: 273
  start-page: 125
  issue: 1
  year: 2014
  end-page: 135
  article-title: Metastases in normal‐sized pelvic lymph nodes: Detection with diffusion‐weighted MR imaging
  publication-title: Radiology
– volume: 261
  start-page: 700
  issue: 3
  year: 2011
  end-page: 718
  article-title: Whole‐body diffusion‐weighted MR imaging in cancer: Current status and research directions
  publication-title: Radiology
– volume: 30
  start-page: Abstr 8
  issue: Suppl 5
  year: 2012
  article-title: Overall survival benefit and safety profile of radium‐223 chloride, a first‐in‐class alpha‐pharmaceutical: Results from a phase III randomized trial (ALSYMPCA) in patients with castration‐resistant prostate cancer (CRPC) with bone metastases
  publication-title: J Clin Oncol
– volume: 10
  start-page: 376
  issue: 7
  year: 2013
  end-page: 385
  article-title: Individualized image‐based lymph node irradiation for prostate cancer
  publication-title: Nat Rev Urol
– volume: 18
  start-page: 549
  issue: 5
  year: 2013
  end-page: 557
  article-title: Unmet needs in the prediction and detection of metastases in prostate cancer
  publication-title: Oncologist
– volume: 60
  start-page: 125
  issue: 1
  year: 2011
  end-page: 130
  article-title: Prospective evaluation of 11C‐choline positron emission tomography/computed tomography and diffusion‐weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases
  publication-title: Eur Urol
– volume: 65
  start-page: 178
  issue: 2
  year: 2005
  end-page: 187
  article-title: Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases
  publication-title: Prostate
– volume: 211
  start-page: 479
  year: 1934
  end-page: 487
  article-title: Autopsy findings in 100 cases of prostatic cancer
  publication-title: N Engl J Med
– volume: 113
  start-page: 2478
  issue: 9
  year: 2008
  end-page: 2487
  article-title: Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone‐refractory prostate cancer
  publication-title: Cancer
– volume: 373
  start-page: 301
  issue: 9660
  year: 2009
  end-page: 308
  article-title: Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG‐7/SFUO‐3): An open randomised phase III trial
  publication-title: Lancet
– volume: 33
  start-page: 755
  issue: 6
  year: 2015
  end-page: 761
  article-title: The oncologic role of local treatment in primary metastatic prostate cancer
  publication-title: World J Urol
– volume: 42
  start-page: 197
  issue: 2
  year: 2015
  end-page: 209
  article-title: The diagnostic value of PET/CT imaging with the Ga‐labelled PSMA ligand HBED‐CC in the diagnosis of recurrent prostate cancer
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 73
  start-page: 211
  issue: 2
  year: 2013
  end-page: 218
  article-title: External validation of the updated briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection
  publication-title: Prostate
– volume: 193
  start-page: 832
  issue: 3
  year: 2015
  end-page: 838
  article-title: Cytoreductive radical prostatectomy in patients with prostate cancer and low volume skeletal metastases—Results of a feasibility and case‐control study
  publication-title: J Urol
– volume: 191
  start-page: 310
  issue: 4
  year: 2015
  end-page: 320
  article-title: Adjuvant radiotherapy after salvage lymph node dissection because of nodal relapse of prostate cancer versus salvage lymph node dissection only
  publication-title: Strahlenther Onkol
– ident: e_1_2_6_5_1
  doi: 10.1007/s00345-014-1347-9
– ident: e_1_2_6_34_1
  doi: 10.1200/JCO.2006.09.2940
– ident: e_1_2_6_36_1
  doi: 10.1634/theoncologist.2013-0027
– ident: e_1_2_6_9_1
  doi: 10.1016/j.eururo.2013.07.024
– ident: e_1_2_6_33_1
  doi: 10.1016/j.ijrobp.2008.08.002
– ident: e_1_2_6_26_1
  doi: 10.3109/0284186X.2015.1027411
– ident: e_1_2_6_43_1
  doi: 10.1016/j.eururo.2009.03.012
– ident: e_1_2_6_50_1
  doi: 10.1007/s00259-014-2949-6
– ident: e_1_2_6_2_1
  doi: 10.1097/SPC.0000000000000078
– ident: e_1_2_6_52_1
  doi: 10.1016/j.ejca.2012.09.034
– ident: e_1_2_6_49_1
  doi: 10.1016/j.eururo.2012.09.039
– volume: 34
  start-page: 2191
  issue: 12
  year: 1993
  ident: e_1_2_6_54_1
  article-title: Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases
  publication-title: J Nucl Med
– ident: e_1_2_6_14_1
  doi: 10.1097/MOU.0b013e328361d451
– ident: e_1_2_6_58_1
  doi: 10.1200/JCO.2012.44.6716
– ident: e_1_2_6_40_1
  doi: 10.1056/NEJM193409132111101
– volume: 30
  start-page: Abstr 8
  issue: 5
  year: 2012
  ident: e_1_2_6_28_1
  article-title: Overall survival benefit and safety profile of radium‐223 chloride, a first‐in‐class alpha‐pharmaceutical: Results from a phase III randomized trial (ALSYMPCA) in patients with castration‐resistant prostate cancer (CRPC) with bone metastases
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2012.30.5_suppl.8
– ident: e_1_2_6_46_1
  doi: 10.1038/nrurol.2013.111
– ident: e_1_2_6_57_1
  doi: 10.1007/s00066-014-0763-5
– ident: e_1_2_6_48_1
  doi: 10.2214/AJR.11.7533
– ident: e_1_2_6_6_1
  doi: 10.1016/j.canep.2014.04.002
– ident: e_1_2_6_20_1
  doi: 10.1016/j.eururo.2012.02.020
– ident: e_1_2_6_41_1
  doi: 10.1016/j.eururo.2014.09.032
– ident: e_1_2_6_4_1
  doi: 10.3892/ijo.2014.2656
– ident: e_1_2_6_16_1
  doi: 10.3390/ijms140713842
– ident: e_1_2_6_12_1
  doi: 10.1016/j.eururo.2012.06.057
– ident: e_1_2_6_7_1
  doi: 10.1016/j.eururo.2014.09.004
– ident: e_1_2_6_3_1
  doi: 10.1016/j.juro.2014.09.089
– ident: e_1_2_6_23_1
  doi: 10.1148/radiol.14132921
– volume: 33
  start-page: a5000
  year: 2015
  ident: e_1_2_6_27_1
  article-title: The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration‐resistant prostate cancer (CRPC)
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2015.33.15_suppl.5000
– ident: e_1_2_6_18_1
  doi: 10.1002/pros.20280
– ident: e_1_2_6_35_1
  doi: 10.1016/j.eururo.2006.10.045
– volume-title: Guidelines on prostate cancer
  year: 2013
  ident: e_1_2_6_8_1
– ident: e_1_2_6_45_1
  doi: 10.1016/j.radonc.2012.10.021
– ident: e_1_2_6_53_1
  doi: 10.1016/j.eururo.2011.01.015
– ident: e_1_2_6_29_1
  doi: 10.1007/s00330-010-1879-3
– ident: e_1_2_6_13_1
  doi: 10.1155/2012/612707
– ident: e_1_2_6_15_1
  doi: 10.1093/annonc/mdv257
– ident: e_1_2_6_17_1
  doi: 10.1155/2012/893193
– volume: 78
  start-page: 1083
  issue: 11
  year: 1986
  ident: e_1_2_6_39_1
  article-title: Dissemination of prostatic carcinoma: An autopsy study
  publication-title: J Natl Med Assoc
– ident: e_1_2_6_30_1
  doi: 10.1148/radiol.2522090263
– ident: e_1_2_6_11_1
  doi: 10.1016/j.eururo.2011.11.043
– ident: e_1_2_6_24_1
  doi: 10.1002/pros.22764
– ident: e_1_2_6_31_1
  doi: 10.1016/j.crad.2007.05.022
– ident: e_1_2_6_56_1
  doi: 10.1007/s00330-011-2221-4
– ident: e_1_2_6_42_1
  doi: 10.1002/pros.22559
– ident: e_1_2_6_44_1
  doi: 10.1016/j.radonc.2014.03.008
– ident: e_1_2_6_37_1
  doi: 10.1038/nrclinonc.2011.44
– ident: e_1_2_6_21_1
  doi: 10.1148/radiol.11110474
– ident: e_1_2_6_38_1
  doi: 10.1016/j.juro.2012.02.763
– ident: e_1_2_6_55_1
  doi: 10.1007/s00256-014-1903-9
– ident: e_1_2_6_19_1
  doi: 10.1007/s00256-009-0789-4
– ident: e_1_2_6_22_1
  doi: 10.1016/j.ijrobp.2011.04.054
– ident: e_1_2_6_25_1
  doi: 10.1148/radiol.14141242
– ident: e_1_2_6_47_1
  doi: 10.1002/cncr.23864
– ident: e_1_2_6_10_1
  doi: 10.1016/S0140-6736(08)61815-2
– ident: e_1_2_6_51_1
  doi: 10.1073/pnas.1106383108
– start-page: 648
  volume-title: AJCC cancer staging manual
  year: 2010
  ident: e_1_2_6_32_1
SSID ssj0010002
Score 2.365717
Snippet OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic...
To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging...
OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic...
OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease ( less than or equal to 3 synchronous lesions) using...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1024
SubjectTerms Aged
bone
Bone Neoplasms - diagnostic imaging
Bone Neoplasms - secondary
Cancer therapies
Humans
Lymph Node Excision
lymph nodes
Lymph Nodes - pathology
Lymphatic Metastasis - diagnostic imaging
Magnetic Resonance Imaging
Male
metastases
Metastasis
Middle Aged
MRI
Neoplasm Metastasis - diagnostic imaging
NMR
Nuclear magnetic resonance
oligometastasis
Prostate cancer
Prostatectomy
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - therapy
Radiotherapy
Viscera - diagnostic imaging
Whole Body Imaging
Title Whole body MRI (WB-MRI) assessment of metastatic spread in prostate cancer: Therapeutic perspectives on targeted management of oligometastatic disease
URI https://api.istex.fr/ark:/67375/WNG-5M0F069J-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.23196
https://www.ncbi.nlm.nih.gov/pubmed/27197649
https://www.proquest.com/docview/1797694873
https://www.proquest.com/docview/1798264171
https://www.proquest.com/docview/1808620351
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuvB-BgoxAiCJlGyeOHSMuQFlKpS1oabW9IMt2bLRqm6z2IQEnfgJHfh-_BI-TzVJUVYKbpUzs2BmPv_GMPyP0WGRlkRdGxzRTaUx1aWOhKPVAzhacO7_ElyFBdo_tHNDdw_xwDb1YnoVp-CG6DTeYGcFewwRXera1Ig31BmbWS0GDvAEmGQPi_O1hxx0F-9YhhJDyJPaWmnfcpOnW6tVTq9EFGNgvZ0HN08g1LD39K-jT8qObjJOj3mKue-bbX3yO_9urq-hyi0nxy0aJrqE1W11HFwdt1P0G-jmCS3SxrsuveDB8h5-OXv36_sOXNrHqiD1x7fCJnSs4oTQ2eDbxaLTE4wpDW4BosQEFmz7H-6sjX3iyOus5w3WFm8R0W-KTLi0HKq6Px5_rP2pvw0o30UH_zf7rnbi90SE2VFAWO-ZYyoUVVnOPvZTNE2Jz41jBU02c884sMYUFBbFZAsShxOnUZs5xy0zmsltovaorewdhoZRmjHLjjKCksIpwkzjCLFUecpgiQpvLPytNS3cOt24cy4aoOZXQfRmGOkKPOtlJQ_JxptSToCCdiJoeQVocz-Vo763MB0k_YWJXbkdoY6lBsrUIM-kNH2fCu4dZhB52j_1chgCNqmy9CDLe26OEk3NkCnBCIf4boduNdnYflHLiG6EiQs-Cjp3TGflh-P5jKN39F-F76JJHjKzJgNxA6_Ppwt73qGyuH4TZ9xutejWj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglYAL70eggBEIUaRs48SxY268lm3pLmjZanuzHMdGq7bJah8ScOIncOT38UvwOGmWoqoS3CxlYsfOePyNZ_wZoSciKbI003lIExWHNC9MKBSlDsiZjHPrlvjCJ8gOWG-P7uyn-01uDpyFqfkh2g03mBneXsMEhw3prRVrqLMw804MKnQerfsAHWCiYcseBTvXPogQ8yh0tpq37KTx1urdE-vROgztl9PA5kns6hef7pX6htW55yyEnJODznKRd_S3vxgd_7tfV9HlBpbil7UeXUPnTHkdXeg3gfcb6OcY7tHFeVV8xf3hNn42fvXr-w9X2sSq5fbElcVHZqHgkNJE4_nUAdICT0oMbQGoxRp0bPYCj1anvvB0ddxzjqsS17nppsBHbWYOVFwdTj5Xf9TeRJZuor3u29HrXthc6hBqKigLLbMs5sIIk3MHv5RJI2JSbVnG45xY6_xZojMDOmKSCLhDic1jk1jLDdOJTW6htbIqzR2EhVI5Y5RrqwUlmVGE68gSZqhyqENnAdo8_rVSN4zncPHGoay5mmMJ3Zd-qAP0uJWd1jwfp0o99RrSiqjZAWTG8VSOB-9k2o-6ERM78k2ANo5VSDZGYS6d7eNMOA8xCdCj9rGbzhCjUaWpll7GOXyUcHKGTAZ-KISAA3S7Vs_2g2JOXCNUBOi5V7IzOiM_Dj988qW7_yL8EF3sjfq7cnd78P4euuQAJKsTIjfQ2mK2NPcdSFvkD_xU_A3kgznB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq48H4EChiBEEXKNk4cO0ZcgLK0hS3V0mp7QZbj2GjVNlntQwJO_ASO_D5-CbaTzVJUVYKbpUzs2BmPv_GMPwM85kmRpZnKQ5LIOCR5oUMuCbFATmeMGbvEFz5BdpduHZCdw_RwCV7Mz8LU_BDthpubGd5euwk-KszGgjTUGphJJ3YadAFWCLXrpINE_ZY8ym1c-xhCzKLQmmrWkpPGG4t3Ty1HK25kv5yFNU9DV7_2dC_Dp_lX1yknR53ZNO-ob38ROv5vt67ApQaUope1Fl2FJV1eg9VeE3a_Dj8H7hZdlFfFV9Trb6Ong1e_vv-wpXUkW2ZPVBl0oqfSHVEaKjQZWThaoGGJXFsO0iLlNGz8HO0vznyh0eKw5wRVJaoz03WBTtq8HFdxdTz8XP1RexNXugEH3Tf7r7fC5kqHUBFOaGiooTHjmuucWfAldRphnSpDMxbn2BjrzWKVaachOokccyg2eawTY5imKjHJTVguq1LfBsSlzCklTBnFCc60xExFBlNNpMUcKgtgff5nhWr4zt21G8eiZmqOheu-8EMdwKNWdlSzfJwp9cQrSCsix0cuL46lYrD7VqS9qBtRviM2A1iba5BoTMJEWMvHKLf-YRLAw_axncwuQiNLXc28jHX3CGb4HJnMeaEuABzArVo72w-KGbaNEB7AM69j53RG7PU_fPSlO_8i_ABW9za74v327ru7cNGiR1pnQ67B8nQ80_csQpvm9_1E_A0UkThw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+body+MRI+%28WB-MRI%29+assessment+of+metastatic+spread+in+prostate+cancer%3A+Therapeutic+perspectives+on+targeted+management+of+oligometastatic+disease&rft.jtitle=The+Prostate&rft.au=Larbi%2C+Ahmed&rft.au=Dallaudiere%2C+Benjamin&rft.au=Pasoglou%2C+Vasiliki&rft.au=Padhani%2C+Anwar&rft.date=2016-08-01&rft.issn=0270-4137&rft.eissn=1097-0045&rft.volume=76&rft.issue=11&rft.spage=1024&rft.epage=1033&rft_id=info:doi/10.1002%2Fpros.23196&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-4137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-4137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-4137&client=summon