Whole body MRI (WB-MRI) assessment of metastatic spread in prostate cancer: Therapeutic perspectives on targeted management of oligometastatic disease
OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion‐weighted imaging (WB‐MRI/DWI). To determine the proportion of patients with nodal disease confined within currentl...
Saved in:
Published in | The Prostate Vol. 76; no. 11; pp. 1024 - 1033 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.08.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0270-4137 1097-0045 1097-0045 |
DOI | 10.1002/pros.23196 |
Cover
Abstract | OBJECTIVES
To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion‐weighted imaging (WB‐MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT).
SUBJECTS AND METHODS
Two radiologists reviewed WB‐MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non‐metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined.
RESULTS
Twenty‐eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para‐aortic, inter‐aortico‐cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively.
CONCLUSIONS
Non‐invasive mapping of metastatic landing sites in PCa using WB‐MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high‐risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024–1033, 2016. © 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease ( less than or equal to 3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). SUBJECTS AND METHODS Two radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. RESULTS Twenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with less than or equal to 3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only less than or equal to 25% and less than or equal to 30% of patients, respectively. CONCLUSIONS Non-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). SUBJECTS AND METHODS Two radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. RESULTS Twenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively. CONCLUSIONS Non-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. © 2016 Wiley Periodicals, Inc. OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion‐weighted imaging (WB‐MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). SUBJECTS AND METHODS Two radiologists reviewed WB‐MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non‐metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. RESULTS Twenty‐eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para‐aortic, inter‐aortico‐cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively. CONCLUSIONS Non‐invasive mapping of metastatic landing sites in PCa using WB‐MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high‐risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024–1033, 2016. © 2016 Wiley Periodicals, Inc. To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT). Two radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined. Twenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively. Non-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. © 2016 Wiley Periodicals, Inc. To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT).OBJECTIVESTo determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI/DWI). To determine the proportion of patients with nodal disease confined within currently accepted target areas for extended lymph node dissection (eLND) and pelvic external beam radiation therapy (EBRT).Two radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined.SUBJECTS AND METHODSTwo radiologists reviewed WB-MRI/DWI studies in 96 consecutive newly diagnosed metastatic PCa patients; 46 patients with newly diagnosed castration naive PCa (mHNPC) and 50 patients with first appearance of metastasis during monitoring for non-metastatic castration resistant PCa (M0 to mCRPC). The distribution of metastatic deposits was assessed and the proportions of patients with oligometastatic disease and with LN metastases located within eLND and EBRT targets were determined.Twenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively.RESULTSTwenty-eight percent of mHNPC and 50% of mCPRC entered the metastatic disease with ≤3 sites. Bone metastases (BM) were identified in 68.8% patients; 71.7% of mHNPC and 66% mCRPC patients. Most commonly involved areas were iliac bones and lumbar spine. Enlarged lymph nodes (LN) were detected in 68.7% of patients; 69.6% of mHNPC and 68.0% of mCRPC. Most commonly involved areas were para-aortic, inter-aortico-cava, and external iliac areas. BM and LN were detected concomitantly in 41% of mHNPC and 34% of mCRPC. Visceral metastases were detected in 6.7%. Metastatic disease was confined to LN located within the accepted boundaries of eLND or pelvic EBRT target areas in only ≤25% and ≤30% of patients, respectively.Non-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. © 2016 Wiley Periodicals, Inc.CONCLUSIONSNon-invasive mapping of metastatic landing sites in PCa using WB-MRI/DWI shows that 28% of the mHNPC patients, and 52% of the mCRPC can be classified as oligometastatic, thus challenging the concept of metastatic targeted therapy. More than two thirds of metastatic patients have LN located outside the usually recommended targets of eLND and pelvic EBRT. Prophylactic or salvage treatments of these sole areas in patients with high-risk prostate cancer may not prevent the emergence of subsequent metastases. Prostate 76:1024-1033, 2016. © 2016 Wiley Periodicals, Inc. |
Author | Lecouvet, Frédéric E. Larbi, Ahmed Vande Berg, Bruno C. Dallaudière, Benjamin Michoux, Nicolas Pasoglou, Vasiliki Tombal, Bertrand Padhani, Anwar |
Author_xml | – sequence: 1 givenname: Ahmed surname: Larbi fullname: Larbi, Ahmed organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium – sequence: 2 givenname: Benjamin surname: Dallaudière fullname: Dallaudière, Benjamin organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium – sequence: 3 givenname: Vasiliki surname: Pasoglou fullname: Pasoglou, Vasiliki organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium – sequence: 4 givenname: Anwar surname: Padhani fullname: Padhani, Anwar organization: Paul Strickland Scanner Centre, Mount Vernon Hospital, Middlesex, Northwood, United Kingdom – sequence: 5 givenname: Nicolas surname: Michoux fullname: Michoux, Nicolas organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium – sequence: 6 givenname: Bruno C. surname: Vande Berg fullname: Vande Berg, Bruno C. organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium – sequence: 7 givenname: Bertrand surname: Tombal fullname: Tombal, Bertrand organization: Urology Unit, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium – sequence: 8 givenname: Frédéric E. surname: Lecouvet fullname: Lecouvet, Frédéric E. email: Correspondence to: Prof. Frederic Lecouvet, Service de Radiologie, Cliniques universitaires Saint Luc, Avenue Hippocrate, 10/2942; B-1200 Brussels, Belgium. , frederic.lecouvet@uclouvain.be organization: Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27197649$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1u1DAQRi1URH_ghgdAlrgpSCljJ7Fj7qDQUtRSVIr20vI6461LEgc7C-yL8LwkbLdCFYKrkaxzPmvm2yVbXeiQkMcMDhgAf9HHkA54zpS4R3YYKJkBFOUW2QEuIStYLrfJbkrXACMO_AHZ5pIpKQq1Q37OrkKDdB7qFT27OKH7s9fZOJ9RkxKm1GI30OBoi4NJgxm8pamPaGrqOzr9O74htaazGF_SyyuMpsflhPUYU4928N8w0dDRwcQFDljT1nRmgZvg0PhF-CO99glNwofkvjNNwkc3c498Pnp7efguOz0_Pjl8dZrZQhUic8IJLhUqnEtegsESGJbWiUryOXOuAM5shYzVCnNQQgBzc465cxKFzV2-R_bXueMuX5eYBt36ZLFpTIdhmTSroBIc8pL9H5Wq4qJgckKf3kGvwzJ24yITJYUqKpmP1JMbajlvsdZ99K2JK70pZwSerwE7HjpFdLcIAz01r6cG9O_mRxjuwNZPJw3dEI1v_q6wtfLdN7j6R7j-eHH-aeNka8enAX_cOiZ-0ULmstSzD8e6PIMjEOq9fpP_AlYk0H4 |
CODEN | PRSTDS |
CitedBy_id | crossref_primary_10_1016_j_euo_2018_09_010 crossref_primary_10_1002_pros_23430 crossref_primary_10_1007_s11547_016_0675_9 crossref_primary_10_1007_s12094_019_02257_x crossref_primary_10_1016_j_clon_2021_10_004 crossref_primary_10_1016_j_crad_2021_09_005 crossref_primary_10_1097_RLI_0000000000000741 crossref_primary_10_1016_j_cpet_2018_05_006 crossref_primary_10_1016_j_euf_2016_06_018 crossref_primary_10_2967_jnumed_120_258541 crossref_primary_10_3389_fonc_2022_932637 crossref_primary_10_1016_S1470_2045_18_30898_2 crossref_primary_10_1259_bjr_20170664 crossref_primary_10_1007_s11547_018_0952_x crossref_primary_10_1053_j_semnuclmed_2021_11_013 crossref_primary_10_1200_EDBK_239041 crossref_primary_10_1016_S1470_2045_18_30571_0 crossref_primary_10_5334_jbr_btr_1209 crossref_primary_10_1007_s00259_018_4058_4 crossref_primary_10_1007_s11604_021_01205_6 crossref_primary_10_1002_cncr_35466 crossref_primary_10_3390_cancers14082017 crossref_primary_10_1097_SP9_0000000000000009 crossref_primary_10_1097_SPC_0000000000000275 crossref_primary_10_2967_jnumed_118_213470 crossref_primary_10_1002_wnan_1471 crossref_primary_10_1007_s00117_017_0269_0 crossref_primary_10_1016_j_cmpb_2023_107811 crossref_primary_10_1016_j_monrhu_2017_01_001 crossref_primary_10_7759_cureus_59470 crossref_primary_10_1007_s00330_020_07363_x crossref_primary_10_1016_j_ejrad_2021_109990 crossref_primary_10_1007_s12032_017_1050_y crossref_primary_10_1016_j_ejca_2017_12_012 crossref_primary_10_1016_j_currproblcancer_2023_100968 crossref_primary_10_1200_JCO_19_02757 crossref_primary_10_1007_s00345_019_02700_2 crossref_primary_10_1002_jmri_27485 crossref_primary_10_1002_pros_23757 crossref_primary_10_1148_radiol_2019181931 crossref_primary_10_1016_S2468_1253_19_30092_5 |
Cites_doi | 10.1007/s00345-014-1347-9 10.1200/JCO.2006.09.2940 10.1634/theoncologist.2013-0027 10.1016/j.eururo.2013.07.024 10.1016/j.ijrobp.2008.08.002 10.3109/0284186X.2015.1027411 10.1016/j.eururo.2009.03.012 10.1007/s00259-014-2949-6 10.1097/SPC.0000000000000078 10.1016/j.ejca.2012.09.034 10.1016/j.eururo.2012.09.039 10.1097/MOU.0b013e328361d451 10.1200/JCO.2012.44.6716 10.1056/NEJM193409132111101 10.1200/jco.2012.30.5_suppl.8 10.1038/nrurol.2013.111 10.1007/s00066-014-0763-5 10.2214/AJR.11.7533 10.1016/j.canep.2014.04.002 10.1016/j.eururo.2012.02.020 10.1016/j.eururo.2014.09.032 10.3892/ijo.2014.2656 10.3390/ijms140713842 10.1016/j.eururo.2012.06.057 10.1016/j.eururo.2014.09.004 10.1016/j.juro.2014.09.089 10.1148/radiol.14132921 10.1200/jco.2015.33.15_suppl.5000 10.1002/pros.20280 10.1016/j.eururo.2006.10.045 10.1016/j.radonc.2012.10.021 10.1016/j.eururo.2011.01.015 10.1007/s00330-010-1879-3 10.1155/2012/612707 10.1093/annonc/mdv257 10.1155/2012/893193 10.1148/radiol.2522090263 10.1016/j.eururo.2011.11.043 10.1002/pros.22764 10.1016/j.crad.2007.05.022 10.1007/s00330-011-2221-4 10.1002/pros.22559 10.1016/j.radonc.2014.03.008 10.1038/nrclinonc.2011.44 10.1148/radiol.11110474 10.1016/j.juro.2012.02.763 10.1007/s00256-014-1903-9 10.1007/s00256-009-0789-4 10.1016/j.ijrobp.2011.04.054 10.1148/radiol.14141242 10.1002/cncr.23864 10.1016/S0140-6736(08)61815-2 10.1073/pnas.1106383108 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TO 8FD FR3 H94 K9. P64 RC3 7X8 |
DOI | 10.1002/pros.23196 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-0045 |
EndPage | 1033 |
ExternalDocumentID | 4093020151 27197649 10_1002_pros_23196 PROS23196 ark_67375_WNG_5M0F069J_D |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: bourse de recherche 2013 de la Société Française de Radiologie (SFR) (BD) – fundername: Fond National de la Recherche Scientifique (FNRS)−Télévie, Fondation contre le cancer, Fondation Saint Luc (VP, FL) – fundername: Fonds de Recherche Clinique, IREC (AL) |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWO AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TO 8FD FR3 H94 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4946-f6f6279e9eb7250ae501e5cf6872b1ff4021c8e11d9e3096601fb2e3ff7e6c3f3 |
IEDL.DBID | DR2 |
ISSN | 0270-4137 1097-0045 |
IngestDate | Fri Jul 11 16:12:32 EDT 2025 Fri Jul 11 07:17:13 EDT 2025 Fri Jul 25 06:50:39 EDT 2025 Wed Feb 19 02:40:34 EST 2025 Tue Jul 01 00:24:46 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Wed Jan 22 16:55:44 EST 2025 Sun Sep 21 06:21:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | metastases lymph nodes MRI prostate-cancer radiotherapy bone oligometastasis |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4946-f6f6279e9eb7250ae501e5cf6872b1ff4021c8e11d9e3096601fb2e3ff7e6c3f3 |
Notes | Fonds de Recherche Clinique, IREC (AL) bourse de recherche 2013 de la Société Française de Radiologie (SFR) (BD) ark:/67375/WNG-5M0F069J-D Fond National de la Recherche Scientifique (FNRS)−Télévie, Fondation contre le cancer, Fondation Saint Luc (VP, FL) ArticleID:PROS23196 istex:70DFF8A67856C967A4E058A412AFE571F147248B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27197649 |
PQID | 1797694873 |
PQPubID | 1016443 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1808620351 proquest_miscellaneous_1798264171 proquest_journals_1797694873 pubmed_primary_27197649 crossref_primary_10_1002_pros_23196 crossref_citationtrail_10_1002_pros_23196 wiley_primary_10_1002_pros_23196_PROS23196 istex_primary_ark_67375_WNG_5M0F069J_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 1, 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 1, 2016 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | The Prostate |
PublicationTitleAlternate | Prostate |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Ghadjar P, Briganti A, De Visschere PJ, Futterer JJ, Giannarini G, Isbarn H, Ost P, Sooriakumaran P, Surcel CI, van den Bergh RC, van Oort IM, Yossepowitch O, Ploussard G. The oncologic role of local treatment in primary metastatic prostate cancer. World J Urol 2015; 33(6):755-761. Ost P, Bossi A, Decaestecker K, De Meerleer G, Giannarini G, Karnes RJ, Roach M 3rd, Briganti A. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: A systematic review of the literature. Eur Urol 2015; 67(5):852-863. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, Weichert W, Kopka K, Debus J, Haberkorn U. The diagnostic value of PET/CT imaging with the Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42(2):197-209. Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O'Meara E, Rosenthal SA, Ritter M, Seider M. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2009; 74(2):383-387. Lecouvet FE, Vande Berg BC, Malghem J, Omoumi P, Simoni P. Diffusion-weighted MR imaging: Adjunct or alternative to T1-weighted MR imaging for prostate carcinoma bone metastases? Radiology 2009; 252(2):624. Lecouvet FE, Lhommel R, Pasoglou V, Larbi A, Jamar F, Tombal B. Novel imaging techniques reshape the landscape in high-risk prostate cancers. Curr Opin Urol 2013; 23(4):323-330. Parker C, Heinrich D, O'Sullivan J, Fossa S, Chodacki A, Demkow T, Logue J, Seke M, Widmark A, Johannessen D, Nilsson S, Hoskin P, Solberg A, James N, Syndikus I, Cross A, O'Bryan-Tear C, Garcia-Vargas JE, Sartor O. Overall survival benefit and safety profile of radium-223 chloride, a first-in-class alpha-pharmaceutical: Results from a phase III randomized trial (ALSYMPCA) in patients with castration-resistant prostate cancer (CRPC) with bone metastases. J Clin Oncol 2012; 30(Suppl 5):Abstr 8. Piper C, Porres D, Pfister D, Heidenreich A. The role of palliative surgery in castration-resistant prostate cancer. Curr Opin Support Palliat Care 2014; 8(3):250-257. Tombal B, Lecouvet F. Modern detection of prostate cancer's bone metastasis: Is the bone scan era over? Adv Urol 2012; 2012:893193. Gosfield E 3rd, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 1993; 34(12):2191-2198. Heidenreich A, Bastian P, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Mottet N, van der Kwast T, Wiegel T, Zattoni F. In: Urology EAo, editor vol 2013. Guidelines on prostate cancer. European Association of Urology; 2013. Lepinoy A, Cochet A, Cueff A, Cormier L, Martin E, Maingon P, Bosset JF, Brunotte F, Crehange G. Pattern of occult nodal relapse diagnosed with (18)F-fluoro-choline PET/CT in prostate cancer patients with biochemical failure after prostate-only radiotherapy. Radiother Oncol 2014; 111(1):120-125. Fortuin A, Rooij M, Zamecnik P, Haberkorn U, Barentsz J. Molecular and functional imaging for detection of lymph node metastases in prostate cancer. Int J Mol Sci 2013; 14(7):13842-13875. Scher H, Morris M, Stadler W, Higano C, Halabi SMRS, Basch E, Fizazi K, Ryan C, Antonarakis E, Corn P, Liu G, De Bono J, Schwartz LH, Beer T, Kelly W, Hussain M, Sartor A, Kantoff P, AJ A. The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration-resistant prostate cancer (CRPC). J Clin Oncol 2015; 33:a5000. Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d'Othee BJ, Therasse P, Berg BV, Tombal B. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: Diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 2007; 25(22):3281-3287. Nelson JB, Love W, Chin JL, Saad F, Schulman CC, Sleep DJ, Qian J, Steinberg J, Carducci M. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer 2008; 113(9):2478-2487. Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, Machiels JP, Vande Berg B, Omoumi P, Tombal B. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 2012; 62(1):68-75. Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, Halabi S, Nelson PS, Sartor O, Smith MR, Soule HR, Akaza H, Beer TM, Beltran H, Chinnaiyan AM, Daugaard G, Davis ID, De Santis M, Drake CG, Eeles RA, Fanti S, Gleave ME, Heidenreich A, Hussain M, James ND, Lecouvet FE, Logothetis CJ, Mastris K, Nilsson S, Oh WK, Olmos D, Padhani AR, Parker C, Rubin MA, Schalken JA, Scher HI, Sella A, Shore ND, Small EJ, Sternberg CN, Suzuki H, Sweeney CJ, Tannock IF, Tombal B. Management of patients with advanced prostate cancer: Recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 2015; 26(8):1589-1604. Faiena I, Singer EA, Pumill C, Kim IY. Cytoreductive prostatectomy: Evidence in support of a new surgical paradigm (Review). Int J Oncol 2014; 45(6):2193-2198. Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: A meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21(12):2604-2617. Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, Severens JL, Barentsz JO. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta-analysis. Clin Radiol 2008; 63(4):387-395. Smith MR, Saad F, Oudard S, Shore N, Fizazi K, Sieber P, Tombal B, Damiao R, Marx G, Miller K, Van Veldhuizen P, Morote J, Ye Z, Dansey R, Goessl C. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: Exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol 2013; 31(30):3800-3806. Lamothe F, Kovi J, Heshmat MY, Green EJ. Dissemination of prostatic carcinoma: An autopsy study. J Natl Med Assoc 1986; 78(11):1083-1086. Lecouvet FE, Simon M, Tombal B, Jamart J, Vande Berg BC, Simoni P. Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa). Eur Radiol 2010; 20(12):2973-2982. Smith M, Saad F, Shore N, Oudard S, Miller K, Tombal B, Sieber P, Fizazi K, Van Veldhuizen P, Damião R, Marx G, Morote J, Feng A, Dansey R, Goessl C. Denosumab delays development of multiple bone metastases in men with castrate-resistant prostate cancer. J Urol 2012; 187(4):e278. Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A meta-analysis. Skeletal Radiol 2014; 43(11):1503-1513. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. Springer-Verlag New York: Springer-Verlag New York; 2010. XV, p. 648. Studer UE, Whelan P, Wimpissinger F, Casselman J, de Reijke TM, Knonagel H, Loidl W, Isorna S, Sundaram SK, Collette L. Differences in time to disease progression do not predict for cancer-specific survival in patients receiving immediate or deferred androgen-deprivation therapy for prostate cancer: Final Results of EORTC randomized trial 30891 with 12 years of follow-up. Eur Urol 2014; 60(5):829-838. Sartor O, Eisenberger M, Kattan MW, Tombal B, Lecouvet F. Unmet needs in the prediction and detection of metastases in prostate cancer. Oncologist 2013; 18(5):549-557. Weichselbaum RR, Hellman S. Oligometastases revisited. Nature Rev Clin Oncol 2011; 8(6):378-382. Vinjamoori AH, Jagannathan JP, Shinagare AB, Taplin ME, Oh WK, Van den Abbeele AD, Ramaiya NH. Atypical metastases from prostate cancer: 10-year experience at a single institution. AJR Am J Roentgenol 2012; 199(2):367-372. Mintz E, Smith G. Autopsy findings in 100 cases of prostatic cancer. N Engl J Med 1934; 211:479-487. Yossepowitch O, Bianco FJ Jr., Eggener SE, Eastham JA, Scher HI, Scardino PT. The natural history of noncastrate metastatic prostate cancer after radical prostatectomy. Eur Urol 2007; 51(4):940-947; discussion 947-948. Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, Fleischmann A, Studer UE. Metastases in normal-sized pelvic lymph nodes: Detection with diffusion-weighted MR imaging. Radiology 2014; 273(1):125-135. Triantafyllou M, Studer UE, Birkhauser FD, Fleischmann A, Bains LJ, Petralia G, Christe A, Froehlich JM, Thoeny HC. Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur J Cancer 2013; 49(3):616-624. Widmark A, Klepp O, Solberg A, Damber JE, Angelsen A, Fransson P, Lund JA, Tasdemir I, Hoyer M, Wiklund F, Fossa SD. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): An open randomised phase III trial. Lancet 2009; 373(9660):301-308. Meijer HJ, Fortuin AS, van Lin EN, Debats OA, Alfred Witjes J, Kaanders JH, Barentsz JO. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother Oncol 2013; 106(1):59-63. Briganti A, Joniau S, Gontero P, Abdollah F, Passoni NM, Tombal B, Marchioro G, Kneitz B, Walz J, Frohneberg D, Bangma CH, Graefen M, Tizzani A, Frea B, Karnes RJ, Montorsi F, Van Poppel H, Spahn M. Identifying the best candidate for radical prostatectomy among patients with high-risk prostate cancer. Eur Urol 2012; 61(3):584-592. Meijer HJ, van Lin EN, Debats OA, Witjes JA, Span PN, Kaanders JH, Barentsz JO. High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy. Int J Radiation Onco 2012; 61 2012; 2012 2013; 23 1986; 78 2011; 60 2015; 33 2013; 63 2005; 65 2014; 60 1934; 211 2013; 18 2009; 55 2010; 20 1993; 34 2013; 14 2013; 2013 2013; 10 2015; 42 2011; 21 2008; 63 2008; 113 2014; 8 2007; 25 2012; 62 2012; 82 2012; 187 2013; 49 2010 2010; 39 2013; 106 2007; 51 2009; 373 2009; 252 2014; 111 2014; 273 2014; 45 2011; 8 2012; 30 2014; 43 2016; 55 2015; 67 2015; 193 2015; 26 2009; 74 2015; 191 2012; 199 2011; 108 2013; 73 2015; 275 2013; 31 2014; 38 2014; 74 2011; 261 e_1_2_6_51_1 Parker C (e_1_2_6_28_1) 2012; 30 e_1_2_6_53_1 e_1_2_6_30_1 Lamothe F (e_1_2_6_39_1) 1986; 78 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Edge S (e_1_2_6_32_1) 2010 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 Heidenreich A (e_1_2_6_8_1) 2013 Scher H (e_1_2_6_27_1) 2015; 33 e_1_2_6_50_1 Gosfield E (e_1_2_6_54_1) 1993; 34 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
References_xml | – reference: Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S, Kemppainen J, Kauppila E, Auren J, Merisaari H, Saunavaara J, Noponen T, Minn H, Aronen HJ, Seppanen M. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol 2016; 55(1):59-67. – reference: Meijer HJ, van Lin EN, Debats OA, Witjes JA, Span PN, Kaanders JH, Barentsz JO. High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy. Int J Radiation Oncol Biol Phys 2012; 82(4):1405-1410. – reference: Vinjamoori AH, Jagannathan JP, Shinagare AB, Taplin ME, Oh WK, Van den Abbeele AD, Ramaiya NH. Atypical metastases from prostate cancer: 10-year experience at a single institution. AJR Am J Roentgenol 2012; 199(2):367-372. – reference: Lecouvet FE, Lhommel R, Pasoglou V, Larbi A, Jamar F, Tombal B. Novel imaging techniques reshape the landscape in high-risk prostate cancers. Curr Opin Urol 2013; 23(4):323-330. – reference: Heidenreich A, Pfister D, Porres D. Cytoreductive radical prostatectomy in patients with prostate cancer and low volume skeletal metastases-Results of a feasibility and case-control study. J Urol 2015; 193(3):832-838. – reference: Scher H, Morris M, Stadler W, Higano C, Halabi SMRS, Basch E, Fizazi K, Ryan C, Antonarakis E, Corn P, Liu G, De Bono J, Schwartz LH, Beer T, Kelly W, Hussain M, Sartor A, Kantoff P, AJ A. The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration-resistant prostate cancer (CRPC). J Clin Oncol 2015; 33:a5000. – reference: Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: A meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21(12):2604-2617. – reference: Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, Weichert W, Kopka K, Debus J, Haberkorn U. The diagnostic value of PET/CT imaging with the Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42(2):197-209. – reference: Ost P, Bossi A, Decaestecker K, De Meerleer G, Giannarini G, Karnes RJ, Roach M 3rd, Briganti A. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: A systematic review of the literature. Eur Urol 2015; 67(5):852-863. – reference: Schubert M, Joniau S, Gontero P, Kneitz S, Scholz CJ, Kneitz B, Briganti A, Karnes RJ, Tombal B, Walz J, Hsu CY, Marchioro G, Bader P, Bangma C, Frohneberg D, Graefen M, Schroder F, van Cangh P, van Poppel H, Spahn M. The role of adjuvant hormonal treatment after surgery for localized high-risk prostate cancer: Results of a matched multiinstitutional analysis. Adv Urol 2012; 2012:612707. – reference: Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O'Meara E, Rosenthal SA, Ritter M, Seider M. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2009; 74(2):383-387. – reference: Lecouvet FE, Simon M, Tombal B, Jamart J, Vande Berg BC, Simoni P. Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa). Eur Radiol 2010; 20(12):2973-2982. – reference: Piper C, Porres D, Pfister D, Heidenreich A. The role of palliative surgery in castration-resistant prostate cancer. Curr Opin Support Palliat Care 2014; 8(3):250-257. – reference: Antwi S, Everson TM. Prognostic impact of definitive local therapy of the primary tumor in men with metastatic prostate cancer at diagnosis: A population-based, propensity score analysis. Cancer Epidemiol 2014; 38(4):435-441. – reference: Smith MR, Saad F, Oudard S, Shore N, Fizazi K, Sieber P, Tombal B, Damiao R, Marx G, Miller K, Van Veldhuizen P, Morote J, Ye Z, Dansey R, Goessl C. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: Exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol 2013; 31(30):3800-3806. – reference: Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, Halabi S, Nelson PS, Sartor O, Smith MR, Soule HR, Akaza H, Beer TM, Beltran H, Chinnaiyan AM, Daugaard G, Davis ID, De Santis M, Drake CG, Eeles RA, Fanti S, Gleave ME, Heidenreich A, Hussain M, James ND, Lecouvet FE, Logothetis CJ, Mastris K, Nilsson S, Oh WK, Olmos D, Padhani AR, Parker C, Rubin MA, Schalken JA, Scher HI, Sella A, Shore ND, Small EJ, Sternberg CN, Suzuki H, Sweeney CJ, Tannock IF, Tombal B. Management of patients with advanced prostate cancer: Recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 2015; 26(8):1589-1604. – reference: Studer UE, Whelan P, Wimpissinger F, Casselman J, de Reijke TM, Knonagel H, Loidl W, Isorna S, Sundaram SK, Collette L. Differences in time to disease progression do not predict for cancer-specific survival in patients receiving immediate or deferred androgen-deprivation therapy for prostate cancer: Final Results of EORTC randomized trial 30891 with 12 years of follow-up. Eur Urol 2014; 60(5):829-838. – reference: Smith M, Saad F, Shore N, Oudard S, Miller K, Tombal B, Sieber P, Fizazi K, Van Veldhuizen P, Damião R, Marx G, Morote J, Feng A, Dansey R, Goessl C. Denosumab delays development of multiple bone metastases in men with castrate-resistant prostate cancer. J Urol 2012; 187(4):e278. – reference: Gosfield E 3rd, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 1993; 34(12):2191-2198. – reference: Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d'Othee BJ, Therasse P, Berg BV, Tombal B. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: Diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 2007; 25(22):3281-3287. – reference: Heidenreich A, Bastian P, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Mottet N, van der Kwast T, Wiegel T, Zattoni F. In: Urology EAo, editor vol 2013. Guidelines on prostate cancer. European Association of Urology; 2013. – reference: Yossepowitch O, Bianco FJ Jr., Eggener SE, Eastham JA, Scher HI, Scardino PT. The natural history of noncastrate metastatic prostate cancer after radical prostatectomy. Eur Urol 2007; 51(4):940-947; discussion 947-948. – reference: Briganti A, Joniau S, Gontero P, Abdollah F, Passoni NM, Tombal B, Marchioro G, Kneitz B, Walz J, Frohneberg D, Bangma CH, Graefen M, Tizzani A, Frea B, Karnes RJ, Montorsi F, Van Poppel H, Spahn M. Identifying the best candidate for radical prostatectomy among patients with high-risk prostate cancer. Eur Urol 2012; 61(3):584-592. – reference: Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P, Schmid DT, Graf N, von Weymarn CA, Willemse EM, Binkert CA. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 2010; 39(4):333-343. – reference: Fortuin A, Rooij M, Zamecnik P, Haberkorn U, Barentsz J. Molecular and functional imaging for detection of lymph node metastases in prostate cancer. Int J Mol Sci 2013; 14(7):13842-13875. – reference: Lamothe F, Kovi J, Heshmat MY, Green EJ. Dissemination of prostatic carcinoma: An autopsy study. J Natl Med Assoc 1986; 78(11):1083-1086. – reference: Nelson JB, Love W, Chin JL, Saad F, Schulman CC, Sleep DJ, Qian J, Steinberg J, Carducci M. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer 2008; 113(9):2478-2487. – reference: Rischke HC, Schultze-Seemann W, Wieser G, Kronig M, Drendel V, Stegmaier P, Krauss T, Henne K, Volegova-Neher N, Schlager D, Kirste S, Grosu AL, Jilg CA. Adjuvant radiotherapy after salvage lymph node dissection because of nodal relapse of prostate cancer versus salvage lymph node dissection only. Strahlenther Onkol 2015; 191(4):310-320. – reference: Tombal B, Rezazadeh A, Therasse P, Van Cangh PJ, Vande Berg B, Lecouvet FE. Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate 2005; 65(2):178-187. – reference: Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, Machiels JP, Vande Berg B, Omoumi P, Tombal B. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 2012; 62(1):68-75. – reference: Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T, Omoumi P, Vande Berg BC, Lecouvet FE. Whole-Body 3D T1-weighted MR imaging in patients with prostate cancer: Feasibility and evaluation in screening for metastatic disease. Radiology 2015; 275(1):155-166. – reference: Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, Larson SM, Sawyers CL. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci USA 2011; 108(23):9578-9582. – reference: Hansen J, Rink M, Bianchi M, Kluth LA, Tian Z, Ahyai SA, Shariat SF, Briganti A, Steuber T, Fisch M, Graefen M, Karakiewicz PI, Chun FK. External validation of the updated briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection. Prostate 2013; 73(2):211-218. – reference: Meijer HJ, Fortuin AS, van Lin EN, Debats OA, Alfred Witjes J, Kaanders JH, Barentsz JO. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother Oncol 2013; 106(1):59-63. – reference: Tombal B, Lecouvet F. Modern detection of prostate cancer's bone metastasis: Is the bone scan era over? Adv Urol 2012; 2012:893193. – reference: Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R, Budiharto T, Ameye F, Bogaerts K, Van Poppel H. Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol 2013; 63(3):450-458. – reference: Parker C, Heinrich D, O'Sullivan J, Fossa S, Chodacki A, Demkow T, Logue J, Seke M, Widmark A, Johannessen D, Nilsson S, Hoskin P, Solberg A, James N, Syndikus I, Cross A, O'Bryan-Tear C, Garcia-Vargas JE, Sartor O. Overall survival benefit and safety profile of radium-223 chloride, a first-in-class alpha-pharmaceutical: Results from a phase III randomized trial (ALSYMPCA) in patients with castration-resistant prostate cancer (CRPC) with bone metastases. J Clin Oncol 2012; 30(Suppl 5):Abstr 8. – reference: Pasoglou V, Larbi A, Collette L, Annet L, Jamar F, Machiels JP, Michoux N, Vande Berg BC, Tombal B, Lecouvet FE. One-step TNM staging of high-risk prostate cancer using magnetic resonance imaging (MRI): toward an upfront simplified "all-in-one" imaging approach? Prostate 2014; 74(5):469-477. – reference: Sartor O, Eisenberger M, Kattan MW, Tombal B, Lecouvet F. Unmet needs in the prediction and detection of metastases in prostate cancer. Oncologist 2013; 18(5):549-557. – reference: Meijer HJ, Debats OA, Th van Lin EN, van Vulpen M, Witjes JA, Oyen WJ, Barentsz JO, Kaanders JH. Individualized image-based lymph node irradiation for prostate cancer. Nat Rev Urol 2013; 10(7):376-385. – reference: Widmark A, Klepp O, Solberg A, Damber JE, Angelsen A, Fransson P, Lund JA, Tasdemir I, Hoyer M, Wiklund F, Fossa SD. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): An open randomised phase III trial. Lancet 2009; 373(9660):301-308. – reference: Lecouvet FE, Vande Berg BC, Malghem J, Omoumi P, Simoni P. Diffusion-weighted MR imaging: Adjunct or alternative to T1-weighted MR imaging for prostate carcinoma bone metastases? Radiology 2009; 252(2):624. – reference: Mintz E, Smith G. Autopsy findings in 100 cases of prostatic cancer. N Engl J Med 1934; 211:479-487. – reference: Ghadjar P, Briganti A, De Visschere PJ, Futterer JJ, Giannarini G, Isbarn H, Ost P, Sooriakumaran P, Surcel CI, van den Bergh RC, van Oort IM, Yossepowitch O, Ploussard G. The oncologic role of local treatment in primary metastatic prostate cancer. World J Urol 2015; 33(6):755-761. – reference: Lepinoy A, Cochet A, Cueff A, Cormier L, Martin E, Maingon P, Bosset JF, Brunotte F, Crehange G. Pattern of occult nodal relapse diagnosed with (18)F-fluoro-choline PET/CT in prostate cancer patients with biochemical failure after prostate-only radiotherapy. Radiother Oncol 2014; 111(1):120-125. – reference: Evangelista L, Guttilla A, Zattoni F, Muzzio PC. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: A systematic literature review and meta-analysis. Eur Urol 2013; 63(6):1040-1048. – reference: Briganti A, Blute ML, Eastham JH, Graefen M, Heidenreich A, Karnes JR, Montorsi F, Studer UE. Pelvic lymph node dissection in prostate cancer. Eur Urol 2009; 55(6):1251-1265. – reference: Faiena I, Singer EA, Pumill C, Kim IY. Cytoreductive prostatectomy: Evidence in support of a new surgical paradigm (Review). Int J Oncol 2014; 45(6):2193-2198. – reference: Budiharto T, Joniau S, Lerut E, Van den Bergh L, Mottaghy F, Deroose CM, Oyen R, Ameye F, Bogaerts K, Haustermans K, Van Poppel H. Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol 2011; 60(1):125-130. – reference: Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. Springer-Verlag New York: Springer-Verlag New York; 2010. XV, p. 648. – reference: Triantafyllou M, Studer UE, Birkhauser FD, Fleischmann A, Bains LJ, Petralia G, Christe A, Froehlich JM, Thoeny HC. Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur J Cancer 2013; 49(3):616-624. – reference: Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, Fleischmann A, Studer UE. Metastases in normal-sized pelvic lymph nodes: Detection with diffusion-weighted MR imaging. Radiology 2014; 273(1):125-135. – reference: Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A meta-analysis. Skeletal Radiol 2014; 43(11):1503-1513. – reference: Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: Current status and research directions. Radiology 2011; 261(3):700-718. – reference: James ND, Spears MR, Clarke NW, Dearnaley DP, De Bono JS, Gale J, Hetherington J, Hoskin PJ, Jones RJ, Laing R, Lester JF, McLaren D, Parker CC, Parmar MK, Ritchie AW, Russell JM, Strebel RT, Thalmann GN, Mason MD, Sydes MR. Survival with newly diagnosed metastatic prostate cancer in the "Docetaxel Era": Data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019). Eur Urol 2015; 67(6):1028-1038. – reference: Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, Severens JL, Barentsz JO. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta-analysis. Clin Radiol 2008; 63(4):387-395. – reference: Weichselbaum RR, Hellman S. Oligometastases revisited. Nature Rev Clin Oncol 2011; 8(6):378-382. – volume: 82 start-page: 1405 issue: 4 year: 2012 end-page: 1410 article-title: High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy publication-title: Int J Radiation Oncol Biol Phys – volume: 38 start-page: 435 issue: 4 year: 2014 end-page: 441 article-title: Prognostic impact of definitive local therapy of the primary tumor in men with metastatic prostate cancer at diagnosis: A population‐based, propensity score analysis publication-title: Cancer Epidemiol – volume: 63 start-page: 1040 issue: 6 year: 2013 end-page: 1048 article-title: Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate‐ to high‐risk prostate cancer: A systematic literature review and meta‐analysis publication-title: Eur Urol – volume: 55 start-page: 1251 issue: 6 year: 2009 end-page: 1265 article-title: Pelvic lymph node dissection in prostate cancer publication-title: Eur Urol – volume: 60 start-page: 829 issue: 5 year: 2014 end-page: 838 article-title: Differences in time to disease progression do not predict for cancer‐specific survival in patients receiving immediate or deferred androgen‐deprivation therapy for prostate cancer: Final Results of EORTC randomized trial 30891 with 12 years of follow‐up publication-title: Eur Urol – start-page: 648 year: 2010 – volume: 2012 start-page: 893193 year: 2012 article-title: Modern detection of prostate cancer's bone metastasis: Is the bone scan era over publication-title: Adv Urol – volume: 51 start-page: 940 issue: 4 year: 2007 end-page: 947 article-title: The natural history of noncastrate metastatic prostate cancer after radical prostatectomy publication-title: Eur Urol – volume: 39 start-page: 333 issue: 4 year: 2010 end-page: 343 article-title: Comparison of diffusion‐weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma publication-title: Skeletal Radiol – volume: 74 start-page: 383 issue: 2 year: 2009 end-page: 387 article-title: RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high‐risk prostate cancer publication-title: Int J Radiat Oncol Biol Phys – volume: 108 start-page: 9578 issue: 23 year: 2011 end-page: 9582 article-title: Noninvasive measurement of androgen receptor signaling with a positron‐emitting radiopharmaceutical that targets prostate‐specific membrane antigen publication-title: Proc Natl Acad Sci USA – volume: 63 start-page: 387 issue: 4 year: 2008 end-page: 395 article-title: The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta‐analysis publication-title: Clin Radiol – volume: 23 start-page: 323 issue: 4 year: 2013 end-page: 330 article-title: Novel imaging techniques reshape the landscape in high‐risk prostate cancers publication-title: Curr Opin Urol – volume: 111 start-page: 120 issue: 1 year: 2014 end-page: 125 article-title: Pattern of occult nodal relapse diagnosed with (18)F‐fluoro‐choline PET/CT in prostate cancer patients with biochemical failure after prostate‐only radiotherapy publication-title: Radiother Oncol – volume: 26 start-page: 1589 issue: 8 year: 2015 end-page: 1604 article-title: Management of patients with advanced prostate cancer: Recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015 publication-title: Ann Oncol – volume: 55 start-page: 59 issue: 1 year: 2016 end-page: 67 article-title: Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, F‐NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial publication-title: Acta Oncol – volume: 25 start-page: 3281 issue: 22 year: 2007 end-page: 3287 article-title: Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high‐risk prostate cancer: Diagnostic and cost‐effectiveness and comparison with current detection strategies publication-title: J Clin Oncol – volume: 67 start-page: 1028 issue: 6 year: 2015 end-page: 1038 article-title: Survival with newly diagnosed metastatic prostate cancer in the “Docetaxel Era”: Data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019) publication-title: Eur Urol – volume: 45 start-page: 2193 issue: 6 year: 2014 end-page: 2198 article-title: Cytoreductive prostatectomy: Evidence in support of a new surgical paradigm (Review) publication-title: Int J Oncol – volume: 43 start-page: 1503 issue: 11 year: 2014 end-page: 1513 article-title: Comparison of choline‐PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A meta‐analysis publication-title: Skeletal Radiol – volume: 252 start-page: 624 issue: 2 year: 2009 article-title: Diffusion‐weighted MR imaging: Adjunct or alternative to T1‐weighted MR imaging for prostate carcinoma bone metastases publication-title: Radiology – volume: 74 start-page: 469 issue: 5 year: 2014 end-page: 477 article-title: One‐step TNM staging of high‐risk prostate cancer using magnetic resonance imaging (MRI): toward an upfront simplified “all‐in‐one” imaging approach publication-title: Prostate – volume: 8 start-page: 378 issue: 6 year: 2011 end-page: 382 article-title: Oligometastases revisited publication-title: Nature Rev Clin Oncol – volume: 275 start-page: 155 issue: 1 year: 2015 end-page: 166 article-title: Whole‐Body 3D T1‐weighted MR imaging in patients with prostate cancer: Feasibility and evaluation in screening for metastatic disease publication-title: Radiology – volume: 34 start-page: 2191 issue: 12 year: 1993 end-page: 2198 article-title: Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases publication-title: J Nucl Med – volume: 31 start-page: 3800 issue: 30 year: 2013 end-page: 3806 article-title: Denosumab and bone metastasis‐free survival in men with nonmetastatic castration‐resistant prostate cancer: Exploratory analyses by baseline prostate‐specific antigen doubling time publication-title: J Clin Oncol – volume: 61 start-page: 584 issue: 3 year: 2012 end-page: 592 article-title: Identifying the best candidate for radical prostatectomy among patients with high‐risk prostate cancer publication-title: Eur Urol – volume: 63 start-page: 450 issue: 3 year: 2013 end-page: 458 article-title: Mapping of pelvic lymph node metastases in prostate cancer publication-title: Eur Urol – volume: 20 start-page: 2973 issue: 12 year: 2010 end-page: 2982 article-title: Whole‐body MRI (WB‐MRI) versus axial skeleton MRI (AS‐MRI) to detect and measure bone metastases in prostate cancer (PCa) publication-title: Eur Radiol – volume: 67 start-page: 852 issue: 5 year: 2015 end-page: 863 article-title: Metastasis‐directed therapy of regional and distant recurrences after curative treatment of prostate cancer: A systematic review of the literature publication-title: Eur Urol – volume: 78 start-page: 1083 issue: 11 year: 1986 end-page: 1086 article-title: Dissemination of prostatic carcinoma: An autopsy study publication-title: J Natl Med Assoc – volume: 8 start-page: 250 issue: 3 year: 2014 end-page: 257 article-title: The role of palliative surgery in castration‐resistant prostate cancer publication-title: Curr Opin Support Palliat Care – volume: 2013 year: 2013 – volume: 187 start-page: e278 issue: 4 year: 2012 article-title: Denosumab delays development of multiple bone metastases in men with castrate‐resistant prostate cancer publication-title: J Urol – volume: 21 start-page: 2604 issue: 12 year: 2011 end-page: 2617 article-title: Diagnosis of bone metastases: A meta‐analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy publication-title: Eur Radiol – volume: 14 start-page: 13842 issue: 7 year: 2013 end-page: 13875 article-title: Molecular and functional imaging for detection of lymph node metastases in prostate cancer publication-title: Int J Mol Sci – volume: 199 start-page: 367 issue: 2 year: 2012 end-page: 372 article-title: Atypical metastases from prostate cancer: 10‐year experience at a single institution publication-title: AJR Am J Roentgenol – volume: 2012 start-page: 612707 year: 2012 article-title: The role of adjuvant hormonal treatment after surgery for localized high‐risk prostate cancer: Results of a matched multiinstitutional analysis publication-title: Adv Urol – volume: 106 start-page: 59 issue: 1 year: 2013 end-page: 63 article-title: Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients publication-title: Radiother Oncol – volume: 49 start-page: 616 issue: 3 year: 2013 end-page: 624 article-title: Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer publication-title: Eur J Cancer – volume: 33 start-page: a5000 year: 2015 article-title: The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration‐resistant prostate cancer (CRPC) publication-title: J Clin Oncol – volume: 62 start-page: 68 issue: 1 year: 2012 end-page: 75 article-title: Can whole‐body magnetic resonance imaging with diffusion‐weighted imaging replace Tc 99m bone scanning and computed tomography for single‐step detection of metastases in patients with high‐risk prostate cancer publication-title: Eur Urol – volume: 273 start-page: 125 issue: 1 year: 2014 end-page: 135 article-title: Metastases in normal‐sized pelvic lymph nodes: Detection with diffusion‐weighted MR imaging publication-title: Radiology – volume: 261 start-page: 700 issue: 3 year: 2011 end-page: 718 article-title: Whole‐body diffusion‐weighted MR imaging in cancer: Current status and research directions publication-title: Radiology – volume: 30 start-page: Abstr 8 issue: Suppl 5 year: 2012 article-title: Overall survival benefit and safety profile of radium‐223 chloride, a first‐in‐class alpha‐pharmaceutical: Results from a phase III randomized trial (ALSYMPCA) in patients with castration‐resistant prostate cancer (CRPC) with bone metastases publication-title: J Clin Oncol – volume: 10 start-page: 376 issue: 7 year: 2013 end-page: 385 article-title: Individualized image‐based lymph node irradiation for prostate cancer publication-title: Nat Rev Urol – volume: 18 start-page: 549 issue: 5 year: 2013 end-page: 557 article-title: Unmet needs in the prediction and detection of metastases in prostate cancer publication-title: Oncologist – volume: 60 start-page: 125 issue: 1 year: 2011 end-page: 130 article-title: Prospective evaluation of 11C‐choline positron emission tomography/computed tomography and diffusion‐weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases publication-title: Eur Urol – volume: 65 start-page: 178 issue: 2 year: 2005 end-page: 187 article-title: Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases publication-title: Prostate – volume: 211 start-page: 479 year: 1934 end-page: 487 article-title: Autopsy findings in 100 cases of prostatic cancer publication-title: N Engl J Med – volume: 113 start-page: 2478 issue: 9 year: 2008 end-page: 2487 article-title: Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone‐refractory prostate cancer publication-title: Cancer – volume: 373 start-page: 301 issue: 9660 year: 2009 end-page: 308 article-title: Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG‐7/SFUO‐3): An open randomised phase III trial publication-title: Lancet – volume: 33 start-page: 755 issue: 6 year: 2015 end-page: 761 article-title: The oncologic role of local treatment in primary metastatic prostate cancer publication-title: World J Urol – volume: 42 start-page: 197 issue: 2 year: 2015 end-page: 209 article-title: The diagnostic value of PET/CT imaging with the Ga‐labelled PSMA ligand HBED‐CC in the diagnosis of recurrent prostate cancer publication-title: Eur J Nucl Med Mol Imaging – volume: 73 start-page: 211 issue: 2 year: 2013 end-page: 218 article-title: External validation of the updated briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection publication-title: Prostate – volume: 193 start-page: 832 issue: 3 year: 2015 end-page: 838 article-title: Cytoreductive radical prostatectomy in patients with prostate cancer and low volume skeletal metastases—Results of a feasibility and case‐control study publication-title: J Urol – volume: 191 start-page: 310 issue: 4 year: 2015 end-page: 320 article-title: Adjuvant radiotherapy after salvage lymph node dissection because of nodal relapse of prostate cancer versus salvage lymph node dissection only publication-title: Strahlenther Onkol – ident: e_1_2_6_5_1 doi: 10.1007/s00345-014-1347-9 – ident: e_1_2_6_34_1 doi: 10.1200/JCO.2006.09.2940 – ident: e_1_2_6_36_1 doi: 10.1634/theoncologist.2013-0027 – ident: e_1_2_6_9_1 doi: 10.1016/j.eururo.2013.07.024 – ident: e_1_2_6_33_1 doi: 10.1016/j.ijrobp.2008.08.002 – ident: e_1_2_6_26_1 doi: 10.3109/0284186X.2015.1027411 – ident: e_1_2_6_43_1 doi: 10.1016/j.eururo.2009.03.012 – ident: e_1_2_6_50_1 doi: 10.1007/s00259-014-2949-6 – ident: e_1_2_6_2_1 doi: 10.1097/SPC.0000000000000078 – ident: e_1_2_6_52_1 doi: 10.1016/j.ejca.2012.09.034 – ident: e_1_2_6_49_1 doi: 10.1016/j.eururo.2012.09.039 – volume: 34 start-page: 2191 issue: 12 year: 1993 ident: e_1_2_6_54_1 article-title: Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases publication-title: J Nucl Med – ident: e_1_2_6_14_1 doi: 10.1097/MOU.0b013e328361d451 – ident: e_1_2_6_58_1 doi: 10.1200/JCO.2012.44.6716 – ident: e_1_2_6_40_1 doi: 10.1056/NEJM193409132111101 – volume: 30 start-page: Abstr 8 issue: 5 year: 2012 ident: e_1_2_6_28_1 article-title: Overall survival benefit and safety profile of radium‐223 chloride, a first‐in‐class alpha‐pharmaceutical: Results from a phase III randomized trial (ALSYMPCA) in patients with castration‐resistant prostate cancer (CRPC) with bone metastases publication-title: J Clin Oncol doi: 10.1200/jco.2012.30.5_suppl.8 – ident: e_1_2_6_46_1 doi: 10.1038/nrurol.2013.111 – ident: e_1_2_6_57_1 doi: 10.1007/s00066-014-0763-5 – ident: e_1_2_6_48_1 doi: 10.2214/AJR.11.7533 – ident: e_1_2_6_6_1 doi: 10.1016/j.canep.2014.04.002 – ident: e_1_2_6_20_1 doi: 10.1016/j.eururo.2012.02.020 – ident: e_1_2_6_41_1 doi: 10.1016/j.eururo.2014.09.032 – ident: e_1_2_6_4_1 doi: 10.3892/ijo.2014.2656 – ident: e_1_2_6_16_1 doi: 10.3390/ijms140713842 – ident: e_1_2_6_12_1 doi: 10.1016/j.eururo.2012.06.057 – ident: e_1_2_6_7_1 doi: 10.1016/j.eururo.2014.09.004 – ident: e_1_2_6_3_1 doi: 10.1016/j.juro.2014.09.089 – ident: e_1_2_6_23_1 doi: 10.1148/radiol.14132921 – volume: 33 start-page: a5000 year: 2015 ident: e_1_2_6_27_1 article-title: The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration‐resistant prostate cancer (CRPC) publication-title: J Clin Oncol doi: 10.1200/jco.2015.33.15_suppl.5000 – ident: e_1_2_6_18_1 doi: 10.1002/pros.20280 – ident: e_1_2_6_35_1 doi: 10.1016/j.eururo.2006.10.045 – volume-title: Guidelines on prostate cancer year: 2013 ident: e_1_2_6_8_1 – ident: e_1_2_6_45_1 doi: 10.1016/j.radonc.2012.10.021 – ident: e_1_2_6_53_1 doi: 10.1016/j.eururo.2011.01.015 – ident: e_1_2_6_29_1 doi: 10.1007/s00330-010-1879-3 – ident: e_1_2_6_13_1 doi: 10.1155/2012/612707 – ident: e_1_2_6_15_1 doi: 10.1093/annonc/mdv257 – ident: e_1_2_6_17_1 doi: 10.1155/2012/893193 – volume: 78 start-page: 1083 issue: 11 year: 1986 ident: e_1_2_6_39_1 article-title: Dissemination of prostatic carcinoma: An autopsy study publication-title: J Natl Med Assoc – ident: e_1_2_6_30_1 doi: 10.1148/radiol.2522090263 – ident: e_1_2_6_11_1 doi: 10.1016/j.eururo.2011.11.043 – ident: e_1_2_6_24_1 doi: 10.1002/pros.22764 – ident: e_1_2_6_31_1 doi: 10.1016/j.crad.2007.05.022 – ident: e_1_2_6_56_1 doi: 10.1007/s00330-011-2221-4 – ident: e_1_2_6_42_1 doi: 10.1002/pros.22559 – ident: e_1_2_6_44_1 doi: 10.1016/j.radonc.2014.03.008 – ident: e_1_2_6_37_1 doi: 10.1038/nrclinonc.2011.44 – ident: e_1_2_6_21_1 doi: 10.1148/radiol.11110474 – ident: e_1_2_6_38_1 doi: 10.1016/j.juro.2012.02.763 – ident: e_1_2_6_55_1 doi: 10.1007/s00256-014-1903-9 – ident: e_1_2_6_19_1 doi: 10.1007/s00256-009-0789-4 – ident: e_1_2_6_22_1 doi: 10.1016/j.ijrobp.2011.04.054 – ident: e_1_2_6_25_1 doi: 10.1148/radiol.14141242 – ident: e_1_2_6_47_1 doi: 10.1002/cncr.23864 – ident: e_1_2_6_10_1 doi: 10.1016/S0140-6736(08)61815-2 – ident: e_1_2_6_51_1 doi: 10.1073/pnas.1106383108 – start-page: 648 volume-title: AJCC cancer staging manual year: 2010 ident: e_1_2_6_32_1 |
SSID | ssj0010002 |
Score | 2.365717 |
Snippet | OBJECTIVES
To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic... To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic resonance imaging... OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease (≤3 synchronous lesions) using whole body magnetic... OBJECTIVES To determine the proportion of prostate cancer (PCa) patients with oligometastatic disease ( less than or equal to 3 synchronous lesions) using... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1024 |
SubjectTerms | Aged bone Bone Neoplasms - diagnostic imaging Bone Neoplasms - secondary Cancer therapies Humans Lymph Node Excision lymph nodes Lymph Nodes - pathology Lymphatic Metastasis - diagnostic imaging Magnetic Resonance Imaging Male metastases Metastasis Middle Aged MRI Neoplasm Metastasis - diagnostic imaging NMR Nuclear magnetic resonance oligometastasis Prostate cancer Prostatectomy Prostatic Neoplasms - diagnostic imaging Prostatic Neoplasms - therapy Radiotherapy Viscera - diagnostic imaging Whole Body Imaging |
Title | Whole body MRI (WB-MRI) assessment of metastatic spread in prostate cancer: Therapeutic perspectives on targeted management of oligometastatic disease |
URI | https://api.istex.fr/ark:/67375/WNG-5M0F069J-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.23196 https://www.ncbi.nlm.nih.gov/pubmed/27197649 https://www.proquest.com/docview/1797694873 https://www.proquest.com/docview/1798264171 https://www.proquest.com/docview/1808620351 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuvB-BgoxAiCJlGyeOHSMuQFlKpS1oabW9IMt2bLRqm6z2IQEnfgJHfh-_BI-TzVJUVYKbpUzs2BmPv_GMPyP0WGRlkRdGxzRTaUx1aWOhKPVAzhacO7_ElyFBdo_tHNDdw_xwDb1YnoVp-CG6DTeYGcFewwRXera1Ig31BmbWS0GDvAEmGQPi_O1hxx0F-9YhhJDyJPaWmnfcpOnW6tVTq9EFGNgvZ0HN08g1LD39K-jT8qObjJOj3mKue-bbX3yO_9urq-hyi0nxy0aJrqE1W11HFwdt1P0G-jmCS3SxrsuveDB8h5-OXv36_sOXNrHqiD1x7fCJnSs4oTQ2eDbxaLTE4wpDW4BosQEFmz7H-6sjX3iyOus5w3WFm8R0W-KTLi0HKq6Px5_rP2pvw0o30UH_zf7rnbi90SE2VFAWO-ZYyoUVVnOPvZTNE2Jz41jBU02c884sMYUFBbFZAsShxOnUZs5xy0zmsltovaorewdhoZRmjHLjjKCksIpwkzjCLFUecpgiQpvLPytNS3cOt24cy4aoOZXQfRmGOkKPOtlJQ_JxptSToCCdiJoeQVocz-Vo763MB0k_YWJXbkdoY6lBsrUIM-kNH2fCu4dZhB52j_1chgCNqmy9CDLe26OEk3NkCnBCIf4boduNdnYflHLiG6EiQs-Cjp3TGflh-P5jKN39F-F76JJHjKzJgNxA6_Ppwt73qGyuH4TZ9xutejWj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglYAL70eggBEIUaRs48SxY268lm3pLmjZanuzHMdGq7bJah8ScOIncOT38UvwOGmWoqoS3CxlYsfOePyNZ_wZoSciKbI003lIExWHNC9MKBSlDsiZjHPrlvjCJ8gOWG-P7uyn-01uDpyFqfkh2g03mBneXsMEhw3prRVrqLMw804MKnQerfsAHWCiYcseBTvXPogQ8yh0tpq37KTx1urdE-vROgztl9PA5kns6hef7pX6htW55yyEnJODznKRd_S3vxgd_7tfV9HlBpbil7UeXUPnTHkdXeg3gfcb6OcY7tHFeVV8xf3hNn42fvXr-w9X2sSq5fbElcVHZqHgkNJE4_nUAdICT0oMbQGoxRp0bPYCj1anvvB0ddxzjqsS17nppsBHbWYOVFwdTj5Xf9TeRJZuor3u29HrXthc6hBqKigLLbMs5sIIk3MHv5RJI2JSbVnG45xY6_xZojMDOmKSCLhDic1jk1jLDdOJTW6htbIqzR2EhVI5Y5RrqwUlmVGE68gSZqhyqENnAdo8_rVSN4zncPHGoay5mmMJ3Zd-qAP0uJWd1jwfp0o99RrSiqjZAWTG8VSOB-9k2o-6ERM78k2ANo5VSDZGYS6d7eNMOA8xCdCj9rGbzhCjUaWpll7GOXyUcHKGTAZ-KISAA3S7Vs_2g2JOXCNUBOi5V7IzOiM_Dj988qW7_yL8EF3sjfq7cnd78P4euuQAJKsTIjfQ2mK2NPcdSFvkD_xU_A3kgznB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq48H4EChiBEEXKNk4cO0ZcgLK0hS3V0mp7QZbj2GjVNlntQwJO_ASO_D5-CbaTzVJUVYKbpUzs2BmPv_GMPwM85kmRpZnKQ5LIOCR5oUMuCbFATmeMGbvEFz5BdpduHZCdw_RwCV7Mz8LU_BDthpubGd5euwk-KszGgjTUGphJJ3YadAFWCLXrpINE_ZY8ym1c-xhCzKLQmmrWkpPGG4t3Ty1HK25kv5yFNU9DV7_2dC_Dp_lX1yknR53ZNO-ob38ROv5vt67ApQaUope1Fl2FJV1eg9VeE3a_Dj8H7hZdlFfFV9Trb6Ong1e_vv-wpXUkW2ZPVBl0oqfSHVEaKjQZWThaoGGJXFsO0iLlNGz8HO0vznyh0eKw5wRVJaoz03WBTtq8HFdxdTz8XP1RexNXugEH3Tf7r7fC5kqHUBFOaGiooTHjmuucWfAldRphnSpDMxbn2BjrzWKVaachOokccyg2eawTY5imKjHJTVguq1LfBsSlzCklTBnFCc60xExFBlNNpMUcKgtgff5nhWr4zt21G8eiZmqOheu-8EMdwKNWdlSzfJwp9cQrSCsix0cuL46lYrD7VqS9qBtRviM2A1iba5BoTMJEWMvHKLf-YRLAw_axncwuQiNLXc28jHX3CGb4HJnMeaEuABzArVo72w-KGbaNEB7AM69j53RG7PU_fPSlO_8i_ABW9za74v327ru7cNGiR1pnQ67B8nQ80_csQpvm9_1E_A0UkThw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+body+MRI+%28WB-MRI%29+assessment+of+metastatic+spread+in+prostate+cancer%3A+Therapeutic+perspectives+on+targeted+management+of+oligometastatic+disease&rft.jtitle=The+Prostate&rft.au=Larbi%2C+Ahmed&rft.au=Dallaudiere%2C+Benjamin&rft.au=Pasoglou%2C+Vasiliki&rft.au=Padhani%2C+Anwar&rft.date=2016-08-01&rft.issn=0270-4137&rft.eissn=1097-0045&rft.volume=76&rft.issue=11&rft.spage=1024&rft.epage=1033&rft_id=info:doi/10.1002%2Fpros.23196&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-4137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-4137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-4137&client=summon |