Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation

A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental biology Vol. 504; pp. 25 - 37
Main Authors Brennan, Lisa, Disatham, Joshua, Menko, A. Sue, Kantorow, Marc
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2023
Subjects
Online AccessGet full text
ISSN0012-1606
1095-564X
1095-564X
DOI10.1016/j.ydbio.2023.09.005

Cover

Abstract A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < −0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation. [Display omitted] •FOXO4 binds throughout the lens fiber cell genome.•FOXO4 binding correlates with activation of lens fiber cell-specific genes.•FOXO4 binding is associated with open chromatin conformation and H3K27ac modification.•FOXO4 is implicated in control of lens cell differentiation.
AbstractList A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < −0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation. [Display omitted] •FOXO4 binds throughout the lens fiber cell genome.•FOXO4 binding correlates with activation of lens fiber cell-specific genes.•FOXO4 binding is associated with open chromatin conformation and H3K27ac modification.•FOXO4 is implicated in control of lens cell differentiation.
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < −0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
Author Disatham, Joshua
Kantorow, Marc
Brennan, Lisa
Menko, A. Sue
AuthorAffiliation 1 Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
2 Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
AuthorAffiliation_xml – name: 2 Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
– name: 1 Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
Author_xml – sequence: 1
  givenname: Lisa
  surname: Brennan
  fullname: Brennan, Lisa
  organization: Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
– sequence: 2
  givenname: Joshua
  surname: Disatham
  fullname: Disatham, Joshua
  organization: Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
– sequence: 3
  givenname: A. Sue
  surname: Menko
  fullname: Menko, A. Sue
  organization: Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
– sequence: 4
  givenname: Marc
  surname: Kantorow
  fullname: Kantorow, Marc
  email: mkantoro@health.fau.edu
  organization: Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37722500$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFX4CEfOSSMI7z5QNCqGpppaK9gNSb5diT7SxZZ7GTSvvv8e6WCjgAJx_8vKN35jljJ370yNhrAbkAUb9b5zvX0ZgXUMgcVA5QPWMLAarKqrq8O2ELAFFkoob6lJ3FuAYA2bbyBTuVTVMUFcCCdZ_nYaJxQ5Ybb4ZdpMhpsx3Imgkjv1reLUtOnq_Q45SggKt5MCnh-dhze0_2Gx_QR95Th4FbHAbuqO8xoJ_oAL5kz3szRHz1-J6zr1eXXy6us9vlp5uLj7eZLZWcMuUah62Srq-LtqxAWFNJURiLoITrO1uiclZiJZu-FaJXnVFWuk7VSrlSWnnOPhznbudug86mAsEMehtoY8JOj4b07z-e7vVqfNAC2lKmDmnC28cJYfw-Y5z0huJ-JeNxnKMuVFkIqJrqP9C2rtOVm0Yk9M2vvZ4K_ZSQAHkEbBhjDNg_IQL0XrVe64NqvVetQemkOqXUHylL0-HgaTka_pF9f8xi8vFAGHS0hN6io4B20m6kv-Z_AFxtx64
CitedBy_id crossref_primary_10_1167_iovs_65_11_27
crossref_primary_10_1002_dvdy_766
Cites_doi 10.1038/cddis.2017.478
10.1101/gad.14.2.245
10.1038/nmeth.3317
10.1093/bioinformatics/btv145
10.1126/science.1063127
10.3390/biom13040693
10.1016/j.semcdb.2006.10.002
10.1186/gb-2008-9-9-r137
10.1152/physrev.00034.2009
10.1016/j.bbamcr.2010.11.025
10.1074/jbc.M804629200
10.4161/auto.28768
10.1371/annotation/71d78295-dc0f-4e78-9c99-45b730952d9b
10.1186/s13072-022-00440-z
10.1016/j.ydbio.2015.06.022
10.1111/febs.16221
10.1186/1471-213X-10-13
10.1016/j.exer.2020.108129
10.1093/bioinformatics/btu170
10.1016/j.ydbio.2006.06.045
10.1016/j.ydbio.2019.04.020
10.1002/cpz1.90
10.1016/j.exer.2008.11.007
10.7554/eLife.21856
10.1098/rsob.210265
10.1093/hmg/ddaa096
10.1111/acel.12427
10.1074/jbc.M302042200
10.1016/j.cell.2007.02.005
10.1007/s00232-007-9033-0
10.1016/j.bbamcr.2011.06.002
10.1073/pnas.0400093101
10.1038/nprot.2012.101
10.1038/nrm.2017.47
10.3390/cells12030475
10.1016/j.ydbio.2020.07.017
10.1016/j.exer.2008.10.011
10.1016/S0012-1606(03)00179-9
10.1167/iovs.15-17201
10.1111/acel.12067
10.1038/nrg2522
10.1186/1471-2105-14-128
10.1093/nar/gkw377
10.1016/j.exer.2003.08.006
10.1016/j.exer.2013.08.017
10.1093/bioinformatics/btp616
10.1016/j.exer.2018.06.003
10.1016/j.yexcr.2007.04.005
10.1098/rstb.2010.0302
10.1016/j.exer.2021.108682
10.1128/MCB.00166-09
10.1242/dev.106005
10.14806/ej.17.1.200
10.1111/j.1432-0436.1981.tb01141.x
10.1016/j.semcdb.2006.10.011
10.1006/exer.2002.2057
10.1167/iovs.64.2.6
10.1093/nar/gkp335
10.1093/nar/gkx1126
10.1016/j.ydbio.2009.01.015
10.1007/s00018-013-1513-z
10.1016/j.exer.2016.03.005
10.1016/S0161-6420(99)00094-9
10.1007/s00439-018-1884-1
10.1186/s13072-019-0287-4
10.1098/rstb.2010.0339
10.1534/g3.114.012120
10.1016/j.exer.2016.03.016
10.1126/science.1195970
10.1016/j.yexcr.2022.113340
10.1093/nar/gku365
10.1101/gr.229102
10.1093/nar/gkv589
10.7554/eLife.46314
10.1016/0012-1606(88)90147-9
10.1002/pro.3159
10.1074/jbc.M110901200
10.1186/s12864-021-07795-9
10.1073/pnas.85.10.3479
10.1073/pnas.1016071107
10.1016/j.exer.2018.03.021
10.1038/nmeth.1923
10.1016/j.yexcr.2022.113043
10.1091/mbc.e16-12-0865
10.1387/ijdb.041866ac
10.1016/j.tig.2017.08.001
10.1093/bioinformatics/btq033
10.1096/fasebj.3.8.2656357
10.1038/onc.2008.24
10.1093/bioinformatics/btp352
10.1083/jcb.200104038
10.1093/nar/28.1.27
10.1016/j.bbrc.2017.09.088
10.1016/j.ydbio.2005.01.020
10.1038/sj.emboj.7600435
10.1007/978-1-4939-8900-3_1
10.1128/MCB.22.22.7842-7852.2002
10.1038/nbt.3122
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.ydbio.2023.09.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1095-564X
EndPage 37
ExternalDocumentID PMC10843493
37722500
10_1016_j_ydbio_2023_09_005
S0012160623001598
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY026478
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29F
3O-
4.4
457
4G.
4R4
53G
5GY
5RE
5VS
6I.
7-5
71M
85S
8P~
9JM
9M8
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
ABCQJ
ABDPE
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABVKL
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEXQZ
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
CAG
COF
CS3
D0L
DIK
DM4
DU5
E3Z
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
H~9
IH2
IHE
IXB
J1W
K-O
KOM
LG5
LX2
M41
MO0
MOBAO
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RSU
SBG
SCC
SDF
SDG
SES
SEW
SPCBC
SSN
SSU
SSZ
T5K
TAE
TN5
TR2
UPT
UQL
VH1
WH7
WUQ
X7M
XJT
XOL
XPP
ZGI
ZKB
ZMT
~G-
~KM
AATTM
AAXUO
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ACLOT
EFLBG
~HD
7S9
L.6
5PM
ID FETCH-LOGICAL-c493t-9d7de893df6284501ca5312ace091dfbc4e9dc3e537f811f9ba9c3db9699d43c3
IEDL.DBID IXB
ISSN 0012-1606
1095-564X
IngestDate Thu Aug 21 18:36:27 EDT 2025
Sat Sep 27 17:57:28 EDT 2025
Sat Sep 27 22:58:44 EDT 2025
Mon Jul 21 06:07:35 EDT 2025
Tue Jul 01 00:49:21 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Sat Dec 14 16:15:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CUT&RUN
Lens
FOXO4
Differentiation
H3K27ac
Language English
License This article is made available under the Elsevier license.
Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-9d7de893df6284501ca5312ace091dfbc4e9dc3e537f811f9ba9c3db9699d43c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work and share first authorship.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0012160623001598
PMID 37722500
PQID 2866377771
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10843493
proquest_miscellaneous_2942105753
proquest_miscellaneous_2866377771
pubmed_primary_37722500
crossref_primary_10_1016_j_ydbio_2023_09_005
crossref_citationtrail_10_1016_j_ydbio_2023_09_005
elsevier_sciencedirect_doi_10_1016_j_ydbio_2023_09_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental biology
PublicationTitleAlternate Dev Biol
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – sequence: 0
  name: Elsevier Inc
References Langmead, Salzberg (bib53) 2012; 9
Brennan, Costello, Hejtmancik, Menko, Riazuddin, Shiels, Kantorow (bib10) 2023
Gui, Burgering (bib38) 2022
Barnum, Saai, Patel, Cheng, Anand, Xu, Dash, Siddam, Glazewski, Paglione, Polson, Chuma, Mason, Wei, Batish, Fowler, Lachke (bib3) 2021; 29
Cvekl, Yang, Chauhan, Cveklova (bib22) 2004; 48
Liu, Li, Luo (bib58) 2020
Disatham, Brennan, Cvekl, Kantorow (bib25) 2023
Kim, Langmead, Salzberg (bib46) 2015; 12
Burgess, Zhang, Siefker, Vaca, Kuracha, Reneker, Overbeek, Govindarajan (bib14) 2010; 10
Grant, Bailey (bib36) 2021; 2021
Disatham, Chauss, Gheyas, Brennan, Blanco, Daley, Menko, Kantorow (bib27) 2019; 453
Mathias, White, Gong (bib65) 2010; 90
Disatham, Brennan, Jiao, Ma, Hejtmancik, Kantorow (bib26) 2022; 15
Costello, Brennan, Basu, Chauss, Mohamed, Gilliland, Johnsen, Menko, Kantorow (bib20) 2013; 116
Skene, Henikoff (bib88) 2017; 6
Chaves, Gupta, Srivastava, Srivastava (bib17) 2017; 494
Lai, Pugh (bib52) 2017; 18
Maddala, Nagendran, Lang, Morozov, Rao (bib61) 2015; 406
Xie, Bailey, Kuleshov, Clarke, Evangelista, Jenkins, Lachmann, Wojciechowicz, Kropiwnicki, Jagodnik, Jeon, Ma’ayan (bib100) 2021; 1
Tzivion, Dobson, Ramakrishnan (bib95) 2011
Rao, Maddala (bib80) 2006; 17
Stump, Ang, Chen, von Bahr, Lovicu, Pinson, de Iongh, Yamaguchi, Sassoon, McAvoy (bib89) 2003; 259
Vilchez, Boyer, Lutz, Merkwirth, Morantte, Tse, Spencer, Page, Masliah, Berggren, Gage, Dillin (bib96) 2013; 12
Lachke, Alkuraya, Kneeland, Ohn, Aboukhalil, Howell, Saadi, Cavallesco, Yue, Tsai, Nair, Cosma, Smith, Hodges, Alfadhli, Al-Hajeri, Shamseldin, Behbehani, Hannon, Bulyk, Drack, Anderson, John, Maas (bib51) 2011; 331
Bolger, Lohse, Usadel (bib8) 2014; 30
Robinson (bib82) 2006; 17
Bellot, Garcia-Medina, Gounon, Chiche, Roux, Pouysségur, Mazure (bib6) 2009; 29
Basu, Rajakaruna, Reyes, Van Bockstaele, Menko (bib5) 2014; 10
Khairallah, Kahloun, Bourne, Limburg, Flaxman, Jonas, Keeffe, Leasher, Naidoo, Pesudovs, Price, White, Wong, Resnikoff, Taylor (bib44) 2015; 56
Bassnett, Shi, Vrensen (bib4) 2011; 366
Bailey, Boden, Buske, Frith, Grant, Clementi, Ren, Li, Noble (bib2) 2009; 37
Disatham, Brennan, Chauss, Kantorow, Afzali, Kantorow (bib24) 2021; 22
Hosaka, Biggs, Tieu, Boyer, Varki, Cavenee, Arden (bib39) 2004; 101
Lovicu, McAvoy (bib59) 2005; 280
Tang, Dowbenko, Jackson, Toney, Lewin, Dent, Lasky (bib92) 2002; 277
Creyghton, Cheng, Welstead, Kooistra, Carey, Steine, Hanna, Lodato, Frampton, Sharp, Boyer, Young, Jaenisch (bib21) 2010; 107
Shiels, Bennett, Hejtmancik (bib87) 2010; 16
Piatigorsky, O'Brien, Norman, Kalumuck, Wistow, Borras, Nickerson, Wawrousek (bib77) 1988; 85
Robinson (bib83) 2006
Menko (bib68) 2002; 75
Fu, Tindall (bib30) 2008
Ramírez, Dündar, Diehl, Grüning, Manke (bib79) 2014; 42
Jiang, Pugh (bib41) 2009; 10
Jenuwein, Allis (bib40) 2001
FitzGerald (bib29) 2009; 88
Le, Conley, Brown (bib54) 2009; 328
Gong, Cheng, Xia (bib35) 2007; 218
Piatigorsky (bib76) 1981; 19
Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nussbaum, Myers, Brown, Li, Shirley (bib103) 2008; 9
Schmidt, Fernandez de Mattos, van der Horst, Klompmaker, Kops, Lam, Burgering, Medema (bib86) 2002; 22
Wormstone, Tamiya, Eldred, Lazaridis, Chantry, Reddan, Anderson, Duncan (bib98) 2004; 78
Martin (bib63) 2011; 17
Blixt, Mahlapuu, Aitola, Pelto-Huikko, Enerbäck, Carlsson (bib7) 2000; 14
Martins, Lithgow, Link (bib64) 2016
Kent, Sugnet, Furey, Roskin, Pringle, Zahler, Haussler (bib43) 2002; 12
Yu, Wang, He (bib102) 2015; 31
Xie, Overbeek, Reneker (bib99) 2006; 298
Chen, Tan, Kou, Duan, Wang, Meirelles, Clark, Ma’ayan (bib18) 2013; 14
Yang, Zhang, Liu, Meng, Du, Shao, Liu, Fang (bib101) 2022; 420
Brennan, McGreal-Estrada, Logan, Cvekl, Menko, Kantorow (bib13) 2018
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib56) 2009; 25
Kanehisa, Goto (bib42) 2000
Khan, Fornes, Stigliani, Gheorghe, Castro-Mondragon, van der Lee, Bessy, Chèneby, Kulkarni, Tan, Baranasic, Arenillas, Sandelin, Vandepoele, Lenhard, Ballester, Wasserman, Parcy, Mathelier (bib45) 2018; 46
Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (bib74) 2015; 33
Perng, Zhang, Quinlan (bib73) 2007
Makrides, Wang, Tao, Schwartz, Zhang (bib62) 2022
Rudnizky, Malik, Bavly, Pnueli, Melamed, Kaplan (bib84) 2017; 26
Cheng, Nowak, Fowler (bib19) 2017
Link (bib57) 2019
Moré, Kirsch, Rathjen (bib69) 2001; 154
Wolf, Yang, Wang, Xie, Braunger, Tamm, Zavadil, Cvekl (bib97) 2009; 4
Cvekl, Zhang (bib23) 2017
Chauss, Basu, Rajakaruna, Ma, Gau, Anastas, Brennan, Hejtmancik, Menko, Kantorow (bib16) 2014; 4
Quinlan, Hall (bib78) 2010; 26
Piatigorsky (bib75) 1989; 3
Chaffee, Shang, Chang, Clement, Eddy, Wagner, Nakahara, Nagata, Robinson, Taylor (bib15) 2014; 141
Robinson, McCarthy, Smyth (bib81) 2009; 26
Brennan, Disatham, Kantorow (bib12) 2020; 198
Feng, Liu, Qin, Zhang, Liu (bib28) 2012; 7
Le, Conley, Mead, Rowan, Yutzey, Brown (bib55) 2012; 241
Boswell, Korol, West-Mays, Musil (bib9) 2017; 28
Meers, Bryson, Henikoff, Henikoff (bib66) 2019; 8
Kouzarides (bib47) 2007
Lovicu, McAvoy, de Iongh (bib60) 2011
Obsil, Obsilova (bib70) 2011
Audette, Scheiblin, Duncan (bib1) 2017; 156
Gao, Huang, Wang, Huang, Liu, Liao, Yu, Lu, Han, Hu, Qu, Liu, Yimer, Yang, Tang, Li, Liu (bib33) 2017; 8
Parker, Wawrousek, Piatigorsky (bib72) 1988; 126
Sun, Rockowitz, Xie, Ashery-Padan, Zheng, Cvekl (bib90) 2015; 43
Brennan, Disatham, Kantorow (bib11) 2021; 209
Padula, Sidler, Wagner, Manz, Lovicu, Robinson (bib71) 2020; 467
Meers, Tenenbaum, Henikoff (bib67) 2019; 12
Kupfer (bib50) 2000
Taylor, Gu, Chang, Yang, Francisco, Rowan, Bejarano, Pruitt, Zhu, Weiss, Brennan, Kantorow, Whitcomb (bib94) 2023; 64
Krall, Htun, Anand, Hart, Lachke, Slavotinek (bib48) 2018; 137
Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann, McDermott, Monteiro, Gundersen, Ma’ayan (bib49) 2016
Fujimoto, Oshima, Shinkawa, Bei, Inouye, Hayashida, Takii, Nakai (bib32) 2008; 283
Sanchez, Candau, Bernardi (bib85) 2014
Tang, Lasky (bib93) 2003; 278
Fujimoto, Izu, Seki, Fukuda, Nishida, Yamada, Kato, Yonemura, Inouye, Nakai (bib31) 2004; 23
Swarup, Bell, Du, Han, Soto, Abel, Bravo-Nuevo, FitzGerald, Peachey, Philp (bib91) 2018; 172
Gheyas, Ortega-Alvarez, Chauss, Kantorow, Menko (bib34) 2022; 412
Graw (bib37) 2009; 88
Audette (10.1016/j.ydbio.2023.09.005_bib1) 2017; 156
Martins (10.1016/j.ydbio.2023.09.005_bib64) 2016
Sun (10.1016/j.ydbio.2023.09.005_bib90) 2015; 43
Krall (10.1016/j.ydbio.2023.09.005_bib48) 2018; 137
Perng (10.1016/j.ydbio.2023.09.005_bib73) 2007
Chauss (10.1016/j.ydbio.2023.09.005_bib16) 2014; 4
Piatigorsky (10.1016/j.ydbio.2023.09.005_bib76) 1981; 19
Wolf (10.1016/j.ydbio.2023.09.005_bib97) 2009; 4
Gui (10.1016/j.ydbio.2023.09.005_bib38) 2022
Chaffee (10.1016/j.ydbio.2023.09.005_bib15) 2014; 141
Le (10.1016/j.ydbio.2023.09.005_bib54) 2009; 328
Mathias (10.1016/j.ydbio.2023.09.005_bib65) 2010; 90
Parker (10.1016/j.ydbio.2023.09.005_bib72) 1988; 126
Basu (10.1016/j.ydbio.2023.09.005_bib5) 2014; 10
Menko (10.1016/j.ydbio.2023.09.005_bib68) 2002; 75
Brennan (10.1016/j.ydbio.2023.09.005_bib13) 2018
Jenuwein (10.1016/j.ydbio.2023.09.005_bib40) 2001
Piatigorsky (10.1016/j.ydbio.2023.09.005_bib77) 1988; 85
Rudnizky (10.1016/j.ydbio.2023.09.005_bib84) 2017; 26
Quinlan (10.1016/j.ydbio.2023.09.005_bib78) 2010; 26
Brennan (10.1016/j.ydbio.2023.09.005_bib12) 2020; 198
Yang (10.1016/j.ydbio.2023.09.005_bib101) 2022; 420
Boswell (10.1016/j.ydbio.2023.09.005_bib9) 2017; 28
Kuleshov (10.1016/j.ydbio.2023.09.005_bib49) 2016
Khairallah (10.1016/j.ydbio.2023.09.005_bib44) 2015; 56
Obsil (10.1016/j.ydbio.2023.09.005_bib70) 2011
Shiels (10.1016/j.ydbio.2023.09.005_bib87) 2010; 16
Tang (10.1016/j.ydbio.2023.09.005_bib92) 2002; 277
Xie (10.1016/j.ydbio.2023.09.005_bib99) 2006; 298
Disatham (10.1016/j.ydbio.2023.09.005_bib26) 2022; 15
Rao (10.1016/j.ydbio.2023.09.005_bib80) 2006; 17
Wormstone (10.1016/j.ydbio.2023.09.005_bib98) 2004; 78
Cheng (10.1016/j.ydbio.2023.09.005_bib19) 2017
Brennan (10.1016/j.ydbio.2023.09.005_bib11) 2021; 209
Le (10.1016/j.ydbio.2023.09.005_bib55) 2012; 241
Stump (10.1016/j.ydbio.2023.09.005_bib89) 2003; 259
Robinson (10.1016/j.ydbio.2023.09.005_bib82) 2006; 17
Lovicu (10.1016/j.ydbio.2023.09.005_bib59) 2005; 280
Fujimoto (10.1016/j.ydbio.2023.09.005_bib32) 2008; 283
Fujimoto (10.1016/j.ydbio.2023.09.005_bib31) 2004; 23
Bolger (10.1016/j.ydbio.2023.09.005_bib8) 2014; 30
Gheyas (10.1016/j.ydbio.2023.09.005_bib34) 2022; 412
Disatham (10.1016/j.ydbio.2023.09.005_bib27) 2019; 453
Kupfer (10.1016/j.ydbio.2023.09.005_bib50) 2000
Grant (10.1016/j.ydbio.2023.09.005_bib36) 2021; 2021
Khan (10.1016/j.ydbio.2023.09.005_bib45) 2018; 46
Feng (10.1016/j.ydbio.2023.09.005_bib28) 2012; 7
FitzGerald (10.1016/j.ydbio.2023.09.005_bib29) 2009; 88
Meers (10.1016/j.ydbio.2023.09.005_bib67) 2019; 12
Robinson (10.1016/j.ydbio.2023.09.005_bib83) 2006
Padula (10.1016/j.ydbio.2023.09.005_bib71) 2020; 467
Maddala (10.1016/j.ydbio.2023.09.005_bib61) 2015; 406
Ramírez (10.1016/j.ydbio.2023.09.005_bib79) 2014; 42
Brennan (10.1016/j.ydbio.2023.09.005_bib10) 2023
Gao (10.1016/j.ydbio.2023.09.005_bib33) 2017; 8
Swarup (10.1016/j.ydbio.2023.09.005_bib91) 2018; 172
Tzivion (10.1016/j.ydbio.2023.09.005_bib95) 2011
Yu (10.1016/j.ydbio.2023.09.005_bib102) 2015; 31
Hosaka (10.1016/j.ydbio.2023.09.005_bib39) 2004; 101
Moré (10.1016/j.ydbio.2023.09.005_bib69) 2001; 154
Disatham (10.1016/j.ydbio.2023.09.005_bib25) 2023
Xie (10.1016/j.ydbio.2023.09.005_bib100) 2021; 1
Gong (10.1016/j.ydbio.2023.09.005_bib35) 2007; 218
Robinson (10.1016/j.ydbio.2023.09.005_bib81) 2009; 26
Jiang (10.1016/j.ydbio.2023.09.005_bib41) 2009; 10
Skene (10.1016/j.ydbio.2023.09.005_bib88) 2017; 6
Pertea (10.1016/j.ydbio.2023.09.005_bib74) 2015; 33
Burgess (10.1016/j.ydbio.2023.09.005_bib14) 2010; 10
Blixt (10.1016/j.ydbio.2023.09.005_bib7) 2000; 14
Lovicu (10.1016/j.ydbio.2023.09.005_bib60) 2011
Schmidt (10.1016/j.ydbio.2023.09.005_bib86) 2002; 22
Chen (10.1016/j.ydbio.2023.09.005_bib18) 2013; 14
Lai (10.1016/j.ydbio.2023.09.005_bib52) 2017; 18
Kent (10.1016/j.ydbio.2023.09.005_bib43) 2002; 12
Chaves (10.1016/j.ydbio.2023.09.005_bib17) 2017; 494
Creyghton (10.1016/j.ydbio.2023.09.005_bib21) 2010; 107
Fu (10.1016/j.ydbio.2023.09.005_bib30) 2008
Piatigorsky (10.1016/j.ydbio.2023.09.005_bib75) 1989; 3
Kanehisa (10.1016/j.ydbio.2023.09.005_bib42) 2000
Cvekl (10.1016/j.ydbio.2023.09.005_bib22) 2004; 48
Lachke (10.1016/j.ydbio.2023.09.005_bib51) 2011; 331
Taylor (10.1016/j.ydbio.2023.09.005_bib94) 2023; 64
Costello (10.1016/j.ydbio.2023.09.005_bib20) 2013; 116
Graw (10.1016/j.ydbio.2023.09.005_bib37) 2009; 88
Makrides (10.1016/j.ydbio.2023.09.005_bib62) 2022
Link (10.1016/j.ydbio.2023.09.005_bib57) 2019
Bellot (10.1016/j.ydbio.2023.09.005_bib6) 2009; 29
Tang (10.1016/j.ydbio.2023.09.005_bib93) 2003; 278
Kim (10.1016/j.ydbio.2023.09.005_bib46) 2015; 12
Bailey (10.1016/j.ydbio.2023.09.005_bib2) 2009; 37
Li (10.1016/j.ydbio.2023.09.005_bib56) 2009; 25
Disatham (10.1016/j.ydbio.2023.09.005_bib24) 2021; 22
Bassnett (10.1016/j.ydbio.2023.09.005_bib4) 2011; 366
Liu (10.1016/j.ydbio.2023.09.005_bib58) 2020
Vilchez (10.1016/j.ydbio.2023.09.005_bib96) 2013; 12
Kouzarides (10.1016/j.ydbio.2023.09.005_bib47) 2007
Sanchez (10.1016/j.ydbio.2023.09.005_bib85) 2014
Barnum (10.1016/j.ydbio.2023.09.005_bib3) 2021; 29
Langmead (10.1016/j.ydbio.2023.09.005_bib53) 2012; 9
Cvekl (10.1016/j.ydbio.2023.09.005_bib23) 2017
Meers (10.1016/j.ydbio.2023.09.005_bib66) 2019; 8
Zhang (10.1016/j.ydbio.2023.09.005_bib103) 2008; 9
Martin (10.1016/j.ydbio.2023.09.005_bib63) 2011; 17
References_xml – volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib53
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– year: 2008
  ident: bib30
  article-title: FOXOs, cancer and regulation of apoptosis
  publication-title: Oncogene
– year: 2011
  ident: bib60
  article-title: Understanding the role of growth factors in embryonic development: insights from the lens
  publication-title: Phil. Trans. Biol. Sci.
– volume: 37
  year: 2009
  ident: bib2
  article-title: MEME Suite: tools for motif discovery and searching
  publication-title: Nucleic Acids Res.
– volume: 209
  year: 2021
  ident: bib11
  article-title: Mechanisms of organelle elimination for lens development and differentiation
  publication-title: Exp. Eye Res.
– volume: 241
  start-page: 493
  year: 2012
  end-page: 504
  ident: bib55
  article-title: Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens
  publication-title: Development
– volume: 31
  start-page: 2382
  year: 2015
  end-page: 2383
  ident: bib102
  article-title: ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization
  publication-title: Bioinformatics
– volume: 198
  year: 2020
  ident: bib12
  article-title: Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a
  publication-title: Exp. Eye Res.
– volume: 101
  start-page: 2975
  year: 2004
  end-page: 2980
  ident: bib39
  article-title: Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 141
  start-page: 3388
  year: 2014
  end-page: 3398
  ident: bib15
  article-title: Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly
  publication-title: Development (Camb.)
– volume: 283
  start-page: 29961
  year: 2008
  end-page: 29970
  ident: bib32
  article-title: Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses
  publication-title: J. Biol. Chem.
– year: 2016
  ident: bib49
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 996
  year: 2002
  end-page: 1006
  ident: bib43
  article-title: The human genome browser at UCSC
  publication-title: Genome Res.
– start-page: 1
  year: 2019
  end-page: 9
  ident: bib57
  article-title: Introduction to FOXO biology
  publication-title: Methods in Molecular Biology
– volume: 137
  start-page: 315
  year: 2018
  end-page: 328
  ident: bib48
  article-title: A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans
  publication-title: Hum. Genet.
– volume: 10
  year: 2010
  ident: bib14
  article-title: Activated Ras alters lens and corneal development through induction of distinct downstream targets
  publication-title: BMC Dev. Biol.
– volume: 420
  year: 2022
  ident: bib101
  article-title: FOXO4 mediates resistance to oxidative stress in lens epithelial cells by modulating the TRIM25/Nrf2 signaling
  publication-title: Exp. Cell Res.
– volume: 28
  start-page: 907
  year: 2017
  end-page: 921
  ident: bib9
  article-title: Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract
  publication-title: Mol. Biol. Cell
– volume: 4
  start-page: 1515
  year: 2014
  end-page: 1527
  ident: bib16
  article-title: Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens
  publication-title: G3: Genes, Genomes, Genetics
– volume: 48
  start-page: 829
  year: 2004
  end-page: 844
  ident: bib22
  article-title: Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens
  publication-title: Int. J. Dev. Biol.
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  ident: bib46
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
– year: 2022
  ident: bib38
  article-title: FOXOs: masters of the equilibrium
  publication-title: FEBS J.
– year: 2023
  ident: bib10
  article-title: Autophagy requirements for eye lens differentiation and transparency
  publication-title: Cells
– year: 2018
  ident: bib13
  article-title: BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation
  publication-title: Exp. Eye Res.
– volume: 12
  start-page: 518
  year: 2013
  end-page: 522
  ident: bib96
  article-title: FOXO4 is necessary for neural differentiation of human embryonic stem cells
  publication-title: Aging Cell
– volume: 126
  start-page: 375
  year: 1988
  end-page: 381
  ident: bib72
  article-title: Expression of the delta-crystallin genes in the embryonic chicken lens
  publication-title: Dev. Biol.
– volume: 259
  start-page: 48
  year: 2003
  end-page: 61
  ident: bib89
  article-title: A role for Wnt/β-catenin signaling in lens epithelial differentiation
  publication-title: Dev. Biol.
– volume: 277
  start-page: 14255
  year: 2002
  end-page: 14265
  ident: bib92
  article-title: The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 42
  year: 2019
  ident: bib67
  article-title: Peak calling by sparse enrichment analysis for CUT&RUN chromatin profiling
  publication-title: Epigenet. Chromatin
– volume: 3
  start-page: 1933
  year: 1989
  end-page: 1940
  ident: bib75
  article-title: Lens crystallins and their genes: diversity and tissue‐specific expression
  publication-title: Faseb. J.
– volume: 453
  start-page: 86
  year: 2019
  end-page: 104
  ident: bib27
  article-title: Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression
  publication-title: Dev. Biol.
– volume: 22
  year: 2021
  ident: bib24
  article-title: A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis
  publication-title: BMC Genom.
– volume: 88
  start-page: 165
  year: 2009
  end-page: 172
  ident: bib29
  article-title: Lens intermediate filaments
  publication-title: Exp. Eye Res.
– volume: 78
  start-page: 705
  year: 2004
  end-page: 714
  ident: bib98
  article-title: Characterisation of TGF-β2 signalling and function in a human lens cell line
  publication-title: Exp. Eye Res.
– volume: 16
  year: 2010
  ident: bib87
  article-title: Cat-Map: putting cataract on the map
  publication-title: Mol. Vis.
– year: 2011
  ident: bib70
  article-title: Structural basis for DNA recognition by FOXO proteins
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– year: 2001
  ident: bib40
  article-title: Translating the histone code
  publication-title: Science
– year: 2016
  ident: bib64
  article-title: Long live FOXO: unraveling the role of FOXO proteins in aging and longevity
  publication-title: Aging Cell
– volume: 298
  start-page: 403
  year: 2006
  end-page: 414
  ident: bib99
  article-title: Ras signaling is essential for lens cell proliferation and lens growth during development
  publication-title: Dev. Biol.
– volume: 56
  start-page: 6762
  year: 2015
  end-page: 6769
  ident: bib44
  article-title: Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010
  publication-title: Invest. Ophthalmol. Vis. Sci.
– year: 2000
  ident: bib50
  article-title: The National Eye Institute's low vision education program: improving quality of life
  publication-title: Editorial. Ophthalmology
– year: 2020
  ident: bib58
  article-title: Current perspective on the regulation of FOXO4 and its role in disease progression
  publication-title: Cell. Mol. Life Sci.
– volume: 64
  year: 2023
  ident: bib94
  article-title: Repurposing a cyclin-dependent kinase 1 (CDK1) mitotic regulatory network to complete terminal differentiation in lens fiber cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 406
  start-page: 74
  year: 2015
  end-page: 91
  ident: bib61
  article-title: Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis
  publication-title: Dev. Biol.
– volume: 331
  start-page: 1571
  year: 2011
  end-page: 1576
  ident: bib51
  article-title: Mutations in the RNA granule component TDRD7 cause cataract and glaucoma
  publication-title: Science
– volume: 10
  start-page: 1193
  year: 2014
  end-page: 1211
  ident: bib5
  article-title: Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells
  publication-title: Autophagy
– volume: 15
  year: 2022
  ident: bib26
  article-title: Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation
  publication-title: Epigenet. Chromatin
– volume: 19
  start-page: 134
  year: 1981
  end-page: 153
  ident: bib76
  article-title: Lens differentiation in vertebrates: a review of cellular and molecular features
  publication-title: Differentiation
– volume: 26
  start-page: 139
  year: 2009
  end-page: 140
  ident: bib81
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– year: 2007
  ident: bib73
  article-title: Insights into the beaded filament of the eye lens
  publication-title: Exp. Cell Res.
– volume: 90
  start-page: 179
  year: 2010
  end-page: 206
  ident: bib65
  article-title: Lens gap junctions in growth, differentiation, and homeostasis
  publication-title: Physiol. Rev.
– volume: 75
  start-page: 485
  year: 2002
  end-page: 490
  ident: bib68
  article-title: Lens epithelial cell differentiation
  publication-title: Exp. Eye Res.
– volume: 107
  start-page: 21931
  year: 2010
  end-page: 21936
  ident: bib21
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 42
  start-page: W187
  year: 2014
  ident: bib79
  article-title: DeepTools: a flexible platform for exploring deep-sequencing data
  publication-title: Nucleic Acids Res.
– volume: 172
  start-page: 45
  year: 2018
  end-page: 53
  ident: bib91
  article-title: Deletion of GLUT1 in mouse lens epithelium leads to cataract formation
  publication-title: Exp. Eye Res.
– volume: 9
  start-page: R137
  year: 2008
  ident: bib103
  article-title: Model-based analysis of ChIP-seq (MACS)
  publication-title: Genome Biol.
– volume: 10
  start-page: 161
  year: 2009
  end-page: 172
  ident: bib41
  article-title: Nucleosome positioning and gene regulation: advances through genomics
  publication-title: Nat. Rev. Genet.
– volume: 26
  start-page: 1266
  year: 2017
  end-page: 1277
  ident: bib84
  article-title: Nucleosome mobility and the regulation of gene expression: insights from single-molecule studies
  publication-title: Protein Sci.
– year: 2000
  ident: bib42
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
– volume: 29
  start-page: 2076
  year: 2021
  end-page: 2097
  ident: bib3
  article-title: The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology
  publication-title: Hum. Mol. Genet.
– volume: 17
  start-page: 726
  year: 2006
  end-page: 740
  ident: bib82
  article-title: An essential role for FGF receptor signaling in lens development
  publication-title: Semin. Cell Dev. Biol.
– volume: 33
  start-page: 290
  year: 2015
  end-page: 295
  ident: bib74
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
– year: 2023
  ident: bib25
  article-title: Multiomics analysis reveals novel genetic determinants for lens differentiation, structure, and transparency
  publication-title: Biomolecules
– volume: 4
  year: 2009
  ident: bib97
  article-title: Identification of Pax6-dependent gene regulatory networks in the mouse lens
  publication-title: PLoS One
– year: 2017
  ident: bib19
  article-title: The lens actin filament cytoskeleton: diverse structures for complex functions
  publication-title: Exp. Eye Res.
– volume: 280
  start-page: 1
  year: 2005
  end-page: 14
  ident: bib59
  article-title: Growth factor regulation of lens development
  publication-title: Dev. Biol.
– volume: 8
  year: 2017
  ident: bib33
  article-title: Hsf4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators
  publication-title: Cell Death Dis.
– volume: 366
  start-page: 1250
  year: 2011
  end-page: 1264
  ident: bib4
  article-title: Biological glass: structural determinants of eye lens transparency
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 154
  start-page: 187
  year: 2001
  end-page: 196
  ident: bib69
  article-title: Targeted ablation of NrCAM or ankyrin-B results in disorganized lens fibers leading to cataract formation
  publication-title: JCB (J. Cell Biol.)
– volume: 22
  start-page: 7842
  year: 2002
  end-page: 7852
  ident: bib86
  article-title: Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D
  publication-title: Mol. Cell Biol.
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib56
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 18
  start-page: 548
  year: 2017
  end-page: 562
  ident: bib52
  article-title: Understanding nucleosome dynamics and their links to gene expression and DNA replication
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 328
  start-page: 118
  year: 2009
  end-page: 126
  ident: bib54
  article-title: Jagged 1 is necessary for normal mouse lens formation
  publication-title: Dev. Biol.
– volume: 156
  start-page: 41
  year: 2017
  end-page: 49
  ident: bib1
  article-title: The molecular mechanisms underlying lens fiber elongation
  publication-title: Exp. Eye Res.
– volume: 412
  year: 2022
  ident: bib34
  article-title: Suppression of PI3K signaling is linked to autophagy activation and the spatiotemporal induction of the lens organelle free zone
  publication-title: Exp. Cell Res.
– volume: 7
  start-page: 1728
  year: 2012
  end-page: 1740
  ident: bib28
  article-title: Identifying ChIP-seq enrichment using MACS
  publication-title: Nat. Protoc.
– volume: 14
  start-page: 245
  year: 2000
  end-page: 254
  ident: bib7
  article-title: A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle
  publication-title: Genes Dev.
– year: 2014
  ident: bib85
  article-title: FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis
  publication-title: Cell. Mol. Life Sci.
– volume: 46
  start-page: D260
  year: 2018
  end-page: D266
  ident: bib45
  article-title: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 698
  year: 2006
  end-page: 711
  ident: bib80
  article-title: The role of the lens actin cytoskeleton in fiber cell elongation and differentiation
  publication-title: Semin. Cell Dev. Biol.
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: bib8
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 8
  year: 2019
  ident: bib66
  article-title: Improved CUT&RUN chromatin profiling tools
  publication-title: Elife
– volume: 2021
  year: 2021
  ident: bib36
  article-title: XSTREME: comprehensive motif analysis of biological sequence datasets
  publication-title: bioRxiv
– volume: 43
  start-page: 6827
  year: 2015
  end-page: 6846
  ident: bib90
  article-title: Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: e90
  year: 2021
  ident: bib100
  article-title: Gene set knowledge discovery with Enrichr
  publication-title: Curr. Protoc.
– volume: 88
  start-page: 173
  year: 2009
  end-page: 189
  ident: bib37
  article-title: Genetics of crystallins: cataract and beyond
  publication-title: Exp. Eye Res.
– volume: 17
  start-page: 10
  year: 2011
  ident: bib63
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J.
– volume: 278
  start-page: 30125
  year: 2003
  end-page: 30135
  ident: bib93
  article-title: The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1α by a von Hippel-Lindau protein-independent mechanism
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 841
  year: 2010
  end-page: 842
  ident: bib78
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
– volume: 467
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib71
  article-title: Lens fiber cell differentiation occurs independently of fibroblast growth factor receptor signaling in the absence of Pten
  publication-title: Dev. Biol.
– volume: 6
  year: 2017
  ident: bib88
  article-title: An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites
  publication-title: Elife
– volume: 14
  year: 2013
  ident: bib18
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinf.
– volume: 494
  start-page: 402
  year: 2017
  end-page: 408
  ident: bib17
  article-title: Human alpha A-crystallin missing N-terminal domain poorly complexes with filensin and phakinin
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 116
  start-page: 141
  year: 2013
  end-page: 150
  ident: bib20
  article-title: Autophagy and mitophagy participate in ocular lens organelle degradation
  publication-title: Exp. Eye Res.
– year: 2007
  ident: bib47
  article-title: Chromatin modifications and their function
  publication-title: Cell
– year: 2006
  ident: bib83
  article-title: An essential role for FGF receptor signaling in lens development
  publication-title: Semin. Cell Dev. Biol.
– volume: 29
  start-page: 2570
  year: 2009
  end-page: 2581
  ident: bib6
  article-title: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
  publication-title: Mol. Cell Biol.
– volume: 218
  start-page: 9
  year: 2007
  end-page: 12
  ident: bib35
  article-title: Connexins in lens development and cataractogenesis
  publication-title: J. Membr. Biol.
– year: 2022
  ident: bib62
  article-title: Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development
  publication-title: Open Biol.
– year: 2011
  ident: bib95
  article-title: FoxO transcription factors; Regulation by AKT and 14-3-3 proteins
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 85
  start-page: 3479
  year: 1988
  end-page: 3483
  ident: bib77
  article-title: Gene sharing by δ-crystallin and argininosuccinate lyase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 23
  start-page: 4297
  year: 2004
  end-page: 4306
  ident: bib31
  article-title: HSF4 is required for normal cell growth and differentiation during mouse lens development
  publication-title: EMBO J.
– year: 2017
  ident: bib23
  article-title: Signaling and gene regulatory networks in mammalian lens development
  publication-title: Trends Genet.
– volume: 8
  year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib33
  article-title: Hsf4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.478
– volume: 14
  start-page: 245
  year: 2000
  ident: 10.1016/j.ydbio.2023.09.005_bib7
  article-title: A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.2.245
– volume: 12
  start-page: 357
  year: 2015
  ident: 10.1016/j.ydbio.2023.09.005_bib46
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 31
  start-page: 2382
  year: 2015
  ident: 10.1016/j.ydbio.2023.09.005_bib102
  article-title: ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv145
– year: 2001
  ident: 10.1016/j.ydbio.2023.09.005_bib40
  article-title: Translating the histone code
  publication-title: Science
  doi: 10.1126/science.1063127
– year: 2023
  ident: 10.1016/j.ydbio.2023.09.005_bib25
  article-title: Multiomics analysis reveals novel genetic determinants for lens differentiation, structure, and transparency
  publication-title: Biomolecules
  doi: 10.3390/biom13040693
– volume: 17
  start-page: 726
  year: 2006
  ident: 10.1016/j.ydbio.2023.09.005_bib82
  article-title: An essential role for FGF receptor signaling in lens development
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2006.10.002
– volume: 9
  start-page: R137
  year: 2008
  ident: 10.1016/j.ydbio.2023.09.005_bib103
  article-title: Model-based analysis of ChIP-seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 90
  start-page: 179
  year: 2010
  ident: 10.1016/j.ydbio.2023.09.005_bib65
  article-title: Lens gap junctions in growth, differentiation, and homeostasis
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00034.2009
– year: 2011
  ident: 10.1016/j.ydbio.2023.09.005_bib70
  article-title: Structural basis for DNA recognition by FOXO proteins
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2010.11.025
– volume: 283
  start-page: 29961
  year: 2008
  ident: 10.1016/j.ydbio.2023.09.005_bib32
  article-title: Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804629200
– volume: 10
  start-page: 1193
  year: 2014
  ident: 10.1016/j.ydbio.2023.09.005_bib5
  article-title: Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells
  publication-title: Autophagy
  doi: 10.4161/auto.28768
– volume: 4
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib97
  article-title: Identification of Pax6-dependent gene regulatory networks in the mouse lens
  publication-title: PLoS One
  doi: 10.1371/annotation/71d78295-dc0f-4e78-9c99-45b730952d9b
– volume: 15
  year: 2022
  ident: 10.1016/j.ydbio.2023.09.005_bib26
  article-title: Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation
  publication-title: Epigenet. Chromatin
  doi: 10.1186/s13072-022-00440-z
– volume: 406
  start-page: 74
  year: 2015
  ident: 10.1016/j.ydbio.2023.09.005_bib61
  article-title: Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2015.06.022
– year: 2022
  ident: 10.1016/j.ydbio.2023.09.005_bib38
  article-title: FOXOs: masters of the equilibrium
  publication-title: FEBS J.
  doi: 10.1111/febs.16221
– volume: 10
  year: 2010
  ident: 10.1016/j.ydbio.2023.09.005_bib14
  article-title: Activated Ras alters lens and corneal development through induction of distinct downstream targets
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-10-13
– volume: 198
  year: 2020
  ident: 10.1016/j.ydbio.2023.09.005_bib12
  article-title: Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2020.108129
– volume: 30
  start-page: 2114
  year: 2014
  ident: 10.1016/j.ydbio.2023.09.005_bib8
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 298
  start-page: 403
  year: 2006
  ident: 10.1016/j.ydbio.2023.09.005_bib99
  article-title: Ras signaling is essential for lens cell proliferation and lens growth during development
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.06.045
– volume: 453
  start-page: 86
  year: 2019
  ident: 10.1016/j.ydbio.2023.09.005_bib27
  article-title: Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2019.04.020
– volume: 1
  start-page: e90
  year: 2021
  ident: 10.1016/j.ydbio.2023.09.005_bib100
  article-title: Gene set knowledge discovery with Enrichr
  publication-title: Curr. Protoc.
  doi: 10.1002/cpz1.90
– volume: 88
  start-page: 165
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib29
  article-title: Lens intermediate filaments
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2008.11.007
– volume: 6
  year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib88
  article-title: An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites
  publication-title: Elife
  doi: 10.7554/eLife.21856
– year: 2022
  ident: 10.1016/j.ydbio.2023.09.005_bib62
  article-title: Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development
  publication-title: Open Biol.
  doi: 10.1098/rsob.210265
– volume: 29
  start-page: 2076
  year: 2021
  ident: 10.1016/j.ydbio.2023.09.005_bib3
  article-title: The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddaa096
– year: 2016
  ident: 10.1016/j.ydbio.2023.09.005_bib64
  article-title: Long live FOXO: unraveling the role of FOXO proteins in aging and longevity
  publication-title: Aging Cell
  doi: 10.1111/acel.12427
– volume: 278
  start-page: 30125
  year: 2003
  ident: 10.1016/j.ydbio.2023.09.005_bib93
  article-title: The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1α by a von Hippel-Lindau protein-independent mechanism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M302042200
– volume: 16
  year: 2010
  ident: 10.1016/j.ydbio.2023.09.005_bib87
  article-title: Cat-Map: putting cataract on the map
  publication-title: Mol. Vis.
– year: 2007
  ident: 10.1016/j.ydbio.2023.09.005_bib47
  article-title: Chromatin modifications and their function
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.005
– volume: 218
  start-page: 9
  year: 2007
  ident: 10.1016/j.ydbio.2023.09.005_bib35
  article-title: Connexins in lens development and cataractogenesis
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-007-9033-0
– year: 2011
  ident: 10.1016/j.ydbio.2023.09.005_bib95
  article-title: FoxO transcription factors; Regulation by AKT and 14-3-3 proteins
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2011.06.002
– volume: 101
  start-page: 2975
  year: 2004
  ident: 10.1016/j.ydbio.2023.09.005_bib39
  article-title: Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0400093101
– volume: 7
  start-page: 1728
  year: 2012
  ident: 10.1016/j.ydbio.2023.09.005_bib28
  article-title: Identifying ChIP-seq enrichment using MACS
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.101
– volume: 18
  start-page: 548
  year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib52
  article-title: Understanding nucleosome dynamics and their links to gene expression and DNA replication
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.47
– year: 2023
  ident: 10.1016/j.ydbio.2023.09.005_bib10
  article-title: Autophagy requirements for eye lens differentiation and transparency
  publication-title: Cells
  doi: 10.3390/cells12030475
– volume: 467
  start-page: 1
  year: 2020
  ident: 10.1016/j.ydbio.2023.09.005_bib71
  article-title: Lens fiber cell differentiation occurs independently of fibroblast growth factor receptor signaling in the absence of Pten
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2020.07.017
– volume: 88
  start-page: 173
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib37
  article-title: Genetics of crystallins: cataract and beyond
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2008.10.011
– volume: 259
  start-page: 48
  year: 2003
  ident: 10.1016/j.ydbio.2023.09.005_bib89
  article-title: A role for Wnt/β-catenin signaling in lens epithelial differentiation
  publication-title: Dev. Biol.
  doi: 10.1016/S0012-1606(03)00179-9
– volume: 56
  start-page: 6762
  year: 2015
  ident: 10.1016/j.ydbio.2023.09.005_bib44
  article-title: Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-17201
– volume: 12
  start-page: 518
  year: 2013
  ident: 10.1016/j.ydbio.2023.09.005_bib96
  article-title: FOXO4 is necessary for neural differentiation of human embryonic stem cells
  publication-title: Aging Cell
  doi: 10.1111/acel.12067
– volume: 10
  start-page: 161
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib41
  article-title: Nucleosome positioning and gene regulation: advances through genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2522
– volume: 14
  year: 2013
  ident: 10.1016/j.ydbio.2023.09.005_bib18
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-128
– year: 2016
  ident: 10.1016/j.ydbio.2023.09.005_bib49
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 78
  start-page: 705
  year: 2004
  ident: 10.1016/j.ydbio.2023.09.005_bib98
  article-title: Characterisation of TGF-β2 signalling and function in a human lens cell line
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2003.08.006
– volume: 2021
  year: 2021
  ident: 10.1016/j.ydbio.2023.09.005_bib36
  article-title: XSTREME: comprehensive motif analysis of biological sequence datasets
  publication-title: bioRxiv
– volume: 116
  start-page: 141
  year: 2013
  ident: 10.1016/j.ydbio.2023.09.005_bib20
  article-title: Autophagy and mitophagy participate in ocular lens organelle degradation
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2013.08.017
– volume: 26
  start-page: 139
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib81
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– year: 2018
  ident: 10.1016/j.ydbio.2023.09.005_bib13
  article-title: BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2018.06.003
– year: 2007
  ident: 10.1016/j.ydbio.2023.09.005_bib73
  article-title: Insights into the beaded filament of the eye lens
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2007.04.005
– volume: 366
  start-page: 1250
  year: 2011
  ident: 10.1016/j.ydbio.2023.09.005_bib4
  article-title: Biological glass: structural determinants of eye lens transparency
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2010.0302
– year: 2020
  ident: 10.1016/j.ydbio.2023.09.005_bib58
  article-title: Current perspective on the regulation of FOXO4 and its role in disease progression
  publication-title: Cell. Mol. Life Sci.
– volume: 209
  year: 2021
  ident: 10.1016/j.ydbio.2023.09.005_bib11
  article-title: Mechanisms of organelle elimination for lens development and differentiation
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2021.108682
– volume: 29
  start-page: 2570
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib6
  article-title: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00166-09
– volume: 141
  start-page: 3388
  year: 2014
  ident: 10.1016/j.ydbio.2023.09.005_bib15
  article-title: Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly
  publication-title: Development (Camb.)
  doi: 10.1242/dev.106005
– volume: 17
  start-page: 10
  year: 2011
  ident: 10.1016/j.ydbio.2023.09.005_bib63
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J.
  doi: 10.14806/ej.17.1.200
– volume: 19
  start-page: 134
  year: 1981
  ident: 10.1016/j.ydbio.2023.09.005_bib76
  article-title: Lens differentiation in vertebrates: a review of cellular and molecular features
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.1981.tb01141.x
– volume: 17
  start-page: 698
  year: 2006
  ident: 10.1016/j.ydbio.2023.09.005_bib80
  article-title: The role of the lens actin cytoskeleton in fiber cell elongation and differentiation
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2006.10.011
– volume: 75
  start-page: 485
  year: 2002
  ident: 10.1016/j.ydbio.2023.09.005_bib68
  article-title: Lens epithelial cell differentiation
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.2002.2057
– volume: 64
  year: 2023
  ident: 10.1016/j.ydbio.2023.09.005_bib94
  article-title: Repurposing a cyclin-dependent kinase 1 (CDK1) mitotic regulatory network to complete terminal differentiation in lens fiber cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.64.2.6
– volume: 37
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib2
  article-title: MEME Suite: tools for motif discovery and searching
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp335
– volume: 46
  start-page: D260
  year: 2018
  ident: 10.1016/j.ydbio.2023.09.005_bib45
  article-title: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1126
– volume: 328
  start-page: 118
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib54
  article-title: Jagged 1 is necessary for normal mouse lens formation
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2009.01.015
– year: 2014
  ident: 10.1016/j.ydbio.2023.09.005_bib85
  article-title: FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-013-1513-z
– year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib19
  article-title: The lens actin filament cytoskeleton: diverse structures for complex functions
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2016.03.005
– year: 2000
  ident: 10.1016/j.ydbio.2023.09.005_bib50
  article-title: The National Eye Institute's low vision education program: improving quality of life
  publication-title: Editorial. Ophthalmology
  doi: 10.1016/S0161-6420(99)00094-9
– volume: 137
  start-page: 315
  year: 2018
  ident: 10.1016/j.ydbio.2023.09.005_bib48
  article-title: A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-018-1884-1
– volume: 12
  start-page: 42
  year: 2019
  ident: 10.1016/j.ydbio.2023.09.005_bib67
  article-title: Peak calling by sparse enrichment analysis for CUT&RUN chromatin profiling
  publication-title: Epigenet. Chromatin
  doi: 10.1186/s13072-019-0287-4
– year: 2011
  ident: 10.1016/j.ydbio.2023.09.005_bib60
  article-title: Understanding the role of growth factors in embryonic development: insights from the lens
  publication-title: Phil. Trans. Biol. Sci.
  doi: 10.1098/rstb.2010.0339
– volume: 4
  start-page: 1515
  year: 2014
  ident: 10.1016/j.ydbio.2023.09.005_bib16
  article-title: Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens
  publication-title: G3: Genes, Genomes, Genetics
  doi: 10.1534/g3.114.012120
– volume: 156
  start-page: 41
  year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib1
  article-title: The molecular mechanisms underlying lens fiber elongation
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2016.03.016
– volume: 331
  start-page: 1571
  year: 2011
  ident: 10.1016/j.ydbio.2023.09.005_bib51
  article-title: Mutations in the RNA granule component TDRD7 cause cataract and glaucoma
  publication-title: Science
  doi: 10.1126/science.1195970
– volume: 420
  year: 2022
  ident: 10.1016/j.ydbio.2023.09.005_bib101
  article-title: FOXO4 mediates resistance to oxidative stress in lens epithelial cells by modulating the TRIM25/Nrf2 signaling
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2022.113340
– volume: 42
  start-page: W187
  year: 2014
  ident: 10.1016/j.ydbio.2023.09.005_bib79
  article-title: DeepTools: a flexible platform for exploring deep-sequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku365
– volume: 12
  start-page: 996
  year: 2002
  ident: 10.1016/j.ydbio.2023.09.005_bib43
  article-title: The human genome browser at UCSC
  publication-title: Genome Res.
  doi: 10.1101/gr.229102
– volume: 43
  start-page: 6827
  year: 2015
  ident: 10.1016/j.ydbio.2023.09.005_bib90
  article-title: Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv589
– volume: 8
  year: 2019
  ident: 10.1016/j.ydbio.2023.09.005_bib66
  article-title: Improved CUT&RUN chromatin profiling tools
  publication-title: Elife
  doi: 10.7554/eLife.46314
– volume: 126
  start-page: 375
  year: 1988
  ident: 10.1016/j.ydbio.2023.09.005_bib72
  article-title: Expression of the delta-crystallin genes in the embryonic chicken lens
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(88)90147-9
– volume: 26
  start-page: 1266
  year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib84
  article-title: Nucleosome mobility and the regulation of gene expression: insights from single-molecule studies
  publication-title: Protein Sci.
  doi: 10.1002/pro.3159
– year: 2006
  ident: 10.1016/j.ydbio.2023.09.005_bib83
  article-title: An essential role for FGF receptor signaling in lens development
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2006.10.002
– volume: 277
  start-page: 14255
  year: 2002
  ident: 10.1016/j.ydbio.2023.09.005_bib92
  article-title: The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110901200
– volume: 22
  year: 2021
  ident: 10.1016/j.ydbio.2023.09.005_bib24
  article-title: A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis
  publication-title: BMC Genom.
  doi: 10.1186/s12864-021-07795-9
– volume: 85
  start-page: 3479
  year: 1988
  ident: 10.1016/j.ydbio.2023.09.005_bib77
  article-title: Gene sharing by δ-crystallin and argininosuccinate lyase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.85.10.3479
– volume: 107
  start-page: 21931
  year: 2010
  ident: 10.1016/j.ydbio.2023.09.005_bib21
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1016071107
– volume: 172
  start-page: 45
  year: 2018
  ident: 10.1016/j.ydbio.2023.09.005_bib91
  article-title: Deletion of GLUT1 in mouse lens epithelium leads to cataract formation
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2018.03.021
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.ydbio.2023.09.005_bib53
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 412
  year: 2022
  ident: 10.1016/j.ydbio.2023.09.005_bib34
  article-title: Suppression of PI3K signaling is linked to autophagy activation and the spatiotemporal induction of the lens organelle free zone
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2022.113043
– volume: 28
  start-page: 907
  year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib9
  article-title: Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e16-12-0865
– volume: 48
  start-page: 829
  year: 2004
  ident: 10.1016/j.ydbio.2023.09.005_bib22
  article-title: Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/ijdb.041866ac
– year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib23
  article-title: Signaling and gene regulatory networks in mammalian lens development
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2017.08.001
– volume: 26
  start-page: 841
  year: 2010
  ident: 10.1016/j.ydbio.2023.09.005_bib78
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 241
  start-page: 493
  year: 2012
  ident: 10.1016/j.ydbio.2023.09.005_bib55
  article-title: Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens
  publication-title: Development
– volume: 3
  start-page: 1933
  year: 1989
  ident: 10.1016/j.ydbio.2023.09.005_bib75
  article-title: Lens crystallins and their genes: diversity and tissue‐specific expression
  publication-title: Faseb. J.
  doi: 10.1096/fasebj.3.8.2656357
– year: 2008
  ident: 10.1016/j.ydbio.2023.09.005_bib30
  article-title: FOXOs, cancer and regulation of apoptosis
  publication-title: Oncogene
  doi: 10.1038/onc.2008.24
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.ydbio.2023.09.005_bib56
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 154
  start-page: 187
  year: 2001
  ident: 10.1016/j.ydbio.2023.09.005_bib69
  article-title: Targeted ablation of NrCAM or ankyrin-B results in disorganized lens fibers leading to cataract formation
  publication-title: JCB (J. Cell Biol.)
  doi: 10.1083/jcb.200104038
– year: 2000
  ident: 10.1016/j.ydbio.2023.09.005_bib42
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– volume: 494
  start-page: 402
  year: 2017
  ident: 10.1016/j.ydbio.2023.09.005_bib17
  article-title: Human alpha A-crystallin missing N-terminal domain poorly complexes with filensin and phakinin
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.09.088
– volume: 280
  start-page: 1
  year: 2005
  ident: 10.1016/j.ydbio.2023.09.005_bib59
  article-title: Growth factor regulation of lens development
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.01.020
– volume: 23
  start-page: 4297
  year: 2004
  ident: 10.1016/j.ydbio.2023.09.005_bib31
  article-title: HSF4 is required for normal cell growth and differentiation during mouse lens development
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600435
– start-page: 1
  year: 2019
  ident: 10.1016/j.ydbio.2023.09.005_bib57
  article-title: Introduction to FOXO biology
  doi: 10.1007/978-1-4939-8900-3_1
– volume: 22
  start-page: 7842
  year: 2002
  ident: 10.1016/j.ydbio.2023.09.005_bib86
  article-title: Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.22.22.7842-7852.2002
– volume: 33
  start-page: 290
  year: 2015
  ident: 10.1016/j.ydbio.2023.09.005_bib74
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3122
SSID ssj0003883
Score 2.448653
Snippet A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms cell cycle
cell differentiation
Cell Differentiation - genetics
chicks
chromatin
Chromatin - metabolism
CUT&RUN
Differentiation
Epigenesis, Genetic
epigenetics
epithelium
eye lens
fiber cells
FOXO4
gene expression
Gene Expression Regulation
genome
H3K27ac
histone code
homeostasis
Lens
Lens, Crystalline - metabolism
Multiomics
organelles
oxidative stress
sequence analysis
transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Title Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation
URI https://dx.doi.org/10.1016/j.ydbio.2023.09.005
https://www.ncbi.nlm.nih.gov/pubmed/37722500
https://www.proquest.com/docview/2866377771
https://www.proquest.com/docview/2942105753
https://pubmed.ncbi.nlm.nih.gov/PMC10843493
Volume 504
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-564X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003883
  issn: 0012-1606
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 1095-564X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0003883
  issn: 0012-1606
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1095-564X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0003883
  issn: 0012-1606
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1095-564X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0003883
  issn: 0012-1606
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1095-564X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003883
  issn: 0012-1606
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1095-564X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0003883
  issn: 0012-1606
  databaseCode: DIK
  dateStart: 19590101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-564X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003883
  issn: 0012-1606
  databaseCode: AKRWK
  dateStart: 19590401
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQuqOW5lK6MxJHQxHYePpaK1QKivVBpxcXyUwRQtupuD73w25mJkxULaA_k5CRjyfFnz3yO5gHwyohKRitCxsuIBxTXmMyoaDNkypEHF3MX6KD46byaX8oPi3KxB2djLAy5VQ66P-n0XlsPT06G2Ty5aluK8S14gfwbSTTaNEUBv0LWfRDf4u1GG4smpeJE4Yykx8xDvY_XrbctRQBy0Sc7pRp2_7ZOf7PPP50of7NKswN4MNBJdppGfAh7oXsI91KByVtsfVn2rUdg-0hbCkFmZshDwtrBmzys2OxicSFZ2zFcTxTWyK5TjXpEjS0jo4Ip3xkaqBWL5GLC6H8_G4urrBO8j-Fy9u7z2Twb6itkTiqxzpSvfUC-4mOFRqrMC2dwR3LjApIIH62TQXknQinq2BRFVNYoJ7xVlVJeCieewH637MIzYLzk1uS5R_pRy0YYY-pQuSgqomioTifAx3nVbkg-TjUwfujRy-yb7sHQBIbOlUYwJvB60-kq5d7YLV6NgOmtJaTROuzu-HKEV-Pmohk0XVjerDRvkJDVeBU7ZJTkVCy5FBN4mpbEZrTYF_Vlnk-g2VosGwFK7r39pmu_9km-i7yRAmF6_r9fdQT36S653ryA_fX1TThGArW2U7jz5mcxhbun7z_Oz6f9fvkFSxodow
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrRBcUHkvFDASR6ImtvPwsaq62tJ2e2mlFRfLTzWAslV3e-i_Zxw7qy6gPZCTFc9Ijmc88zmaB8AXxSruNXMZLT1eUEyjMiW8zhApe-qMz40LF8XzWTW94t_m5XwHjoZcmBBWmWx_tOm9tU5vDtJuHty0bcjxLWiB-BtBNPo00TyCXV6iTR7B7uHJ6XS2NsisidU4kT4LDEPxoT7M697qNiQBUtbXOw1t7P7toP4GoH_GUT5wTJM9eJYQJTmMi34OO657AY9jj8l7HH1f9KOXoPtk25CFTFQqRULaFFDulmRyMb_gpO0IqlTIbCS3sU09Co4sPAk9U34S9FFL4kOUCQm__MnQX2UVJfwKribHl0fTLLVYyAwXbJUJW1uHkMX6Cv1UmRdG4aGkyjjEEdZrw52whrmS1b4pCi-0EoZZLSohLGeGvYZRt-jcWyC0pFrluUUEUvOGKaVqVxnPqoDS0KKOgQ77Kk2qPx7aYPySQ6DZD9kLQwZhyFxIFMYYvq6ZbmL5je3k1SAwuaFFEh3EdsbPg3glnq-wg6pzi7ulpA1ishqfYguN4DT0Sy7ZGN5ElVivFnnRZOb5GJoNZVkThPremzNde93X-S7yhjMU07v__apP8GR6eX4mz05mp-_haZiJkTj7MFrd3rkPiKdW-mM6L78BKA8fRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiomic+analysis+implicates+FOXO4+in+genetic+regulation+of+chick+lens+fiber+cell+differentiation&rft.jtitle=Developmental+biology&rft.au=Brennan%2C+Lisa&rft.au=Disatham%2C+Joshua&rft.au=Menko%2C+A+Sue&rft.au=Kantorow%2C+Marc&rft.date=2023-12-01&rft.issn=0012-1606&rft.volume=504+p.25-37&rft.spage=25&rft.epage=37&rft_id=info:doi/10.1016%2Fj.ydbio.2023.09.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1606&client=summon