Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells...
Saved in:
Published in | Developmental biology Vol. 504; pp. 25 - 37 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-1606 1095-564X 1095-564X |
DOI | 10.1016/j.ydbio.2023.09.005 |
Cover
Abstract | A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < −0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
[Display omitted]
•FOXO4 binds throughout the lens fiber cell genome.•FOXO4 binding correlates with activation of lens fiber cell-specific genes.•FOXO4 binding is associated with open chromatin conformation and H3K27ac modification.•FOXO4 is implicated in control of lens cell differentiation. |
---|---|
AbstractList | A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < −0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
[Display omitted]
•FOXO4 binds throughout the lens fiber cell genome.•FOXO4 binding correlates with activation of lens fiber cell-specific genes.•FOXO4 binding is associated with open chromatin conformation and H3K27ac modification.•FOXO4 is implicated in control of lens cell differentiation. A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < −0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation. A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation. A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation. |
Author | Disatham, Joshua Kantorow, Marc Brennan, Lisa Menko, A. Sue |
AuthorAffiliation | 1 Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 2 Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA |
AuthorAffiliation_xml | – name: 2 Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA – name: 1 Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL |
Author_xml | – sequence: 1 givenname: Lisa surname: Brennan fullname: Brennan, Lisa organization: Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA – sequence: 2 givenname: Joshua surname: Disatham fullname: Disatham, Joshua organization: Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA – sequence: 3 givenname: A. Sue surname: Menko fullname: Menko, A. Sue organization: Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA – sequence: 4 givenname: Marc surname: Kantorow fullname: Kantorow, Marc email: mkantoro@health.fau.edu organization: Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37722500$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFX4CEfOSSMI7z5QNCqGpppaK9gNSb5diT7SxZZ7GTSvvv8e6WCjgAJx_8vKN35jljJ370yNhrAbkAUb9b5zvX0ZgXUMgcVA5QPWMLAarKqrq8O2ELAFFkoob6lJ3FuAYA2bbyBTuVTVMUFcCCdZ_nYaJxQ5Ybb4ZdpMhpsx3Imgkjv1reLUtOnq_Q45SggKt5MCnh-dhze0_2Gx_QR95Th4FbHAbuqO8xoJ_oAL5kz3szRHz1-J6zr1eXXy6us9vlp5uLj7eZLZWcMuUah62Srq-LtqxAWFNJURiLoITrO1uiclZiJZu-FaJXnVFWuk7VSrlSWnnOPhznbudug86mAsEMehtoY8JOj4b07z-e7vVqfNAC2lKmDmnC28cJYfw-Y5z0huJ-JeNxnKMuVFkIqJrqP9C2rtOVm0Yk9M2vvZ4K_ZSQAHkEbBhjDNg_IQL0XrVe64NqvVetQemkOqXUHylL0-HgaTka_pF9f8xi8vFAGHS0hN6io4B20m6kv-Z_AFxtx64 |
CitedBy_id | crossref_primary_10_1167_iovs_65_11_27 crossref_primary_10_1002_dvdy_766 |
Cites_doi | 10.1038/cddis.2017.478 10.1101/gad.14.2.245 10.1038/nmeth.3317 10.1093/bioinformatics/btv145 10.1126/science.1063127 10.3390/biom13040693 10.1016/j.semcdb.2006.10.002 10.1186/gb-2008-9-9-r137 10.1152/physrev.00034.2009 10.1016/j.bbamcr.2010.11.025 10.1074/jbc.M804629200 10.4161/auto.28768 10.1371/annotation/71d78295-dc0f-4e78-9c99-45b730952d9b 10.1186/s13072-022-00440-z 10.1016/j.ydbio.2015.06.022 10.1111/febs.16221 10.1186/1471-213X-10-13 10.1016/j.exer.2020.108129 10.1093/bioinformatics/btu170 10.1016/j.ydbio.2006.06.045 10.1016/j.ydbio.2019.04.020 10.1002/cpz1.90 10.1016/j.exer.2008.11.007 10.7554/eLife.21856 10.1098/rsob.210265 10.1093/hmg/ddaa096 10.1111/acel.12427 10.1074/jbc.M302042200 10.1016/j.cell.2007.02.005 10.1007/s00232-007-9033-0 10.1016/j.bbamcr.2011.06.002 10.1073/pnas.0400093101 10.1038/nprot.2012.101 10.1038/nrm.2017.47 10.3390/cells12030475 10.1016/j.ydbio.2020.07.017 10.1016/j.exer.2008.10.011 10.1016/S0012-1606(03)00179-9 10.1167/iovs.15-17201 10.1111/acel.12067 10.1038/nrg2522 10.1186/1471-2105-14-128 10.1093/nar/gkw377 10.1016/j.exer.2003.08.006 10.1016/j.exer.2013.08.017 10.1093/bioinformatics/btp616 10.1016/j.exer.2018.06.003 10.1016/j.yexcr.2007.04.005 10.1098/rstb.2010.0302 10.1016/j.exer.2021.108682 10.1128/MCB.00166-09 10.1242/dev.106005 10.14806/ej.17.1.200 10.1111/j.1432-0436.1981.tb01141.x 10.1016/j.semcdb.2006.10.011 10.1006/exer.2002.2057 10.1167/iovs.64.2.6 10.1093/nar/gkp335 10.1093/nar/gkx1126 10.1016/j.ydbio.2009.01.015 10.1007/s00018-013-1513-z 10.1016/j.exer.2016.03.005 10.1016/S0161-6420(99)00094-9 10.1007/s00439-018-1884-1 10.1186/s13072-019-0287-4 10.1098/rstb.2010.0339 10.1534/g3.114.012120 10.1016/j.exer.2016.03.016 10.1126/science.1195970 10.1016/j.yexcr.2022.113340 10.1093/nar/gku365 10.1101/gr.229102 10.1093/nar/gkv589 10.7554/eLife.46314 10.1016/0012-1606(88)90147-9 10.1002/pro.3159 10.1074/jbc.M110901200 10.1186/s12864-021-07795-9 10.1073/pnas.85.10.3479 10.1073/pnas.1016071107 10.1016/j.exer.2018.03.021 10.1038/nmeth.1923 10.1016/j.yexcr.2022.113043 10.1091/mbc.e16-12-0865 10.1387/ijdb.041866ac 10.1016/j.tig.2017.08.001 10.1093/bioinformatics/btq033 10.1096/fasebj.3.8.2656357 10.1038/onc.2008.24 10.1093/bioinformatics/btp352 10.1083/jcb.200104038 10.1093/nar/28.1.27 10.1016/j.bbrc.2017.09.088 10.1016/j.ydbio.2005.01.020 10.1038/sj.emboj.7600435 10.1007/978-1-4939-8900-3_1 10.1128/MCB.22.22.7842-7852.2002 10.1038/nbt.3122 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.ydbio.2023.09.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1095-564X |
EndPage | 37 |
ExternalDocumentID | PMC10843493 37722500 10_1016_j_ydbio_2023_09_005 S0012160623001598 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY026478 |
GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 29F 3O- 4.4 457 4G. 4R4 53G 5GY 5RE 5VS 6I. 7-5 71M 85S 8P~ 9JM 9M8 AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXLA ABCQJ ABDPE ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABVKL ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACRLP ACRPL ADBBV ADEZE ADFGL ADIYS ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEKER AENEX AEXQZ AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC CAG COF CS3 D0L DIK DM4 DU5 E3Z EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ H~9 IH2 IHE IXB J1W K-O KOM LG5 LX2 M41 MO0 MOBAO MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RSU SBG SCC SDF SDG SES SEW SPCBC SSN SSU SSZ T5K TAE TN5 TR2 UPT UQL VH1 WH7 WUQ X7M XJT XOL XPP ZGI ZKB ZMT ~G- ~KM AATTM AAXUO AAYWO AAYXX ACVFH ADCNI ADXHL AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT EFLBG ~HD 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c493t-9d7de893df6284501ca5312ace091dfbc4e9dc3e537f811f9ba9c3db9699d43c3 |
IEDL.DBID | IXB |
ISSN | 0012-1606 1095-564X |
IngestDate | Thu Aug 21 18:36:27 EDT 2025 Sat Sep 27 17:57:28 EDT 2025 Sat Sep 27 22:58:44 EDT 2025 Mon Jul 21 06:07:35 EDT 2025 Tue Jul 01 00:49:21 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Sat Dec 14 16:15:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CUT&RUN Lens FOXO4 Differentiation H3K27ac |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-9d7de893df6284501ca5312ace091dfbc4e9dc3e537f811f9ba9c3db9699d43c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work and share first authorship. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0012160623001598 |
PMID | 37722500 |
PQID | 2866377771 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10843493 proquest_miscellaneous_2942105753 proquest_miscellaneous_2866377771 pubmed_primary_37722500 crossref_primary_10_1016_j_ydbio_2023_09_005 crossref_citationtrail_10_1016_j_ydbio_2023_09_005 elsevier_sciencedirect_doi_10_1016_j_ydbio_2023_09_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Developmental biology |
PublicationTitleAlternate | Dev Biol |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – sequence: 0 name: Elsevier Inc |
References | Langmead, Salzberg (bib53) 2012; 9 Brennan, Costello, Hejtmancik, Menko, Riazuddin, Shiels, Kantorow (bib10) 2023 Gui, Burgering (bib38) 2022 Barnum, Saai, Patel, Cheng, Anand, Xu, Dash, Siddam, Glazewski, Paglione, Polson, Chuma, Mason, Wei, Batish, Fowler, Lachke (bib3) 2021; 29 Cvekl, Yang, Chauhan, Cveklova (bib22) 2004; 48 Liu, Li, Luo (bib58) 2020 Disatham, Brennan, Cvekl, Kantorow (bib25) 2023 Kim, Langmead, Salzberg (bib46) 2015; 12 Burgess, Zhang, Siefker, Vaca, Kuracha, Reneker, Overbeek, Govindarajan (bib14) 2010; 10 Grant, Bailey (bib36) 2021; 2021 Disatham, Chauss, Gheyas, Brennan, Blanco, Daley, Menko, Kantorow (bib27) 2019; 453 Mathias, White, Gong (bib65) 2010; 90 Disatham, Brennan, Jiao, Ma, Hejtmancik, Kantorow (bib26) 2022; 15 Costello, Brennan, Basu, Chauss, Mohamed, Gilliland, Johnsen, Menko, Kantorow (bib20) 2013; 116 Skene, Henikoff (bib88) 2017; 6 Chaves, Gupta, Srivastava, Srivastava (bib17) 2017; 494 Lai, Pugh (bib52) 2017; 18 Maddala, Nagendran, Lang, Morozov, Rao (bib61) 2015; 406 Xie, Bailey, Kuleshov, Clarke, Evangelista, Jenkins, Lachmann, Wojciechowicz, Kropiwnicki, Jagodnik, Jeon, Ma’ayan (bib100) 2021; 1 Tzivion, Dobson, Ramakrishnan (bib95) 2011 Rao, Maddala (bib80) 2006; 17 Stump, Ang, Chen, von Bahr, Lovicu, Pinson, de Iongh, Yamaguchi, Sassoon, McAvoy (bib89) 2003; 259 Vilchez, Boyer, Lutz, Merkwirth, Morantte, Tse, Spencer, Page, Masliah, Berggren, Gage, Dillin (bib96) 2013; 12 Lachke, Alkuraya, Kneeland, Ohn, Aboukhalil, Howell, Saadi, Cavallesco, Yue, Tsai, Nair, Cosma, Smith, Hodges, Alfadhli, Al-Hajeri, Shamseldin, Behbehani, Hannon, Bulyk, Drack, Anderson, John, Maas (bib51) 2011; 331 Bolger, Lohse, Usadel (bib8) 2014; 30 Robinson (bib82) 2006; 17 Bellot, Garcia-Medina, Gounon, Chiche, Roux, Pouysségur, Mazure (bib6) 2009; 29 Basu, Rajakaruna, Reyes, Van Bockstaele, Menko (bib5) 2014; 10 Khairallah, Kahloun, Bourne, Limburg, Flaxman, Jonas, Keeffe, Leasher, Naidoo, Pesudovs, Price, White, Wong, Resnikoff, Taylor (bib44) 2015; 56 Bassnett, Shi, Vrensen (bib4) 2011; 366 Bailey, Boden, Buske, Frith, Grant, Clementi, Ren, Li, Noble (bib2) 2009; 37 Disatham, Brennan, Chauss, Kantorow, Afzali, Kantorow (bib24) 2021; 22 Hosaka, Biggs, Tieu, Boyer, Varki, Cavenee, Arden (bib39) 2004; 101 Lovicu, McAvoy (bib59) 2005; 280 Tang, Dowbenko, Jackson, Toney, Lewin, Dent, Lasky (bib92) 2002; 277 Creyghton, Cheng, Welstead, Kooistra, Carey, Steine, Hanna, Lodato, Frampton, Sharp, Boyer, Young, Jaenisch (bib21) 2010; 107 Shiels, Bennett, Hejtmancik (bib87) 2010; 16 Piatigorsky, O'Brien, Norman, Kalumuck, Wistow, Borras, Nickerson, Wawrousek (bib77) 1988; 85 Robinson (bib83) 2006 Menko (bib68) 2002; 75 Fu, Tindall (bib30) 2008 Ramírez, Dündar, Diehl, Grüning, Manke (bib79) 2014; 42 Jiang, Pugh (bib41) 2009; 10 Jenuwein, Allis (bib40) 2001 FitzGerald (bib29) 2009; 88 Le, Conley, Brown (bib54) 2009; 328 Gong, Cheng, Xia (bib35) 2007; 218 Piatigorsky (bib76) 1981; 19 Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nussbaum, Myers, Brown, Li, Shirley (bib103) 2008; 9 Schmidt, Fernandez de Mattos, van der Horst, Klompmaker, Kops, Lam, Burgering, Medema (bib86) 2002; 22 Wormstone, Tamiya, Eldred, Lazaridis, Chantry, Reddan, Anderson, Duncan (bib98) 2004; 78 Martin (bib63) 2011; 17 Blixt, Mahlapuu, Aitola, Pelto-Huikko, Enerbäck, Carlsson (bib7) 2000; 14 Martins, Lithgow, Link (bib64) 2016 Kent, Sugnet, Furey, Roskin, Pringle, Zahler, Haussler (bib43) 2002; 12 Yu, Wang, He (bib102) 2015; 31 Xie, Overbeek, Reneker (bib99) 2006; 298 Chen, Tan, Kou, Duan, Wang, Meirelles, Clark, Ma’ayan (bib18) 2013; 14 Yang, Zhang, Liu, Meng, Du, Shao, Liu, Fang (bib101) 2022; 420 Brennan, McGreal-Estrada, Logan, Cvekl, Menko, Kantorow (bib13) 2018 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib56) 2009; 25 Kanehisa, Goto (bib42) 2000 Khan, Fornes, Stigliani, Gheorghe, Castro-Mondragon, van der Lee, Bessy, Chèneby, Kulkarni, Tan, Baranasic, Arenillas, Sandelin, Vandepoele, Lenhard, Ballester, Wasserman, Parcy, Mathelier (bib45) 2018; 46 Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (bib74) 2015; 33 Perng, Zhang, Quinlan (bib73) 2007 Makrides, Wang, Tao, Schwartz, Zhang (bib62) 2022 Rudnizky, Malik, Bavly, Pnueli, Melamed, Kaplan (bib84) 2017; 26 Cheng, Nowak, Fowler (bib19) 2017 Link (bib57) 2019 Moré, Kirsch, Rathjen (bib69) 2001; 154 Wolf, Yang, Wang, Xie, Braunger, Tamm, Zavadil, Cvekl (bib97) 2009; 4 Cvekl, Zhang (bib23) 2017 Chauss, Basu, Rajakaruna, Ma, Gau, Anastas, Brennan, Hejtmancik, Menko, Kantorow (bib16) 2014; 4 Quinlan, Hall (bib78) 2010; 26 Piatigorsky (bib75) 1989; 3 Chaffee, Shang, Chang, Clement, Eddy, Wagner, Nakahara, Nagata, Robinson, Taylor (bib15) 2014; 141 Robinson, McCarthy, Smyth (bib81) 2009; 26 Brennan, Disatham, Kantorow (bib12) 2020; 198 Feng, Liu, Qin, Zhang, Liu (bib28) 2012; 7 Le, Conley, Mead, Rowan, Yutzey, Brown (bib55) 2012; 241 Boswell, Korol, West-Mays, Musil (bib9) 2017; 28 Meers, Bryson, Henikoff, Henikoff (bib66) 2019; 8 Kouzarides (bib47) 2007 Lovicu, McAvoy, de Iongh (bib60) 2011 Obsil, Obsilova (bib70) 2011 Audette, Scheiblin, Duncan (bib1) 2017; 156 Gao, Huang, Wang, Huang, Liu, Liao, Yu, Lu, Han, Hu, Qu, Liu, Yimer, Yang, Tang, Li, Liu (bib33) 2017; 8 Parker, Wawrousek, Piatigorsky (bib72) 1988; 126 Sun, Rockowitz, Xie, Ashery-Padan, Zheng, Cvekl (bib90) 2015; 43 Brennan, Disatham, Kantorow (bib11) 2021; 209 Padula, Sidler, Wagner, Manz, Lovicu, Robinson (bib71) 2020; 467 Meers, Tenenbaum, Henikoff (bib67) 2019; 12 Kupfer (bib50) 2000 Taylor, Gu, Chang, Yang, Francisco, Rowan, Bejarano, Pruitt, Zhu, Weiss, Brennan, Kantorow, Whitcomb (bib94) 2023; 64 Krall, Htun, Anand, Hart, Lachke, Slavotinek (bib48) 2018; 137 Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann, McDermott, Monteiro, Gundersen, Ma’ayan (bib49) 2016 Fujimoto, Oshima, Shinkawa, Bei, Inouye, Hayashida, Takii, Nakai (bib32) 2008; 283 Sanchez, Candau, Bernardi (bib85) 2014 Tang, Lasky (bib93) 2003; 278 Fujimoto, Izu, Seki, Fukuda, Nishida, Yamada, Kato, Yonemura, Inouye, Nakai (bib31) 2004; 23 Swarup, Bell, Du, Han, Soto, Abel, Bravo-Nuevo, FitzGerald, Peachey, Philp (bib91) 2018; 172 Gheyas, Ortega-Alvarez, Chauss, Kantorow, Menko (bib34) 2022; 412 Graw (bib37) 2009; 88 Audette (10.1016/j.ydbio.2023.09.005_bib1) 2017; 156 Martins (10.1016/j.ydbio.2023.09.005_bib64) 2016 Sun (10.1016/j.ydbio.2023.09.005_bib90) 2015; 43 Krall (10.1016/j.ydbio.2023.09.005_bib48) 2018; 137 Perng (10.1016/j.ydbio.2023.09.005_bib73) 2007 Chauss (10.1016/j.ydbio.2023.09.005_bib16) 2014; 4 Piatigorsky (10.1016/j.ydbio.2023.09.005_bib76) 1981; 19 Wolf (10.1016/j.ydbio.2023.09.005_bib97) 2009; 4 Gui (10.1016/j.ydbio.2023.09.005_bib38) 2022 Chaffee (10.1016/j.ydbio.2023.09.005_bib15) 2014; 141 Le (10.1016/j.ydbio.2023.09.005_bib54) 2009; 328 Mathias (10.1016/j.ydbio.2023.09.005_bib65) 2010; 90 Parker (10.1016/j.ydbio.2023.09.005_bib72) 1988; 126 Basu (10.1016/j.ydbio.2023.09.005_bib5) 2014; 10 Menko (10.1016/j.ydbio.2023.09.005_bib68) 2002; 75 Brennan (10.1016/j.ydbio.2023.09.005_bib13) 2018 Jenuwein (10.1016/j.ydbio.2023.09.005_bib40) 2001 Piatigorsky (10.1016/j.ydbio.2023.09.005_bib77) 1988; 85 Rudnizky (10.1016/j.ydbio.2023.09.005_bib84) 2017; 26 Quinlan (10.1016/j.ydbio.2023.09.005_bib78) 2010; 26 Brennan (10.1016/j.ydbio.2023.09.005_bib12) 2020; 198 Yang (10.1016/j.ydbio.2023.09.005_bib101) 2022; 420 Boswell (10.1016/j.ydbio.2023.09.005_bib9) 2017; 28 Kuleshov (10.1016/j.ydbio.2023.09.005_bib49) 2016 Khairallah (10.1016/j.ydbio.2023.09.005_bib44) 2015; 56 Obsil (10.1016/j.ydbio.2023.09.005_bib70) 2011 Shiels (10.1016/j.ydbio.2023.09.005_bib87) 2010; 16 Tang (10.1016/j.ydbio.2023.09.005_bib92) 2002; 277 Xie (10.1016/j.ydbio.2023.09.005_bib99) 2006; 298 Disatham (10.1016/j.ydbio.2023.09.005_bib26) 2022; 15 Rao (10.1016/j.ydbio.2023.09.005_bib80) 2006; 17 Wormstone (10.1016/j.ydbio.2023.09.005_bib98) 2004; 78 Cheng (10.1016/j.ydbio.2023.09.005_bib19) 2017 Brennan (10.1016/j.ydbio.2023.09.005_bib11) 2021; 209 Le (10.1016/j.ydbio.2023.09.005_bib55) 2012; 241 Stump (10.1016/j.ydbio.2023.09.005_bib89) 2003; 259 Robinson (10.1016/j.ydbio.2023.09.005_bib82) 2006; 17 Lovicu (10.1016/j.ydbio.2023.09.005_bib59) 2005; 280 Fujimoto (10.1016/j.ydbio.2023.09.005_bib32) 2008; 283 Fujimoto (10.1016/j.ydbio.2023.09.005_bib31) 2004; 23 Bolger (10.1016/j.ydbio.2023.09.005_bib8) 2014; 30 Gheyas (10.1016/j.ydbio.2023.09.005_bib34) 2022; 412 Disatham (10.1016/j.ydbio.2023.09.005_bib27) 2019; 453 Kupfer (10.1016/j.ydbio.2023.09.005_bib50) 2000 Grant (10.1016/j.ydbio.2023.09.005_bib36) 2021; 2021 Khan (10.1016/j.ydbio.2023.09.005_bib45) 2018; 46 Feng (10.1016/j.ydbio.2023.09.005_bib28) 2012; 7 FitzGerald (10.1016/j.ydbio.2023.09.005_bib29) 2009; 88 Meers (10.1016/j.ydbio.2023.09.005_bib67) 2019; 12 Robinson (10.1016/j.ydbio.2023.09.005_bib83) 2006 Padula (10.1016/j.ydbio.2023.09.005_bib71) 2020; 467 Maddala (10.1016/j.ydbio.2023.09.005_bib61) 2015; 406 Ramírez (10.1016/j.ydbio.2023.09.005_bib79) 2014; 42 Brennan (10.1016/j.ydbio.2023.09.005_bib10) 2023 Gao (10.1016/j.ydbio.2023.09.005_bib33) 2017; 8 Swarup (10.1016/j.ydbio.2023.09.005_bib91) 2018; 172 Tzivion (10.1016/j.ydbio.2023.09.005_bib95) 2011 Yu (10.1016/j.ydbio.2023.09.005_bib102) 2015; 31 Hosaka (10.1016/j.ydbio.2023.09.005_bib39) 2004; 101 Moré (10.1016/j.ydbio.2023.09.005_bib69) 2001; 154 Disatham (10.1016/j.ydbio.2023.09.005_bib25) 2023 Xie (10.1016/j.ydbio.2023.09.005_bib100) 2021; 1 Gong (10.1016/j.ydbio.2023.09.005_bib35) 2007; 218 Robinson (10.1016/j.ydbio.2023.09.005_bib81) 2009; 26 Jiang (10.1016/j.ydbio.2023.09.005_bib41) 2009; 10 Skene (10.1016/j.ydbio.2023.09.005_bib88) 2017; 6 Pertea (10.1016/j.ydbio.2023.09.005_bib74) 2015; 33 Burgess (10.1016/j.ydbio.2023.09.005_bib14) 2010; 10 Blixt (10.1016/j.ydbio.2023.09.005_bib7) 2000; 14 Lovicu (10.1016/j.ydbio.2023.09.005_bib60) 2011 Schmidt (10.1016/j.ydbio.2023.09.005_bib86) 2002; 22 Chen (10.1016/j.ydbio.2023.09.005_bib18) 2013; 14 Lai (10.1016/j.ydbio.2023.09.005_bib52) 2017; 18 Kent (10.1016/j.ydbio.2023.09.005_bib43) 2002; 12 Chaves (10.1016/j.ydbio.2023.09.005_bib17) 2017; 494 Creyghton (10.1016/j.ydbio.2023.09.005_bib21) 2010; 107 Fu (10.1016/j.ydbio.2023.09.005_bib30) 2008 Piatigorsky (10.1016/j.ydbio.2023.09.005_bib75) 1989; 3 Kanehisa (10.1016/j.ydbio.2023.09.005_bib42) 2000 Cvekl (10.1016/j.ydbio.2023.09.005_bib22) 2004; 48 Lachke (10.1016/j.ydbio.2023.09.005_bib51) 2011; 331 Taylor (10.1016/j.ydbio.2023.09.005_bib94) 2023; 64 Costello (10.1016/j.ydbio.2023.09.005_bib20) 2013; 116 Graw (10.1016/j.ydbio.2023.09.005_bib37) 2009; 88 Makrides (10.1016/j.ydbio.2023.09.005_bib62) 2022 Link (10.1016/j.ydbio.2023.09.005_bib57) 2019 Bellot (10.1016/j.ydbio.2023.09.005_bib6) 2009; 29 Tang (10.1016/j.ydbio.2023.09.005_bib93) 2003; 278 Kim (10.1016/j.ydbio.2023.09.005_bib46) 2015; 12 Bailey (10.1016/j.ydbio.2023.09.005_bib2) 2009; 37 Li (10.1016/j.ydbio.2023.09.005_bib56) 2009; 25 Disatham (10.1016/j.ydbio.2023.09.005_bib24) 2021; 22 Bassnett (10.1016/j.ydbio.2023.09.005_bib4) 2011; 366 Liu (10.1016/j.ydbio.2023.09.005_bib58) 2020 Vilchez (10.1016/j.ydbio.2023.09.005_bib96) 2013; 12 Kouzarides (10.1016/j.ydbio.2023.09.005_bib47) 2007 Sanchez (10.1016/j.ydbio.2023.09.005_bib85) 2014 Barnum (10.1016/j.ydbio.2023.09.005_bib3) 2021; 29 Langmead (10.1016/j.ydbio.2023.09.005_bib53) 2012; 9 Cvekl (10.1016/j.ydbio.2023.09.005_bib23) 2017 Meers (10.1016/j.ydbio.2023.09.005_bib66) 2019; 8 Zhang (10.1016/j.ydbio.2023.09.005_bib103) 2008; 9 Martin (10.1016/j.ydbio.2023.09.005_bib63) 2011; 17 |
References_xml | – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib53 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – year: 2008 ident: bib30 article-title: FOXOs, cancer and regulation of apoptosis publication-title: Oncogene – year: 2011 ident: bib60 article-title: Understanding the role of growth factors in embryonic development: insights from the lens publication-title: Phil. Trans. Biol. Sci. – volume: 37 year: 2009 ident: bib2 article-title: MEME Suite: tools for motif discovery and searching publication-title: Nucleic Acids Res. – volume: 209 year: 2021 ident: bib11 article-title: Mechanisms of organelle elimination for lens development and differentiation publication-title: Exp. Eye Res. – volume: 241 start-page: 493 year: 2012 end-page: 504 ident: bib55 article-title: Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens publication-title: Development – volume: 31 start-page: 2382 year: 2015 end-page: 2383 ident: bib102 article-title: ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization publication-title: Bioinformatics – volume: 198 year: 2020 ident: bib12 article-title: Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a publication-title: Exp. Eye Res. – volume: 101 start-page: 2975 year: 2004 end-page: 2980 ident: bib39 article-title: Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 141 start-page: 3388 year: 2014 end-page: 3398 ident: bib15 article-title: Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly publication-title: Development (Camb.) – volume: 283 start-page: 29961 year: 2008 end-page: 29970 ident: bib32 article-title: Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses publication-title: J. Biol. Chem. – year: 2016 ident: bib49 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res. – volume: 12 start-page: 996 year: 2002 end-page: 1006 ident: bib43 article-title: The human genome browser at UCSC publication-title: Genome Res. – start-page: 1 year: 2019 end-page: 9 ident: bib57 article-title: Introduction to FOXO biology publication-title: Methods in Molecular Biology – volume: 137 start-page: 315 year: 2018 end-page: 328 ident: bib48 article-title: A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans publication-title: Hum. Genet. – volume: 10 year: 2010 ident: bib14 article-title: Activated Ras alters lens and corneal development through induction of distinct downstream targets publication-title: BMC Dev. Biol. – volume: 420 year: 2022 ident: bib101 article-title: FOXO4 mediates resistance to oxidative stress in lens epithelial cells by modulating the TRIM25/Nrf2 signaling publication-title: Exp. Cell Res. – volume: 28 start-page: 907 year: 2017 end-page: 921 ident: bib9 article-title: Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract publication-title: Mol. Biol. Cell – volume: 4 start-page: 1515 year: 2014 end-page: 1527 ident: bib16 article-title: Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens publication-title: G3: Genes, Genomes, Genetics – volume: 48 start-page: 829 year: 2004 end-page: 844 ident: bib22 article-title: Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens publication-title: Int. J. Dev. Biol. – volume: 12 start-page: 357 year: 2015 end-page: 360 ident: bib46 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods – year: 2022 ident: bib38 article-title: FOXOs: masters of the equilibrium publication-title: FEBS J. – year: 2023 ident: bib10 article-title: Autophagy requirements for eye lens differentiation and transparency publication-title: Cells – year: 2018 ident: bib13 article-title: BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation publication-title: Exp. Eye Res. – volume: 12 start-page: 518 year: 2013 end-page: 522 ident: bib96 article-title: FOXO4 is necessary for neural differentiation of human embryonic stem cells publication-title: Aging Cell – volume: 126 start-page: 375 year: 1988 end-page: 381 ident: bib72 article-title: Expression of the delta-crystallin genes in the embryonic chicken lens publication-title: Dev. Biol. – volume: 259 start-page: 48 year: 2003 end-page: 61 ident: bib89 article-title: A role for Wnt/β-catenin signaling in lens epithelial differentiation publication-title: Dev. Biol. – volume: 277 start-page: 14255 year: 2002 end-page: 14265 ident: bib92 article-title: The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor publication-title: J. Biol. Chem. – volume: 12 start-page: 42 year: 2019 ident: bib67 article-title: Peak calling by sparse enrichment analysis for CUT&RUN chromatin profiling publication-title: Epigenet. Chromatin – volume: 3 start-page: 1933 year: 1989 end-page: 1940 ident: bib75 article-title: Lens crystallins and their genes: diversity and tissue‐specific expression publication-title: Faseb. J. – volume: 453 start-page: 86 year: 2019 end-page: 104 ident: bib27 article-title: Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression publication-title: Dev. Biol. – volume: 22 year: 2021 ident: bib24 article-title: A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis publication-title: BMC Genom. – volume: 88 start-page: 165 year: 2009 end-page: 172 ident: bib29 article-title: Lens intermediate filaments publication-title: Exp. Eye Res. – volume: 78 start-page: 705 year: 2004 end-page: 714 ident: bib98 article-title: Characterisation of TGF-β2 signalling and function in a human lens cell line publication-title: Exp. Eye Res. – volume: 16 year: 2010 ident: bib87 article-title: Cat-Map: putting cataract on the map publication-title: Mol. Vis. – year: 2011 ident: bib70 article-title: Structural basis for DNA recognition by FOXO proteins publication-title: Biochim. Biophys. Acta Mol. Cell Res. – year: 2001 ident: bib40 article-title: Translating the histone code publication-title: Science – year: 2016 ident: bib64 article-title: Long live FOXO: unraveling the role of FOXO proteins in aging and longevity publication-title: Aging Cell – volume: 298 start-page: 403 year: 2006 end-page: 414 ident: bib99 article-title: Ras signaling is essential for lens cell proliferation and lens growth during development publication-title: Dev. Biol. – volume: 56 start-page: 6762 year: 2015 end-page: 6769 ident: bib44 article-title: Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010 publication-title: Invest. Ophthalmol. Vis. Sci. – year: 2000 ident: bib50 article-title: The National Eye Institute's low vision education program: improving quality of life publication-title: Editorial. Ophthalmology – year: 2020 ident: bib58 article-title: Current perspective on the regulation of FOXO4 and its role in disease progression publication-title: Cell. Mol. Life Sci. – volume: 64 year: 2023 ident: bib94 article-title: Repurposing a cyclin-dependent kinase 1 (CDK1) mitotic regulatory network to complete terminal differentiation in lens fiber cells publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 406 start-page: 74 year: 2015 end-page: 91 ident: bib61 article-title: Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis publication-title: Dev. Biol. – volume: 331 start-page: 1571 year: 2011 end-page: 1576 ident: bib51 article-title: Mutations in the RNA granule component TDRD7 cause cataract and glaucoma publication-title: Science – volume: 10 start-page: 1193 year: 2014 end-page: 1211 ident: bib5 article-title: Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells publication-title: Autophagy – volume: 15 year: 2022 ident: bib26 article-title: Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation publication-title: Epigenet. Chromatin – volume: 19 start-page: 134 year: 1981 end-page: 153 ident: bib76 article-title: Lens differentiation in vertebrates: a review of cellular and molecular features publication-title: Differentiation – volume: 26 start-page: 139 year: 2009 end-page: 140 ident: bib81 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – year: 2007 ident: bib73 article-title: Insights into the beaded filament of the eye lens publication-title: Exp. Cell Res. – volume: 90 start-page: 179 year: 2010 end-page: 206 ident: bib65 article-title: Lens gap junctions in growth, differentiation, and homeostasis publication-title: Physiol. Rev. – volume: 75 start-page: 485 year: 2002 end-page: 490 ident: bib68 article-title: Lens epithelial cell differentiation publication-title: Exp. Eye Res. – volume: 107 start-page: 21931 year: 2010 end-page: 21936 ident: bib21 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 42 start-page: W187 year: 2014 ident: bib79 article-title: DeepTools: a flexible platform for exploring deep-sequencing data publication-title: Nucleic Acids Res. – volume: 172 start-page: 45 year: 2018 end-page: 53 ident: bib91 article-title: Deletion of GLUT1 in mouse lens epithelium leads to cataract formation publication-title: Exp. Eye Res. – volume: 9 start-page: R137 year: 2008 ident: bib103 article-title: Model-based analysis of ChIP-seq (MACS) publication-title: Genome Biol. – volume: 10 start-page: 161 year: 2009 end-page: 172 ident: bib41 article-title: Nucleosome positioning and gene regulation: advances through genomics publication-title: Nat. Rev. Genet. – volume: 26 start-page: 1266 year: 2017 end-page: 1277 ident: bib84 article-title: Nucleosome mobility and the regulation of gene expression: insights from single-molecule studies publication-title: Protein Sci. – year: 2000 ident: bib42 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res. – volume: 29 start-page: 2076 year: 2021 end-page: 2097 ident: bib3 article-title: The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology publication-title: Hum. Mol. Genet. – volume: 17 start-page: 726 year: 2006 end-page: 740 ident: bib82 article-title: An essential role for FGF receptor signaling in lens development publication-title: Semin. Cell Dev. Biol. – volume: 33 start-page: 290 year: 2015 end-page: 295 ident: bib74 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. – year: 2023 ident: bib25 article-title: Multiomics analysis reveals novel genetic determinants for lens differentiation, structure, and transparency publication-title: Biomolecules – volume: 4 year: 2009 ident: bib97 article-title: Identification of Pax6-dependent gene regulatory networks in the mouse lens publication-title: PLoS One – year: 2017 ident: bib19 article-title: The lens actin filament cytoskeleton: diverse structures for complex functions publication-title: Exp. Eye Res. – volume: 280 start-page: 1 year: 2005 end-page: 14 ident: bib59 article-title: Growth factor regulation of lens development publication-title: Dev. Biol. – volume: 8 year: 2017 ident: bib33 article-title: Hsf4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators publication-title: Cell Death Dis. – volume: 366 start-page: 1250 year: 2011 end-page: 1264 ident: bib4 article-title: Biological glass: structural determinants of eye lens transparency publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 154 start-page: 187 year: 2001 end-page: 196 ident: bib69 article-title: Targeted ablation of NrCAM or ankyrin-B results in disorganized lens fibers leading to cataract formation publication-title: JCB (J. Cell Biol.) – volume: 22 start-page: 7842 year: 2002 end-page: 7852 ident: bib86 article-title: Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D publication-title: Mol. Cell Biol. – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib56 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 18 start-page: 548 year: 2017 end-page: 562 ident: bib52 article-title: Understanding nucleosome dynamics and their links to gene expression and DNA replication publication-title: Nat. Rev. Mol. Cell Biol. – volume: 328 start-page: 118 year: 2009 end-page: 126 ident: bib54 article-title: Jagged 1 is necessary for normal mouse lens formation publication-title: Dev. Biol. – volume: 156 start-page: 41 year: 2017 end-page: 49 ident: bib1 article-title: The molecular mechanisms underlying lens fiber elongation publication-title: Exp. Eye Res. – volume: 412 year: 2022 ident: bib34 article-title: Suppression of PI3K signaling is linked to autophagy activation and the spatiotemporal induction of the lens organelle free zone publication-title: Exp. Cell Res. – volume: 7 start-page: 1728 year: 2012 end-page: 1740 ident: bib28 article-title: Identifying ChIP-seq enrichment using MACS publication-title: Nat. Protoc. – volume: 14 start-page: 245 year: 2000 end-page: 254 ident: bib7 article-title: A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle publication-title: Genes Dev. – year: 2014 ident: bib85 article-title: FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis publication-title: Cell. Mol. Life Sci. – volume: 46 start-page: D260 year: 2018 end-page: D266 ident: bib45 article-title: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework publication-title: Nucleic Acids Res. – volume: 17 start-page: 698 year: 2006 end-page: 711 ident: bib80 article-title: The role of the lens actin cytoskeleton in fiber cell elongation and differentiation publication-title: Semin. Cell Dev. Biol. – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: bib8 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics – volume: 8 year: 2019 ident: bib66 article-title: Improved CUT&RUN chromatin profiling tools publication-title: Elife – volume: 2021 year: 2021 ident: bib36 article-title: XSTREME: comprehensive motif analysis of biological sequence datasets publication-title: bioRxiv – volume: 43 start-page: 6827 year: 2015 end-page: 6846 ident: bib90 article-title: Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development publication-title: Nucleic Acids Res. – volume: 1 start-page: e90 year: 2021 ident: bib100 article-title: Gene set knowledge discovery with Enrichr publication-title: Curr. Protoc. – volume: 88 start-page: 173 year: 2009 end-page: 189 ident: bib37 article-title: Genetics of crystallins: cataract and beyond publication-title: Exp. Eye Res. – volume: 17 start-page: 10 year: 2011 ident: bib63 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J. – volume: 278 start-page: 30125 year: 2003 end-page: 30135 ident: bib93 article-title: The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1α by a von Hippel-Lindau protein-independent mechanism publication-title: J. Biol. Chem. – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: bib78 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics – volume: 467 start-page: 1 year: 2020 end-page: 13 ident: bib71 article-title: Lens fiber cell differentiation occurs independently of fibroblast growth factor receptor signaling in the absence of Pten publication-title: Dev. Biol. – volume: 6 year: 2017 ident: bib88 article-title: An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites publication-title: Elife – volume: 14 year: 2013 ident: bib18 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinf. – volume: 494 start-page: 402 year: 2017 end-page: 408 ident: bib17 article-title: Human alpha A-crystallin missing N-terminal domain poorly complexes with filensin and phakinin publication-title: Biochem. Biophys. Res. Commun. – volume: 116 start-page: 141 year: 2013 end-page: 150 ident: bib20 article-title: Autophagy and mitophagy participate in ocular lens organelle degradation publication-title: Exp. Eye Res. – year: 2007 ident: bib47 article-title: Chromatin modifications and their function publication-title: Cell – year: 2006 ident: bib83 article-title: An essential role for FGF receptor signaling in lens development publication-title: Semin. Cell Dev. Biol. – volume: 29 start-page: 2570 year: 2009 end-page: 2581 ident: bib6 article-title: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains publication-title: Mol. Cell Biol. – volume: 218 start-page: 9 year: 2007 end-page: 12 ident: bib35 article-title: Connexins in lens development and cataractogenesis publication-title: J. Membr. Biol. – year: 2022 ident: bib62 article-title: Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development publication-title: Open Biol. – year: 2011 ident: bib95 article-title: FoxO transcription factors; Regulation by AKT and 14-3-3 proteins publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 85 start-page: 3479 year: 1988 end-page: 3483 ident: bib77 article-title: Gene sharing by δ-crystallin and argininosuccinate lyase publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 23 start-page: 4297 year: 2004 end-page: 4306 ident: bib31 article-title: HSF4 is required for normal cell growth and differentiation during mouse lens development publication-title: EMBO J. – year: 2017 ident: bib23 article-title: Signaling and gene regulatory networks in mammalian lens development publication-title: Trends Genet. – volume: 8 year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib33 article-title: Hsf4 regulates lens fiber cell differentiation by activating p53 and its downstream regulators publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.478 – volume: 14 start-page: 245 year: 2000 ident: 10.1016/j.ydbio.2023.09.005_bib7 article-title: A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle publication-title: Genes Dev. doi: 10.1101/gad.14.2.245 – volume: 12 start-page: 357 year: 2015 ident: 10.1016/j.ydbio.2023.09.005_bib46 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 31 start-page: 2382 year: 2015 ident: 10.1016/j.ydbio.2023.09.005_bib102 article-title: ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv145 – year: 2001 ident: 10.1016/j.ydbio.2023.09.005_bib40 article-title: Translating the histone code publication-title: Science doi: 10.1126/science.1063127 – year: 2023 ident: 10.1016/j.ydbio.2023.09.005_bib25 article-title: Multiomics analysis reveals novel genetic determinants for lens differentiation, structure, and transparency publication-title: Biomolecules doi: 10.3390/biom13040693 – volume: 17 start-page: 726 year: 2006 ident: 10.1016/j.ydbio.2023.09.005_bib82 article-title: An essential role for FGF receptor signaling in lens development publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2006.10.002 – volume: 9 start-page: R137 year: 2008 ident: 10.1016/j.ydbio.2023.09.005_bib103 article-title: Model-based analysis of ChIP-seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 90 start-page: 179 year: 2010 ident: 10.1016/j.ydbio.2023.09.005_bib65 article-title: Lens gap junctions in growth, differentiation, and homeostasis publication-title: Physiol. Rev. doi: 10.1152/physrev.00034.2009 – year: 2011 ident: 10.1016/j.ydbio.2023.09.005_bib70 article-title: Structural basis for DNA recognition by FOXO proteins publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2010.11.025 – volume: 283 start-page: 29961 year: 2008 ident: 10.1016/j.ydbio.2023.09.005_bib32 article-title: Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804629200 – volume: 10 start-page: 1193 year: 2014 ident: 10.1016/j.ydbio.2023.09.005_bib5 article-title: Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells publication-title: Autophagy doi: 10.4161/auto.28768 – volume: 4 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib97 article-title: Identification of Pax6-dependent gene regulatory networks in the mouse lens publication-title: PLoS One doi: 10.1371/annotation/71d78295-dc0f-4e78-9c99-45b730952d9b – volume: 15 year: 2022 ident: 10.1016/j.ydbio.2023.09.005_bib26 article-title: Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation publication-title: Epigenet. Chromatin doi: 10.1186/s13072-022-00440-z – volume: 406 start-page: 74 year: 2015 ident: 10.1016/j.ydbio.2023.09.005_bib61 article-title: Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2015.06.022 – year: 2022 ident: 10.1016/j.ydbio.2023.09.005_bib38 article-title: FOXOs: masters of the equilibrium publication-title: FEBS J. doi: 10.1111/febs.16221 – volume: 10 year: 2010 ident: 10.1016/j.ydbio.2023.09.005_bib14 article-title: Activated Ras alters lens and corneal development through induction of distinct downstream targets publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-10-13 – volume: 198 year: 2020 ident: 10.1016/j.ydbio.2023.09.005_bib12 article-title: Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2020.108129 – volume: 30 start-page: 2114 year: 2014 ident: 10.1016/j.ydbio.2023.09.005_bib8 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 298 start-page: 403 year: 2006 ident: 10.1016/j.ydbio.2023.09.005_bib99 article-title: Ras signaling is essential for lens cell proliferation and lens growth during development publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.06.045 – volume: 453 start-page: 86 year: 2019 ident: 10.1016/j.ydbio.2023.09.005_bib27 article-title: Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2019.04.020 – volume: 1 start-page: e90 year: 2021 ident: 10.1016/j.ydbio.2023.09.005_bib100 article-title: Gene set knowledge discovery with Enrichr publication-title: Curr. Protoc. doi: 10.1002/cpz1.90 – volume: 88 start-page: 165 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib29 article-title: Lens intermediate filaments publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2008.11.007 – volume: 6 year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib88 article-title: An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites publication-title: Elife doi: 10.7554/eLife.21856 – year: 2022 ident: 10.1016/j.ydbio.2023.09.005_bib62 article-title: Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development publication-title: Open Biol. doi: 10.1098/rsob.210265 – volume: 29 start-page: 2076 year: 2021 ident: 10.1016/j.ydbio.2023.09.005_bib3 article-title: The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddaa096 – year: 2016 ident: 10.1016/j.ydbio.2023.09.005_bib64 article-title: Long live FOXO: unraveling the role of FOXO proteins in aging and longevity publication-title: Aging Cell doi: 10.1111/acel.12427 – volume: 278 start-page: 30125 year: 2003 ident: 10.1016/j.ydbio.2023.09.005_bib93 article-title: The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1α by a von Hippel-Lindau protein-independent mechanism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M302042200 – volume: 16 year: 2010 ident: 10.1016/j.ydbio.2023.09.005_bib87 article-title: Cat-Map: putting cataract on the map publication-title: Mol. Vis. – year: 2007 ident: 10.1016/j.ydbio.2023.09.005_bib47 article-title: Chromatin modifications and their function publication-title: Cell doi: 10.1016/j.cell.2007.02.005 – volume: 218 start-page: 9 year: 2007 ident: 10.1016/j.ydbio.2023.09.005_bib35 article-title: Connexins in lens development and cataractogenesis publication-title: J. Membr. Biol. doi: 10.1007/s00232-007-9033-0 – year: 2011 ident: 10.1016/j.ydbio.2023.09.005_bib95 article-title: FoxO transcription factors; Regulation by AKT and 14-3-3 proteins publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2011.06.002 – volume: 101 start-page: 2975 year: 2004 ident: 10.1016/j.ydbio.2023.09.005_bib39 article-title: Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0400093101 – volume: 7 start-page: 1728 year: 2012 ident: 10.1016/j.ydbio.2023.09.005_bib28 article-title: Identifying ChIP-seq enrichment using MACS publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.101 – volume: 18 start-page: 548 year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib52 article-title: Understanding nucleosome dynamics and their links to gene expression and DNA replication publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.47 – year: 2023 ident: 10.1016/j.ydbio.2023.09.005_bib10 article-title: Autophagy requirements for eye lens differentiation and transparency publication-title: Cells doi: 10.3390/cells12030475 – volume: 467 start-page: 1 year: 2020 ident: 10.1016/j.ydbio.2023.09.005_bib71 article-title: Lens fiber cell differentiation occurs independently of fibroblast growth factor receptor signaling in the absence of Pten publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2020.07.017 – volume: 88 start-page: 173 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib37 article-title: Genetics of crystallins: cataract and beyond publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2008.10.011 – volume: 259 start-page: 48 year: 2003 ident: 10.1016/j.ydbio.2023.09.005_bib89 article-title: A role for Wnt/β-catenin signaling in lens epithelial differentiation publication-title: Dev. Biol. doi: 10.1016/S0012-1606(03)00179-9 – volume: 56 start-page: 6762 year: 2015 ident: 10.1016/j.ydbio.2023.09.005_bib44 article-title: Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.15-17201 – volume: 12 start-page: 518 year: 2013 ident: 10.1016/j.ydbio.2023.09.005_bib96 article-title: FOXO4 is necessary for neural differentiation of human embryonic stem cells publication-title: Aging Cell doi: 10.1111/acel.12067 – volume: 10 start-page: 161 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib41 article-title: Nucleosome positioning and gene regulation: advances through genomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2522 – volume: 14 year: 2013 ident: 10.1016/j.ydbio.2023.09.005_bib18 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-128 – year: 2016 ident: 10.1016/j.ydbio.2023.09.005_bib49 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw377 – volume: 78 start-page: 705 year: 2004 ident: 10.1016/j.ydbio.2023.09.005_bib98 article-title: Characterisation of TGF-β2 signalling and function in a human lens cell line publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2003.08.006 – volume: 2021 year: 2021 ident: 10.1016/j.ydbio.2023.09.005_bib36 article-title: XSTREME: comprehensive motif analysis of biological sequence datasets publication-title: bioRxiv – volume: 116 start-page: 141 year: 2013 ident: 10.1016/j.ydbio.2023.09.005_bib20 article-title: Autophagy and mitophagy participate in ocular lens organelle degradation publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2013.08.017 – volume: 26 start-page: 139 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib81 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – year: 2018 ident: 10.1016/j.ydbio.2023.09.005_bib13 article-title: BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2018.06.003 – year: 2007 ident: 10.1016/j.ydbio.2023.09.005_bib73 article-title: Insights into the beaded filament of the eye lens publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2007.04.005 – volume: 366 start-page: 1250 year: 2011 ident: 10.1016/j.ydbio.2023.09.005_bib4 article-title: Biological glass: structural determinants of eye lens transparency publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2010.0302 – year: 2020 ident: 10.1016/j.ydbio.2023.09.005_bib58 article-title: Current perspective on the regulation of FOXO4 and its role in disease progression publication-title: Cell. Mol. Life Sci. – volume: 209 year: 2021 ident: 10.1016/j.ydbio.2023.09.005_bib11 article-title: Mechanisms of organelle elimination for lens development and differentiation publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2021.108682 – volume: 29 start-page: 2570 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib6 article-title: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00166-09 – volume: 141 start-page: 3388 year: 2014 ident: 10.1016/j.ydbio.2023.09.005_bib15 article-title: Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly publication-title: Development (Camb.) doi: 10.1242/dev.106005 – volume: 17 start-page: 10 year: 2011 ident: 10.1016/j.ydbio.2023.09.005_bib63 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J. doi: 10.14806/ej.17.1.200 – volume: 19 start-page: 134 year: 1981 ident: 10.1016/j.ydbio.2023.09.005_bib76 article-title: Lens differentiation in vertebrates: a review of cellular and molecular features publication-title: Differentiation doi: 10.1111/j.1432-0436.1981.tb01141.x – volume: 17 start-page: 698 year: 2006 ident: 10.1016/j.ydbio.2023.09.005_bib80 article-title: The role of the lens actin cytoskeleton in fiber cell elongation and differentiation publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2006.10.011 – volume: 75 start-page: 485 year: 2002 ident: 10.1016/j.ydbio.2023.09.005_bib68 article-title: Lens epithelial cell differentiation publication-title: Exp. Eye Res. doi: 10.1006/exer.2002.2057 – volume: 64 year: 2023 ident: 10.1016/j.ydbio.2023.09.005_bib94 article-title: Repurposing a cyclin-dependent kinase 1 (CDK1) mitotic regulatory network to complete terminal differentiation in lens fiber cells publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.64.2.6 – volume: 37 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib2 article-title: MEME Suite: tools for motif discovery and searching publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp335 – volume: 46 start-page: D260 year: 2018 ident: 10.1016/j.ydbio.2023.09.005_bib45 article-title: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1126 – volume: 328 start-page: 118 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib54 article-title: Jagged 1 is necessary for normal mouse lens formation publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2009.01.015 – year: 2014 ident: 10.1016/j.ydbio.2023.09.005_bib85 article-title: FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-013-1513-z – year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib19 article-title: The lens actin filament cytoskeleton: diverse structures for complex functions publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2016.03.005 – year: 2000 ident: 10.1016/j.ydbio.2023.09.005_bib50 article-title: The National Eye Institute's low vision education program: improving quality of life publication-title: Editorial. Ophthalmology doi: 10.1016/S0161-6420(99)00094-9 – volume: 137 start-page: 315 year: 2018 ident: 10.1016/j.ydbio.2023.09.005_bib48 article-title: A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans publication-title: Hum. Genet. doi: 10.1007/s00439-018-1884-1 – volume: 12 start-page: 42 year: 2019 ident: 10.1016/j.ydbio.2023.09.005_bib67 article-title: Peak calling by sparse enrichment analysis for CUT&RUN chromatin profiling publication-title: Epigenet. Chromatin doi: 10.1186/s13072-019-0287-4 – year: 2011 ident: 10.1016/j.ydbio.2023.09.005_bib60 article-title: Understanding the role of growth factors in embryonic development: insights from the lens publication-title: Phil. Trans. Biol. Sci. doi: 10.1098/rstb.2010.0339 – volume: 4 start-page: 1515 year: 2014 ident: 10.1016/j.ydbio.2023.09.005_bib16 article-title: Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens publication-title: G3: Genes, Genomes, Genetics doi: 10.1534/g3.114.012120 – volume: 156 start-page: 41 year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib1 article-title: The molecular mechanisms underlying lens fiber elongation publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2016.03.016 – volume: 331 start-page: 1571 year: 2011 ident: 10.1016/j.ydbio.2023.09.005_bib51 article-title: Mutations in the RNA granule component TDRD7 cause cataract and glaucoma publication-title: Science doi: 10.1126/science.1195970 – volume: 420 year: 2022 ident: 10.1016/j.ydbio.2023.09.005_bib101 article-title: FOXO4 mediates resistance to oxidative stress in lens epithelial cells by modulating the TRIM25/Nrf2 signaling publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2022.113340 – volume: 42 start-page: W187 year: 2014 ident: 10.1016/j.ydbio.2023.09.005_bib79 article-title: DeepTools: a flexible platform for exploring deep-sequencing data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku365 – volume: 12 start-page: 996 year: 2002 ident: 10.1016/j.ydbio.2023.09.005_bib43 article-title: The human genome browser at UCSC publication-title: Genome Res. doi: 10.1101/gr.229102 – volume: 43 start-page: 6827 year: 2015 ident: 10.1016/j.ydbio.2023.09.005_bib90 article-title: Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv589 – volume: 8 year: 2019 ident: 10.1016/j.ydbio.2023.09.005_bib66 article-title: Improved CUT&RUN chromatin profiling tools publication-title: Elife doi: 10.7554/eLife.46314 – volume: 126 start-page: 375 year: 1988 ident: 10.1016/j.ydbio.2023.09.005_bib72 article-title: Expression of the delta-crystallin genes in the embryonic chicken lens publication-title: Dev. Biol. doi: 10.1016/0012-1606(88)90147-9 – volume: 26 start-page: 1266 year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib84 article-title: Nucleosome mobility and the regulation of gene expression: insights from single-molecule studies publication-title: Protein Sci. doi: 10.1002/pro.3159 – year: 2006 ident: 10.1016/j.ydbio.2023.09.005_bib83 article-title: An essential role for FGF receptor signaling in lens development publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2006.10.002 – volume: 277 start-page: 14255 year: 2002 ident: 10.1016/j.ydbio.2023.09.005_bib92 article-title: The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110901200 – volume: 22 year: 2021 ident: 10.1016/j.ydbio.2023.09.005_bib24 article-title: A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis publication-title: BMC Genom. doi: 10.1186/s12864-021-07795-9 – volume: 85 start-page: 3479 year: 1988 ident: 10.1016/j.ydbio.2023.09.005_bib77 article-title: Gene sharing by δ-crystallin and argininosuccinate lyase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.85.10.3479 – volume: 107 start-page: 21931 year: 2010 ident: 10.1016/j.ydbio.2023.09.005_bib21 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1016071107 – volume: 172 start-page: 45 year: 2018 ident: 10.1016/j.ydbio.2023.09.005_bib91 article-title: Deletion of GLUT1 in mouse lens epithelium leads to cataract formation publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2018.03.021 – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.ydbio.2023.09.005_bib53 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 412 year: 2022 ident: 10.1016/j.ydbio.2023.09.005_bib34 article-title: Suppression of PI3K signaling is linked to autophagy activation and the spatiotemporal induction of the lens organelle free zone publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2022.113043 – volume: 28 start-page: 907 year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib9 article-title: Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e16-12-0865 – volume: 48 start-page: 829 year: 2004 ident: 10.1016/j.ydbio.2023.09.005_bib22 article-title: Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.041866ac – year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib23 article-title: Signaling and gene regulatory networks in mammalian lens development publication-title: Trends Genet. doi: 10.1016/j.tig.2017.08.001 – volume: 26 start-page: 841 year: 2010 ident: 10.1016/j.ydbio.2023.09.005_bib78 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 241 start-page: 493 year: 2012 ident: 10.1016/j.ydbio.2023.09.005_bib55 article-title: Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens publication-title: Development – volume: 3 start-page: 1933 year: 1989 ident: 10.1016/j.ydbio.2023.09.005_bib75 article-title: Lens crystallins and their genes: diversity and tissue‐specific expression publication-title: Faseb. J. doi: 10.1096/fasebj.3.8.2656357 – year: 2008 ident: 10.1016/j.ydbio.2023.09.005_bib30 article-title: FOXOs, cancer and regulation of apoptosis publication-title: Oncogene doi: 10.1038/onc.2008.24 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.ydbio.2023.09.005_bib56 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 154 start-page: 187 year: 2001 ident: 10.1016/j.ydbio.2023.09.005_bib69 article-title: Targeted ablation of NrCAM or ankyrin-B results in disorganized lens fibers leading to cataract formation publication-title: JCB (J. Cell Biol.) doi: 10.1083/jcb.200104038 – year: 2000 ident: 10.1016/j.ydbio.2023.09.005_bib42 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.27 – volume: 494 start-page: 402 year: 2017 ident: 10.1016/j.ydbio.2023.09.005_bib17 article-title: Human alpha A-crystallin missing N-terminal domain poorly complexes with filensin and phakinin publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.09.088 – volume: 280 start-page: 1 year: 2005 ident: 10.1016/j.ydbio.2023.09.005_bib59 article-title: Growth factor regulation of lens development publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.01.020 – volume: 23 start-page: 4297 year: 2004 ident: 10.1016/j.ydbio.2023.09.005_bib31 article-title: HSF4 is required for normal cell growth and differentiation during mouse lens development publication-title: EMBO J. doi: 10.1038/sj.emboj.7600435 – start-page: 1 year: 2019 ident: 10.1016/j.ydbio.2023.09.005_bib57 article-title: Introduction to FOXO biology doi: 10.1007/978-1-4939-8900-3_1 – volume: 22 start-page: 7842 year: 2002 ident: 10.1016/j.ydbio.2023.09.005_bib86 article-title: Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D publication-title: Mol. Cell Biol. doi: 10.1128/MCB.22.22.7842-7852.2002 – volume: 33 start-page: 290 year: 2015 ident: 10.1016/j.ydbio.2023.09.005_bib74 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3122 |
SSID | ssj0003883 |
Score | 2.448653 |
Snippet | A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 25 |
SubjectTerms | cell cycle cell differentiation Cell Differentiation - genetics chicks chromatin Chromatin - metabolism CUT&RUN Differentiation Epigenesis, Genetic epigenetics epithelium eye lens fiber cells FOXO4 gene expression Gene Expression Regulation genome H3K27ac histone code homeostasis Lens Lens, Crystalline - metabolism Multiomics organelles oxidative stress sequence analysis transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
Title | Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation |
URI | https://dx.doi.org/10.1016/j.ydbio.2023.09.005 https://www.ncbi.nlm.nih.gov/pubmed/37722500 https://www.proquest.com/docview/2866377771 https://www.proquest.com/docview/2942105753 https://pubmed.ncbi.nlm.nih.gov/PMC10843493 |
Volume | 504 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-564X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003883 issn: 0012-1606 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1095-564X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0003883 issn: 0012-1606 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1095-564X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0003883 issn: 0012-1606 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1095-564X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0003883 issn: 0012-1606 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1095-564X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003883 issn: 0012-1606 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1095-564X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0003883 issn: 0012-1606 databaseCode: DIK dateStart: 19590101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-564X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003883 issn: 0012-1606 databaseCode: AKRWK dateStart: 19590401 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQuqOW5lK6MxJHQxHYePpaK1QKivVBpxcXyUwRQtupuD73w25mJkxULaA_k5CRjyfFnz3yO5gHwyohKRitCxsuIBxTXmMyoaDNkypEHF3MX6KD46byaX8oPi3KxB2djLAy5VQ66P-n0XlsPT06G2Ty5aluK8S14gfwbSTTaNEUBv0LWfRDf4u1GG4smpeJE4Yykx8xDvY_XrbctRQBy0Sc7pRp2_7ZOf7PPP50of7NKswN4MNBJdppGfAh7oXsI91KByVtsfVn2rUdg-0hbCkFmZshDwtrBmzys2OxicSFZ2zFcTxTWyK5TjXpEjS0jo4Ip3xkaqBWL5GLC6H8_G4urrBO8j-Fy9u7z2Twb6itkTiqxzpSvfUC-4mOFRqrMC2dwR3LjApIIH62TQXknQinq2BRFVNYoJ7xVlVJeCieewH637MIzYLzk1uS5R_pRy0YYY-pQuSgqomioTifAx3nVbkg-TjUwfujRy-yb7sHQBIbOlUYwJvB60-kq5d7YLV6NgOmtJaTROuzu-HKEV-Pmohk0XVjerDRvkJDVeBU7ZJTkVCy5FBN4mpbEZrTYF_Vlnk-g2VosGwFK7r39pmu_9km-i7yRAmF6_r9fdQT36S653ryA_fX1TThGArW2U7jz5mcxhbun7z_Oz6f9fvkFSxodow |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrRBcUHkvFDASR6ImtvPwsaq62tJ2e2mlFRfLTzWAslV3e-i_Zxw7qy6gPZCTFc9Ijmc88zmaB8AXxSruNXMZLT1eUEyjMiW8zhApe-qMz40LF8XzWTW94t_m5XwHjoZcmBBWmWx_tOm9tU5vDtJuHty0bcjxLWiB-BtBNPo00TyCXV6iTR7B7uHJ6XS2NsisidU4kT4LDEPxoT7M697qNiQBUtbXOw1t7P7toP4GoH_GUT5wTJM9eJYQJTmMi34OO657AY9jj8l7HH1f9KOXoPtk25CFTFQqRULaFFDulmRyMb_gpO0IqlTIbCS3sU09Co4sPAk9U34S9FFL4kOUCQm__MnQX2UVJfwKribHl0fTLLVYyAwXbJUJW1uHkMX6Cv1UmRdG4aGkyjjEEdZrw52whrmS1b4pCi-0EoZZLSohLGeGvYZRt-jcWyC0pFrluUUEUvOGKaVqVxnPqoDS0KKOgQ77Kk2qPx7aYPySQ6DZD9kLQwZhyFxIFMYYvq6ZbmL5je3k1SAwuaFFEh3EdsbPg3glnq-wg6pzi7ulpA1ishqfYguN4DT0Sy7ZGN5ElVivFnnRZOb5GJoNZVkThPremzNde93X-S7yhjMU07v__apP8GR6eX4mz05mp-_haZiJkTj7MFrd3rkPiKdW-mM6L78BKA8fRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiomic+analysis+implicates+FOXO4+in+genetic+regulation+of+chick+lens+fiber+cell+differentiation&rft.jtitle=Developmental+biology&rft.au=Brennan%2C+Lisa&rft.au=Disatham%2C+Joshua&rft.au=Menko%2C+A+Sue&rft.au=Kantorow%2C+Marc&rft.date=2023-12-01&rft.issn=0012-1606&rft.volume=504+p.25-37&rft.spage=25&rft.epage=37&rft_id=info:doi/10.1016%2Fj.ydbio.2023.09.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1606&client=summon |