An Adaptive Information Security System for 5G-Enabled Smart Grid Based on Artificial Neural Network and Case-Based Learning Algorithms

With the deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in different layers in smart grid. However, it introduces more attack interfaces that the traditional information security system in smart grid cannot r...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 16; p. 872978
Main Authors Jiang, Chengzhi, Xu, Hao, Huang, Chuanfeng, Huang, Qiwei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 14.04.2022
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5188
1662-5188
DOI10.3389/fncom.2022.872978

Cover

Abstract With the deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in different layers in smart grid. However, it introduces more attack interfaces that the traditional information security system in smart grid cannot response in time. The neuroscience-inspired models have shown their effectiveness in solving security and optimization problems in smart grid. How to improve the security mechanism in smart grid while taking into account the optimization of data transmission efficiency using neuroscience-inspired algorithms is the problem to be solved in this study. Therefore, an information security system based on artificial neural network (ANN) and improved multiple protection model is proposed. Based on the ANN algorithm, the link state sample space is used to train the model to obtain the optimal transmission path in 5G power communication network. Integrating the intelligent link state module, the zero-trust security protection platform using case-based learning algorithm is designed and taken as the first protection, the network security logical isolation facility is taken as the second protection, and the forward and backward isolation facilities are set as the third protection to achieve the strengthened security of 5G IoT in smart grid. The experimental results show the efficiency and effectiveness of the proposed algorithms. In addition, the experimental results also show that the proposed system can resist malicious terminal access, terminal hijacking, data tampering and eavesdropping, protocol fuzzy, and denial-of-service attacks, so as to reduce the security risks of 5G IoT in smart grid. Since the proposed system can be easily integrated into the existing smart grid structure in China, the proposed system can provide a reference for the design and implementation of 5G IoT in smart grid.
AbstractList With the deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in different layers in smart grid. However, it introduces more attack interfaces that the traditional information security system in smart grid cannot response in time. The neuroscience-inspired models have shown their effectiveness in solving security and optimization problems in smart grid. How to improve the security mechanism in smart grid while taking into account the optimization of data transmission efficiency using neuroscience-inspired algorithms is the problem to be solved in this study. Therefore, an information security system based on artificial neural network (ANN) and improved multiple protection model is proposed. Based on the ANN algorithm, the link state sample space is used to train the model to obtain the optimal transmission path in 5G power communication network. Integrating the intelligent link state module, the zero-trust security protection platform using case-based learning algorithm is designed and taken as the first protection, the network security logical isolation facility is taken as the second protection, and the forward and backward isolation facilities are set as the third protection to achieve the strengthened security of 5G IoT in smart grid. The experimental results show the efficiency and effectiveness of the proposed algorithms. In addition, the experimental results also show that the proposed system can resist malicious terminal access, terminal hijacking, data tampering and eavesdropping, protocol fuzzy, and denial-of-service attacks, so as to reduce the security risks of 5G IoT in smart grid. Since the proposed system can be easily integrated into the existing smart grid structure in China, the proposed system can provide a reference for the design and implementation of 5G IoT in smart grid.
With the deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in different layers in smart grid. However, it introduces more attack interfaces that the traditional information security system in smart grid cannot response in time. The neuroscience-inspired models have shown their effectiveness in solving security and optimization problems in smart grid. How to improve the security mechanism in smart grid while taking into account the optimization of data transmission efficiency using neuroscience-inspired algorithms is the problem to be solved in this study. Therefore, an information security system based on artificial neural network (ANN) and improved multiple protection model is proposed. Based on the ANN algorithm, the link state sample space is used to train the model to obtain the optimal transmission path in 5G power communication network. Integrating the intelligent link state module, the zero-trust security protection platform using case-based learning algorithm is designed and taken as the first protection, the network security logical isolation facility is taken as the second protection, and the forward and backward isolation facilities are set as the third protection to achieve the strengthened security of 5G IoT in smart grid. The experimental results show the efficiency and effectiveness of the proposed algorithms. In addition, the experimental results also show that the proposed system can resist malicious terminal access, terminal hijacking, data tampering and eavesdropping, protocol fuzzy, and denial-of-service attacks, so as to reduce the security risks of 5G IoT in smart grid. Since the proposed system can be easily integrated into the existing smart grid structure in China, the proposed system can provide a reference for the design and implementation of 5G IoT in smart grid.With the deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in different layers in smart grid. However, it introduces more attack interfaces that the traditional information security system in smart grid cannot response in time. The neuroscience-inspired models have shown their effectiveness in solving security and optimization problems in smart grid. How to improve the security mechanism in smart grid while taking into account the optimization of data transmission efficiency using neuroscience-inspired algorithms is the problem to be solved in this study. Therefore, an information security system based on artificial neural network (ANN) and improved multiple protection model is proposed. Based on the ANN algorithm, the link state sample space is used to train the model to obtain the optimal transmission path in 5G power communication network. Integrating the intelligent link state module, the zero-trust security protection platform using case-based learning algorithm is designed and taken as the first protection, the network security logical isolation facility is taken as the second protection, and the forward and backward isolation facilities are set as the third protection to achieve the strengthened security of 5G IoT in smart grid. The experimental results show the efficiency and effectiveness of the proposed algorithms. In addition, the experimental results also show that the proposed system can resist malicious terminal access, terminal hijacking, data tampering and eavesdropping, protocol fuzzy, and denial-of-service attacks, so as to reduce the security risks of 5G IoT in smart grid. Since the proposed system can be easily integrated into the existing smart grid structure in China, the proposed system can provide a reference for the design and implementation of 5G IoT in smart grid.
With deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in different layers in smart grid. However, it introduces more attack interfaces that the traditional information security system in smart grid cannot response in time. Neuroscience-inspired models have shown their effectiveness in solving security and optimization problems in smart grid. How to improve the security mechanism in smart grid while taking into account the optimization of data transmission efficiency using neuroscience-inspired algorithms is the problem to be solved in this paper. Therefore, an information security system based on Artificial Neural Network (ANN) and improved multiple protection model is proposed. Based on the ANN algorithm, the link state sample space is used to train the model to obtain the optimal transmission path in 5G power communication network. Integrating the intelligent link state module, the zero trust security protection platform using Cased-Based learning algorithm is designed and taken as the first protection, the network security logical isolation facility is taken as the second protection, and the forward and backward isolation facilities are set as the third protection to achieve the strengthened security of 5G IoT in smart grid. The experimental results show the efficiency and effectiveness of the proposed algorithms. In addition, the experimental results also show that the proposed system can resist malicious terminal access, terminal hijacking, data tampering and eavesdropping, protocol fuzzy and Denial-of-Service (DOS) attacks, so as to reduce the security risks of 5G IoT in smart grid. Since the proposed system can be easily integrated into the existing smart grid structure in China, the proposed system can provide a reference for the design and implementation of 5G IoT in smart grid.
Author Xu, Hao
Jiang, Chengzhi
Huang, Chuanfeng
Huang, Qiwei
AuthorAffiliation 1 School of Economics and Management, Nanjing Institute of Technology , Nanjing , China
2 School of Information Management, Nanjing University , Nanjing , China
AuthorAffiliation_xml – name: 1 School of Economics and Management, Nanjing Institute of Technology , Nanjing , China
– name: 2 School of Information Management, Nanjing University , Nanjing , China
Author_xml – sequence: 1
  givenname: Chengzhi
  surname: Jiang
  fullname: Jiang, Chengzhi
– sequence: 2
  givenname: Hao
  surname: Xu
  fullname: Xu, Hao
– sequence: 3
  givenname: Chuanfeng
  surname: Huang
  fullname: Huang, Chuanfeng
– sequence: 4
  givenname: Qiwei
  surname: Huang
  fullname: Huang, Qiwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35493856$$D View this record in MEDLINE/PubMed
BookMark eNqFUsFu1DAQtVARbRc-gAuyxIVLFseOnfiClK7KstIKDgtny7GdrZfEXhyn1X4Bv413U6q2BziNNfPm-c28uQRnzjsDwNsczQmp-MfWKd_PMcJ4XpWYl9ULcJEzhjOaV9XZo_c5uByGHUIMM4pegXNCC04qyi7A79rBWst9tLcGrlzrQy-j9Q5ujBqDjQe4OQzR9DBVIF1m1042ndFw08sQ4TJYDa_kkBKppQ7RtlZZ2cGvZgynEO98-Aml03CRYNmEXRsZnHVbWHdbnz656YfX4GUru8G8uY8z8OPz9ffFl2z9bbla1OtMJcUxq1TbkpZyJmlDDS50jimVKkempITjsqG6omVuWFNIzUmKFcaIFy3XutUIkRlYTbzay53YB5vmOAgvrTglfNiKNJhVnRENYxyVjWoJkQVSWKrCIIYK2jSaMF4mLjxxjW4vD3ey6x4IcySODomTQ-LokJgcSk2fpqb92PRGK-Ni2tQTJU8rzt6Irb8VHFGEcJ4IPtwTBP9rNEMUvR2U6TrpjB8HkSyuWMFpWsgMvH8G3fkxuLTfIwohznOEE-rdY0UPUv4eSQKUE0AFPwzBtELZeLqSJNB2_xw2f9b5_wX9ATNG400
CitedBy_id crossref_primary_10_1109_COMST_2024_3395414
crossref_primary_10_1186_s42400_024_00212_0
Cites_doi 10.11930/j.issn.1004-9649.202010099
10.1109/ISNCC52172.2021.9615649
10.1109/ICBAIE52039.2021.9389979
10.16543/j.2095-641x.electric.power.ict.2021.07.004
10.1109/ACCESS.2017.2723360
10.12158/j.2096-3203.2020.06.005
10.1109/JIOT.2021.3113900
10.1109/ACPEE48638.2020.9136388
10.13334/j.0258-8013.pcsee.190892
10.1109/ACCESS.2020.3007609
10.12158/j.2096-3203.2020.03.008
10.11959/j.issn.1000-0801.2020031
10.19464/j.cnki.cn32-1541/tm.2019.02.024
10.7500/AEPS20170506002
10.3969/j.issn.1001-3881.2020.23.039
10.1109/SMARTGRID.2010.5622029
10.1109/TITS.2021.3076607
10.1109/ACCESS.2020.2999036
10.13756/j.gtxyj.2021.01.013
10.13190/j.jbupt.2018-169
10.11999/JEIT190515
10.1109/ATSIP49331.2020.9231755
10.1109/JSYST.2021.3109082
10.1109/TELFOR51502.2020.9306518
10.1109/JIOT.2020.3041042
10.1109/IWCMC.2017.7986273
10.1109/ACCESS.2021.3082430
10.35833/MPCE.2020.000569
10.1145/3447513
10.19678/j.issn.1000-3428.0054421
10.7544/issn1000-1239.2018.20160970
10.11999/JEIT180396
10.1109/SGC49328.2019.9056590
10.1109/SA47457.2019.8938064
10.1109/CyberSA52016.2021.9478244
ContentType Journal Article
Copyright Copyright © 2022 Jiang, Xu, Huang and Huang.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Jiang, Xu, Huang and Huang. 2022 Jiang, Xu, Huang and Huang
Copyright_xml – notice: Copyright © 2022 Jiang, Xu, Huang and Huang.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Jiang, Xu, Huang and Huang. 2022 Jiang, Xu, Huang and Huang
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fncom.2022.872978
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
ProQuest Central Science Database (via ProQuest)
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_b66907bcf33a40c2ac4e06045bbd3697
10.3389/fncom.2022.872978
PMC9050021
35493856
10_3389_fncom_2022_872978
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
29H
2WC
53G
5GY
5VS
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CITATION
CS3
DIK
E3Z
F5P
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
88I
ACXDI
C1A
CCPQU
DWQXO
GNUQQ
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c493t-8cff3f596a5b5e24d1255ac10e753927b5d8571e6b4ad93e6b822094f9ddfd003
IEDL.DBID M48
ISSN 1662-5188
IngestDate Fri Oct 03 12:53:42 EDT 2025
Sun Oct 26 04:16:14 EDT 2025
Thu Aug 21 18:27:24 EDT 2025
Thu Oct 02 05:46:41 EDT 2025
Mon Jun 30 09:52:06 EDT 2025
Wed Feb 19 02:26:38 EST 2025
Thu Apr 24 22:58:39 EDT 2025
Wed Oct 01 02:59:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords information security
artificial neural network
smart grid
zero trust
case-based learning
Language English
License Copyright © 2022 Jiang, Xu, Huang and Huang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-8cff3f596a5b5e24d1255ac10e753927b5d8571e6b4ad93e6b822094f9ddfd003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Di Wu, Chongqing Institute of Green and Intelligent Technology (CAS), China
Reviewed by: Avishek Nag, University College Dublin, Ireland; Ming Su, Beijing University of Posts and Telecommunications (BUPT), China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2022.872978
PMID 35493856
PQID 2650099102
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_b66907bcf33a40c2ac4e06045bbd3697
unpaywall_primary_10_3389_fncom_2022_872978
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050021
proquest_miscellaneous_2658649575
proquest_journals_2650099102
pubmed_primary_35493856
crossref_citationtrail_10_3389_fncom_2022_872978
crossref_primary_10_3389_fncom_2022_872978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-14
PublicationDateYYYYMMDD 2022-04-14
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2022
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Cheng (B11) 2020; 39
Zhao (B39) 2020; 46
Han (B18) 2019; 22
Hong (B19) 2020; 8
Aruzuaga (B2) 2010
Boyaci (B5) 2022
Cai (B6) 2020
Wang (B33) 2022
Wylde (B35) 2021
Xu (B36) 2018; 55
Liu (B24) 2021
Ge (B16) 2020; 39
Li (B23) 2018; 42
Liu (B26) 2020; 48
Hu (B20) 2019; 41
Matinkhah (B28) 2019
Deng (B13) 2022
Cao (B8); 43
Li (B21) 2021; 2021
B32
Liu (B25) 2021; 19
Sun (B31) 2017; 5
Saghezchi (B29) 2017
Ghanem (B17) 2021
B38
Cao (B7); 38
Chen (B9) 2021; 8
Asif (B3) 2020; 8
Li (B22) 2020
She (B30) 2021; 54
Ma (B27) 2021
Zhu (B41) 2020; 42
Chen (B10) 2018; 41
Forcan (B15) 2020
Wu (B34) 2020; 36
Zhou (B40) 2022
Ahmadzadeh (B1) 2021; 9
Deng (B14) 2021; 21
Zhang (B37) 2019; 39
Chourib (B12) 2020
Borgaonkar (B4) 2019
References_xml – volume: 54
  start-page: 35
  year: 2021
  ident: B30
  article-title: Research on cognitive radio non-orthogonal multiple access system in 5g communications oriented to ubiquitous power internet of things
  publication-title: Electr. Power.
  doi: 10.11930/j.issn.1004-9649.202010099
– start-page: 1
  volume-title: 2021 International Symposium on Networks, Computers and Communications (ISNCC)
  year: 2021
  ident: B17
  article-title: Challenges and promises of 5G for smart grid teleprotection applications
  doi: 10.1109/ISNCC52172.2021.9615649
– start-page: 740
  volume-title: 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE)
  year: 2021
  ident: B24
  article-title: Application of 5G network slicing technology in smart grid
  doi: 10.1109/ICBAIE52039.2021.9389979
– volume: 19
  start-page: 25
  year: 2021
  ident: B25
  article-title: Research on power grid security protection architecture based on zero trust
  publication-title: Electric Power Inform. Commun. Technol.
  doi: 10.16543/j.2095-641x.electric.power.ict.2021.07.004
– volume: 5
  start-page: 12788
  year: 2017
  ident: B31
  article-title: WNN-LQE: wavelet-neural-network-based link quality estimation for smart grid WSNs
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2017.2723360
– volume: 39
  start-page: 26
  year: 2020
  ident: B11
  article-title: Design and application of power quality terminal information security
  publication-title: Electric Power Eng. Technol.
  doi: 10.12158/j.2096-3203.2020.06.005
– year: 2022
  ident: B33
  article-title: KFRNN: an effective false data injection attack detection in smart grid based on kalman filter and recurrent neural network
  publication-title: IEEE Intern. Things J.
  doi: 10.1109/JIOT.2021.3113900
– start-page: 64
  volume-title: 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS)
  year: 2021
  ident: B27
  article-title: 5G network slicing technology helps smart grid development
– start-page: 994
  volume-title: 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE)
  year: 2020
  ident: B6
  article-title: Credit and risk management of electricity transaction: a real case based on Guangdong electricity market rules
  doi: 10.1109/ACPEE48638.2020.9136388
– volume: 39
  start-page: 4015
  year: 2019
  ident: B37
  article-title: 5G communication for the ubiquitous internet of things in electricity: technical principles and typical applications
  publication-title: Proc. CSEE.
  doi: 10.13334/j.0258-8013.pcsee.190892
– volume: 8
  start-page: 123297
  year: 2020
  ident: B19
  article-title: Towards accurate and efficient classification of power system contingencies and cyber-attacks using recurrent neural networks
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3007609
– volume: 39
  start-page: 51
  year: 2020
  ident: B16
  article-title: A top-level design for time-delay uncertainty analysis of situational awareness in smart distribution network
  publication-title: Electric Power Engineering Technology
  doi: 10.12158/j.2096-3203.2020.03.008
– volume: 36
  start-page: 72
  year: 2020
  ident: B34
  article-title: Wireless quantum power distribution system based on wireless
  publication-title: Tele-commun. Sci.
  doi: 10.11959/j.issn.1000-0801.2020031
– volume: 38
  start-page: 152
  ident: B7
  article-title: Design and implementation of power universal security access zone based on dual isolation
  publication-title: Electr. Power Eng. Technol.
  doi: 10.19464/j.cnki.cn32-1541/tm.2019.02.024
– volume: 42
  start-page: 169
  year: 2018
  ident: B23
  article-title: Design of terminal communication access architecture for smart power distribution and utilization based on integration of multiple technologies
  publication-title: Autom. Electr. Power Syst.
  doi: 10.7500/AEPS20170506002
– volume: 48
  start-page: 208
  year: 2020
  ident: B26
  article-title: Application of depth neural network algorithm with stacked sparse auto-encoder in rolling bearing fault diagnosis
  publication-title: Machine Tool Hydraul.
  doi: 10.3969/j.issn.1001-3881.2020.23.039
– start-page: 126
  volume-title: 2010 First IEEE International Conference on Smart Grid Communications
  year: 2010
  ident: B2
  article-title: PRIME interoperability tests and results from field
  doi: 10.1109/SMARTGRID.2010.5622029
– year: 2022
  ident: B13
  article-title: User behavior analysis based on stacked autoencoder and clustering in complex power grid environment
  publication-title: IEEE Trans. Intellig. Transport. Syst.
  doi: 10.1109/TITS.2021.3076607
– volume: 8
  start-page: 102278
  year: 2020
  ident: B3
  article-title: A novel case base reasoning and frequent pattern based decision support system for mitigating software risk factors
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2999036
– start-page: 757
  volume-title: 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC)
  year: 2020
  ident: B22
  article-title: The customized 5G secondary authentication scheme combined with security protection strategy for electrical automation system
– volume: 2021
  start-page: 63
  year: 2021
  ident: B21
  article-title: Modeling and analysis of 5G terminal communication channel in substation
  publication-title: Study Opt. Commun.
  doi: 10.13756/j.gtxyj.2021.01.013
– volume: 41
  start-page: 86
  year: 2018
  ident: B10
  article-title: The architecture design of cooperated deployment for multi-access edge computing in 5G
  publication-title: J. Beijing Univ. Posts Telecommun.
  doi: 10.13190/j.jbupt.2018-169
– volume: 42
  start-page: 111
  year: 2020
  ident: B41
  article-title: A low latency random access mechanism for 5G new radio in unlicensed spectrum
  publication-title: J. Electr. Inform. Technol.
  doi: 10.11999/JEIT190515
– start-page: 1
  volume-title: 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)
  year: 2020
  ident: B12
  article-title: Case-based reasoning: problems and importance of similarity measure
  doi: 10.1109/ATSIP49331.2020.9231755
– year: 2022
  ident: B5
  article-title: Graph neural networks based detection of stealth false data injection attacks in smart grids
  publication-title: IEEE Systems J
  doi: 10.1109/JSYST.2021.3109082
– start-page: 1
  volume-title: 2020 28th Telecommunications Forum (TELFOR)
  year: 2020
  ident: B15
  article-title: 5G and cloudification to enhance real-time electricity consumption measuring in smart grid
  doi: 10.1109/TELFOR51502.2020.9306518
– volume: 8
  start-page: 10248
  year: 2021
  ident: B9
  article-title: A security awareness and protection system for 5G smart healthcare based on zero-trust architecture
  publication-title: IEEE Inter. Things J
  doi: 10.1109/JIOT.2020.3041042
– start-page: 121
  volume-title: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC)
  year: 2017
  ident: B29
  article-title: Towards a secure network architecture for smart grids in 5G era
  doi: 10.1109/IWCMC.2017.7986273
– volume: 9
  start-page: 77555
  year: 2021
  ident: B1
  article-title: A review on communication aspects of demand response management for future 5G IoT- based smart grids
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3082430
– year: 2022
  ident: B40
  article-title: Unsupervised learning for non-intrusive load monitoring in smart grid based on spiking deep neural network
  publication-title: J. Modern Power Syst. Clean Energy
  doi: 10.35833/MPCE.2020.000569
– volume: 43
  start-page: 162
  ident: B8
  article-title: Design and implementation of forward isolation device based on deep packet inspection and security enhancement
  publication-title: Autom. Electr. Power Syst.
– volume: 21
  start-page: 1
  year: 2021
  ident: B14
  article-title: Short-term load forecasting by using improved GEP and abnormal load recognition
  publication-title: ACM Trans. Intern. Technol.
  doi: 10.1145/3447513
– volume: 46
  start-page: 144
  year: 2020
  ident: B39
  article-title: Authenticated encryption implementation scheme based on tweakable grouping
  publication-title: Comput. Eng.
  doi: 10.19678/j.issn.1000-3428.0054421
– volume: 55
  start-page: 815
  year: 2018
  ident: B36
  article-title: Anomaly detection algorithm of data center network based on LSDB
  publication-title: J. Comput. Res. Dev.
  doi: 10.7544/issn1000-1239.2018.20160970
– volume: 41
  start-page: 588
  year: 2019
  ident: B20
  article-title: Research on network virtualization scheme and networking algorithm of advanced metering infrastructure for water, electricity, gas, and heat meters
  publication-title: J. Electr. Inform. Technol.
  doi: 10.11999/JEIT180396
– ident: B32
– start-page: 1
  volume-title: 2019 Smart Grid Conference (SGC)
  year: 2019
  ident: B28
  article-title: Smart grid empowered by 5g technology
  doi: 10.1109/SGC49328.2019.9056590
– start-page: 1
  volume-title: 2019 First International Conference on Societal Automation (SA)
  year: 2019
  ident: B4
  article-title: 5G as an enabler for secure IoT in the smart grid: invited paper
  doi: 10.1109/SA47457.2019.8938064
– start-page: 1
  volume-title: 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA)
  year: 2021
  ident: B35
  article-title: Zero trust: never trust, always verify
  doi: 10.1109/CyberSA52016.2021.9478244
– volume: 22
  start-page: 35
  year: 2019
  ident: B18
  article-title: Study on optimization of special invoice service for value-added tax in service hall of power enterprise
  publication-title: Power Systems and Big Data
– ident: B38
SSID ssj0062650
Score 2.320233
Snippet With the deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in...
With deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in different...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 872978
SubjectTerms Algorithms
artificial neural network
case-based learning
Communication
Data transmission
Efficiency
Enterprise resource planning
Extranets
information security
Information systems
Infrastructure
Interfaces
Internet of Things
Intranets
Nervous system
Neural networks
Neuroscience
Neurosciences
Office automation
Private networks
Security systems
smart grid
Software
Wireless networks
zero trust
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHkECjIS4gAK9cZ2Eh_Tqg8hwaVU6i3ys6206121u0L9BfxtZuxstCsQvXCKFE8SyzO2vy-2vyHkA1Mtc41oS6vADcJVqjRBsNJazoxouWfpoPC37_Xpufh6IS82Un3hnrAsD5wbbt_UyN-MDZxrwWylrfAo-CKNcbxW6Rw5a9WaTOUxGFC6HNYwgYKp_RBxawjw_OpLC2gSc6ptzEJJrP9vCPPPjZIPV3Gh737q6XRjFjp-Qh4P8JF2udpPyQMfn5HdLgJ1nt3RjzRt6Ex_ynfJry7SzukFDmh0OHaEbqBnQ846muXKKZRQeVIepWNUjp7NoFXoyc21owcwxzkKj-AHs9YERTmPdEn7x6mOjh6CWZltB73WS9pNL-fwkavZ7XNyfnz04_C0HPIulFYovixbGwIPUtVaGukr4QAESW0nzAO3UVVjpGtlM_G1EdopDldAGUATg3IuOBgmXpCdOI_-FaHgMFF7YY2QXpjAtZpURnuphZ3ooFlB2NoPvR1EyTE3xrQHcoKu65PrenRdn11XkE_jI4usyPEv4wN07miIYtrpBoRYP4RYf1-IFWRvHRr90MNve4wwQNeAzwryfiyGvokLLjr6-SrZtDUw0EYW5GWOpLEmHIg5b2VdkGYrxraqul0Sr6-S_rdiEqFZQT6P0Xh_S7z-Hy3xhjzCV-Jq2kTskZ3lzcq_BVC2NO9S__sNg5g2aw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N7gFeEDA-AgMZCfEACktjO4kfEGqnbhMSFWJM2lvkr3ST2rR0rdD-Av5t7pykrAKNp0j1JXFz5_Pv7PPvAN4kqkhcLorYKlSDcKmKTSWS2FqeGFFwn4SDwl_G2cmZ-Hwuz3dg3J2FobTKzicGR-3mltbID1KEEohmcD78tPgRU9Uo2l3tSmjotrSC-xgoxu7AbkrMWD3YHY7GX791vjmjpzR7mxiaqYOqppQRjP_TDwWiTKq1dmN2CiT-_0KefydQ3l3XC339U0-nN2anowdwv4WVbNDYwUPY8fUj2BvUGFLPrtlbFhI9wwr6Hvwa1Gzg9IIcHWuPI5F62Glby441NOYMW5g8jkfheJVjpzM0M3a8vHRsiHOfY3gLvbDhoGBE8xEuIa-c6dqxQxSLG9mWx3XCBtMJftbVxezqMZwdjb4fnsRtPYbYCsVXcWGrildSZVoa6VPhEBxJbfuJx5hHpbmRrpB532dGaKc4XhF9YPhYKecqh-7jCfTqee2fAUtsKjIvrBHSC1Nxrfqp0V5qYfu60kkESaeH0rZk5VQzY1pi0EKqK4PqSlJd2agugnebWxYNU8dtwkNS7kaQSLbDD_PlpGzHbGkyWjowtuJcC-yxtsIT15A0xvFM5RHsd6ZRtiP_qvxjpxG83jTjmKWNGF37-TrIFBlGprmM4GljSZuecAzYeSGzCPItG9vq6nZLfXkReMFVIgmyRfB-Y43__xLPb_8TL-AeCdP-WV_sQ2-1XPuXCMNW5lU7tn4Dq2g0XA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4ALr_IIFGQkxAGUNg87sY9p1YeQqJDKSuUU-dmu2PWu2l2h8gf428w42VUXKhDiFO16rDgzE_ubeOYzIW8yKTJbM5EaCWZgtpCp9ixLjSkzzUTpslgo_PG4OhqyD6f89FotDKZVeizdx4OgR6FjCu5TxPANh4hK7viAmR4QthfbAsBhLXZm1t8mGxUHPD4gG8PjT80XjLSqCiKtXIhuO_PmvmsLUuTtvwls_p4zeWcRZurqmxqPry1IB_eJWT5Kl4fydXsx19vm-y8sj__3rA_IvR6v0qbr8JDccuER2WwCxOqTK_qWxgzS-Gl-k_xoAm2smuEMSvs6J7Q7PekPyaMdPzqFFsoP0_1Yt2XpyQTGQw8vRpbuwqJqKXTBG3bkFhT5Q-IlJqxTFSzdA7G0k-0JYs9oMz6bwk3OJ5ePyfBg__PeUdof9JAaJst5Koz3pQfjKa65K5gF1MWVyTMHwZQsas2t4HXuKs2UlSVcAdZAXOqltd7CvPSEDMI0uGeEZqZglWNGM-6Y9qWSeaGV44qZXHmVJSRbWrs1PQs6HsYxbiEaQoW3UeEtKrztFJ6Qd6sus44C5E_Cu-hCK0Fk745_gHHb3ritrvCbhDa-LBWDESvDHJIYca1tWck6IVtLB2z7KeWyLQBLA5wHQJiQ16tmmAxwh0cFN11EGVFByFvzhDzt_HU1kpKDrgWvElKvefLaUNdbwug8Eo7LjCMWTMj7lc__XRPP_0n6BbmLv3CfLmdbZDC_WLiXAPfm-lX_Pv8EiStVVw
  priority: 102
  providerName: Unpaywall
Title An Adaptive Information Security System for 5G-Enabled Smart Grid Based on Artificial Neural Network and Case-Based Learning Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/35493856
https://www.proquest.com/docview/2650099102
https://www.proquest.com/docview/2658649575
https://pubmed.ncbi.nlm.nih.gov/PMC9050021
https://www.frontiersin.org/articles/10.3389/fncom.2022.872978/pdf
https://doaj.org/article/b66907bcf33a40c2ac4e06045bbd3697
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: ADMLS
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD7UFrQvotbLag0jiA_KtnuZ2d15ENmUNEVoKNZAfFrmtmkh2cQ0QfML_Nuemd0sDRYFX7KQObMzzDmz5ztz-Q7A24BngU5p5iuOaqA64r4saeArFQeSZrEJ3EXh80FyNqSfR2y0A5v0Vs0A3twZ2tl8UsPF5Ojn9_UnnPAfbcSJ_va4rOzBD4zio6MMsWKa3YM9dFTcZnI4p-2mAkJ31mxs3l1tH-7HGC7Fmc1mfctLOTL_uxDonwcpH6yquVj_EJPJLS91-ggeNvCS5LU9PIYdUz2Bg7zC0Hq6Ju-IO_DpVtIP4FdekVyLuf3gkeZaklUTuWxy2pGazpxgCWF9v-euWWlyOUVzI_3FtSZd9IGaYBXbYM1FQSzdh3u48-VEVJqcoJhfyzZ8rmOST8YzbORqevMUhqe9rydnfpOXwVc4Oks_U2UZl4wngklmIqoRJDGhwsBg7MOjVDKdsTQ0iaRC8xifiEIwjCy51qXGz8gz2K1mlXkBJFARTQxVkjJDZRkLHkZSGCaoCkUpAg-CjR4K1ZCW29wZkwKDF6vFwmmxsFosai168L6tMq8ZO_4m3LXKbQUt2bb7Y7YYF83cLWRilxCkKuNYUOyxUNRYziEmpY4TnnpwuDGNYmPAhTU2RN-I3zx40xbj3LUbMqIys5WTyRKMUFPmwfPaktqebCzRg3TLxra6ul1SXV85fnAeMAvdPPjQWuO_R-Llf7fzCvbte-wWW0gPYXe5WJnXiNSWsgN73d7g4kvHrXTgb38UdtycxJLh4CL_9hufqURJ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygXBC2PhQJGAg6gpZu1vbs-VCgpaVPaRoi2Um-LX5tWSjYhD1X5BfwrfhtjrzdtBCqnnlaKx4mzM56HPfMNQm8jnkU6pVmoOLCB6piHsqBRqBSJJM2IiVyh8HE36ZzRr-fsfAX9rmthbFplrROdotZDZc_It2NwJcCbAXv4efQztF2j7O1q3UJD-NYKesdBjPnCjkMzv4IQbrJz8AX4_S6O99qnu53QdxkIFeVkGmaqKEjBeCKYZCamGkw-E6oRGfDkeZxKpjOWNkwiqdCcwBNsKgRFBde60LAp4HvvoTVKKIfgb63V7n77XtuCxK66ukuFUJBvF6VNUYnBbn7KwKu1vd1uWEPXNOBfnu7fCZvrs3Ik5lei379hDfceogfejcXNSu4eoRVTbqDNZgkh_GCO32OXWOpO7DfRr2aJm1qMrGLFvvzJigM-8b3zcAWbjmEEs_2w7cq5ND4ZgFjj_fGlxi2wtRrDFPuDFeYFtrAi7uHy2LEoNd4FsrCi9bixPdzs94CN04vB5DE6uxPOPEGr5bA0zxCOVEwTQ5WkzFBZEMEbsRSGCaoaohBRgKKaD7ny4Oi2R0c_hyDJsi53rMst6_KKdQH6sJgyqpBBbiNuWeYuCC2ot_tgOO7lXkfkMrFHFVIVhAgKKxaKGottxKTUJOFpgLZq0ci9ppnk1_siQG8Ww6Aj7MWPKM1w5miyBCLhlAXoaSVJi5UQBu86Y0mA0iUZW1rq8kh5eeFwyHnErIsYoI8Lafz_m3h--594jdY7p8dH-dFB9_AFum8n2ru7Bt1Cq9PxzLwEF3AqX_l9htGPu97afwBXTXE6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqbBLwgYFwCA4wEPIBC08RO4ocJtVu7jUE1sU3aW_C1m9SmpRdN_QL-ja_i2HHKKtB42lOk-Dhxco7PxeeG0JuI5ZHKSB5KBmggKmahMCQKpUwiQfJERy5R-Gsv3T8ln8_o2Rr6VefC2LDKmic6Rq1G0p6RN2JQJUCbAXnYMD4s4mi3-2n8I7QdpKyntW6nwX2bBbXtyo35JI9DvbgEc266fbALuH8bx93Oyc5-6DsOhJKwZBbm0pjEUJZyKqiOiQLxT7lsRhq0ehZngqqcZk2dCsIVS-AK8hUMJMOUMgo2CDz3Ftqwzi9gEhvtTu_oWy0XUvsFlV8VzELWMKUNV4lBhn7MQcO1fd6uSEbXQOBfWu_fwZt35uWYLy75YHBFMnbvo3tepcWtigYfoDVdPkSbrRLM-eECv8MuyNSd3m-in60StxQfWyaLfSqUJQ187Pvo4aqEOoYRTPfCjkvtUvh4CCSO9yYXCrdB7ioMU-wLq_oX2JYYcRcX0455qfAOgIUVrK8h28etQR_QODsfTh-h0xvBzGO0Xo5K_RThSMYk1UQKQjURJuGsGQuuKSeyyQ2PAhTVeCikL5Ru-3UMCjCYLOoKh7rCoq6oUBeg98sp46pKyHXAbYvcJaAt8O1ujCb9wvOLQqT22EJIkyScwIq5JNrWOaJCqCRlWYC2atIoPNeZFn_2SIBeL4eBX1gnEC_1aO5g8hSs4owG6ElFScuVJBT-dU7TAGUrNLay1NWR8uLc1SRnEbXqYoA-LKnx_3_i2fUf8Qrdhi1efDnoHT5Hd-0868Zrki20PpvM9QvQBmfipd9mGH2_6Z39G163dWk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4ALr_IIFGQkxAGUNg87sY9p1YeQqJDKSuUU-dmu2PWu2l2h8gf428w42VUXKhDiFO16rDgzE_ubeOYzIW8yKTJbM5EaCWZgtpCp9ixLjSkzzUTpslgo_PG4OhqyD6f89FotDKZVeizdx4OgR6FjCu5TxPANh4hK7viAmR4QthfbAsBhLXZm1t8mGxUHPD4gG8PjT80XjLSqCiKtXIhuO_PmvmsLUuTtvwls_p4zeWcRZurqmxqPry1IB_eJWT5Kl4fydXsx19vm-y8sj__3rA_IvR6v0qbr8JDccuER2WwCxOqTK_qWxgzS-Gl-k_xoAm2smuEMSvs6J7Q7PekPyaMdPzqFFsoP0_1Yt2XpyQTGQw8vRpbuwqJqKXTBG3bkFhT5Q-IlJqxTFSzdA7G0k-0JYs9oMz6bwk3OJ5ePyfBg__PeUdof9JAaJst5Koz3pQfjKa65K5gF1MWVyTMHwZQsas2t4HXuKs2UlSVcAdZAXOqltd7CvPSEDMI0uGeEZqZglWNGM-6Y9qWSeaGV44qZXHmVJSRbWrs1PQs6HsYxbiEaQoW3UeEtKrztFJ6Qd6sus44C5E_Cu-hCK0Fk745_gHHb3ritrvCbhDa-LBWDESvDHJIYca1tWck6IVtLB2z7KeWyLQBLA5wHQJiQ16tmmAxwh0cFN11EGVFByFvzhDzt_HU1kpKDrgWvElKvefLaUNdbwug8Eo7LjCMWTMj7lc__XRPP_0n6BbmLv3CfLmdbZDC_WLiXAPfm-lX_Pv8EiStVVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Information+Security+System+for+5G-Enabled+Smart+Grid+Based+on+Artificial+Neural+Network+and+Case-Based+Learning+Algorithms&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Jiang%2C+Chengzhi&rft.au=Xu%2C+Hao&rft.au=Huang%2C+Chuanfeng&rft.au=Huang%2C+Qiwei&rft.date=2022-04-14&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5188&rft.volume=16&rft_id=info:doi/10.3389%2Ffncom.2022.872978&rft_id=info%3Apmid%2F35493856&rft.externalDocID=PMC9050021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon