Neuropeptides as Primary Mediators of Brain Circuit Connectivity
Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the l...
Saved in:
Published in | Frontiers in neuroscience Vol. 15; p. 644313 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
11.03.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2021.644313 |
Cover
Abstract | Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the largest transmitter family in the brain–the slow-acting peptide transmitters–remain relatively overlooked, or described as “modulatory.” Neuropeptides may efficiently implement sustained neural circuit connectivity, since they are not rapidly removed from the extracellular space, and their prolonged action does not require continuous presynaptic firing. From this perspective, we review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin release inside and outside the hypothalamus evokes slow postsynaptic excitation. This excitation does not arise from modulation of classic neurotransmission, but involves direct action of orexins on their specific G-protein coupled receptors (GPCRs) coupled to ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent with slow local microcircuits. The sustained actions of neuropeptides on neuronal membrane potential may enable core brain functions, such as temporal integration and the creation of lasting permissive signals that act as “eligibility traces” for context-dependent information routing and plasticity. The slowness of neuropeptides has unique advantages for efficient neuronal processing and feedback control of consciousness. |
---|---|
AbstractList | Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the largest transmitter family in the brain–the slow-acting peptide transmitters–remain relatively overlooked, or described as “modulatory.” Neuropeptides may efficiently implement sustained neural circuit connectivity, since they are not rapidly removed from the extracellular space, and their prolonged action does not require continuous presynaptic firing. From this perspective, we review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin release inside and outside the hypothalamus evokes slow postsynaptic excitation. This excitation does not arise from modulation of classic neurotransmission, but involves direct action of orexins on their specific G-protein coupled receptors (GPCRs) coupled to ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent with slow local microcircuits. The sustained actions of neuropeptides on neuronal membrane potential may enable core brain functions, such as temporal integration and the creation of lasting permissive signals that act as “eligibility traces” for context-dependent information routing and plasticity. The slowness of neuropeptides has unique advantages for efficient neuronal processing and feedback control of consciousness. Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the largest transmitter family in the brain – the slow-acting peptide transmitters – remain relatively overlooked, or described as “modulatory”. Neuropeptides may efficiently implement sustained neural circuit connectivity, since they are not rapidly removed from the extracellular space, and their prolonged action does not require continuous presynaptic firing. From this perspective, we review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin release inside and outside the hypothalamus evokes slow postsynaptic excitation. This excitation does not arise from modulation of classic neurotransmission, but involves direct action of orexins on their specific G-protein coupled receptors coupled to ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent with slow local microcircuits. The sustained actions of neuropeptides on neuronal membrane potential may enable core brain functions, such as temporal integration and the creation of lasting permissive signals that act as “eligibility traces” for context-dependent information routing and plasticity. The slowness of neuropeptides has unique advantages for efficient neuronal processing and feedback control of consciousness. Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the largest transmitter family in the brain-the slow-acting peptide transmitters-remain relatively overlooked, or described as "modulatory." Neuropeptides may efficiently implement sustained neural circuit connectivity, since they are not rapidly removed from the extracellular space, and their prolonged action does not require continuous presynaptic firing. From this perspective, we review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin release inside and outside the hypothalamus evokes slow postsynaptic excitation. This excitation does not arise from modulation of classic neurotransmission, but involves direct action of orexins on their specific G-protein coupled receptors (GPCRs) coupled to ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent with slow local microcircuits. The sustained actions of neuropeptides on neuronal membrane potential may enable core brain functions, such as temporal integration and the creation of lasting permissive signals that act as "eligibility traces" for context-dependent information routing and plasticity. The slowness of neuropeptides has unique advantages for efficient neuronal processing and feedback control of consciousness.Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the largest transmitter family in the brain-the slow-acting peptide transmitters-remain relatively overlooked, or described as "modulatory." Neuropeptides may efficiently implement sustained neural circuit connectivity, since they are not rapidly removed from the extracellular space, and their prolonged action does not require continuous presynaptic firing. From this perspective, we review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin release inside and outside the hypothalamus evokes slow postsynaptic excitation. This excitation does not arise from modulation of classic neurotransmission, but involves direct action of orexins on their specific G-protein coupled receptors (GPCRs) coupled to ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent with slow local microcircuits. The sustained actions of neuropeptides on neuronal membrane potential may enable core brain functions, such as temporal integration and the creation of lasting permissive signals that act as "eligibility traces" for context-dependent information routing and plasticity. The slowness of neuropeptides has unique advantages for efficient neuronal processing and feedback control of consciousness. |
Author | Guillaumin, Mathilde C. C. Burdakov, Denis |
AuthorAffiliation | Department of Health Sciences and Technology, ETH Zürich , Zurich , Switzerland |
AuthorAffiliation_xml | – name: Department of Health Sciences and Technology, ETH Zürich , Zurich , Switzerland |
Author_xml | – sequence: 1 givenname: Mathilde C. C. surname: Guillaumin fullname: Guillaumin, Mathilde C. C. – sequence: 2 givenname: Denis surname: Burdakov fullname: Burdakov, Denis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33776641$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktrVDEcxYNU7EM_gBu54KabGfO8STaiHdQWWnWh4C7k5lEz3EnGJLfQb2-mty1toauEf37n5JCcQ7AXU3QAvEVwSYiQH3wMsSwxxGjZU0oQeQEOUN_jBWXkz96D_T44LGUNYY8Fxa_APiGc9z1FB-DTdzfltHXbGqwrnS7dzxw2Ol93F84GXVMuXfLdSdYhdquQzRRqt0oxOlPDVajXr8FLr8fi3tyuR-D31y-_VqeL8x_fzlafzxeGSlIX3A7cIMxI77j1nhOupRcDF0YTackAqdUQaUytxbwhiEkpmfNQaEf0MJAjcDb72qTXajuHVEkHdTNI-VLpXIMZnULecW96Izyz7XIoJJXQCkNEGxEhmtfH2Ws7DRtnjYs16_GR6eOTGP6qy3SluJSIQtQMjm8Ncvo3uVLVJhTjxlFHl6aiMIM9Q5gy3tD3T9B1mnJsT7WjIGKMQtmodw8T3Ue5-6gG8BkwOZWSnVcmVF1D2gUMo0JQ7SqhbiqhdpVQcyWaEj1R3pk_r_kPV2a6_w |
CitedBy_id | crossref_primary_10_1016_j_jbc_2024_107321 crossref_primary_10_1002_edm2_356 crossref_primary_10_1016_j_addicn_2022_100024 crossref_primary_10_3390_biomedicines10020343 crossref_primary_10_1152_jn_00131_2024 crossref_primary_10_1002_ange_202206122 crossref_primary_10_1152_jn_00399_2024 crossref_primary_10_1007_s44258_024_00021_7 crossref_primary_10_1016_j_ifacol_2023_10_1614 crossref_primary_10_1016_j_omtn_2024_102409 crossref_primary_10_1002_bies_202400238 crossref_primary_10_1021_acschemneuro_2c00684 crossref_primary_10_1073_pnas_2222095120 crossref_primary_10_1073_pnas_2123146119 crossref_primary_10_1002_anie_202206122 crossref_primary_10_1016_j_celrep_2024_114580 crossref_primary_10_1016_j_cub_2022_05_029 crossref_primary_10_1021_acs_jproteome_2c00363 crossref_primary_10_1016_j_jpsychires_2022_06_030 crossref_primary_10_1146_annurev_neuro_110520_031137 crossref_primary_10_1186_s12868_022_00694_z |
Cites_doi | 10.1016/j.neuron.2018.02.005 10.1038/nrn2092 10.1016/0149-7634(95)00015-1 10.1016/j.ygcen.2011.03.028 10.1016/j.peptides.2009.06.024 10.1038/222282a0 10.1073/pnas.95.1.322 10.1073/pnas.0802687105 10.1523/JNEUROSCI.0586-04.2004 10.1016/S0896-6273(01)00293-8 10.1038/nn.3810 10.1016/j.cub.2020.07.061 10.1038/nn.4462 10.1038/ncomms11395 10.3389/fnbeh.2012.00081 10.1073/pnas.1619700114 10.1017/S1462399408000823 10.1073/pnas.2007993117 10.1523/JNEUROSCI.23-12-04951.2003 10.3389/fncir.2018.00053 10.1073/pnas.181330998 10.1016/j.neuron.2017.01.014 10.1016/j.brainres.2018.09.011 10.1016/j.neuron.2005.04.035 10.1016/j.neuron.2016.02.037 10.1038/nature04284 10.1523/JNEUROSCI.6032-11.2012 10.1101/620096 10.1038/nn1226 10.1523/JNEUROSCI.1205-09.2009 10.1016/j.yfrne.2016.11.002 10.1523/JNEUROSCI.1887-05.2005 10.1126/science.aax9238 10.1016/S0092-8674(00)80949-6 10.1007/400_2007_047 10.1523/JNEUROSCI.3388-13.2014 10.1016/j.neuron.2012.09.014 10.1177/1073858404263597 10.1016/S0092-8674(00)81965-0 10.1038/nn.3522 10.1111/j.1748-1716.2008.01922.x 10.1038/nature11270 10.1016/j.neubiorev.2017.07.009 10.2337/db08-0548 10.1038/s41467-019-10484-7 10.1016/j.physbeh.2020.112988 10.1073/pnas.96.19.10911 10.1016/j.resp.2009.03.006 10.1073/pnas.0702676104 10.1016/j.cmet.2011.03.016 10.1016/0896-6273(91)90054-4 10.1007/7854_2016_45 10.1523/JNEUROSCI.18-23-09996.1998 10.1007/s00429-014-0869-7 10.1038/nn.4220 10.1523/JNEUROSCI.4925-04.2005 10.1007/s00441-006-0268-3 10.1016/S0896-6273(03)00331-3 10.1016/j.cmet.2009.06.011 10.1038/s41593-017-0023-y 10.1093/sleep/zsz296 10.1016/S0092-8674(00)81973-X 10.1016/j.pneurobio.2020.101771 10.3389/fncir.2018.00117 10.3389/fnsys.2014.00192 10.1016/S0306-4522(03)00238-0 10.1111/apha.12360 10.1146/annurev.pharmtox.011008.145533 10.1016/S0165-6147(99)01413-3 10.1016/j.neuropharm.2018.10.024 10.1038/nature06310 10.1523/JNEUROSCI.0784-11.201 10.1016/j.physbeh.2013.03.023 10.1113/jphysiol.2002.030049 10.1073/pnas.1320325110 10.1113/jphysiol.2011.217000 10.1007/978-1-61779-310-3_1 10.1016/S1474-4422(03)00482-4 10.1016/j.neuron.2011.08.027 10.1111/bph.12324 10.1016/j.celrep.2014.03.055 10.1523/JNEUROSCI.21-19-j0003.2001 10.1038/s41593-019-0349-8 10.1523/JNEUROSCI.18-12-04705.1998 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Guillaumin and Burdakov. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Guillaumin and Burdakov. 2021 Guillaumin and Burdakov |
Copyright_xml | – notice: Copyright © 2021 Guillaumin and Burdakov. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Guillaumin and Burdakov. 2021 Guillaumin and Burdakov |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2021.644313 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Biological Sciences Science Database ProQuest Biological Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_1fe7fc6c8f5d493089490d8c38c8f388 PMC7991401 33776641 10_3389_fnins_2021_644313 |
Genre | Journal Article Review |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c493t-7db7c12536e7dff737a9f8b78ca39d3b04da01a24dd27e7d159995ef08ae3abb3 |
IEDL.DBID | BENPR |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:24:48 EDT 2025 Thu Aug 21 14:11:55 EDT 2025 Thu Sep 04 21:13:58 EDT 2025 Fri Jul 25 11:57:42 EDT 2025 Thu Jan 02 22:57:57 EST 2025 Tue Jul 01 01:39:19 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | hypocretin neural circuit neuropeptides orexin hypothalamus arousal |
Language | English |
License | Copyright © 2021 Guillaumin and Burdakov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-7db7c12536e7dff737a9f8b78ca39d3b04da01a24dd27e7d159995ef08ae3abb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 This article was submitted to Sleep and Circadian Rhythms, a section of the journal Frontiers in Neuroscience Edited by: Zhe Zhang, Chinese Academy of Sciences (CAS), China Reviewed by: William Wisden, Imperial College London, United Kingdom; Anne Vassalli, Massachusetts Institute of Technology, United States |
OpenAccessLink | https://www.proquest.com/docview/2500155409?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 33776641 |
PQID | 2500155409 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fe7fc6c8f5d493089490d8c38c8f388 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7991401 proquest_miscellaneous_2506512457 proquest_journals_2500155409 pubmed_primary_33776641 crossref_citationtrail_10_3389_fnins_2021_644313 crossref_primary_10_3389_fnins_2021_644313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-11 |
PublicationDateYYYYMMDD | 2021-03-11 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2021 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Blomeley (B9) 2018; 21 Burdakov (B14) 2020; 1731 Kosse (B45) 2014; 8 Matsuki (B56) 2008; 46 Williams (B84) 2008; 105 Herrera (B35) 2017; 44 Huang (B37) 2001; 98 Kosse (B46) 2019; 10 Burdakov (B15) 2005; 25 Peyron (B62) 1998; 18 Verhage (B83) 1991; 6 Dicken (B27) 2012; 32 Adamantidis (B1) 2009; 30 Sears (B72) 2013; 110 Izawa (B39) 2019; 365 Burdakov (B16) 2009; 195 Carter (B21) 2009; 29 Lam (B50) 2011; 13 Sakurai (B64) 2007; 8 Williams (B86) 2007; 104 Salio (B66) 2006; 326 van den Top (B81) 2004; 7 Bormann (B10) 2000; 21 Sherin (B73) 1998; 18 Lee (B51) 2005; 25 Bear (B5) 2015 Burdakov (B17) 2020; 30 Niswender (B60) 2010; 50 Torrealba (B78) 2003; 119 Belle (B6) 2014; 34 Hagan (B32) 1999; 96 Kosse (B47) 2015; 231 Atasoy (B4) 2012; 488 Chemelli (B22) 1999; 98 Tsunematsu (B79) 2011; 31 Oomura (B61) 1969; 222 Romanov (B63) 2017; 20 Adamantidis (B3) 2007; 450 Karnani (B41) 2011; 72 Kukkonen (B49) 2014; 171 Burdakov (B13) 2019; 154 Stuber (B75) 2016; 19 Svensson (B77) 2018; 12 Jego (B40) 2013; 16 Sunanaga (B76) 2009; 166 Inutsuka (B38) 2013; 75 Bittencourt (B8) 2011; 172 Schöne (B69) 2014; 7 Lin (B53) 1999; 98 Hay (B34) 2014; 220 Kosse (B48) 2017; 114 Burdakov (B18) 2013; 121 Gerstner (B29) 2018; 12 Follwell (B28) 2002; 545 Mickelsen (B57) 2019; 22 Hara (B33) 2001; 30 Yamanaka (B87) 2003; 38 Chou (B24) 2001; 21 Schöne (B70) 2012; 6 van den Pol (B80) 2012; 76 Ma (B54) 2018; 85 Saper (B67) 2005; 437 Gonzalez (B30) 2016; 7 Chen (B23) 2018; 97 de Lecea (B26) 1998; 95 Mahler (B55) 2014; 17 Karnani (B42) 2016; 90 Hokfelt (B36) 2003; 2 Karnani (B43) 2019 Steiger (B74) 1997; 20 Burdakov (B12) 2004; 10 Scammell (B68) 2017; 93 Mochizuki (B59) 2004; 24 Venner (B82) 2011; 589 Williams (B85) 2008; 10 Leinninger (B52) 2009; 10 Burdakov (B19) 2003; 23 Schone (B71) 2017; 33 Karnani (B44) 2020; 187 Burdakov (B20) 2020; 223 Concetti (B25) 2020; 117 Gonzalez (B31) 2008; 57 Burbach (B11) 2011; 789 Adamantidis (B2) 2020; 43 Bernardis (B7) 1996; 20 Mileykovskiy (B58) 2005; 46 Sakurai (B65) 1998; 92 |
References_xml | – volume: 97 start-page: 1168 year: 2018 ident: B23 article-title: A hypothalamic switch for REM and Non-REM sleep. publication-title: Neuron doi: 10.1016/j.neuron.2018.02.005 – volume: 75 start-page: 29 year: 2013 ident: B38 article-title: The regulation of sleep and wakefulness by the hypothalamic neuropeptide orexin/hypocretin. publication-title: Nagoya J. Med. Sci. – volume: 8 start-page: 171 year: 2007 ident: B64 article-title: The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2092 – volume: 20 start-page: 189 year: 1996 ident: B7 article-title: The lateral hypothalamic area revisited: ingestive behavior. publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/0149-7634(95)00015-1 – volume: 172 start-page: 185 year: 2011 ident: B8 article-title: Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2011.03.028 – volume: 30 start-page: 2066 year: 2009 ident: B1 article-title: A role for melanin-concentrating hormone in learning and memory. publication-title: Peptides doi: 10.1016/j.peptides.2009.06.024 – volume: 222 start-page: 282 year: 1969 ident: B61 article-title: Glucose and osmosensitive neurones of the rat hypothalamus. publication-title: Nature doi: 10.1038/222282a0 – volume: 95 start-page: 322 year: 1998 ident: B26 article-title: The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.1.322 – volume: 105 start-page: 11975 year: 2008 ident: B84 article-title: Adaptive sugar sensors in hypothalamic feeding circuits. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0802687105 – volume: 24 start-page: 6291 year: 2004 ident: B59 article-title: Behavioral state instability in orexin knock-out mice. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0586-04.2004 – volume: 30 start-page: 345 year: 2001 ident: B33 article-title: Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. publication-title: Neuron doi: 10.1016/S0896-6273(01)00293-8 – volume: 17 start-page: 1298 year: 2014 ident: B55 article-title: Motivational activation: a unifying hypothesis of orexin/hypocretin function. publication-title: Nat. Neurosci. doi: 10.1038/nn.3810 – volume: 30 start-page: 4063.e year: 2020 ident: B17 article-title: Ultra-sparse connectivity within the lateral hypothalamus. publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.07.061 – volume: 20 start-page: 176 year: 2017 ident: B63 article-title: Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. publication-title: Nat. Neurosci. doi: 10.1038/nn.4462 – volume: 7 year: 2016 ident: B30 article-title: Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. publication-title: Nat. Commun. doi: 10.1038/ncomms11395 – volume: 6 year: 2012 ident: B70 article-title: Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons. publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2012.00081 – volume: 114 start-page: 4525 year: 2017 ident: B48 article-title: Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1619700114 – volume: 10 year: 2008 ident: B85 article-title: Hypothalamic orexins/hypocretins as regulators of breathing. publication-title: Expert Rev. Mol. Med. doi: 10.1017/S1462399408000823 – volume: 117 start-page: 22514 year: 2020 ident: B25 article-title: Control of fear extinction by hypothalamic melanin-concentrating hormone-expressing neurons. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2007993117 – volume: 23 start-page: 4951 year: 2003 ident: B19 article-title: Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium–calcium exchanger. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-12-04951.2003 – volume: 12 year: 2018 ident: B29 article-title: Eligibility traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor learning rules. publication-title: Front. Neural Circuits doi: 10.3389/fncir.2018.00053 – volume: 98 start-page: 9965 year: 2001 ident: B37 article-title: Arousal effect of orexin A depends on activation of the histaminergic system. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.181330998 – volume: 93 start-page: 747 year: 2017 ident: B68 article-title: Neural circuitry of wakefulness and sleep. publication-title: Neuron doi: 10.1016/j.neuron.2017.01.014 – volume: 1731 year: 2020 ident: B14 article-title: How orexin signals bias action: Hypothalamic and accumbal circuits. publication-title: Brain Res. doi: 10.1016/j.brainres.2018.09.011 – volume: 46 start-page: 787 year: 2005 ident: B58 article-title: Behavioral correlates of activity in identified hypocretin/orexin neurons. publication-title: Neuron doi: 10.1016/j.neuron.2005.04.035 – volume: 90 start-page: 86 year: 2016 ident: B42 article-title: Cooperative subnetworks of molecularly similar interneurons in mouse neocortex. publication-title: Neuron doi: 10.1016/j.neuron.2016.02.037 – volume: 437 start-page: 1257 year: 2005 ident: B67 article-title: Hypothalamic regulation of sleep and circadian rhythms. publication-title: Nature doi: 10.1038/nature04284 – volume: 32 start-page: 4042 year: 2012 ident: B27 article-title: Regulation of GABA and glutamate release from proopiomelanocortin neuron terminals in intact hypothalamic networks. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6032-11.2012 – year: 2019 ident: B43 article-title: Rapid sensory integration in orexin neurons governs probability of future movements. publication-title: bioRxiv doi: 10.1101/620096 – volume: 7 start-page: 493 year: 2004 ident: B81 article-title: Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. publication-title: Nat. Neurosci. doi: 10.1038/nn1226 – volume: 29 start-page: 10939 year: 2009 ident: B21 article-title: Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1205-09.2009 – volume: 44 start-page: 27 year: 2017 ident: B35 article-title: Sleep & metabolism: the multitasking ability of lateral hypothalamic inhibitory circuitries. publication-title: Front. Neuroendocrinol. doi: 10.1016/j.yfrne.2016.11.002 – volume: 25 start-page: 6716 year: 2005 ident: B51 article-title: Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1887-05.2005 – volume: 365 start-page: 1308 year: 2019 ident: B39 article-title: REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. publication-title: Science doi: 10.1126/science.aax9238 – volume: 92 start-page: 573 year: 1998 ident: B65 article-title: Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. publication-title: Cell doi: 10.1016/S0092-8674(00)80949-6 – volume: 46 start-page: 27 year: 2008 ident: B56 article-title: Orexins and orexin receptors: from molecules to integrative physiology. publication-title: Results Probl. Cell Differ. doi: 10.1007/400_2007_047 – volume: 34 start-page: 3607 year: 2014 ident: B6 article-title: Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3388-13.2014 – volume: 76 start-page: 98 year: 2012 ident: B80 article-title: Neuropeptide transmission in brain circuits. publication-title: Neuron doi: 10.1016/j.neuron.2012.09.014 – year: 2015 ident: B5 publication-title: Neuroscience: Exploring the Brain. – volume: 10 start-page: 286 year: 2004 ident: B12 article-title: Electrical signaling in central orexin/hypocretin circuits: tuning arousal and appetite to fit the environment. publication-title: Neuroscientist doi: 10.1177/1073858404263597 – volume: 98 start-page: 365 year: 1999 ident: B53 article-title: The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. publication-title: Cell doi: 10.1016/S0092-8674(00)81965-0 – volume: 16 start-page: 1637 year: 2013 ident: B40 article-title: Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. publication-title: Nat. Neurosci. doi: 10.1038/nn.3522 – volume: 195 start-page: 71 year: 2009 ident: B16 article-title: Physiological functions of glucose-inhibited neurones. publication-title: Acta Physiol. (Oxf.) doi: 10.1111/j.1748-1716.2008.01922.x – volume: 488 start-page: 172 year: 2012 ident: B4 article-title: Deconstruction of a neural circuit for hunger. publication-title: Nature doi: 10.1038/nature11270 – volume: 85 start-page: 21 year: 2018 ident: B54 article-title: Dual-transmitter systems regulating arousal, attention, learning and memory. publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.07.009 – volume: 57 start-page: 2569 year: 2008 ident: B31 article-title: Metabolism-independent sugar sensing in central orexin neurons. publication-title: Diabetes doi: 10.2337/db08-0548 – volume: 10 year: 2019 ident: B46 article-title: Natural hypothalamic circuit dynamics underlying object memorization. publication-title: Nat. Commun. doi: 10.1038/s41467-019-10484-7 – volume: 223 year: 2020 ident: B20 article-title: The hypothalamus as a primary coordinator of memory updating. publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2020.112988 – volume: 96 start-page: 10911 year: 1999 ident: B32 article-title: Orexin A activates locus coeruleus cell firing and increases arousal in the rat. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.19.10911 – volume: 166 start-page: 184 year: 2009 ident: B76 article-title: CO2 activates orexin-containing neurons in mice. publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2009.03.006 – volume: 104 start-page: 10685 year: 2007 ident: B86 article-title: Control of hypothalamic orexin neurons by acid and CO2. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0702676104 – volume: 13 start-page: 584 year: 2011 ident: B50 article-title: Leptin does not directly affect CNS serotonin neurons to influence appetite. publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.03.016 – volume: 6 start-page: 517 year: 1991 ident: B83 article-title: Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. publication-title: Neuron doi: 10.1016/0896-6273(91)90054-4 – volume: 33 start-page: 51 year: 2017 ident: B71 article-title: Orexin/hypocretin and organizing principles for a diversity of wake-promoting neurons in the brain. publication-title: Curr. Top. Behav. Neurosci. doi: 10.1007/7854_2016_45 – volume: 18 start-page: 9996 year: 1998 ident: B62 article-title: Neurons containing hypocretin (orexin) project to multiple neuronal systems. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-23-09996.1998 – volume: 220 start-page: 3497 year: 2014 ident: B34 article-title: Orexin-dependent activation of layer VIb enhances cortical network activity and integration of non-specific thalamocortical inputs. publication-title: Brain Struct. Funct doi: 10.1007/s00429-014-0869-7 – volume: 19 start-page: 198 year: 2016 ident: B75 article-title: Lateral hypothalamic circuits for feeding and reward. publication-title: Nat. Neurosci. doi: 10.1038/nn.4220 – volume: 25 start-page: 2429 year: 2005 ident: B15 article-title: Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4925-04.2005 – volume: 326 start-page: 583 year: 2006 ident: B66 article-title: Neuropeptides as synaptic transmitters. publication-title: Cell Tissue Res. doi: 10.1007/s00441-006-0268-3 – volume: 38 start-page: 701 year: 2003 ident: B87 article-title: Hypothalamic orexin neurons regulate arousal according to energy balance in mice. publication-title: Neuron doi: 10.1016/S0896-6273(03)00331-3 – volume: 10 start-page: 89 year: 2009 ident: B52 article-title: Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.06.011 – volume: 21 start-page: 29 year: 2018 ident: B9 article-title: Accumbal D2 cells orchestrate innate risk-avoidance according to orexin signals. publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0023-y – volume: 43 year: 2020 ident: B2 article-title: A circuit perspective on narcolepsy. publication-title: Sleep doi: 10.1093/sleep/zsz296 – volume: 98 start-page: 437 year: 1999 ident: B22 article-title: Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. publication-title: Cell doi: 10.1016/S0092-8674(00)81973-X – volume: 187 year: 2020 ident: B44 article-title: Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2020.101771 – volume: 20 start-page: 1038 year: 1997 ident: B74 article-title: Neuropeptides and human sleep. publication-title: Sleep – volume: 12 year: 2018 ident: B77 article-title: General principles of neuronal co-transmission: insights from multiple model systems. publication-title: Front. Neural. Circuits doi: 10.3389/fncir.2018.00117 – volume: 8 year: 2014 ident: B45 article-title: A unifying computational framework for stability and flexibility of arousal. publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00192 – volume: 119 start-page: 1033 year: 2003 ident: B78 article-title: Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00238-0 – volume: 231 start-page: 7 year: 2015 ident: B47 article-title: Predictive models of glucose control: roles for glucose-sensing neurones. publication-title: Acta Physiol. (Oxf.) doi: 10.1111/apha.12360 – volume: 50 start-page: 295 year: 2010 ident: B60 article-title: Metabotropic glutamate receptors: physiology, pharmacology, and disease. publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.011008.145533 – volume: 21 start-page: 16 year: 2000 ident: B10 article-title: The ‘ABC’ of GABA receptors. publication-title: Trends Pharmacol. Sci. doi: 10.1016/S0165-6147(99)01413-3 – volume: 154 start-page: 61 year: 2019 ident: B13 article-title: Reactive and predictive homeostasis: roles of orexin/hypocretin neurons. publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.10.024 – volume: 450 start-page: 420 year: 2007 ident: B3 article-title: Neural substrates of awakening probed with optogenetic control of hypocretin neurons. publication-title: Nature doi: 10.1038/nature06310 – volume: 31 start-page: 10529 year: 2011 ident: B79 article-title: Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0784-11.201 – volume: 121 start-page: 117 year: 2013 ident: B18 article-title: Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2013.03.023 – volume: 545 start-page: 855 year: 2002 ident: B28 article-title: Cellular mechanisms of orexin actions on paraventricular nucleus neurones in rat hypothalamus. publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.030049 – volume: 110 start-page: 20260 year: 2013 ident: B72 article-title: Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1320325110 – volume: 589 start-page: 5701 year: 2011 ident: B82 article-title: Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.217000 – volume: 789 start-page: 1 year: 2011 ident: B11 article-title: What are neuropeptides? publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-310-3_1 – volume: 2 start-page: 463 year: 2003 ident: B36 article-title: Neuropeptides: opportunities for drug discovery. publication-title: Lancet Neurol doi: 10.1016/S1474-4422(03)00482-4 – volume: 72 start-page: 616 year: 2011 ident: B41 article-title: Activation of central orexin/hypocretin neurons by dietary amino acids. publication-title: Neuron doi: 10.1016/j.neuron.2011.08.027 – volume: 171 start-page: 314 year: 2014 ident: B49 article-title: Orexin/hypocretin receptor signalling cascades. publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12324 – volume: 7 start-page: 697 year: 2014 ident: B69 article-title: Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.03.055 – volume: 21 year: 2001 ident: B24 article-title: Orexin (hypocretin) neurons contain dynorphin. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-19-j0003.2001 – volume: 22 start-page: 642 year: 2019 ident: B57 article-title: Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0349-8 – volume: 18 start-page: 4705 year: 1998 ident: B73 article-title: Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-12-04705.1998 |
SSID | ssj0062842 |
Score | 2.3908405 |
SecondaryResourceType | review_article |
Snippet | Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 644313 |
SubjectTerms | Action potential arousal Behavior Consciousness Hormones hypocretin Hypothalamus Hypothalamus (lateral) Ion channels Luteinizing hormone Membrane potential neural circuit Neural networks Neuromodulation Neurons Neuropeptides Neuroscience Neurosciences Neurotransmission Neurotransmitters orexin Orexins Peptides Sleep Sleep and wakefulness Transmitters γ-Aminobutyric acid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB_Ekxdpa1u32hKh9FBYzW6y-bhVRZGCpYcK3pZ80gftPnkfB_97J8m-h0_EXnpNZtnszCT5TTL7G4DPXSuDoUbXMUZdcyPaWlvV1Ca0EeFu67hN55DXP8TVDf9-290-KvWVcsIKPXBR3EkTg4xOOBU7zzWjSnNNvXJMYRNT-TdfqukqmCprsMBFty13mBiC6ZM4TIbEzd02x7j_s4Zt7EKZrP85hPk0UfLRznP5CnZHyEhOy1Bfw1YY3sDe6YDh8t978oXkJM58Or4H3zLZxl1KVfFhTsyc_Cx0EuQ61-SYzuZkGslZKgxBziczt5wsSE52caWMxFu4ubz4dX5Vj0USaofqWNTSW-kQpTARpI9RMml0VFYqZ5j2zFLuDW1My71Hs0iP8EXrLkSqTGDGWvYOtofpEPaBxCiCQgEeuOS8M1ZgbCYRQJhOmyB1BXSltN6NDOKpkMWfHiOJpOc-67lPeu6Lniv4un7krnzvS8JnyRJrwcR8nRvQH_rRH_p_-UMFhys79uN0xJd0GRtiLFvB0bobJ1K6HTFDmC6zjED0wztZwfti9vVIGJNSCN5UIDccYmOomz3D5Hcm65YIwDGG_fA_vu0AdpK6Ugpc0xzC9mK2DB8REy3sp-z-D8XKC0k priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9KffFF1PoRrbKF4oOQmmQ3-_Eg_cJShIoPHvQt7KcetEnN3YH9753d5IInR1-zm7D5zWzmNzuTGYDDuhJeF1rlIQSVM82rXBlZ5tpXAeluZZmJ55BX3_jljH29rq93YN3eagRwsdW1i_2kZv3N0Z_f98e44T9HjxPt7afQzttYebsqj9C609jD9lEKF8VMPjYFFTh-iVPwk8cfhZCpD0HO7Y_YMFOpmv82Cvp_JuU_puniKTwZOSU5HZTgGez49jnsnbboT9_ekw8kZXmm4_M9OEnVOO5iLovzC6IX5PtQb4JcpaYdXb8gXSBnsXMEOZ_3djVfkpQNY4c-Ey9gdvHlx_llPnZRyC1TdJkLZ4RFGkO5Fy4EQYVWQRohrabKUVMwp4tSV8w5lJtwyG-Uqn0opPZUG0Nfwm7btf41kBC4lziBeSYYq7Xh6LwJZBi6VtoLlUGxBq2xY4nx2OnipkFXI-LcJJybiHMz4JzBx-mWu-F9H5p8FiUxTYylsdOFrv_ZjDutKYMXwXIrQ-0QgEIqpgonLZV4iUqZwf5ajs1a3RokgpE8orObwcE0jDsthk9067tVmsORHrFaZPBqEPu0EkqF4JyVGYgNhdhY6uZIO_-VqnkLZOjo5L55eFlv4XEEIma_leU-7C77lX-HdGhp3icl_wtJ9ghz priority: 102 providerName: Scholars Portal |
Title | Neuropeptides as Primary Mediators of Brain Circuit Connectivity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33776641 https://www.proquest.com/docview/2500155409 https://www.proquest.com/docview/2506512457 https://pubmed.ncbi.nlm.nih.gov/PMC7991401 https://doaj.org/article/1fe7fc6c8f5d493089490d8c38c8f388 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7YULAsoj0FZGQhyQQpPY8eOASrdqVSHtqkJU6i1y_ICV2mTZx4F_z9h5iEWolxzsieKMxzPf2OMZgPdlIZzOtEq99yplmhepqmWeald4hLuFYXXYh5zN-dUN-3pb3u7BfLgLE8IqB50YFbVtTdgjP0FTHcw7uiOny19pqBoVTleHEhq6L61gP8cUY49gH1VymU1gf3oxv_426GaOyjief_JwVwjBenfOiW6aOvHNogn5u4v8E2IEmtMdSxUT-v8Phf4bTPmXdbp8Ck96WEnOOjl4BnuueQ4HZw261Pe_yQcSAz3jDvoBfIkJOZYhnMW6NdFrct2lnCCzWLejXa1J68k0FI8g54uV2S42JAbEmK7UxAu4ubz4fn6V9oUUUsMU3aTC1sIgPyh3wnovqNDKy1pIo6mytM6Y1VmuC2YtTp2wCHGUKp3PpHZU1zV9CZOmbdxrIN5zJ5GAOSYYK3XN0X8TCDJ0qbQTKoFsYFpl-izjodjFXYXeRuBzFflcBT5XHZ8T-Di-suz-9yHiaZiJkTBkx44N7epH1S-2KvdOeMON9KVFBmRSMZVZaajEJiplAofDPFb9ksWPjAKWwLuxGxdbOEHRjWu3kYYjQmKlSOBVN-3jSCgVgnOWJyB2BGJnqLs9zeJnTOgtEKSjn_vm4WG9hceBESEALs8PYbJZbd0RIqJNfdyL-XHcUcDnjMk_3iMM6w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJRHoICRgANSaBI7fhwq6JZWW9pdVaiVeksdP2AlSJZ9CPXP8dsYOw-xCPXWa-wk9vgx843H8yH0Os-4VYmSsXNOxlSxLJalSGNlMwfmbqZp6f2Q4wkbndPPF_nFBvrd3YXxYZXdnhg2alNr7yPfAVXt1TvAkQ-zn7FnjfKnqx2FhmqpFcxuSDHWXuw4tle_AMItdo8-wXi_ybLDg7P9UdyyDMSaSrKMuSm5BjVPmOXGOU64kk6UXGhFpCFlQo1KUpVRY6Bf3ID-lzK3LhHKElWWBL57C21S70AZoM3hweT0S6cLGGz-4byV-btJAA6ac1WAhXLHVdPK5wvP0vdgk5CUrGnGQCDwP6v33-DNv7Th4T10tzVj8V4z7-6jDVs9QFt7FUD4H1f4LQ6BpcFjv4U-hgQgMx8-Y-wCqwU-bVJc4HHgCannC1w7PPRkFXh_Oter6RKHABzdUFs8ROc3ItJHaFDVlX2CsHPMCqhALeWU5qpkgBc5GDUql8pyGaGkE1qh26zmnlzjewHoxsu5CHIuvJyLRs4Rete_Mmv6e13loR-JvqLPxh0e1POvRbu4i9RZ7jTTwuUGBJAISWVihCYCHhEhIrTdjWPRbhHwk35CR-hVXwyL25_YqMrWq1CHgUVGcx6hx82w9y0hhHPGaBohvjYh1pq6XlJNv4UE4hxAAeDqp9c36yW6PTobnxQnR5PjZ-iOF4oPvkvTbTRYzlf2OVhjy_JFO-UxurzpVfYHJOFJaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJcEFAegQJGAg5IoUns2PGhgm7bVUvpaoWo1Ftw_ICVIFn2IdS_yK9i7CQrFqHeeo2dxB4_Zj7PeD6Al3kmrEqUjJ1zMmaKZ7GsijRWNnNo7maaVf4c8mzEj8_Zh4v8YgN-93dhfFhlvyeGjdo02p-R76Kq9uod4ciu68IixofDd9OfsWeQ8p7Wnk5DdTQLZi-kG-sueZzay18I5-Z7J4c49q-ybHj0-eA47hgHYs0kXcTCVEKjyqfcCuOcoEJJV1Si0IpKQ6uEGZWkKmPGYB-FQVtAyty6pFCWqqqi-N0bsCVQ6yMQ3Bocjcafer3AUREE3yv395QQKLQ-VoSI2KN6Uvvc4Vn6Fu0TmtI1LRnIBP5nAf8byPmXZhzegdudSUv22zl4FzZsfQ-292uE8z8uyWsSgkzD6f02vA_JQKY-lMbYOVFzMm7TXZCzwBnSzOakcWTgiSvIwWSml5MFCcE4uqW5uA_n1yLSB7BZN7V9BMQ5bguswCwTjOWq4ogdBRo4KpfKChlB0gut1F2Gc0-08b1EpOPlXAY5l17OZSvnCN6sXpm2_b2q8sCPxKqiz8wdHjSzr2W30MvUWeE014XLDQogKSSTiSk0LfARLYoIdvpxLLvtAn-ymtwRvFgV40L33htV22YZ6nC0zlguInjYDvuqJZQKwTlLIxBrE2Ktqesl9eRbSCYuECAgxn58dbOew01cbeXHk9HpE7jlZeLj8NJ0BzYXs6V9iobZonrWzXgCX657kf0BjkJNrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuropeptides+as+Primary+Mediators+of+Brain+Circuit+Connectivity&rft.jtitle=Frontiers+in+neuroscience&rft.au=Guillaumin%2C+Mathilde+C+C&rft.au=Burdakov%2C+Denis&rft.date=2021-03-11&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2021.644313&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |