MRI-based Algorithm for Acute Ischemic Stroke Subtype Classification
In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC). We enrolle...
Saved in:
Published in | Journal of stroke Vol. 16; no. 3; pp. 161 - 172 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Korean Stroke Society
01.09.2014
대한뇌졸중학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2287-6391 1229-4101 2287-6405 |
DOI | 10.5853/jos.2014.16.3.161 |
Cover
Abstract | In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC).
We enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database.
The overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%).
Despite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic. |
---|---|
AbstractList | In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC).BACKGROUND AND PURPOSEIn order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC).We enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database.METHODSWe enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database.The overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%).RESULTSThe overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%).Despite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic.CONCLUSIONSDespite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic. Background and PurposeIn order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC).MethodsWe enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database.ResultsThe overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%).ConclusionsDespite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic. Background and Purpose In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC). Methods We enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database. Results The overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%). Conclusions Despite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic. KCI Citation Count: 7 In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC). We enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database. The overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%). Despite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic. |
Author | Hong, Keun-Sik Lee, Jun Yu, Kyung-Ho Lee, Ji Sung Lee, Byung-Chul Han, Moon-Ku Bae, Hee-Joon Lee, Juneyoung Park, Sang-Soon Park, Jong-Moo Chung, Jong-Won Choi, Jay Chol Kang, Kyusik Cho, Yong-Jin Kim, Dong-Eog Ko, Youngchai Kim, Joon-Tae Park, Tai Hwan Lee, SooJoo Kim, Dae-Hyun Cha, Jae-Kwan Shin, Dong-Ick Lee, Kyung Bok |
AuthorAffiliation | i Department of Neurology, Dong-A University Hospital, Busan, Korea k Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea l Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Korea g Department of Neurology, Yeungnam University Hospital, Daegu, Korea h Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea n Department of Biostatistics, Korea University College of Medicine, Seoul, Korea m Biostatistical Consulting Unit, Soonchunhyang University Medical Center, Seoul, Korea b Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea d Department of Neurology, Seoul Medical Center, Seoul, Korea e Department of Neurology, Ilsan Paik Hospital, Inje University, Goyang, Korea a Department of Neurology, Eulji University Hospital, Eulji University, Daejeon, Korea c Department of Neurology, Eulji General Hospital, Eulji University, Seoul, |
AuthorAffiliation_xml | – name: o Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea – name: g Department of Neurology, Yeungnam University Hospital, Daegu, Korea – name: f Department of Neurology, Soonchunhyang University Hospital, Seoul, Korea – name: k Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea – name: l Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Korea – name: e Department of Neurology, Ilsan Paik Hospital, Inje University, Goyang, Korea – name: j Department of Neurology, Chonnam National University Hospital, Gwangju, Korea – name: h Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea – name: c Department of Neurology, Eulji General Hospital, Eulji University, Seoul, Korea – name: m Biostatistical Consulting Unit, Soonchunhyang University Medical Center, Seoul, Korea – name: a Department of Neurology, Eulji University Hospital, Eulji University, Daejeon, Korea – name: b Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea – name: d Department of Neurology, Seoul Medical Center, Seoul, Korea – name: i Department of Neurology, Dong-A University Hospital, Busan, Korea – name: n Department of Biostatistics, Korea University College of Medicine, Seoul, Korea |
Author_xml | – sequence: 1 givenname: Youngchai surname: Ko fullname: Ko, Youngchai organization: Department of Neurology, Eulji University Hospital, Eulji University, Daejeon, Korea – sequence: 2 givenname: SooJoo surname: Lee fullname: Lee, SooJoo organization: Department of Neurology, Eulji University Hospital, Eulji University, Daejeon, Korea – sequence: 3 givenname: Jong-Won surname: Chung fullname: Chung, Jong-Won organization: Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea – sequence: 4 givenname: Moon-Ku surname: Han fullname: Han, Moon-Ku organization: Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea – sequence: 5 givenname: Jong-Moo surname: Park fullname: Park, Jong-Moo organization: Department of Neurology, Eulji General Hospital, Eulji University, Seoul, Korea – sequence: 6 givenname: Kyusik surname: Kang fullname: Kang, Kyusik organization: Department of Neurology, Eulji General Hospital, Eulji University, Seoul, Korea – sequence: 7 givenname: Tai Hwan surname: Park fullname: Park, Tai Hwan organization: Department of Neurology, Seoul Medical Center, Seoul, Korea – sequence: 8 givenname: Sang-Soon surname: Park fullname: Park, Sang-Soon organization: Department of Neurology, Seoul Medical Center, Seoul, Korea – sequence: 9 givenname: Yong-Jin surname: Cho fullname: Cho, Yong-Jin organization: Department of Neurology, Ilsan Paik Hospital, Inje University, Goyang, Korea – sequence: 10 givenname: Keun-Sik surname: Hong fullname: Hong, Keun-Sik organization: Department of Neurology, Ilsan Paik Hospital, Inje University, Goyang, Korea – sequence: 11 givenname: Kyung Bok surname: Lee fullname: Lee, Kyung Bok organization: Department of Neurology, Soonchunhyang University Hospital, Seoul, Korea – sequence: 12 givenname: Jun surname: Lee fullname: Lee, Jun organization: Department of Neurology, Yeungnam University Hospital, Daegu, Korea – sequence: 13 givenname: Dong-Eog surname: Kim fullname: Kim, Dong-Eog organization: Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea – sequence: 14 givenname: Dae-Hyun surname: Kim fullname: Kim, Dae-Hyun organization: Department of Neurology, Dong-A University Hospital, Busan, Korea – sequence: 15 givenname: Jae-Kwan surname: Cha fullname: Cha, Jae-Kwan organization: Department of Neurology, Dong-A University Hospital, Busan, Korea – sequence: 16 givenname: Joon-Tae surname: Kim fullname: Kim, Joon-Tae organization: Department of Neurology, Chonnam National University Hospital, Gwangju, Korea – sequence: 17 givenname: Jay Chol surname: Choi fullname: Choi, Jay Chol organization: Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea – sequence: 18 givenname: Dong-Ick surname: Shin fullname: Shin, Dong-Ick organization: Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Korea – sequence: 19 givenname: Ji Sung surname: Lee fullname: Lee, Ji Sung organization: Biostatistical Consulting Unit, Soonchunhyang University Medical Center, Seoul, Korea – sequence: 20 givenname: Juneyoung surname: Lee fullname: Lee, Juneyoung organization: Department of Biostatistics, Korea University College of Medicine, Seoul, Korea – sequence: 21 givenname: Kyung-Ho surname: Yu fullname: Yu, Kyung-Ho organization: Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea – sequence: 22 givenname: Byung-Chul surname: Lee fullname: Lee, Byung-Chul organization: Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea – sequence: 23 givenname: Hee-Joon surname: Bae fullname: Bae, Hee-Joon organization: Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25328874$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001915163$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kk1v1DAQhiNURD_oD-CCcoNLFn8m9gVptaUQqQipLWfLmTi73k3ixXaQ-u9xdtuKcsAHz2j8zjNjzZxnJ6MbTZa9w2jBBaefti4sCMJsgcsFTRd-lZ0RIqqiZIifPPlU4tPsMoQtSkdwLAR5k50STokQFTvLrr7f1kWjg2nzZb923sbNkHfO50uYosnrABszWMjvonc7k99NTXzYm3zV6xBsZ0FH68a32etO98FcPtqL7Of1l_vVt-Lmx9d6tbwpgEkaixI46xqooOKAmaCUtkAFkYBEgzoBxmhEaItFI1AjZcvKinJDcArJUqc_X2QfjtzRd2oHVjltD3bt1M6r5e19rYhkuErK-qhsnd6qvbeD9g8H-SHg_FppHy30RrWUdgQbLUF0jJm2AdZQicRcXXCEE-vzkbWfmsG0YMbodf8C-vJltJvU0W_FCEJckgT4-Ajw7tdkQlSDDWD6Xo_GTUGl2bEKMcTmvt__Xeu5yNPAkgAfBeBdCN50zxKM1LwXKu2FmvciYRWd2Smn-icHbDwMLrVr-_9k_gHmn7wB |
CitedBy_id | crossref_primary_10_1093_ons_opx041 crossref_primary_10_1212_WNL_0000000000007896 crossref_primary_10_1161_STROKEAHA_123_044619 crossref_primary_10_1212_WNL_0000000000009034 crossref_primary_10_1212_WNL_0000000000009397 crossref_primary_10_1212_WNL_0000000000012729 crossref_primary_10_15406_jnsk_2018_08_00275 crossref_primary_10_18700_jnc_230029 crossref_primary_10_1161_STROKEAHA_115_011595 crossref_primary_10_1159_000482019 crossref_primary_10_1007_s11239_015_1304_5 crossref_primary_10_1177_1747493016654289 crossref_primary_10_23838_pfm_2023_00065 crossref_primary_10_3390_biomedicines11113102 crossref_primary_10_1161_JAHA_121_023747 crossref_primary_10_1002_brb3_70391 crossref_primary_10_1002_ana_26575 crossref_primary_10_3346_jkms_2022_37_e100 crossref_primary_10_1161_STROKEAHA_119_026044 crossref_primary_10_18700_jnc_230039 crossref_primary_10_1186_s12883_021_02102_1 crossref_primary_10_1161_STROKEAHA_116_015428 crossref_primary_10_5853_jos_2020_03972 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107221 crossref_primary_10_1161_STROKEAHA_119_024786 crossref_primary_10_1161_JAHA_114_001306 crossref_primary_10_1038_s41598_024_73851_5 crossref_primary_10_1161_STROKEAHA_117_020587 crossref_primary_10_5853_jos_2024_00535 crossref_primary_10_1093_brain_aww259 crossref_primary_10_1016_j_ebiom_2021_103466 crossref_primary_10_1161_STROKEAHA_116_013351 crossref_primary_10_1161_STROKEAHA_121_037582 crossref_primary_10_1371_journal_pone_0139540 crossref_primary_10_3389_fnagi_2022_788637 crossref_primary_10_1111_ene_70004 crossref_primary_10_1177_17474930211006243 crossref_primary_10_3346_jkms_2019_34_e240 crossref_primary_10_3346_jkms_2024_39_e278 crossref_primary_10_1136_jnis_2024_022254 crossref_primary_10_1016_j_clineuro_2020_105677 crossref_primary_10_1161_STROKEAHA_123_045772 crossref_primary_10_1371_journal_pone_0229836 crossref_primary_10_3389_fneur_2024_1375547 crossref_primary_10_1161_JAHA_122_025861 crossref_primary_10_1161_STROKEAHA_123_044606 crossref_primary_10_1002_ana_26219 crossref_primary_10_1161_CIRCOUTCOMES_119_006474 crossref_primary_10_5853_jos_2022_02754 crossref_primary_10_1186_s12883_023_03152_3 crossref_primary_10_3389_fneur_2022_955725 crossref_primary_10_3988_jcn_2021_17_4_516 crossref_primary_10_1161_STROKEAHA_117_019582 crossref_primary_10_3988_jcn_2023_0181 crossref_primary_10_1186_s12911_021_01721_5 crossref_primary_10_1161_STROKEAHA_123_044334 crossref_primary_10_1002_ana_24602 crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_08_001 crossref_primary_10_1161_JAHA_124_038080 crossref_primary_10_1016_j_jacl_2023_11_012 crossref_primary_10_1016_j_jocn_2019_03_036 crossref_primary_10_1212_WNL_0000000000002165 crossref_primary_10_1016_j_jocn_2019_03_037 crossref_primary_10_1161_JAHA_123_030515 crossref_primary_10_1016_j_jdiacomp_2016_11_014 crossref_primary_10_1038_s41598_024_71936_9 crossref_primary_10_1186_s12883_019_1237_2 crossref_primary_10_3390_medicina56060307 crossref_primary_10_1136_svn_2020_000841 crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_04_030 crossref_primary_10_3389_fendo_2022_1024398 crossref_primary_10_3389_fneur_2022_968417 crossref_primary_10_1371_journal_pone_0258377 crossref_primary_10_1038_s41598_023_42338_0 crossref_primary_10_3389_fnins_2024_1398889 crossref_primary_10_1212_WNL_0000000000207346 crossref_primary_10_1161_STROKEAHA_115_010180 crossref_primary_10_3389_fneur_2022_905998 crossref_primary_10_1111_jch_14543 crossref_primary_10_5853_jos_2020_01466 crossref_primary_10_1111_jsr_13889 crossref_primary_10_1212_WNL_0000000000003083 crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_05_004 crossref_primary_10_1161_STROKEAHA_116_012639 crossref_primary_10_3390_jpm11080696 crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_02_037 crossref_primary_10_1186_s12883_024_03874_y crossref_primary_10_3389_fneur_2019_00782 crossref_primary_10_1038_s41598_023_36633_z crossref_primary_10_1016_j_clineuro_2024_108182 crossref_primary_10_3346_jkms_2022_37_e254 crossref_primary_10_1161_STROKEAHA_116_013432 crossref_primary_10_1212_WNL_0000000000010203 crossref_primary_10_17340_jkna_2024_0034 crossref_primary_10_1186_s12883_018_1215_0 crossref_primary_10_1136_svn_2016_000041 crossref_primary_10_1371_journal_pone_0177663 crossref_primary_10_5853_jos_2018_03125 crossref_primary_10_1212_WNL_0000000000010603 crossref_primary_10_1161_JAHA_124_039678 crossref_primary_10_1016_j_clineuro_2024_108581 crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_09_031 crossref_primary_10_3390_jcm11133825 crossref_primary_10_1161_STROKEAHA_117_018045 crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106940 crossref_primary_10_1016_j_jns_2023_122837 crossref_primary_10_1161_STROKEAHA_123_042980 crossref_primary_10_1161_STROKEAHA_123_044487 crossref_primary_10_1371_journal_pone_0242319 crossref_primary_10_1007_s00330_020_07068_1 crossref_primary_10_1080_01616412_2018_1479346 crossref_primary_10_1177_17474930231168742 crossref_primary_10_1177_0003319718791711 crossref_primary_10_1185_03007995_2015_1105203 crossref_primary_10_1161_STROKEAHA_122_039212 crossref_primary_10_22730_jmls_2024_21_2_40 crossref_primary_10_3892_etm_2020_8628 crossref_primary_10_1161_STROKEAHA_116_013148 crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_01_027 crossref_primary_10_1161_JAHA_123_033611 crossref_primary_10_1016_j_jacl_2023_08_002 crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_11_036 crossref_primary_10_3389_fnagi_2024_1399457 crossref_primary_10_3346_jkms_2021_36_e77 crossref_primary_10_1111_jocn_16472 crossref_primary_10_1016_j_diabres_2023_110257 crossref_primary_10_1161_JAHA_119_011933 crossref_primary_10_3390_jcm10215147 crossref_primary_10_3988_jcn_2016_12_4_476 crossref_primary_10_1177_17562864241273902 crossref_primary_10_1371_journal_pmed_1003910 crossref_primary_10_1161_CIRCOUTCOMES_122_009653 crossref_primary_10_3389_fneur_2020_00577 crossref_primary_10_1161_JAHA_120_018807 crossref_primary_10_1371_journal_pone_0170978 crossref_primary_10_1038_s41598_018_30028_1 crossref_primary_10_1136_bmjopen_2021_054381 crossref_primary_10_1016_j_jocn_2017_08_053 |
Cites_doi | 10.1111/ene.12228 10.1161/hs1201.100209 10.1002/ana.10644 10.1161/STROKEAHA.109.575373 10.1159/000278926 10.1016/j.jstrokecerebrovasdis.2006.07.001 10.1161/01.STR.21.9.1299 10.3988/jcn.2012.8.2.116 10.1161/STROKEAHA.113.003720 10.1161/01.STR.24.1.35 10.1016/j.jns.2011.10.029 10.1159/000210432 10.1001/archneur.1993.00540020032014 10.1161/01.STR.31.5.1062 10.1016/j.jns.2010.08.023 10.1136/jnnp.2010.222919 10.1161/hs1101.098524 10.1111/ijs.12199 10.1002/ana.20617 10.1159/000047697 10.5853/jos.2014.16.1.8 10.1161/01.STR.26.4.609 10.1212/WNL.43.5.1021 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Korean Stroke Society 2014 |
Copyright_xml | – notice: Copyright © 2014 Korean Stroke Society 2014 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA ACYCR |
DOI | 10.5853/jos.2014.16.3.161 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2287-6405 |
EndPage | 172 |
ExternalDocumentID | oai_kci_go_kr_ARTI_29417 oai_doaj_org_article_d33f21ea9c8f44edbc4b390846738501 PMC4200592 25328874 10_5853_jos_2014_16_3_161 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Health and Welfare grantid: HI10C2020 – fundername: SNUBH Research Fund grantid: 02-2006-041 |
GroupedDBID | 5-W 53G 8JR 8XY AAYXX ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION DIK EF. GROUPED_DOAJ HYE KQ8 M48 OK1 PGMZT RPM NPM 7X8 5PM ACYCR |
ID | FETCH-LOGICAL-c493t-6c54fbc7c75c148333dc3829c08b0f8ceea023d18b80b99d46735e213d196a853 |
IEDL.DBID | DOA |
ISSN | 2287-6391 1229-4101 |
IngestDate | Tue Nov 21 21:43:20 EST 2023 Wed Aug 27 01:03:26 EDT 2025 Thu Aug 21 18:24:57 EDT 2025 Thu Jul 10 17:25:35 EDT 2025 Thu Jan 02 22:21:14 EST 2025 Tue Jul 01 00:37:20 EDT 2025 Thu Apr 24 23:05:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Stroke Magnetic resonance imaging Algorithm Classification |
Language | English |
License | http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-6c54fbc7c75c148333dc3829c08b0f8ceea023d18b80b99d46735e213d196a853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 G704-SER000008649.2014.16.3.003 |
OpenAccessLink | https://doaj.org/article/d33f21ea9c8f44edbc4b390846738501 |
PMID | 25328874 |
PQID | 1614704047 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_29417 doaj_primary_oai_doaj_org_article_d33f21ea9c8f44edbc4b390846738501 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4200592 proquest_miscellaneous_1614704047 pubmed_primary_25328874 crossref_primary_10_5853_jos_2014_16_3_161 crossref_citationtrail_10_5853_jos_2014_16_3_161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Journal of stroke |
PublicationTitleAlternate | J Stroke |
PublicationYear | 2014 |
Publisher | Korean Stroke Society 대한뇌졸중학회 |
Publisher_xml | – name: Korean Stroke Society – name: 대한뇌졸중학회 |
References | Ko (10.5853/jos.2014.16.3.161_ref8) 2010; 29 Bang (10.5853/jos.2014.16.3.161_ref6) 2003; 54 Marnane (10.5853/jos.2014.16.3.161_ref14) 2010; 41 Grau (10.5853/jos.2014.16.3.161_ref21) 2001; 32 Kim (10.5853/jos.2014.16.3.161_ref12) 2012; 8 Shang (10.5853/jos.2014.16.3.161_ref18) 2012; 314 Lee (10.5853/jos.2014.16.3.161_ref17) 2001; 12 Hajat (10.5853/jos.2014.16.3.161_ref19) 2011; 82 Kim (10.5853/jos.2014.16.3.161_ref7) 2014; 9 Gordon (10.5853/jos.2014.16.3.161_ref4) 1993; 43 Levy (10.5853/jos.2014.16.3.161_ref11) 1995; 26 Petty (10.5853/jos.2014.16.3.161_ref13) 2000; 31 Yesilot Barlas (10.5853/jos.2014.16.3.161_ref23) 2013; 20 Adams (10.5853/jos.2014.16.3.161_ref3) 1993; 24 Bang (10.5853/jos.2014.16.3.161_ref15) 2014; 45 Amarenco (10.5853/jos.2014.16.3.161_ref10) 1993; 50 Kolominsky-Rabas (10.5853/jos.2014.16.3.161_ref20) 2001; 32 Meschia (10.5853/jos.2014.16.3.161_ref2) 2006; 15 Deleu (10.5853/jos.2014.16.3.161_ref16) 2011; 300 Kim (10.5853/jos.2014.16.3.161_ref22) 2014; 16 Ay (10.5853/jos.2014.16.3.161_ref1) 2005; 58 Amarenco (10.5853/jos.2014.16.3.161_ref5) 2009; 27 Amarenco (10.5853/jos.2014.16.3.161_ref9) 1990; 21 7709407 - Stroke. 1995 Apr;26(4):609-13 8492920 - Neurology. 1993 May;43(5):1021-7 20595675 - Stroke. 2010 Aug;41(8):1579-86 20974649 - J Neurol Neurosurg Psychiatry. 2011 May;82(5):527-33 11641577 - Cerebrovasc Dis. 2001;12(3):145-51 20875650 - J Neurol Sci. 2011 Jan 15;300(1-2):142-7 22118859 - J Neurol Sci. 2012 Mar 15;314(1-2):66-70 8431134 - Arch Neurol. 1993 Feb;50(2):154-61 20130396 - Cerebrovasc Dis. 2010;29(4):313-20 11692017 - Stroke. 2001 Nov;32(11):2559-66 12891675 - Ann Neurol. 2003 Aug;54(2):227-34 24741560 - J Stroke. 2014 Jan;16(1):8-17 16240340 - Ann Neurol. 2005 Nov;58(5):688-97 23837733 - Eur J Neurol. 2013 Nov;20(11):1431-9 17904086 - J Stroke Cerebrovasc Dis. 2006 Nov-Dec;15(6):266-72 7678184 - Stroke. 1993 Jan;24(1):35-41 22787495 - J Clin Neurol. 2012 Jun;8(2):116-22 2396267 - Stroke. 1990 Sep;21(9):1299-305 19342825 - Cerebrovasc Dis. 2009;27(5):493-501 24578206 - Stroke. 2014 Apr;45(4):1186-94 11739965 - Stroke. 2001 Dec 1;32(12):2735-40 10797166 - Stroke. 2000 May;31(5):1062-8 24256115 - Int J Stroke. 2014 Jun;9(4):514-8 |
References_xml | – volume: 20 start-page: 1431 year: 2013 ident: 10.5853/jos.2014.16.3.161_ref23 publication-title: Eur J Neurol doi: 10.1111/ene.12228 – volume: 32 start-page: 2735 year: 2001 ident: 10.5853/jos.2014.16.3.161_ref20 publication-title: Stroke doi: 10.1161/hs1201.100209 – volume: 54 start-page: 227 year: 2003 ident: 10.5853/jos.2014.16.3.161_ref6 publication-title: Ann Neurol doi: 10.1002/ana.10644 – volume: 41 start-page: 1579 year: 2010 ident: 10.5853/jos.2014.16.3.161_ref14 publication-title: Stroke doi: 10.1161/STROKEAHA.109.575373 – volume: 29 start-page: 313 year: 2010 ident: 10.5853/jos.2014.16.3.161_ref8 publication-title: Cerebrovasc Dis doi: 10.1159/000278926 – volume: 15 start-page: 266 year: 2006 ident: 10.5853/jos.2014.16.3.161_ref2 publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/j.jstrokecerebrovasdis.2006.07.001 – volume: 21 start-page: 1299 year: 1990 ident: 10.5853/jos.2014.16.3.161_ref9 publication-title: Stroke doi: 10.1161/01.STR.21.9.1299 – volume: 8 start-page: 116 year: 2012 ident: 10.5853/jos.2014.16.3.161_ref12 publication-title: J Clin Neurol doi: 10.3988/jcn.2012.8.2.116 – volume: 45 start-page: 1186 year: 2014 ident: 10.5853/jos.2014.16.3.161_ref15 publication-title: Stroke doi: 10.1161/STROKEAHA.113.003720 – volume: 24 start-page: 35 year: 1993 ident: 10.5853/jos.2014.16.3.161_ref3 publication-title: Stroke doi: 10.1161/01.STR.24.1.35 – volume: 314 start-page: 66 year: 2012 ident: 10.5853/jos.2014.16.3.161_ref18 publication-title: J Neurol Sci doi: 10.1016/j.jns.2011.10.029 – volume: 27 start-page: 493 year: 2009 ident: 10.5853/jos.2014.16.3.161_ref5 publication-title: Cerebrovasc Dis doi: 10.1159/000210432 – volume: 50 start-page: 154 year: 1993 ident: 10.5853/jos.2014.16.3.161_ref10 publication-title: Arch Neurol doi: 10.1001/archneur.1993.00540020032014 – volume: 31 start-page: 1062 year: 2000 ident: 10.5853/jos.2014.16.3.161_ref13 publication-title: Stroke doi: 10.1161/01.STR.31.5.1062 – volume: 300 start-page: 142 year: 2011 ident: 10.5853/jos.2014.16.3.161_ref16 publication-title: J Neurol Sci doi: 10.1016/j.jns.2010.08.023 – volume: 82 start-page: 527 year: 2011 ident: 10.5853/jos.2014.16.3.161_ref19 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2010.222919 – volume: 32 start-page: 2559 year: 2001 ident: 10.5853/jos.2014.16.3.161_ref21 publication-title: Stroke doi: 10.1161/hs1101.098524 – volume: 9 start-page: 514 year: 2014 ident: 10.5853/jos.2014.16.3.161_ref7 publication-title: Int J Stroke doi: 10.1111/ijs.12199 – volume: 58 start-page: 688 year: 2005 ident: 10.5853/jos.2014.16.3.161_ref1 publication-title: Ann Neurol doi: 10.1002/ana.20617 – volume: 12 start-page: 145 year: 2001 ident: 10.5853/jos.2014.16.3.161_ref17 publication-title: Cerebrovasc Dis doi: 10.1159/000047697 – volume: 16 start-page: 8 year: 2014 ident: 10.5853/jos.2014.16.3.161_ref22 publication-title: J Stroke doi: 10.5853/jos.2014.16.1.8 – volume: 26 start-page: 609 year: 1995 ident: 10.5853/jos.2014.16.3.161_ref11 publication-title: Stroke doi: 10.1161/01.STR.26.4.609 – volume: 43 start-page: 1021 year: 1993 ident: 10.5853/jos.2014.16.3.161_ref4 publication-title: Neurology doi: 10.1212/WNL.43.5.1021 – reference: 19342825 - Cerebrovasc Dis. 2009;27(5):493-501 – reference: 12891675 - Ann Neurol. 2003 Aug;54(2):227-34 – reference: 24578206 - Stroke. 2014 Apr;45(4):1186-94 – reference: 11692017 - Stroke. 2001 Nov;32(11):2559-66 – reference: 11739965 - Stroke. 2001 Dec 1;32(12):2735-40 – reference: 20875650 - J Neurol Sci. 2011 Jan 15;300(1-2):142-7 – reference: 16240340 - Ann Neurol. 2005 Nov;58(5):688-97 – reference: 20595675 - Stroke. 2010 Aug;41(8):1579-86 – reference: 22787495 - J Clin Neurol. 2012 Jun;8(2):116-22 – reference: 7709407 - Stroke. 1995 Apr;26(4):609-13 – reference: 2396267 - Stroke. 1990 Sep;21(9):1299-305 – reference: 8431134 - Arch Neurol. 1993 Feb;50(2):154-61 – reference: 11641577 - Cerebrovasc Dis. 2001;12(3):145-51 – reference: 20974649 - J Neurol Neurosurg Psychiatry. 2011 May;82(5):527-33 – reference: 17904086 - J Stroke Cerebrovasc Dis. 2006 Nov-Dec;15(6):266-72 – reference: 20130396 - Cerebrovasc Dis. 2010;29(4):313-20 – reference: 24256115 - Int J Stroke. 2014 Jun;9(4):514-8 – reference: 23837733 - Eur J Neurol. 2013 Nov;20(11):1431-9 – reference: 24741560 - J Stroke. 2014 Jan;16(1):8-17 – reference: 8492920 - Neurology. 1993 May;43(5):1021-7 – reference: 7678184 - Stroke. 1993 Jan;24(1):35-41 – reference: 10797166 - Stroke. 2000 May;31(5):1062-8 – reference: 22118859 - J Neurol Sci. 2012 Mar 15;314(1-2):66-70 |
SSID | ssj0000851882 ssib007599070 ssib016587330 |
Score | 2.3518865 |
Snippet | In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we... Background and PurposeIn order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a... Background and Purpose In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 161 |
SubjectTerms | algorithm classification magnetic resonance imaging Original stroke 신경과학 |
SummonAdditionalLinks | – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZWuxLignhTYJGROCG58itxfELdhdUWqRyASnuz4ke63ZYEsqkE_56xk1YUVZy4OJJjW86M7fnGM5lB6A3zyktAbSTLS05kYJJY5SxxuXeK5mVQ6b-12af8ci4_XmVXR2ib3mog4O1B1S7mk5q36_HPH7_ewYYH_DoGsCugU4y7zeSY5WMBBShDJ8lcFD35BrR_07tksSKlj-KgJxCQzay3cx4eZU9SpYD-IH_qtjqERf92qfxDRl3cR_cGcIkn_Wp4gI5C_RDdmQ3m80fo_ezzlES55fFkvWjaZXf9DQNqxRO36QKeAjmirzz-0rXNKmA4VOINLU6JM6NLUeLiYzS_-PD1_JIMaRSIk1p0JHeZrKxTTmUOlB8hhHei4NrRwtKqAClZguD2rLAFtVp7ODpFFjiDKp2XQJon6Lhu6vAMYap00I6DzsQqqT2AnSCLKsDAlWWchhGiW5IZN8QYj6ku1gZ0jUhlA1Q2kcqG5UZAwUbo7a7L9z7Axr8an0U-7BrG2NipomkXZthqxgtRcRZK7YpKyuCtk1ZoGoGWKDIKg2Dgolm5Zeofn4vGrFoDGsTUcC2ZGqHXWxYb2G7RhlLWodncxklIBQefhDZPe5bvZsMzweHMliOk9hbD3nT339TL6xTSW8bLPc2f_4_ve4HuRqL1jnAv0XHXbsIpIKfOvkr74TeEUxMW priority: 102 providerName: Scholars Portal |
Title | MRI-based Algorithm for Acute Ischemic Stroke Subtype Classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25328874 https://www.proquest.com/docview/1614704047 https://pubmed.ncbi.nlm.nih.gov/PMC4200592 https://doaj.org/article/d33f21ea9c8f44edbc4b390846738501 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001915163 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 대한뇌졸중학회지, 2014, 16(3), 13, pp.161-172 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLopRHgCIjcUJyGz8S28ctUHWRlgNQqTcrfqTdbklQmv3_jO10tYsQXHpxJMeOJjO2Zz57PIPQe-qlF2C1kapuGBGBCmKls8TV3smyboJM99YWX-uzc_HlorrYSvUVfcJyeODMuGPPectoaLRTrRDBWycs4PSoNrmq8s2tUpdbYOo6e19RlTJFMYAEBNQwzUeaYB3z4-s-Buqm4ojWRxwKuqOUUux-UDXd0P7N7PzTe3JLHZ0-QY8nOxLPMv376EHonqKHi-mk_AB9Wnybk6iiPJ7dXPbDcrz6icFAxTO3HgOeA6iNbvH4-zj0q4Bh_YibsTjlyIzeQ0lgz9D56ecfH8_IlDGBOKH5SGpXidY66WTlAOdwzr3jimlXKlu2ChRiAzraU2VVabX2kYlVYBSqdN0Aa56jva7vwkuES6mDdgzgEW2F9mDXBKHaAB9uLWVlKFB5xzLjpnDiMavFjQFYEblsgMsmctnQ2nAoaIE-bLr8yrE0_tX4JMph0zCGwU4VMDjMNDjM_wZHgTBI0azcMvWPz8verAYDYGFumBZUFujdnYgNzKx4XNJ0oV_fRiKEhDVOQJsXWeQbaljFGSzPokByZzDskLv7pltepejdIu7jafbqPv7vNXoUmZZ93t6gvXFYh0Mwkkb7Ns0HKBdC_QYzdQvt |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI-based+Algorithm+for+Acute+Ischemic+Stroke+Subtype+Classification&rft.jtitle=Journal+of+stroke&rft.au=Youngchai+Ko&rft.au=SooJoo+Lee&rft.au=Jong-Won+Chung&rft.au=Moon-Ku+Han&rft.date=2014-09-01&rft.pub=Korean+Stroke+Society&rft.issn=2287-6391&rft.eissn=2287-6405&rft.volume=16&rft.issue=3&rft.spage=161&rft.epage=172&rft_id=info:doi/10.5853%2Fjos.2014.16.3.161&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d33f21ea9c8f44edbc4b390846738501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-6391&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-6391&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-6391&client=summon |