MRI-based Algorithm for Acute Ischemic Stroke Subtype Classification

In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC). We enrolle...

Full description

Saved in:
Bibliographic Details
Published inJournal of stroke Vol. 16; no. 3; pp. 161 - 172
Main Authors Ko, Youngchai, Lee, SooJoo, Chung, Jong-Won, Han, Moon-Ku, Park, Jong-Moo, Kang, Kyusik, Park, Tai Hwan, Park, Sang-Soon, Cho, Yong-Jin, Hong, Keun-Sik, Lee, Kyung Bok, Lee, Jun, Kim, Dong-Eog, Kim, Dae-Hyun, Cha, Jae-Kwan, Kim, Joon-Tae, Choi, Jay Chol, Shin, Dong-Ick, Lee, Ji Sung, Lee, Juneyoung, Yu, Kyung-Ho, Lee, Byung-Chul, Bae, Hee-Joon
Format Journal Article
LanguageEnglish
Published Korea (South) Korean Stroke Society 01.09.2014
대한뇌졸중학회
Subjects
Online AccessGet full text
ISSN2287-6391
1229-4101
2287-6405
DOI10.5853/jos.2014.16.3.161

Cover

Abstract In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC). We enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database. The overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%). Despite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic.
AbstractList In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC).BACKGROUND AND PURPOSEIn order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC).We enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database.METHODSWe enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database.The overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%).RESULTSThe overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%).Despite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic.CONCLUSIONSDespite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic.
Background and PurposeIn order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC).MethodsWe enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database.ResultsThe overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%).ConclusionsDespite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic.
Background and Purpose In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC). Methods We enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database. Results The overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%). Conclusions Despite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic. KCI Citation Count: 7
In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we developed and implemented a magnetic resonance imaging (MRI)-based algorithm for acute ischemic stroke subtype classification (MAGIC). We enrolled patients who experienced an acute ischemic stroke, were hospitalized in the 14 participating centers within 7 days of onset, and had relevant lesions on MR-diffusion weighted imaging (DWI). MAGIC was designed to reflect recent advances in stroke imaging and thrombolytic therapy. The inter-rater reliability was compared with and without MAGIC to classify the Trial of Org 10172 in Acute Stroke Treatment (TOAST) of each stroke patient. MAGIC was then applied to all stroke patients hospitalized since July 2011, and information about stroke subtypes, other clinical characteristics, and stroke recurrence was collected via a web-based registry database. The overall intra-class correlation coefficient (ICC) value was 0.43 (95% CI, 0.31-0.57) for MAGIC and 0.28 (95% CI, 0.18-0.42) for TOAST. Large artery atherosclerosis (LAA) was the most common cause of acute ischemic stroke (38.3%), followed by cardioembolism (CE, 22.8%), undetermined cause (UD, 22.2%), and small-vessel occlusion (SVO, 14.6%). One-year stroke recurrence rates were the highest for two or more UDs (11.80%), followed by LAA (7.30%), CE (5.60%), and SVO (2.50%). Despite several limitations, this study shows that the MAGIC system is feasible and may be helpful to classify stroke subtype in the clinic.
Author Hong, Keun-Sik
Lee, Jun
Yu, Kyung-Ho
Lee, Ji Sung
Lee, Byung-Chul
Han, Moon-Ku
Bae, Hee-Joon
Lee, Juneyoung
Park, Sang-Soon
Park, Jong-Moo
Chung, Jong-Won
Choi, Jay Chol
Kang, Kyusik
Cho, Yong-Jin
Kim, Dong-Eog
Ko, Youngchai
Kim, Joon-Tae
Park, Tai Hwan
Lee, SooJoo
Kim, Dae-Hyun
Cha, Jae-Kwan
Shin, Dong-Ick
Lee, Kyung Bok
AuthorAffiliation i Department of Neurology, Dong-A University Hospital, Busan, Korea
k Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
l Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Korea
g Department of Neurology, Yeungnam University Hospital, Daegu, Korea
h Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
n Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
m Biostatistical Consulting Unit, Soonchunhyang University Medical Center, Seoul, Korea
b Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
d Department of Neurology, Seoul Medical Center, Seoul, Korea
e Department of Neurology, Ilsan Paik Hospital, Inje University, Goyang, Korea
a Department of Neurology, Eulji University Hospital, Eulji University, Daejeon, Korea
c Department of Neurology, Eulji General Hospital, Eulji University, Seoul,
AuthorAffiliation_xml – name: o Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
– name: g Department of Neurology, Yeungnam University Hospital, Daegu, Korea
– name: f Department of Neurology, Soonchunhyang University Hospital, Seoul, Korea
– name: k Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
– name: l Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Korea
– name: e Department of Neurology, Ilsan Paik Hospital, Inje University, Goyang, Korea
– name: j Department of Neurology, Chonnam National University Hospital, Gwangju, Korea
– name: h Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
– name: c Department of Neurology, Eulji General Hospital, Eulji University, Seoul, Korea
– name: m Biostatistical Consulting Unit, Soonchunhyang University Medical Center, Seoul, Korea
– name: a Department of Neurology, Eulji University Hospital, Eulji University, Daejeon, Korea
– name: b Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
– name: d Department of Neurology, Seoul Medical Center, Seoul, Korea
– name: i Department of Neurology, Dong-A University Hospital, Busan, Korea
– name: n Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
Author_xml – sequence: 1
  givenname: Youngchai
  surname: Ko
  fullname: Ko, Youngchai
  organization: Department of Neurology, Eulji University Hospital, Eulji University, Daejeon, Korea
– sequence: 2
  givenname: SooJoo
  surname: Lee
  fullname: Lee, SooJoo
  organization: Department of Neurology, Eulji University Hospital, Eulji University, Daejeon, Korea
– sequence: 3
  givenname: Jong-Won
  surname: Chung
  fullname: Chung, Jong-Won
  organization: Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
– sequence: 4
  givenname: Moon-Ku
  surname: Han
  fullname: Han, Moon-Ku
  organization: Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
– sequence: 5
  givenname: Jong-Moo
  surname: Park
  fullname: Park, Jong-Moo
  organization: Department of Neurology, Eulji General Hospital, Eulji University, Seoul, Korea
– sequence: 6
  givenname: Kyusik
  surname: Kang
  fullname: Kang, Kyusik
  organization: Department of Neurology, Eulji General Hospital, Eulji University, Seoul, Korea
– sequence: 7
  givenname: Tai Hwan
  surname: Park
  fullname: Park, Tai Hwan
  organization: Department of Neurology, Seoul Medical Center, Seoul, Korea
– sequence: 8
  givenname: Sang-Soon
  surname: Park
  fullname: Park, Sang-Soon
  organization: Department of Neurology, Seoul Medical Center, Seoul, Korea
– sequence: 9
  givenname: Yong-Jin
  surname: Cho
  fullname: Cho, Yong-Jin
  organization: Department of Neurology, Ilsan Paik Hospital, Inje University, Goyang, Korea
– sequence: 10
  givenname: Keun-Sik
  surname: Hong
  fullname: Hong, Keun-Sik
  organization: Department of Neurology, Ilsan Paik Hospital, Inje University, Goyang, Korea
– sequence: 11
  givenname: Kyung Bok
  surname: Lee
  fullname: Lee, Kyung Bok
  organization: Department of Neurology, Soonchunhyang University Hospital, Seoul, Korea
– sequence: 12
  givenname: Jun
  surname: Lee
  fullname: Lee, Jun
  organization: Department of Neurology, Yeungnam University Hospital, Daegu, Korea
– sequence: 13
  givenname: Dong-Eog
  surname: Kim
  fullname: Kim, Dong-Eog
  organization: Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
– sequence: 14
  givenname: Dae-Hyun
  surname: Kim
  fullname: Kim, Dae-Hyun
  organization: Department of Neurology, Dong-A University Hospital, Busan, Korea
– sequence: 15
  givenname: Jae-Kwan
  surname: Cha
  fullname: Cha, Jae-Kwan
  organization: Department of Neurology, Dong-A University Hospital, Busan, Korea
– sequence: 16
  givenname: Joon-Tae
  surname: Kim
  fullname: Kim, Joon-Tae
  organization: Department of Neurology, Chonnam National University Hospital, Gwangju, Korea
– sequence: 17
  givenname: Jay Chol
  surname: Choi
  fullname: Choi, Jay Chol
  organization: Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
– sequence: 18
  givenname: Dong-Ick
  surname: Shin
  fullname: Shin, Dong-Ick
  organization: Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Korea
– sequence: 19
  givenname: Ji Sung
  surname: Lee
  fullname: Lee, Ji Sung
  organization: Biostatistical Consulting Unit, Soonchunhyang University Medical Center, Seoul, Korea
– sequence: 20
  givenname: Juneyoung
  surname: Lee
  fullname: Lee, Juneyoung
  organization: Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
– sequence: 21
  givenname: Kyung-Ho
  surname: Yu
  fullname: Yu, Kyung-Ho
  organization: Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
– sequence: 22
  givenname: Byung-Chul
  surname: Lee
  fullname: Lee, Byung-Chul
  organization: Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
– sequence: 23
  givenname: Hee-Joon
  surname: Bae
  fullname: Bae, Hee-Joon
  organization: Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25328874$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001915163$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kk1v1DAQhiNURD_oD-CCcoNLFn8m9gVptaUQqQipLWfLmTi73k3ixXaQ-u9xdtuKcsAHz2j8zjNjzZxnJ6MbTZa9w2jBBaefti4sCMJsgcsFTRd-lZ0RIqqiZIifPPlU4tPsMoQtSkdwLAR5k50STokQFTvLrr7f1kWjg2nzZb923sbNkHfO50uYosnrABszWMjvonc7k99NTXzYm3zV6xBsZ0FH68a32etO98FcPtqL7Of1l_vVt-Lmx9d6tbwpgEkaixI46xqooOKAmaCUtkAFkYBEgzoBxmhEaItFI1AjZcvKinJDcArJUqc_X2QfjtzRd2oHVjltD3bt1M6r5e19rYhkuErK-qhsnd6qvbeD9g8H-SHg_FppHy30RrWUdgQbLUF0jJm2AdZQicRcXXCEE-vzkbWfmsG0YMbodf8C-vJltJvU0W_FCEJckgT4-Ajw7tdkQlSDDWD6Xo_GTUGl2bEKMcTmvt__Xeu5yNPAkgAfBeBdCN50zxKM1LwXKu2FmvciYRWd2Smn-icHbDwMLrVr-_9k_gHmn7wB
CitedBy_id crossref_primary_10_1093_ons_opx041
crossref_primary_10_1212_WNL_0000000000007896
crossref_primary_10_1161_STROKEAHA_123_044619
crossref_primary_10_1212_WNL_0000000000009034
crossref_primary_10_1212_WNL_0000000000009397
crossref_primary_10_1212_WNL_0000000000012729
crossref_primary_10_15406_jnsk_2018_08_00275
crossref_primary_10_18700_jnc_230029
crossref_primary_10_1161_STROKEAHA_115_011595
crossref_primary_10_1159_000482019
crossref_primary_10_1007_s11239_015_1304_5
crossref_primary_10_1177_1747493016654289
crossref_primary_10_23838_pfm_2023_00065
crossref_primary_10_3390_biomedicines11113102
crossref_primary_10_1161_JAHA_121_023747
crossref_primary_10_1002_brb3_70391
crossref_primary_10_1002_ana_26575
crossref_primary_10_3346_jkms_2022_37_e100
crossref_primary_10_1161_STROKEAHA_119_026044
crossref_primary_10_18700_jnc_230039
crossref_primary_10_1186_s12883_021_02102_1
crossref_primary_10_1161_STROKEAHA_116_015428
crossref_primary_10_5853_jos_2020_03972
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107221
crossref_primary_10_1161_STROKEAHA_119_024786
crossref_primary_10_1161_JAHA_114_001306
crossref_primary_10_1038_s41598_024_73851_5
crossref_primary_10_1161_STROKEAHA_117_020587
crossref_primary_10_5853_jos_2024_00535
crossref_primary_10_1093_brain_aww259
crossref_primary_10_1016_j_ebiom_2021_103466
crossref_primary_10_1161_STROKEAHA_116_013351
crossref_primary_10_1161_STROKEAHA_121_037582
crossref_primary_10_1371_journal_pone_0139540
crossref_primary_10_3389_fnagi_2022_788637
crossref_primary_10_1111_ene_70004
crossref_primary_10_1177_17474930211006243
crossref_primary_10_3346_jkms_2019_34_e240
crossref_primary_10_3346_jkms_2024_39_e278
crossref_primary_10_1136_jnis_2024_022254
crossref_primary_10_1016_j_clineuro_2020_105677
crossref_primary_10_1161_STROKEAHA_123_045772
crossref_primary_10_1371_journal_pone_0229836
crossref_primary_10_3389_fneur_2024_1375547
crossref_primary_10_1161_JAHA_122_025861
crossref_primary_10_1161_STROKEAHA_123_044606
crossref_primary_10_1002_ana_26219
crossref_primary_10_1161_CIRCOUTCOMES_119_006474
crossref_primary_10_5853_jos_2022_02754
crossref_primary_10_1186_s12883_023_03152_3
crossref_primary_10_3389_fneur_2022_955725
crossref_primary_10_3988_jcn_2021_17_4_516
crossref_primary_10_1161_STROKEAHA_117_019582
crossref_primary_10_3988_jcn_2023_0181
crossref_primary_10_1186_s12911_021_01721_5
crossref_primary_10_1161_STROKEAHA_123_044334
crossref_primary_10_1002_ana_24602
crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_08_001
crossref_primary_10_1161_JAHA_124_038080
crossref_primary_10_1016_j_jacl_2023_11_012
crossref_primary_10_1016_j_jocn_2019_03_036
crossref_primary_10_1212_WNL_0000000000002165
crossref_primary_10_1016_j_jocn_2019_03_037
crossref_primary_10_1161_JAHA_123_030515
crossref_primary_10_1016_j_jdiacomp_2016_11_014
crossref_primary_10_1038_s41598_024_71936_9
crossref_primary_10_1186_s12883_019_1237_2
crossref_primary_10_3390_medicina56060307
crossref_primary_10_1136_svn_2020_000841
crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_04_030
crossref_primary_10_3389_fendo_2022_1024398
crossref_primary_10_3389_fneur_2022_968417
crossref_primary_10_1371_journal_pone_0258377
crossref_primary_10_1038_s41598_023_42338_0
crossref_primary_10_3389_fnins_2024_1398889
crossref_primary_10_1212_WNL_0000000000207346
crossref_primary_10_1161_STROKEAHA_115_010180
crossref_primary_10_3389_fneur_2022_905998
crossref_primary_10_1111_jch_14543
crossref_primary_10_5853_jos_2020_01466
crossref_primary_10_1111_jsr_13889
crossref_primary_10_1212_WNL_0000000000003083
crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_05_004
crossref_primary_10_1161_STROKEAHA_116_012639
crossref_primary_10_3390_jpm11080696
crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_02_037
crossref_primary_10_1186_s12883_024_03874_y
crossref_primary_10_3389_fneur_2019_00782
crossref_primary_10_1038_s41598_023_36633_z
crossref_primary_10_1016_j_clineuro_2024_108182
crossref_primary_10_3346_jkms_2022_37_e254
crossref_primary_10_1161_STROKEAHA_116_013432
crossref_primary_10_1212_WNL_0000000000010203
crossref_primary_10_17340_jkna_2024_0034
crossref_primary_10_1186_s12883_018_1215_0
crossref_primary_10_1136_svn_2016_000041
crossref_primary_10_1371_journal_pone_0177663
crossref_primary_10_5853_jos_2018_03125
crossref_primary_10_1212_WNL_0000000000010603
crossref_primary_10_1161_JAHA_124_039678
crossref_primary_10_1016_j_clineuro_2024_108581
crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_09_031
crossref_primary_10_3390_jcm11133825
crossref_primary_10_1161_STROKEAHA_117_018045
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106940
crossref_primary_10_1016_j_jns_2023_122837
crossref_primary_10_1161_STROKEAHA_123_042980
crossref_primary_10_1161_STROKEAHA_123_044487
crossref_primary_10_1371_journal_pone_0242319
crossref_primary_10_1007_s00330_020_07068_1
crossref_primary_10_1080_01616412_2018_1479346
crossref_primary_10_1177_17474930231168742
crossref_primary_10_1177_0003319718791711
crossref_primary_10_1185_03007995_2015_1105203
crossref_primary_10_1161_STROKEAHA_122_039212
crossref_primary_10_22730_jmls_2024_21_2_40
crossref_primary_10_3892_etm_2020_8628
crossref_primary_10_1161_STROKEAHA_116_013148
crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_01_027
crossref_primary_10_1161_JAHA_123_033611
crossref_primary_10_1016_j_jacl_2023_08_002
crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_11_036
crossref_primary_10_3389_fnagi_2024_1399457
crossref_primary_10_3346_jkms_2021_36_e77
crossref_primary_10_1111_jocn_16472
crossref_primary_10_1016_j_diabres_2023_110257
crossref_primary_10_1161_JAHA_119_011933
crossref_primary_10_3390_jcm10215147
crossref_primary_10_3988_jcn_2016_12_4_476
crossref_primary_10_1177_17562864241273902
crossref_primary_10_1371_journal_pmed_1003910
crossref_primary_10_1161_CIRCOUTCOMES_122_009653
crossref_primary_10_3389_fneur_2020_00577
crossref_primary_10_1161_JAHA_120_018807
crossref_primary_10_1371_journal_pone_0170978
crossref_primary_10_1038_s41598_018_30028_1
crossref_primary_10_1136_bmjopen_2021_054381
crossref_primary_10_1016_j_jocn_2017_08_053
Cites_doi 10.1111/ene.12228
10.1161/hs1201.100209
10.1002/ana.10644
10.1161/STROKEAHA.109.575373
10.1159/000278926
10.1016/j.jstrokecerebrovasdis.2006.07.001
10.1161/01.STR.21.9.1299
10.3988/jcn.2012.8.2.116
10.1161/STROKEAHA.113.003720
10.1161/01.STR.24.1.35
10.1016/j.jns.2011.10.029
10.1159/000210432
10.1001/archneur.1993.00540020032014
10.1161/01.STR.31.5.1062
10.1016/j.jns.2010.08.023
10.1136/jnnp.2010.222919
10.1161/hs1101.098524
10.1111/ijs.12199
10.1002/ana.20617
10.1159/000047697
10.5853/jos.2014.16.1.8
10.1161/01.STR.26.4.609
10.1212/WNL.43.5.1021
ContentType Journal Article
Copyright Copyright © 2014 Korean Stroke Society 2014
Copyright_xml – notice: Copyright © 2014 Korean Stroke Society 2014
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
ACYCR
DOI 10.5853/jos.2014.16.3.161
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2287-6405
EndPage 172
ExternalDocumentID oai_kci_go_kr_ARTI_29417
oai_doaj_org_article_d33f21ea9c8f44edbc4b390846738501
PMC4200592
25328874
10_5853_jos_2014_16_3_161
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Health and Welfare
  grantid: HI10C2020
– fundername: SNUBH Research Fund
  grantid: 02-2006-041
GroupedDBID 5-W
53G
8JR
8XY
AAYXX
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CITATION
DIK
EF.
GROUPED_DOAJ
HYE
KQ8
M48
OK1
PGMZT
RPM
NPM
7X8
5PM
ACYCR
ID FETCH-LOGICAL-c493t-6c54fbc7c75c148333dc3829c08b0f8ceea023d18b80b99d46735e213d196a853
IEDL.DBID DOA
ISSN 2287-6391
1229-4101
IngestDate Tue Nov 21 21:43:20 EST 2023
Wed Aug 27 01:03:26 EDT 2025
Thu Aug 21 18:24:57 EDT 2025
Thu Jul 10 17:25:35 EDT 2025
Thu Jan 02 22:21:14 EST 2025
Tue Jul 01 00:37:20 EDT 2025
Thu Apr 24 23:05:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Stroke
Magnetic resonance imaging
Algorithm
Classification
Language English
License http://creativecommons.org/licenses/by-nc/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-6c54fbc7c75c148333dc3829c08b0f8ceea023d18b80b99d46735e213d196a853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-SER000008649.2014.16.3.003
OpenAccessLink https://doaj.org/article/d33f21ea9c8f44edbc4b390846738501
PMID 25328874
PQID 1614704047
PQPubID 23479
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_29417
doaj_primary_oai_doaj_org_article_d33f21ea9c8f44edbc4b390846738501
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4200592
proquest_miscellaneous_1614704047
pubmed_primary_25328874
crossref_primary_10_5853_jos_2014_16_3_161
crossref_citationtrail_10_5853_jos_2014_16_3_161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Journal of stroke
PublicationTitleAlternate J Stroke
PublicationYear 2014
Publisher Korean Stroke Society
대한뇌졸중학회
Publisher_xml – name: Korean Stroke Society
– name: 대한뇌졸중학회
References Ko (10.5853/jos.2014.16.3.161_ref8) 2010; 29
Bang (10.5853/jos.2014.16.3.161_ref6) 2003; 54
Marnane (10.5853/jos.2014.16.3.161_ref14) 2010; 41
Grau (10.5853/jos.2014.16.3.161_ref21) 2001; 32
Kim (10.5853/jos.2014.16.3.161_ref12) 2012; 8
Shang (10.5853/jos.2014.16.3.161_ref18) 2012; 314
Lee (10.5853/jos.2014.16.3.161_ref17) 2001; 12
Hajat (10.5853/jos.2014.16.3.161_ref19) 2011; 82
Kim (10.5853/jos.2014.16.3.161_ref7) 2014; 9
Gordon (10.5853/jos.2014.16.3.161_ref4) 1993; 43
Levy (10.5853/jos.2014.16.3.161_ref11) 1995; 26
Petty (10.5853/jos.2014.16.3.161_ref13) 2000; 31
Yesilot Barlas (10.5853/jos.2014.16.3.161_ref23) 2013; 20
Adams (10.5853/jos.2014.16.3.161_ref3) 1993; 24
Bang (10.5853/jos.2014.16.3.161_ref15) 2014; 45
Amarenco (10.5853/jos.2014.16.3.161_ref10) 1993; 50
Kolominsky-Rabas (10.5853/jos.2014.16.3.161_ref20) 2001; 32
Meschia (10.5853/jos.2014.16.3.161_ref2) 2006; 15
Deleu (10.5853/jos.2014.16.3.161_ref16) 2011; 300
Kim (10.5853/jos.2014.16.3.161_ref22) 2014; 16
Ay (10.5853/jos.2014.16.3.161_ref1) 2005; 58
Amarenco (10.5853/jos.2014.16.3.161_ref5) 2009; 27
Amarenco (10.5853/jos.2014.16.3.161_ref9) 1990; 21
7709407 - Stroke. 1995 Apr;26(4):609-13
8492920 - Neurology. 1993 May;43(5):1021-7
20595675 - Stroke. 2010 Aug;41(8):1579-86
20974649 - J Neurol Neurosurg Psychiatry. 2011 May;82(5):527-33
11641577 - Cerebrovasc Dis. 2001;12(3):145-51
20875650 - J Neurol Sci. 2011 Jan 15;300(1-2):142-7
22118859 - J Neurol Sci. 2012 Mar 15;314(1-2):66-70
8431134 - Arch Neurol. 1993 Feb;50(2):154-61
20130396 - Cerebrovasc Dis. 2010;29(4):313-20
11692017 - Stroke. 2001 Nov;32(11):2559-66
12891675 - Ann Neurol. 2003 Aug;54(2):227-34
24741560 - J Stroke. 2014 Jan;16(1):8-17
16240340 - Ann Neurol. 2005 Nov;58(5):688-97
23837733 - Eur J Neurol. 2013 Nov;20(11):1431-9
17904086 - J Stroke Cerebrovasc Dis. 2006 Nov-Dec;15(6):266-72
7678184 - Stroke. 1993 Jan;24(1):35-41
22787495 - J Clin Neurol. 2012 Jun;8(2):116-22
2396267 - Stroke. 1990 Sep;21(9):1299-305
19342825 - Cerebrovasc Dis. 2009;27(5):493-501
24578206 - Stroke. 2014 Apr;45(4):1186-94
11739965 - Stroke. 2001 Dec 1;32(12):2735-40
10797166 - Stroke. 2000 May;31(5):1062-8
24256115 - Int J Stroke. 2014 Jun;9(4):514-8
References_xml – volume: 20
  start-page: 1431
  year: 2013
  ident: 10.5853/jos.2014.16.3.161_ref23
  publication-title: Eur J Neurol
  doi: 10.1111/ene.12228
– volume: 32
  start-page: 2735
  year: 2001
  ident: 10.5853/jos.2014.16.3.161_ref20
  publication-title: Stroke
  doi: 10.1161/hs1201.100209
– volume: 54
  start-page: 227
  year: 2003
  ident: 10.5853/jos.2014.16.3.161_ref6
  publication-title: Ann Neurol
  doi: 10.1002/ana.10644
– volume: 41
  start-page: 1579
  year: 2010
  ident: 10.5853/jos.2014.16.3.161_ref14
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.575373
– volume: 29
  start-page: 313
  year: 2010
  ident: 10.5853/jos.2014.16.3.161_ref8
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000278926
– volume: 15
  start-page: 266
  year: 2006
  ident: 10.5853/jos.2014.16.3.161_ref2
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2006.07.001
– volume: 21
  start-page: 1299
  year: 1990
  ident: 10.5853/jos.2014.16.3.161_ref9
  publication-title: Stroke
  doi: 10.1161/01.STR.21.9.1299
– volume: 8
  start-page: 116
  year: 2012
  ident: 10.5853/jos.2014.16.3.161_ref12
  publication-title: J Clin Neurol
  doi: 10.3988/jcn.2012.8.2.116
– volume: 45
  start-page: 1186
  year: 2014
  ident: 10.5853/jos.2014.16.3.161_ref15
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.003720
– volume: 24
  start-page: 35
  year: 1993
  ident: 10.5853/jos.2014.16.3.161_ref3
  publication-title: Stroke
  doi: 10.1161/01.STR.24.1.35
– volume: 314
  start-page: 66
  year: 2012
  ident: 10.5853/jos.2014.16.3.161_ref18
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2011.10.029
– volume: 27
  start-page: 493
  year: 2009
  ident: 10.5853/jos.2014.16.3.161_ref5
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000210432
– volume: 50
  start-page: 154
  year: 1993
  ident: 10.5853/jos.2014.16.3.161_ref10
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1993.00540020032014
– volume: 31
  start-page: 1062
  year: 2000
  ident: 10.5853/jos.2014.16.3.161_ref13
  publication-title: Stroke
  doi: 10.1161/01.STR.31.5.1062
– volume: 300
  start-page: 142
  year: 2011
  ident: 10.5853/jos.2014.16.3.161_ref16
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2010.08.023
– volume: 82
  start-page: 527
  year: 2011
  ident: 10.5853/jos.2014.16.3.161_ref19
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2010.222919
– volume: 32
  start-page: 2559
  year: 2001
  ident: 10.5853/jos.2014.16.3.161_ref21
  publication-title: Stroke
  doi: 10.1161/hs1101.098524
– volume: 9
  start-page: 514
  year: 2014
  ident: 10.5853/jos.2014.16.3.161_ref7
  publication-title: Int J Stroke
  doi: 10.1111/ijs.12199
– volume: 58
  start-page: 688
  year: 2005
  ident: 10.5853/jos.2014.16.3.161_ref1
  publication-title: Ann Neurol
  doi: 10.1002/ana.20617
– volume: 12
  start-page: 145
  year: 2001
  ident: 10.5853/jos.2014.16.3.161_ref17
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000047697
– volume: 16
  start-page: 8
  year: 2014
  ident: 10.5853/jos.2014.16.3.161_ref22
  publication-title: J Stroke
  doi: 10.5853/jos.2014.16.1.8
– volume: 26
  start-page: 609
  year: 1995
  ident: 10.5853/jos.2014.16.3.161_ref11
  publication-title: Stroke
  doi: 10.1161/01.STR.26.4.609
– volume: 43
  start-page: 1021
  year: 1993
  ident: 10.5853/jos.2014.16.3.161_ref4
  publication-title: Neurology
  doi: 10.1212/WNL.43.5.1021
– reference: 19342825 - Cerebrovasc Dis. 2009;27(5):493-501
– reference: 12891675 - Ann Neurol. 2003 Aug;54(2):227-34
– reference: 24578206 - Stroke. 2014 Apr;45(4):1186-94
– reference: 11692017 - Stroke. 2001 Nov;32(11):2559-66
– reference: 11739965 - Stroke. 2001 Dec 1;32(12):2735-40
– reference: 20875650 - J Neurol Sci. 2011 Jan 15;300(1-2):142-7
– reference: 16240340 - Ann Neurol. 2005 Nov;58(5):688-97
– reference: 20595675 - Stroke. 2010 Aug;41(8):1579-86
– reference: 22787495 - J Clin Neurol. 2012 Jun;8(2):116-22
– reference: 7709407 - Stroke. 1995 Apr;26(4):609-13
– reference: 2396267 - Stroke. 1990 Sep;21(9):1299-305
– reference: 8431134 - Arch Neurol. 1993 Feb;50(2):154-61
– reference: 11641577 - Cerebrovasc Dis. 2001;12(3):145-51
– reference: 20974649 - J Neurol Neurosurg Psychiatry. 2011 May;82(5):527-33
– reference: 17904086 - J Stroke Cerebrovasc Dis. 2006 Nov-Dec;15(6):266-72
– reference: 20130396 - Cerebrovasc Dis. 2010;29(4):313-20
– reference: 24256115 - Int J Stroke. 2014 Jun;9(4):514-8
– reference: 23837733 - Eur J Neurol. 2013 Nov;20(11):1431-9
– reference: 24741560 - J Stroke. 2014 Jan;16(1):8-17
– reference: 8492920 - Neurology. 1993 May;43(5):1021-7
– reference: 7678184 - Stroke. 1993 Jan;24(1):35-41
– reference: 10797166 - Stroke. 2000 May;31(5):1062-8
– reference: 22118859 - J Neurol Sci. 2012 Mar 15;314(1-2):66-70
SSID ssj0000851882
ssib007599070
ssib016587330
Score 2.3518865
Snippet In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a stroke registry, we...
Background and PurposeIn order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a...
Background and Purpose In order to improve inter-rater reliability and minimize diagnosis of undetermined etiology for stroke subtype classification, using a...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 161
SubjectTerms algorithm
classification
magnetic resonance imaging
Original
stroke
신경과학
SummonAdditionalLinks – databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZWuxLignhTYJGROCG58itxfELdhdUWqRyASnuz4ke63ZYEsqkE_56xk1YUVZy4OJJjW86M7fnGM5lB6A3zyktAbSTLS05kYJJY5SxxuXeK5mVQ6b-12af8ci4_XmVXR2ib3mog4O1B1S7mk5q36_HPH7_ewYYH_DoGsCugU4y7zeSY5WMBBShDJ8lcFD35BrR_07tksSKlj-KgJxCQzay3cx4eZU9SpYD-IH_qtjqERf92qfxDRl3cR_cGcIkn_Wp4gI5C_RDdmQ3m80fo_ezzlES55fFkvWjaZXf9DQNqxRO36QKeAjmirzz-0rXNKmA4VOINLU6JM6NLUeLiYzS_-PD1_JIMaRSIk1p0JHeZrKxTTmUOlB8hhHei4NrRwtKqAClZguD2rLAFtVp7ODpFFjiDKp2XQJon6Lhu6vAMYap00I6DzsQqqT2AnSCLKsDAlWWchhGiW5IZN8QYj6ku1gZ0jUhlA1Q2kcqG5UZAwUbo7a7L9z7Axr8an0U-7BrG2NipomkXZthqxgtRcRZK7YpKyuCtk1ZoGoGWKDIKg2Dgolm5Zeofn4vGrFoDGsTUcC2ZGqHXWxYb2G7RhlLWodncxklIBQefhDZPe5bvZsMzweHMliOk9hbD3nT339TL6xTSW8bLPc2f_4_ve4HuRqL1jnAv0XHXbsIpIKfOvkr74TeEUxMW
  priority: 102
  providerName: Scholars Portal
Title MRI-based Algorithm for Acute Ischemic Stroke Subtype Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/25328874
https://www.proquest.com/docview/1614704047
https://pubmed.ncbi.nlm.nih.gov/PMC4200592
https://doaj.org/article/d33f21ea9c8f44edbc4b390846738501
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001915163
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 대한뇌졸중학회지, 2014, 16(3), 13, pp.161-172
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLopRHgCIjcUJyGz8S28ctUHWRlgNQqTcrfqTdbklQmv3_jO10tYsQXHpxJMeOJjO2Zz57PIPQe-qlF2C1kapuGBGBCmKls8TV3smyboJM99YWX-uzc_HlorrYSvUVfcJyeODMuGPPectoaLRTrRDBWycs4PSoNrmq8s2tUpdbYOo6e19RlTJFMYAEBNQwzUeaYB3z4-s-Buqm4ojWRxwKuqOUUux-UDXd0P7N7PzTe3JLHZ0-QY8nOxLPMv376EHonqKHi-mk_AB9Wnybk6iiPJ7dXPbDcrz6icFAxTO3HgOeA6iNbvH4-zj0q4Bh_YibsTjlyIzeQ0lgz9D56ecfH8_IlDGBOKH5SGpXidY66WTlAOdwzr3jimlXKlu2ChRiAzraU2VVabX2kYlVYBSqdN0Aa56jva7vwkuES6mDdgzgEW2F9mDXBKHaAB9uLWVlKFB5xzLjpnDiMavFjQFYEblsgMsmctnQ2nAoaIE-bLr8yrE0_tX4JMph0zCGwU4VMDjMNDjM_wZHgTBI0azcMvWPz8verAYDYGFumBZUFujdnYgNzKx4XNJ0oV_fRiKEhDVOQJsXWeQbaljFGSzPokByZzDskLv7pltepejdIu7jafbqPv7vNXoUmZZ93t6gvXFYh0Mwkkb7Ns0HKBdC_QYzdQvt
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI-based+Algorithm+for+Acute+Ischemic+Stroke+Subtype+Classification&rft.jtitle=Journal+of+stroke&rft.au=Youngchai+Ko&rft.au=SooJoo+Lee&rft.au=Jong-Won+Chung&rft.au=Moon-Ku+Han&rft.date=2014-09-01&rft.pub=Korean+Stroke+Society&rft.issn=2287-6391&rft.eissn=2287-6405&rft.volume=16&rft.issue=3&rft.spage=161&rft.epage=172&rft_id=info:doi/10.5853%2Fjos.2014.16.3.161&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d33f21ea9c8f44edbc4b390846738501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-6391&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-6391&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-6391&client=summon